

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 101017529.

 D3.3 End user documentation for batch

processing system

Status: Under EC Review Planned due date: 31/03/2022

Version: 1.0 Submission date: 31/03/2022

Lead Participant: VITO Lead Author: Hande Erdem

Related WP: WP3 Document Ref: D3.3

Dissemination Level: Public (PU)

Document Link: https://doi.org/10.5281/zenodo.6403077

Deliverable Abstract

This document aims to provide information to the end users on the C-SCALE Batch

Processing system, which is deployed and running on the C-SCALE Compute Federation.

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 2 of 20

COPYRIGHT NOTICE

This work by parties of the C-SCALE consortium is licensed under a Creative Commons Attribution

4.0 International License. (http://creativecommons.org/licenses/by/4.0/).

C-SCALE receives funding from the European Union's Horizon 2020 research and innovation

programme under Grant Agreement No. 101017529.

DELIVERY SLIP

Date Name Partner/Activity

Lead Author: Hande Erdem (HE) VITO

Contributors: Jeroen Dries (JD) VITO

Moderated by: Charis Chatzikyriakou (CC) EODC

Reviewed by:
Sebastian Luna-Valero (SLV) EGI Foundation

Zacarias Benta (ZB) INCD

Approved by:

C-SCALE Activity Management Board (AMB):

Christian Briese (CB), Diego Scardaci (DS), Charis

Chatzikyriakou (CC), Zdeněk Šustr (ZS), Enol

Fernández (EF), Björn Backeberg (BB), Eleonora

Testa (ET)

EODC, CESNET, EGI

Foundation,

Deltares

DOCUMENT LOG

Issue Date Comment Author(s)

V0.1 14/03/2022 First draft for review HE, JD

V0.2 23/03/2022 Addressed the comments from the reviewers HE, SLV, ZB

V0.3 28/03/2022 Created second draft HE

V0.4 31/03/2022 Addressed the comments from the AMB HE, CC

V1.0 31/03/2022 Final version approved by AMB C-SCALE AMB

http://creativecommons.org/licenses/by/4.0/

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 3 of 20

Table of Contents

List of Images ... 4

List of Acronyms ... 5

Executive Summary .. 7

1 Introduction .. 8

2 Batch Processing Environment .. 9

2.1 openEO Backends in C-SCALE Compute Federation ... 9

2.2 openEO End User Documentation ... 10

2.2.1 Getting Started with C-SCALE Batch Processing Environment 10

2.2.2 Data Cube Documentation ... 10

2.2.3 Web Editor Documentation ... 11

2.2.4 JavaScript Client Documentation ... 11

2.2.5 Python Client Documentation .. 13

2.2.6 OpenEO API Documentation .. 18

3 Interactive Analysis Environment .. 19

3.1 Jupyter Notebooks .. 19

4 Conclusions ... 20

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 4 of 20

List of Images

Figure 1: Data cube resampling documentation ... 11

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 5 of 20

List of Acronyms

Acronym Description

AAI Authentication and Authorisation Infrastructure

API Application Programming Interface

CO Collaborative Organisation

C-SCALE Copernicus - eoSC AnaLytics Engine

DIAS Data and Information Access Services

EO Earth Observation

EODC Earth Observation Data Centre (C-SCALE provider)

EOSC European Open Science Cloud

GPU Graphics Processing Unit

GRNET Greek Research and Technology Network (C-SCALE provider)

GUI Graphical User Interface

HPC High Performance Computing

HTC High Throughput Computing

HTDP High Throughput Data Processing

IaaS Infrastructure as a Service

INCD-NCG Infrastructura Nacional de Computação Distribuída-National Computing Grid

(C-SCALE provider)

IDE Integrated Development Environment

OLA Operational Level Agreement

PBS Portable Batch System

PaaS Platform as a Service

REST Representational State Transfer

SLA Service Level Agreement

SRAM SURF Research Access Management

STAC SpatioTemporal Asset Catalog

TB Terabyte

TRL Technology Readiness Level

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 6 of 20

VA Virtual Access

VM Virtual Machine

WP Work Package

M2M Machine to Machine

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 7 of 20

Executive Summary

The C-SCALE (Copernicus − eoSC AnaLytics Engine) project aims to federate existing European Earth

Observation (EO) service providers, cloud resources and computing centres to empower the

European EO research community to more easily discover, access, process, analyse and share

Copernicus data, tools, resources and services. The C-SCALE data and compute federation will

ensure interoperability between distributed data catalogues, computational tooling, and

infrastructure, and will thereby increase the service offer of the EOSC Portal providing state-of-the-

art research enabling services to its users.

This document aims to provide information to the end users on the C-SCALE Batch Processing

system, which is deployed and running on the C-SCALE Compute Federation. In the later stages of

the project, the information intended for end users will be available as an online resource so that it

can be updated, maintained, and accessed in an easier and more user friendly manner.

After the introduction, Section 2 of the document focuses on the openEO1, which is offered as the

standard batch processing environment for the C-SCALE project. In addition, Section 3 provides a

brief overview of the Interactive Analysis Environments – also known as Jupyter Notebooks – that

can be used in combination with the batch processing system within the C-SCALE Compute

Federation.

1 https://openeo.cloud/

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 8 of 20

1 Introduction

C-SCALE Batch Processing and Interactive Analysis Environments provide users with necessary tools

to process Earth Observation (EO) data. The default batch processing environment in C-SCALE is

openEO. openEO offers a unified API and standard functions as well as data cubes to make it easy

to work with EO data. Using openEO, end users can take advantage of the out of the box functions

and data sets. openEO can be used within Jupyter Notebooks, within an Integrated Development

Environment (IDE) through openEO client libraries (e.g., Python client), for M2M integration through

REST API or directly through the openEO Web Editor (also known as openEO Platform Editor).

Jupyter Notebooks provide users with a web environment, on which they can directly work with the

satellite data using their preferred programming language. They can import the necessary libraries

to work with EO data and can take advantage of APIs like openEO to use out-of-the-box functions

and distributed processing capabilities. Moreover, Jupyter Notebooks allow users to combine code

with other media types (text, images, interactive maps and fields), which makes it suitable for

knowledge sharing and classroom situations.

The information provided to the end user is based on the state of the system when this document

is written. Users are encouraged to find and access to the most up-to-date documentation on the

C-SCALE Documentation Portal: https://wiki.c-scale.eu/C-SCALE.

https://wiki.c-scale.eu/C-SCALE

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 9 of 20

2 Batch Processing Environment

Earth Observation research often involves processing huge amounts of data, therefore processing

and generating value on it is challenging and presents a high entry barrier for the value creators.

With C-SCALE Batch Processing Environment we are offering openEO to simplify this aspect.

The data in an openEO service is exposed as a ‘data cube’, irrespective of how the data is stored

internally. As a result, users of C-SCALE Batch Processing Environment will no longer need to deal

with individual files, formats, and EO product catalogues, therefore making the user’s life easier.

openEO is easy to use, while hiding the complex technical details of distributed cloud processing of

C-SCALE Compute Federation. Users can trace how results are generated, so that their work is

reproducible. Well-documented interfaces make it easy to integrate openEO in any application.

Users can share their processes and algorithms as a service using openEO.

openEO offers a number of predefined functions, which the backend has to support (e.g., computing

an NDVI from spectral bands). This ensures that users can easily use different C-SCALE service

providers or can easily compare results.

Next to the predefined functions, openEO also offers user-defined functions. They allow the C-SCALE

users to reuse the wealth of algorithms that already exist, for instance, those that are available as

open source in the Python and R communities. User-defined functions are sent to the C-SCALE Batch

Processing backend in the form of a simple script. For instance, a Python script that loads a Machine

Learning model to classify pixels. Then, the function is executed on the backend. This capability and

its ease of use is truly unique for openEO, and it will increase the uptake of cloud-based processing

even more.

The openEO specification, which is utilised by C-SCALE Compute Federation, is built by an open

community of various research institutions and companies. Concurrently, multiple open source

client and backend implementations are developed to ensure that the standard is validated in

realistic scenarios. This approach makes the specification sustainable, as it can continue to evolve

freely as long as there are interested parties.

The open source nature of the implementations ensures that results are reproducible and traceable.

The implementation of the various processing functions can be verified and improved

independently, which is important in a world where information derived from EO data is used more

and more to drive policies and decisions.

2.1 openEO Backends in C-SCALE Compute Federation

Following are the openEO Backends that are currently available in C-SCALE:

• EODC

• CreoDIAS

• Terrascope/VITO

• INCD

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 10 of 20

More backends are being explored and added as the project progresses. This information will be

available on the C-SCALE Documentation portal.

2.2 openEO End User Documentation

The User Manual contains all essential information for the C-SCALE user to make full use of the

openEO platform. This manual is published and maintained on the openEO website, so users can

easily find required descriptions on the used tools.

The manual consists of specific parts:

• General info on openEO usage

• Specific info on connecting to the openEO platform

• Code examples

We target researchers working in Python in this manual. The platform also supports JavaScript, and

an R client exists, but this is not considered the main target audience for this manual.

2.2.1 Getting Started with C-SCALE Batch Processing Environment

Below is the list of web pages to start with all the different tools inside openEO:

• Data Cubes (https://openeo.org/documentation/1.0/datacubes.html)

o What are Datacubes?

o Dimensions

o Processes on Datacubes

• openEO Web Editor (https://docs.openeo.cloud/getting-started/editor/)

o Explanation of the Web Editor (also known as Platform Editor)

• Java Script Client (https://openeo.org/documentation/1.0/javascript/)

o Installation

o Connection

o Collection

o Processes

• Python Client (https://openeo.org/documentation/1.0/python/)

o Installation

o Processes

• “R” Client (https://openeo.org/documentation/1.0/r/)

o Installation

o Authentication

2.2.2 Data Cube Documentation

The Data Cubes Description Web page covers the definition of the Data Cube, the dimensions, and

processes. A more detailed description can be found online under the following domain -

https://openeo.org/documentation/1.0/datacubes.html#what-are-datacubes

Figure 1 describes the data cube resampling documentation.

https://openeo.org/documentation/1.0
https://openeo.org/documentation/1.0/datacubes.html
https://docs.openeo.cloud/getting-started/editor/
https://openeo.org/documentation/1.0/javascript/
https://openeo.org/documentation/1.0/python/
https://openeo.org/documentation/1.0/r/
https://openeo.org/documentation/1.0/datacubes.html#what-are-datacubes

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 11 of 20

Figure 1: Data cube resampling documentation

2.2.3 Web Editor Documentation

The openEO Web Editor (also called the Platform Editor) within C-SCALE Batch Processing

Environment is a browser-based Graphical User Interface (GUI) for openEO. It allows to use the

openEO services without any coding experience. You can explore the service offerings such as data

collections and processes, but also create and run custom processes on our infrastructure and then

visualize the results. Result visualization is still a bit limited, but all other features of the platform

are supported.

2.2.4 JavaScript Client Documentation

The openEO JavaScript Client can be used in all modern browsers (excludes Internet Explorer) and

all maintained Node.js versions (>= 10.x). It can also be used for mobile app development with the

Ionic Framework for example.

https://docs.openeo.cloud/getting-started/editor/

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 12 of 20

The easiest way to try out the client is using one of the examples. Alternatively, you can create an

HTML. Afterwards you can load the library. Depending on whether you are directly working in

Node.js or are just using a Node.js build tool, the import can be different. Please inform yourself

which import is suited for your project.

When the installation is successfully finished, you can now connect to openEO compliant back-ends.

If you have trouble installing the client, feel encouraged to leave an issue at the GitHub project.

https://github.com/Open-EO/openeo-js-client

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 13 of 20

2.2.5 Python Client Documentation

2.2.5.1 Installation

The openEO Python client library, used by C-SCALE Batch Processing Environment, is available on
PyPI and can easily be installed with a tool like pip, for example:

pip install openeo

It’s recommended to work in a virtual environment of some kind (venv, conda, etc.), containing
Python 3.6 or higher.

For more details, alternative installation procedures or troubleshooting tips: see the official openeo
package installation documentation.

2.2.5.2 Exploring a back-end

If you do not know an openEO back-end that you want to connect to yet, you can have a look at the

list of available openEO Backends in C-SCALE Compute Federation, to find all known back-ends
with information on their capabilities.

For this tutorial we will use the openEO instance of Terrascope, which is available at
https://openeo.vito.be. Note that the code snippets in this guide work the same way for the
other back-ends available in C-SCALE. Just the collection identifier and band names might differ.

First, we need to establish a connection to the back-end.

import openeo

connection = openeo.connect("https://openeo.vito.be")

The Connection object is your central gateway to - list data collections, available processes, file
formats and other capabilities of the back-end - start building your openEO algorithm from the
desired data on the back-end - execute and monitor (batch) jobs on the back-end - etc.

2.2.5.2.1 Collections

The EO data available at a back-end is organised in so-called collections. For example, a back-end
might provide fundamental satellite collections like “Sentinel-1” or “Sentinel-2”, or preprocessed
collections like “NDVI”. Collections are used as input data for your openEO jobs. More information
on how openEO “collections” relate to terminology used in other systems can be found in (the
openEO glossary).

Let’s list all available collections on the back-end, using list_collections:

print(connection.list_collections())

which returns a list of collection metadata dictionaries, e.g., something like:

[{'id': 'AGERA5', 'title': 'ECMWF AGERA5 meteo dataset', 'description': 'Daily surface me
teorolociga datal ...', ...},
 {'id': 'SENTINEL2_L2A_SENTINELHUB', 'title': 'Sentinel-2 top of canopy', ...},
 {'id': 'SENTINEL1_GRD', ...},
 ...]

https://pypi.org/project/openeo/
https://open-eo.github.io/openeo-python-client/installation.html
https://open-eo.github.io/openeo-python-client/installation.html
https://openeo.vito.be/
https://open-eo.github.io/openeo-python-client/api.html#module-openeo.rest.connection
https://open-eo.github.io/openeo-python-client/api.html#module-openeo.rest.connection
https://open-eo.github.io/openeo-python-client/api.html#openeo.rest.connection.Connection.list_collections

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 14 of 20

This listing includes basic metadata for each collection. If necessary, a more detailed metadata listing
for a given collection can be obtained with describe_collection.

Programmatically listing collections is just a very simple usage example of the Python client. In
reality, you probably want to look up or inspect available collections in a web based overview such
as the openEO Hub.

2.2.5.2.2 Processes

Processes in openEO are operations that can be applied on EO data (e.g., calculate the mean of an
array, or mask out observations outside a given polygon). The output of one process can be used as
the input of another process, and by doing so, multiple processes can be connected that way in a
larger “process graph”: a new (user-defined) processes that implements a certain algorithm can be
implemented following this logic. Please check the openEO glossary for more details on pre-defined,
user-defined processes and process graphs.

Let’s list the (pre-defined) processes available on the back-end with list_processes:

print(connection.list_processes())

which returns a list of Python dictionaries describing the processes (including expected arguments
and return type), e.g.:

[{'id': 'absolute', 'summary': 'Absolute value', 'description': 'Computes the absolute va
lue of a real number `x`, which is th...',
 {'id': 'mean', 'summary': 'Arithmetic mean(average)', ...}
 ...]

Like with collections, instead of programmatic exploration you’ll probably prefer a web-based
overview such as the openEO Hub for back-end specific process descriptions or browse the
reference specifications of openEO processes.

2.2.5.3 Authentication

In the code snippets above we did not need to log in since we just queried publicly available back-
end information. However, to run non-trivial processing queries one has to authenticate so that
permissions, resource usage, etc. can be managed properly.

Even though openEO supports Basic Authentication, within C-SCALE federation, only OpenID
Connect Authentication method is allowed.

A detailed description of why and how to use the authentication methods is on the official

documentation.

2.2.5.3.1 Basic Authentication

The Basic Authentication method is a common way of authenticating HTTP requests given username
and password.

The preferred authentication method is OpenID Connect due to better security mechanisms
implemented in the OpenID Connect protocol. If possible, use OpenID Connect instead of HTTP Basic
authentication.

The following code snippet shows how to log in via Basic Authentication:

https://open-eo.github.io/openeo-python-client/api.html#openeo.rest.connection.Connection.describe_collection
https://hub.openeo.org/
https://eodcgmbheu.sharepoint.com/sites/C-SCALEall/Shared%20Documents/WP3%20-%20ComputeFed/glossary.md#processes
https://open-eo.github.io/openeo-python-client/api.html#openeo.rest.connection.Connection.list_processes
https://hub.openeo.org/
https://processes.openeo.org/
https://open-eo.github.io/openeo-python-client/auth.html#authentication-and-account-management
https://open-eo.github.io/openeo-python-client/auth.html#authentication-and-account-management

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 15 of 20

print("Authenticate with Basic authentication")
connection.authenticate_basic("username", "password")

After successfully calling the authenticate_basic method, you are logged into the back-end
with your account.

This means that every call that comes after that via the connection variable is executed by your user
account.

2.2.5.3.2 OpenID Connect Authentication

The OIDC (OpenID Connect) Authentication can be used to authenticate via an external service given
a client ID. For C-SCALE Batch Processing Environment, this means authenticating through EGI Check-
in service.

The following code snippet shows how to log in via OIDC authentication:

print("Authenticate with OIDC authentication")
connection.authenticate_OIDC("egi")

Calling this method opens your system web browser, with which you can authenticate yourself on
the back-end authentication system. After that the website will give you the instructions to go back
to the python client, where your connection has logged your account in. This means that every call
that comes after that via the connection variable is executed by your user account.

2.2.5.4 Working with Datacubes

Now that we know how to discover the capabilities of the back-end and how to authenticate, let’s
do some real work and process some EO data in a batch job. We’ll build the desired algorithm by
working on so-called “Datacubes”, which is the central concept in openEO to represent EO data, as
discussed in great detail here.

2.2.5.4.1 Creating a Datacube

The first step is loading the desired slice of a data collection with
Connection.load_collection:

datacube = connection.load_collection(
 "SENTINEL1_GRD",
 spatial_extent={"west": 16.06, "south": 48.06, "east": 16.65, "north": 48.35},
 temporal_extent=["2017-03-01", "2017-04-01"],
 bands=["VV", "VH"]
)

This results in a Datacube object containing the “SENTINEL1_GRD” data restricted to the given
spatial extent, the given temporal extend and the given bands .

You can also filter the datacube step by step or at a later stage by using the following filter methods:

datacube = datacube.filter_bbox(west=16.06, south=48.06, east=16.65, north=48.35)
datacube = datacube.filter_temporal(start_date="2017-03-01", end_date="2017-04-01")
datacube = datacube.filter_bands(["VV", "VH"])

Still, it is recommended to always use the filters directly in load_collection to avoid loading too much
data upfront.

https://open-eo.github.io/openeo-python-client/api.html#openeo.rest.connection.Connection.authenticate_basic
https://openid.net/connect/
https://eodcgmbheu.sharepoint.com/sites/C-SCALEall/Shared%20Documents/WP3%20-%20ComputeFed/datacubes.md
https://open-eo.github.io/openeo-python-client/api.html#openeo.rest.connection.Connection.load_collection
https://open-eo.github.io/openeo-python-client/api.html#openeo.rest.datacube.DataCube
https://open-eo.github.io/openeo-python-client/api.html#openeo.rest.datacube.DataCube
https://open-eo.github.io/openeo-python-client/api.html#openeo.rest.connection.Connection.load_collection

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 16 of 20

2.2.5.4.2 Applying processes

By applying an openEO process on a datacube, we create a new datacube object that represents the
manipulated data. The standard way to do this with the Python client is to call the appropriate
Datacube object method. The most common or popular openEO processes have a dedicated
Datacube method (e.g., mask, aggregate_spatial, filter_bbox, …). Other processes
without a dedicated method can still be applied in a generic way. On top of that, there are also some
convenience methods that implement openEO processes in a compact, Pythonic interface. For
example, the min_time method implements a reduce_dimension process along the temporal
dimension, using the min process as reducer function:

datacube = datacube.min_time()

This creates a new datacube (we overwrite the existing variable), where the time dimension is
eliminated and for each pixel, we just have the minimum value of the corresponding timeseries in
the original datacube.

See the Python client Datacube API for a more complete listing of methods that implement openEO
processes.

openEO processes that are not supported by a dedicated Datacube method can be applied in a
generic way with the process method, e.g.:

datacube = datacube.process(
 process_id="ndvi",
 arguments={
 "data": datacube,
 "nir": "B8",
 "red": "B4"}
)

This applies the ndvi process to the datacube with the arguments of “data”, “nir” and “red” (This
example assumes a datacube with bands B8 and B4).

2.2.5.4.3 Defining output format

After applying all processes, you want to execute, we need to tell the back-end to export the
datacube, for example as GeoTiff:

result = datacube.save_result("GTiff")

2.2.5.5 Execution

It’s important to note that all the datacube processes we applied up to this point are not actually
executed yet, neither locally nor remotely on the back-end. We just built an abstract representation
of the algorithm (input data and processing chain), encapsulated in a local Datacube object
(e.g., the result variable above). To trigger an actual execution (on the C-SCALE back-end) we have
to explicitly send this representation to the back-end.

openEO defines several processing modes, but for this introduction we’ll focus on batch jobs, which
is a good default choice.

https://open-eo.github.io/openeo-python-client/api.html#openeo.rest.datacube.DataCube
https://open-eo.github.io/openeo-python-client/api.html#openeo.rest.datacube.DataCube
https://open-eo.github.io/openeo-python-client/api.html#openeo.rest.datacube.DataCube.min_time
https://open-eo.github.io/openeo-python-client/api.html#openeo.rest.datacube.DataCube
https://open-eo.github.io/openeo-python-client/api.html#openeo.rest.datacube.DataCube.process
https://open-eo.github.io/openeo-python-client/api.html#openeo.rest.datacube.DataCube.process
https://docs.openeo.cloud/processes/#ndvi
https://docs.openeo.cloud/processes/#ndvi

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 17 of 20

2.2.5.5.1 Batch job execution

The result datacube object we built above describes the desired input collections, processing
steps and output format. We can now just send this description to the C-SCALE back-end to create a
batch job with the send_job method like this:

Creating a new job at the back-end by sending the datacube information.
job = result.send_job()

The batch job, which is referenced by the returned job object, is just created at the back-end, it is
not started yet. To start the job and let your Python script wait until the job has finished then
download it automatically, you can use the start_and_wait method.

Starts the job and waits until it finished to download the result.
job.start_and_wait()
job.get_results().download_files("output")

When everything completes successfully, the processing result will be downloaded as a GeoTIFF file

in a folder “output”.

The official openEO Python Client documentation has more information on batch job basics or more

detailed batch job (result) management.

2.2.5.6 Full Example

In this chapter we will show a full example of an EO use case using the openEO Python client and

the Terrascope back-end within C-SCALE Compute Federation.

We want to produce a monthly RGB composite of Sentinel-1 backscatter data over the area of

Vienna, Austria for three months in 2017. This can be used for classification and crop monitoring.

In the following code example, we use inline code comments to describe what we are doing.

import openeo

First, we connect to the back-end and authenticate ourselves via OIDC authentication.
con = openeo.connect("https://openeo.vito.be").authenticate_oidc("egi")

Now that we are connected, we can initialize our datacube object with the area around Vienna
and the time range of interest using Sentinel 1 data.
datacube = con.load_collection("SENTINEL1_GRD",
 spatial_extent={"west": 16.06, "south": 48.06, "east": 16.65, "north": 48.35},
 temporal_extent=["2017-03-01", "2017-06-01"],
 bands=["VV"])

Since we are creating a monthly RGB composite, we need three (R, G and B) separated time ranges.
Therefore, we split the datacube into three datacubes by filtering temporal for
March, April and May.
march = datacube.filter_temporal("2017-03-01", "2017-04-01")
april = datacube.filter_temporal("2017-04-01", "2017-05-01")
may = datacube.filter_temporal("2017-05-01", "2017-06-01")

Now that we split it into the correct time range, we have to aggregate the timeseries values into
a single image. Therefore, we make use of the Python Client function `mean_time`, which reduces th
e # time dimension, by taking for every timeseries the mean value.

mean_march = march.mean_time()
mean_april = april.mean_time()
mean_may = may.mean_time()

Now the three images will be combined into the temporal composite.

https://open-eo.github.io/openeo-python-client/api.html#openeo.rest.datacube.DataCube.send_job
https://open-eo.github.io/openeo-python-client/api.html#openeo.rest.datacube.DataCube.send_job
https://open-eo.github.io/openeo-python-client/basics.html#managing-jobs-in-openeo
https://open-eo.github.io/openeo-python-client/batch_jobs.html
https://open-eo.github.io/openeo-python-client/batch_jobs.html

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 18 of 20

Before merging them into one datacube, we need to rename the bands of the images, because
otherwise, they would be overwritten in the merging process.
Therefore, we rename the bands of the datacubes using the `rename_labels` process to "R", "G" and
"B". After that we merge them into the "RGB" datacube, which has now three bands ("R","G" and "B")

R_band = mean_march.rename_labels(dimension="bands", target=["R"])
G_band = mean_april.rename_labels(dimension="bands", target=["G"])
B_band = mean_may.rename_labels(dimension="bands", target=["B"])

RG = R_band.merge_cubes(G_band)
RGB = RG.merge_cubes(B_band)

Last but not least, we add the process to save the result of the processing. There we define that
the result should be a GeoTiff file.
We also set, which band should be used for "red", "green" and "blue" colour in the options.
With the last process we have finished the datacube definition and can create and start the job at
the back-end.

job = RGB.execute_batch(out_format="GTiff")
results = job.get_results()
results.get_metadata()

Now the resulting GTiff file of the RGB backscatter composite can be retrieved through the link that

is provided in the result metadata.

2.2.5.7 User Defined Functions

If your use case cannot be carried out with the openEO’s pre-defined functions, you can create a

User Defined Function (UDF). Therefore, you can create a Python function that will be executed at

the back-end and functions as a process in your process graph. Detailed information about Python

UDFs can be found in the official documentation as well as examples in the Python client repository.

2.2.5.8 Additional Information

Additional information and resources about the openEO Python Client Library:

Example scripts

Example Jupyter Notebooks

Official openEO Python Client Library Documentation

Repository on GitHub

2.2.6 OpenEO API Documentation

The most up-to-date openEO REST API documentation can be found on the openeo.org website.

https://open-eo.github.io/openeo-python-client/udf.html
https://github.com/Open-EO/openeo-python-client/tree/master/examples/udf
https://github.com/Open-EO/openeo-python-client/tree/master/examples
https://github.com/Open-EO/openeo-python-client/tree/master/examples/notebooks
https://open-eo.github.io/openeo-python-client/
https://github.com/Open-EO/openeo-python-client
https://openeo.org/documentation/1.0/developers/api/reference.html

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 19 of 20

3 Interactive Analysis Environment

3.1 Jupyter Notebooks

Notebooks is a browser-based tool for interactive analysis of data using C-SCALE storage and

compute services. Notebooks is based on the JupyterHub technology.

This service can combine text, mathematics, computations and their rich media output using Jupyter

technology, and can scale to multiple servers and users with the Cloud Compute service.

A basic instance of the Notebooks is available to users as an open service. Any researcher can access

to this automatically to write and play notebooks on limited capacity cloud servers.

C-SCALE also offers customised Notebooks service to scientific communities. Such customised

instances can be hosted on special hardware (for example with fat nodes and GPUs), can offer

special libraries, data import/export and user authentication system.

EGI, EODC, CREODIAS and Terrascope/VITO are the C-SCALE providers that offer Jupyter Notebook

services, and the related documentation can be found at:

• EGI: https://notebooks.egi.eu/hub/welcome

• EODC: https://marketplace.eosc-portal.eu/services/eodc-jupyterhub-for-global-copernicus-

data?q=EODC+JupyterHub+for+global+Copernicus+data

• CREODIAS: https://creodias.eu/creodias-jupyter-hub

• Terrascope/VITO: https://notebooks.terrascope.be/hub/login

https://notebooks.egi.eu/hub/welcome
https://marketplace.eosc-portal.eu/services/eodc-jupyterhub-for-global-copernicus-data?q=EODC+JupyterHub+for+global+Copernicus+data
https://marketplace.eosc-portal.eu/services/eodc-jupyterhub-for-global-copernicus-data?q=EODC+JupyterHub+for+global+Copernicus+data
https://creodias.eu/creodias-jupyter-hub
https://notebooks.terrascope.be/hub/login

Doc. Name D3.3 End user documentation for batch processing system

Doc. Ref. D3.3 Version 1.0 Page 20 of 20

4 Conclusions

C-SCALE Batch Processing and Interactive Analysis Environments aim to provide users with a modern

and simplified approach to process Earth Observation (EO) data by leveraging the strengths of the

C-SCALE Compute Federation. For this purpose, openEO and Jupyter Notebooks are offered by

several providers. This document is meant to give an overview of the available functionality to the

end users. It is expected that, during the lifecycle of the project, new functionality or new providers

will be available, rendering this document obsolete. Therefore, we aim to provide an in-depth and

up-to-date online documentation through the C-SCALE Documentation page and through dedicated

documentation channels of the relevant components, i.e., openEO.

