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Abstract. In this work, the fractional Lie symmetry method is used to find the exact solutions
of the time-fractional coupled Drinfeld-Sokolov-Wilson equations with the Riemann-Liouville
fractional derivative. Time-fractional coupled Drinfeld-Sokolov-Wilson equations are obtained
by replacing the first-order time derivative to the fractional derivatives (FD) of order α in the
classical Drinfeld-Sokolov-Wilson (DSW) model. Using the fractional Lie symmetry method,
the Lie symmetry generators are obtained. With the help of symmetry generators, FCDSW
equations are reduced into fractional ordinary differential equations (FODEs) with Erdélyi-
Kober fractional differential operator. Also, we have obtained the exact solution of FCDSW
equations and shown the effects of non-integer order derivative value on the solutions graphically.
The effect of fractional order α on the behavior of solutions are studied graphically. Finally, new
conservation laws are constructed along with the formal Lagrangian and fractional generalization
of Noether operators. It is quite interesting the exact analytic solutions are obtained in explicit
form.
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1. Introduction

Water waves in oceans is always a topic of great interest for researchers. However, the phe-
nomena is very complex and no single model is available that may describe the fully non-linear
dynamics of the waves. Many mathematical models have been proposed by researchers for sim-
pler case where the pressure difference in vertical direction is negligible. It means the horizontal
length scale (wavelength) is larger than the depth of the fluid. Further, the fluid is ir-rotational.
In the recent few years, many modified models of the problem have been proposed by researchers
by using Fractional Derivatives (FD) (a derivative of arbitrary order). However, the topic of
fractional derivatives is quite old and reported first in 1695 by G.W. Leibniz, its application
remains limited till last century. In the last decade, researchers have recognised the usefulness
of FD to adequately model a problem than the traditional integer derivatives. Fractional or-
der differential equations are the generalizations of classical integer-order differential equations.
Many researchers are devoted to the interpretation, properties and applications of fractional
order integrals and derivatives [?, ?, ?]. In the recent years, fractional differential equations
(FDEs) have been studied frequently to model various physical problems in hydrology, visco-
elasticity, mechanics, neurons, image processing, physics, control-theory, electrochemistry and
finance [?, ?, ?, ?, ?, ?, ?]. Fractional differential equations (FDEs) attract considerable interest
in the various fields of engineering and science. Many powerful and efficient methods have been
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developed to obtain the exact and numerical solutions of FDEs like (G’/G)-expansion method
[?], functional variable method [?], modified trial equation method [?], exponential function
method [?], sub equational method [?], homotopy perturbation method [?] and so on.

The Lie symmetry method was first introduced by Sophus Lie [?]. The main aim of this
method is to obtain the infinitesimal generators which leaves the considered differential equa-
tion invariant in form. This method provides powerful structure in the working of differential
equations. Adapting the Lie group analysis method and proposing the prolongation formulas
for fractional derivatives, Gazizov et al. [?] studied the symmetry properties of fractional order
differential equations with the help of Riemann-Liouville and Caputo fractional derivatives [?].
Since few attributes of FD are non-identical to the integer order derivatives, obtaining the Lie
symmetries and the conservation laws for fractional partial differential equations (FPDEs) are of
interest for researchers. Despite the importance of conservation laws in internal properties and,
existence and uniqueness analysis of differential equations, the conservation laws for FDEs are
not widely discussed. The real-world physical processes can be better modeled by FDEs rather
by integer order differential equations. Fractional order representations possess long memory
characteristics that makes the system behave in more realistic manner.

Most phenomena in Physics, Astrophysics and fluid dynamics are non-linear in nature. Among
these non-linear phenomena, the dynamics of water waves in ocean is quite fascinating. Many
models have been proposed for the shallow water waves involving mostly integer order deriva-
tives. Fractional order derivative significantly affects the properties of the equation. In the recent
few years, lot of studies have appeared on the ”Fractional Derivatives (FD)” to model these prob-
lems more accurately. We have considered the time-fractional coupled Drinfeld-Sokolov-Wilson
equations (FCDSW) [?, ?] which are used are used to describe the model of shallow water waves.

Dα
t u+ awwx = 0, (1.1)

Dα
t w + bwxxx + cwux + duwx = 0. (1.2)

Here α denotes the order of FD with 0 < α ≤ 1 and a, b c and d are nonzero constants. For
α = 1, Eqs. (??)-(??) represent the classical DSW equations, which was first introduced by
Drienfel’d and Sokolov [?, ?] and studied by Wilson [?].

In the recent years, many numerical and analytical solutions of FCDSW equations have been
presented by the researchers due to its wide applications in the modeling of water waves. Yao et
al. [?] have studied the bifurcations of travelling wave solutions of generalized DSW equations.
Recently, Sahoo and Ray [?] have obtained the double-periodic solutions of FCDSW equations
in the shallow water waves.

In this work, we have obtained the explicit solution expression of FCDSW equations. We
have applied fractional Lie group method to obtain the symmetry properties and conservation
laws for the FCDSW equations. Using the Lie symmetry transformations, the time fractional
coupled DSW equations are reduced into fractional differential equations with Erdélyi-Kober
operator. The fractional order differential equations are in Euler-Lagrange forms. Therefore,
the conservation laws of these equations is obtained by using the Noether’s theorem by Lie
symmetries.

The primary contents of this paper are as follows: A brief introduction is given in detail
about the fractional order differential equations in section 1. Section 2 contains preliminaries in
which definition of fractional derivative and the basic idea of fractional Lie symmetry method
are presented. In section 3, we have applied the proposed method to the FCDSW equations and
determined the symmetry generators of fractional equations. Using these symmetry generators,
FCDSW equations are reduced into the fractional ordinary differential equations with the help
of Erdélyi-Kober fractional differential operator with Riemann fractional derivative. In section
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4, exact solution of FCDSW equations is obtained and the nonlinearity property of the solution
is studied with the help of two and three dimensional plots. In section 5, new conservation laws
have been developed along with new conserved vectors using new conservation theorem and
fractional generalization of Noether operators. In section 5, conclusion is presented about the
whole study.

2. Preliminaries

2.1. Definition of Fractional derivative. The Riemann-Liouville FD of a function u(x, t),
for order α > 0, is defined as follows [?, ?, ?, ?]:

Dα
t u(x, t) =

{
1

Γ(m−α)
∂m

∂tm

∫ t
0 (t− σ)m−α−1u(σ, x)dσ, m− 1 ≤ α ≤ m,m ∈ N , t > 0,

∂m

∂tm , α = m ∈ N ,
(2.1)

where Γ denotes Euler’s gamma function.

2.2. Basic Idea of the Proposed Fractional Lie Symmetry Method. We have consid-
ered the coupled time fractional non-linear PDEs with two independent variables given in the
following form:

Dα
t u = f(x, t, u, ux, ut, uxx, uxxx, w, wx, wt, wxx, wxxx, ...), (2.2)

Dα
t w = g(x, t, u, ux, ut, uxx, uxxx, w, wx, wt, wxx, wxxx, ...), (2.3)

where α > 0 and subscripts represent the partial derivatives.

Consider the following symmetry generator of one-parameter Lie group of transformations
under which Eqs. (??) and (??) remain invariant

x̃ = x+ εξ(x, t, u, w) +O(ε2),

t̃ = t+ ετ(x, t, u, w) +O(ε2),

ũ = u+ εη(x, t, u, w) +O(ε2),

w̃ = w + εν(x, t, u, w) +O(ε2),

Dα
t ũ = Dα

t u+ εηα,t(x, t, u, w) +O(ε2), (2.4)

Dα
t w̃ = Dα

t w + ενα,t(x, t, u, w) +O(ε2),

∂ũ

∂x̃
=

∂u

∂x
+ εηx(x, t, u, w) +O(ε2),

∂w̃

∂x̃
=

∂w

∂x
+ ενx(x, t, u, w) +O(ε2),

∂3w̃

∂x̃3
=

∂3w

∂x3
+ ενxxx(x, t, u, w) +O(ε2),

where ε is the group parameter and ξ, τ , η and ν are the infinitesimals of the transformations.
The infinitesimal generator X can be written in following form:

X = ξ(x, t, u, w)∂x + τ(x, t, u, w)∂t + η(x, t, u, w)∂u + ν(x, t, u, w)∂w. (2.5)

The kth order prolongation of the fractional vector field is given as

Pr(α,k)X =X + ηα,t
∂

∂uαt
+ ηx

∂

∂ux
+ ηxx

∂

∂uxx
+ ...+ ηxx...ik

∂

∂uxx...ik

+ να,t
∂

∂wαt
+ νx

∂

∂wx
+ νxx

∂

∂wxx
+ ...+ νxx...ik

∂

∂wxx...ik
, k ≥ 1. (2.6)
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where the operators ηi and νi are extended infinitesimals [?] and ηα,t, να,t are the fractional
extended infinitesimals defined as follows:

ηα,t = Dα
t (η) + ξDα

t (ux)−Dα
t (ξux) +Dα

t (u(Dtτ))−Dα+1
t (τu) + τDα+1

t (u),

να,t = Dα
t (ν) + ξDα

t (wx)−Dα
t (ξwx) +Dα

t (w(Dtτ))−Dα+1
t (τw) + τDα+1

t (w),

ηx = Dx(η)− uxDx(ξ)− utDx(τ),

νx = Dx(ν)− wxDx(ξ)− wtDx(τ),

νxx = Dx(νx)− wxxDx(ξ)− wxtDx(τ),

νxxx = Dx(νxx)− wxxxDx(ξ)− wxxtDx(τ),

(2.7)

where Dx and Dt denote the total derivatives with respect to independent variables, defined as

Dt = ∂t + ut∂u + wt∂w + utt∂ut + wtt∂wt + uxt∂ux + wxt∂wx ...,

Dx = ∂x + ux∂u + wx∂w + uxx∂ux + wxx∂wx + utx∂ut + wtx∂wt .... (2.8)

Now, we focus on the expressions for ηα,t and να,t. The generalized Leibnitz rule is given by

Dα
t (f(t)h(t)) =

∞∑
m=0

(
α

m

)
Dm
t f(t)Dα−m

t h(t), (2.9)

where (
α

m

)
=

Γ(α+ 1)

Γ(m+ 1)Γ(α+ 1−m)
.

Now, using Leibnitz’s rule (??) in the expressions of ηα,t and να,t, we have

ηα,t = Dα
t (η)− αDt(τ)

∂αu

∂tα
−
∞∑
m=0

(
α

m

)
Dm
t (ξ)Dα−m

t ux −
∞∑
m=0

(
α

m+ 1

)
Dm+1
t (τ)Dα−m

t u

να,t = Dα
t (ν)− αDt(τ)

∂αw

∂tα
−
∞∑
m=0

(
α

m

)
Dm
t (ξ)Dα−m

t wx −
∞∑
m=0

(
α

m+ 1

)
Dm+1
t (τ)Dα−m

t w.

(2.10)

The chain rule for a composite function is as follows (see [?]):

dαf(g(t))

dtα
=

∞∑
k=0

k∑
r=0

(
k

r

)
1

k!
[−g(t)]r

dkf(g)

dfk
∂α

∂tα
[(g(t))k−r]. (2.11)

Using Eqs. (??) and (??) in Eqs. (??) with f(t) = 1, we have

Dα
t (η) =∂αt η +

(
ηu∂

α
t u− u∂αt ηu

)
+

(
ηw∂

α
t w − w∂αt ηw

)
+

∞∑
m=1

(
α

m

)
∂mt ηuD

α−m
t u

+

∞∑
m=1

(
α

m

)
∂mt ηwD

α−m
t w + µ1 + µ2,

Dα
t (ν) =∂αt ν +

(
νw∂

α
t w − w∂αt νw

)
+

(
νu∂

α
t u− u∂αt νu

)
+

∞∑
m=1

(
α

m

)
∂mt νwD

α−m
t w

+
∞∑
m=1

(
α

m

)
∂mt νuD

α−m
t u+ λ1 + λ2, (2.12)
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where

µ1 =

∞∑
m=2

m∑
n=2

n∑
j=2

j−1∑
r=0

(
α

m

)(
m

n

)(
j

r

)
1

j!

tm−α

Γ(m+ 1− α)
(−u)r

∂n

∂tn
(uj−r)

∂m−n+jη

∂tm−n∂uj
,

µ2 =
∞∑
m=2

m∑
n=2

n∑
j=2

j−1∑
r=0

(
α

m

)(
m

n

)(
j

r

)
1

j!

tm−α

Γ(m+ 1− α)
(−w)r

∂n

∂tn
(wj−r)

∂m−n+jη

∂tm−n∂wj
,

λ1 =
∞∑
m=2

m∑
n=2

n∑
j=2

j−1∑
r=0

(
α

m

)(
m

n

)(
j

r

)
1

j!

tm−α

Γ(m+ 1− α)
(−u)r

∂n

∂tn
(uj−r)

∂m−n+jν

∂tm−n∂uj
,

λ2 =
∞∑
m=2

m∑
n=2

n∑
j=2

j−1∑
r=0

(
α

m

)(
m

n

)(
j

r

)
1

j!

tm−α

Γ(m+ 1− α)
(−w)r

∂n

∂tn
(wj−r)

∂m−n+jν

∂tm−n∂wj
.

(2.13)

Thus, Eq. (??) yields

ηα,t =∂αt η +

(
ηu − αDt(τ)

)
∂αt u− u∂αt ηu +

(
ηw∂

α
t w − w∂αt ηw

)
+ µ1 + µ2

+

∞∑
m=1

[(
α

m

)
∂mt ηu −

(
α

m+ 1

)
Dm+1
t (τ)

]
Dα−m
t (u) +

∞∑
m=1

(
α

m

)
∂mt ηwD

α−m
t w

−
∞∑
m=1

(
α

m

)
Dm
t (ξ)Dα−m

t ux,

να,t =∂αt ν +

(
νw − αDt(τ)

)
∂αt w − w∂αt νw +

(
νu∂

α
t u− u∂αt νu

)
+ λ1 + λ2

+
∞∑
m=1

[(
α

m

)
∂mt νw −

(
α

m+ 1

)
Dm+1
t (τ)

]
Dα−m
t (w) +

∞∑
m=1

(
α

m

)
∂mt νuD

α−m
t u

−
∞∑
m=1

(
α

m

)
Dm
t (ξ)Dα−m

t wx. (2.14)

The infinitesimal generator X must satisfy the invariance conditions [?] for Eqs. (??) and (??),
which are given as follows:

Pr(α, k)X(∆u)|∆u=0 = 0, and Pr(α, k)X(∆w)|∆w=0 = 0, (2.15)

where ∆u = Dα
t u− f and ∆w = Dα

t w − g.

3. FCDSW equations

3.1. Lie symmetries. The time fractional coupled DSW equations are as follows:

Dα
t u+ awwx = 0, (3.1)

Dα
t w + bwxxx + cwux + duwx = 0, (3.2)

where Dα
t (u) and Dα

t (w) are Riemann-Liouville FDs of order α with respect to t. Applying
prolongation of fractional vector field on Eqs. (??) and (??), we obtain

ηα,t + awνx + aνwx = 0, (3.3)

να,t + cwηx + cνux + dwνx + dηwx + bνxxx = 0. (3.4)
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Now, using the Eqs. (??) and (??) in the Eqs. (??) and (??), we get the following set of
infinitesimals for FCDSW equations:

ξ =
1

3
αc3x+ c1, τ = c3t+ c2, η = −2

3
αc3u and ν = −2

3
αc3w, (3.5)

where c1, c2 and c3 are the arbitrary constants.
Since the lower limit of the integral (??) is fixed, therefore for preservation of its structure

under the transformations (??), the condition τ(x, t, u, w)|t=0 = 0 should hold. Therefore, c2

must be zero (i.e. τ = c3t).
So, the symmetry generators to form a Lie algebra of Eqs. (??) and (??) are found as:

X1 =
∂

∂x
, (3.6)

X3 =
1

3
αx

∂

∂x
+ t

∂

∂t
− 2

3
αu

∂

∂u
− 2

3
αw

∂

∂w
. (3.7)

Theorem 3.1. A solution u = z1(x, t) and w = z2(x, t), is invariant solutions of Eq. (??) and
(??) iff
(i) u = z1(x, t) and w = z2(x, t) satisfy the FPDE (??) and (??), respectively.
and
(ii) u = z1(x, t) and w = z2(x, t) are the invariant surfaces, i.e.

Xz1 = 0 ⇐⇒
(
ξ(x, t, u, w) ∂∂x + τ(x, t, u, w) ∂∂t + η(x, t, u, w) ∂∂u + ν(x, t, u, w) ∂

∂w

)
z1 = 0, and

Xz2 = 0⇐⇒
(
ξ(x, t, u, w) ∂∂x + τ(x, t, u, w) ∂∂t + η(x, t, u, w) ∂∂u + ν(x, t, u, w) ∂

∂w

)
z2 = 0.

3.2. Symmetry reduction of FCDSW equations. In this section, we obtain the reduced
equations for (??) and (??) by imposing the Lie symmetries. For the vector field X3, the
characteristic equations will be

dx

αx
=
dt

3t
=

du

−2αu
=

dw

−2αw
. (3.8)

After solving the Eq. (??), we obtain the following similarity variables:

z = xt−
α
3 , u = f(z)t−

2α
3 , w = g(z)t−

2α
3 . (3.9)

Theorem 3.2. The transformations (??) reduce the Eqs. (??) and (??) in the fractional non-
linear ordinary equations given as follows:(

P
1− 5α

3
, α

3
α

f

)
(z) + aggz = 0, (3.10)

and (
P

1− 5α
3
, α

3
α

g

)
(z) + cgfz + dfgz + bgzzz = 0, (3.11)

with the Erdélyi-Kober fractional differential operator P τ, αβ [?, ?] defined as(
P τ, αβ f

)
:=

m−1∏
j=0

(
τ + j − 1

β
z
d

dz

)(
Kτ+α,m−α
β f

)
(z), (3.12)

and (
P τ, αβ g

)
:=

m−1∏
j=0

(
τ + j − 1

β
z
d

dz

)(
Kτ+α,m−α
β g

)
(z), (3.13)
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where

m =

{
[α] + 1, α /∈ N ,
α, α ∈ N ,

(3.14)

(
Kτ+α,m−α
β f

)
(z) :=

 1
Γ(α)

∫∞
1 (u− 1)α−1u−(τ+α)f

(
zu

1
β

)
du, α > 0,

f(z), α = 0,
(3.15)

and (
Kτ+α,m−α
β g

)
(z) :=

 1
Γ(α)

∫∞
1 (w − 1)α−1w−(τ+α)g

(
zw

1
β

)
dw, α > 0,

g(z), α = 0
(3.16)

are the Erdélyi-Kober fractional integral operators [?].

Proof : When m− 1 < α < m,m = 1, 2, 3, ..., from Riemann-Liouville FD, we have

Dα
t u(x, t) =

∂m

∂tm

[
1

Γ(m− α)

∫ t

0
(t− s)m−α−1s

−2α
3 f

(
xs

−α
3

)
ds

]
. (3.17)

Let p = t
s , then ds = − t

p2
dp.

So Eq. (??) can be expressed as

Dα
t u(x, t) =

∂m

∂tm

[
tm−

5α
3

Γ(m− α)

∫ ∞
1

(p− 1)m−α−1pm+1−α− 2α
3 f

(
zp

α
3

)
dp

]
=

∂m

∂tm

[
tm−

5α
3

(
K

1− 2α
3
,m−α

3
α

f

)
(z)

]
=

∂m−1

∂tm−1

[
∂

∂t

(
tm−

5α
3

(
K

1− 2α
3
,m−α

3
α

f

)
(z)

)]
. (3.18)

For z = xt
−α
3 and a function φ(z) ∈ C1(0,∞), we get

t
d

dt
φ(z) = tztφ

′(z) = tx(−α
3

)t
−α
3
−1φ′(z) = −α

3
z
d

dz
φ(z). (3.19)

From relation (??), Eq. (??) can be re-written as follows:

Dα
t u(x, t) =

∂m−1

∂tm−1

[(
tm−1− 5α

3

((
m− 5α

3
− α

3
z
d

dz

)(
K

1− 2α
3
,m−α

3
α

f

)
(z)

))]
. (3.20)

Repeating the same process m− 1 times, we obtain

Dα
t u(x, t) = t−

5α
3

m−1∏
j=0

(
1− 5α

3
+ j − α

3
z
d

dz

(
K

1− 2α
3
,m−α

3
α

f

)
(z)

)
. (3.21)

Using Eq. (??) in Eq. (??), we obtain

Dα
t u(x, t) = t−

5α
3

(
P

1− 5α
3
, α

3
α

f

)
(z). (3.22)

Therefore, Eq. (??) can be written into a non-linear FODE as follows:(
P

1− 5α
3
, α

3
α

f

)
(z) + aggz = 0. (3.23)



8

For reducing Eq. (??), let m − 1 < α < m, m = 1, 2, 3, .... Then, from the definition of
Riemann-Liouville FD and using the similar procedure as above, we have

Dα
t w(x, t) = t

−5α
3

(
P

1− 5α
3
, α

3
α

g

)
(z). (3.24)

Therefore, Eq. (??) can be written into a non-linear FODE as follows:(
P

1− 5α
3
,α

3
α

g

)
(z) + cgfz + dfgz + bgzzz = 0. (3.25)

4. Exact analytic solution of the FCDSW equations

From the similarity analysis, we have u = f(z)ta1 and w = g(z)ta2 , where a1 = a2 = −2α
3

and z = xt−b, (b = α
3 ). In order to determine the exact explicit solution expression of FCDSW

equations, let us first introduce f(z) = A1z
k1 and g(z) = A2z

k2 , The parameters A1, A2, k1 and
k2 are the real valued constants. As mentioned in the work of Costa et al. [?] and Bira et al.
[?], we have

∂βu

∂tβ
=

1

Γ(1− β)

∂

∂t

∫ t

0
(t− r)−βra1f(xr−b)dr. (4.1)

Putting τ = r
t in the above equation, we obtain

∂βu

∂tβ
=

1

Γ(1− β)

∂

∂t

∫ 1

0
(1− τ)−βta1−β+1τa1f(zτ−b)dτ

=
∂

∂t

[
ta1−β+1

(
F a1,bβ f

)
(z)

]
, (4.2)

where (
F a1, bβ f

)
(z) =

1

Γ(1− β)

∫ 1

0
(1− τ)−βτa1f(zτ−b)dτ.

After some manipulation, Eq.(??) can be rewritten as

∂βu

∂tβ
= ta1−β

[(
1− β + a1 − bz

d

dz

)(
F a1, bβ f

)
(z)

]
. (4.3)

In the similar manner, we can find ∂βw
∂tβ

as follows:

∂βw

∂tβ
= ta2−β

[(
1− β + a2 − bz

d

dz

)(
F a2, bβ g

)
(z)

]
. (4.4)

Substituting Eqs.(??) and (??) in Eqs.(??) and (??), we obtain[(
1− β + a1 − bz

d

dz

)(
F a1, bβ f

)
(z)

]
+ aggz = 0,[(

1− β + a2 − bz
d

dz

)(
F a2, bβ g

)
(z)

]
+ bgzzz + cgfz + dfgz = 0. (4.5)
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Fig. 1 2D profiles of the solution u(x, t) for 0 < α < 1 and fixed x.

0.0

0.5

1.0

t

0

2

4

x

0.8

1.0

1.2

1.4

u

(a)

0.0

0.5

1.0

t

0

2

4

x

0.6

0.8

1.0

1.2

1.4

u

(b)

0.0

0.5

1.0

t

0

2

4

x

0.4

0.6

0.8

1.0

u

(c)

Fig. 2 3D profiles of the solution u(x, t) for (a) α = 0.2 (b) α = 0.3 (c) α = 0.4.

After calculating the operators F a1, bβ (zk1) and F a2, bβ (zk2) as in the work of Costa et al. [?], we

obtain

F a1, bβ (zk1) =
1

Γ(1− β)

∫ 1

0
(1− τ)−βτa1zk1τ−bk1dτ

=
Γ(1 + a1 − bk1)

Γ(2 + a1 − bk1 − β)
zk1 ,

F a2, bβ (zk2) =
Γ(1 + a2 − bk2)

Γ(2 + a2 − bk2 − β)
zk2 . (4.6)

Using (??) in Eqs. (??) we obtain

Γ(1 + a1 − bk1)

Γ(1 + a1 − bk1 − β)
A1z

k1 + ak2A
2
2z

2k2−1 = 0,

Γ(1 + a2 − bk2)

Γ(1 + a2 − bk2 − β)
A2z

k2 + bk2A2(k2 − 1)(k2 − 2)zk2−3 + ck1A1A2z
k1+k2−1 + dk2A1A2z

k1+k2−1.

(4.7)
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Fig. 3 2D profiles of the solution w(x, t) for 0 < α < 1 and fixed x.
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Fig. 4 3D profiles of the solution solution w(x, t) for (a) α = 0.2 (b) α = 0.3 (c) α = 0.4.

Substituting β = α, a1 = a2 = −2α
3 , b = α

3 in (??) and for k1 = k2 = 1, we obtain

A1 = − 1

(c+ d)

Γ(1− α)

Γ(1− 2α)
and A2 =

1√
{a(c+ d)}

Γ(1− α)

Γ(1− 2α)
. (4.8)

Hence the solution of original coupled FPDEs can be written as

u(x, t) = − 1

(c+ d)

Γ(1− α)

Γ(1− 2α)

x

tα
, (4.9)

and

w(x, t) =
1√

{a(c+ d)}
Γ(1− α)

Γ(1− 2α)

x

tα
. (4.10)

The above solution is called a dipole solution or singular solution. From Figures 1-4, one can
observe that a change in the value of α affects the soliton behaviour in a fundamental way
[?], which results that FD can be used to change the shape of waves without changing the
nonlinearity and dissipative effect in the medium.
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5. Conservation laws

In this part, the conserved vectors for the FCDSW equations using the new conservation
theorem are determined. The conservation laws [?, ?] for the FCDSW equations have been also
obtained.

The conservation laws for Eqs. (??) and (??) are defined as a vector field T = (T 1, T 2), where
T 1 = T 1(x, t, u, w, ...) and T 2 = T 2(x, t, u, w, ...) are called conserved vectors for Eqs. (??) and
(??), if T 1 and T 2 satisfy the conservation theorem given as follows:

[DtT
1 +DxT

2](??),(??) = 0. (5.1)

The formal Lagrangian of Eqs. (??) and (??) is obtained as

L = γ1(x, t)(Dα
t u+ awwx) + γ2(x, t)(Dα

t w + cuxw + duwx + bwxxx). (5.2)

Here ω1 and γ1 are the functions of x and t.
The Euler Lagrangian operators are defined as follows:

δ

δu
=

∂

∂u
−Dx

∂

∂ux
+D2

x

∂

∂uxx
−D3

x

∂

∂uxxx
+ ...+ (Dα

t )∗
∂

∂Dα
t u
, (5.3)

and
δ

δw
=

∂

∂w
−Dx

∂

∂wx
+D2

x

∂

∂wxx
−D3

x

∂

∂wxxx
+ ...+ (Dα

t )∗
∂

∂Dα
t w

, (5.4)

where (Dα
t )∗ is the adjoint operator of fractional differential operator Dα

t , given as follows:

(Dα
t )∗ = (−1)mIm−αs Dm

t ,

where Im−αs is the right-hand-sided fractional integral operator of order m−α, which is defined
as

Im−αs f(x, t) =
1

Γ(m− α)

∫ s

t

f(x, p)

(p− t)α+1−mdp,

where m = [α] + 1.
So, the adjoint equations can be written as

δL

δu
= 0, and

δL

δw
= 0. (5.5)

The component of conserved vectors are obtained by applying Noether operators to the La-
grangian. The fractional Noether operator for t-component can be written by the following
formula [?, ?, ?]:

T 1 =τ Ĩ +
m−1∑
k=0

(−1)kDα−1−k
t (W1)Dk

t

∂L

∂Dα
t u
− (−1)mI

(
W1, D

m
t

∂L

∂Dα
t u

)

+

m−1∑
k=0

(−1)kDα−1−k
t (W2)Dk

t

∂L

∂Dα
t w
− (−1)mI

(
W2, D

m
t

∂L

∂Dα
t w

)
. (5.6)

Here,

I(f, g) =
1

Γ(m− α)

∫ t

0

∫ T

t

f(τ, x)g(µ, x)

(µ− τ)α+1−mdµdτ. (5.7)

Here Ĩ denotes the identity operator, and W1 = η − τut − ξux and W2 = ν − τwt − ξwx denote
the Lie characteristic functions.
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The other conserved vector T 2 for x-component is represented as

T 2 =ξĨ +W1

[
∂L

∂ux
−Dx

∂L

∂uxx
+ (Dx)2 ∂L

∂uxxx
− ...

]
+W2

[
∂L

∂wx
−Dx

∂L

∂wxx
+ (Dx)2 ∂L

∂wxxx
− ...

]
+Dx(W1)

[
∂L

∂uxx
−Dx

∂L

∂uxxx
+ ...

]
+Dx(W2)

[
∂L

∂wxx
−Dx

∂L

∂wxxx
+ ...

]
+ (Dx)2(W1)

[
∂L

∂uxxx
− ...

]
+ (Dx)2(W2)

[
∂L

∂wxxx
− ...

]
+ ... . (5.8)

Now, the Lie characteristic functions for the vector X3 are obtained as

W1 = −α
3
xux − tut −

2α

3
u, (5.9)

W2 = −α
3
xwx − twt −

2α

3
w. (5.10)

Now, substituting the value of the Lagrangian (??) in Eq. (??) and (??) and using the values
of W1 and W2 from Eqs. (??) and (??), we have obtained the t-component of the conserved
vector for X3 as follows:

T 1 = τ Ĩ +Dα−1
t (W1)D0

t

∂L

∂Dα
t u

+ I

(
W1, Dt

∂L

∂Dα
t u

)
+Dα−1

t (W2)D0
t

∂L

∂Dα
t w

+ I

(
W2, Dt

∂L

∂Dα
t w

)
= γ1D

α−1
t

(
− α

3
xux − tut −

2α

3
u

)
+ I

[(
− α

3
xux − tut −

2α

3
u

)
, (γ1)t

]
+ γ2D

α−1
t

(
− α

3
xwx − twt −

2α

3
w

)
+ I

[(
− α

3
xwx − twt −

2α

3
w

)
, (γ2)t

]
. (5.11)

Also, the x-component of the conserved vector for X3 is obtained in the following form:

T 2 = ξĨ +W1

[
∂L

∂ux

]
+W2

[
∂L

∂wx
+ (Dx)2 ∂L

∂wxxx

]
+Dx(W2)

[
−Dx

∂L

∂wxxx

]
+ (Dx)2(W2)

[
∂L

∂wxxx

]
= b(γ2)x

(
αwx +

α

3
xwxx + twxt

)
− b(γ2)xx

(
α

3
xwx + twt +

2α

3
w

)
− γ1a

(
α

3
xwwx + twwt +

2α

3
w2

)
+ γ2

[
du

(
− α

3
xwx −

2α

3
w − twt

)
+ cw

(
− α

3
xux − tut −

2α

3
u

)
+ b

(
4α

3
wxx + twxxt +

α

3
xwxxx

)]
.

(5.12)

6. Conclusion

In this article, we have applied the fractional Lie symmetry group-theoretic method to solve
the time FCDSW partial differential equations. Firstly, we have determined the Lie point
symmetries for FCDSW equations. Using the Lie symmetries, the time fractional coupled system
of equations is transformed into a system of FODEs with the help of fractional Erdélyi-Kober
differential operator. Using the symmetry analysis, we have obtained the exact solution of the
FCDSW equations in explicit form. The effects of fractional order α on the solution’s behaviour
are shown graphically. From the figures, one can observe that a small change in the value α
affects the soliton behaviour and the shape of wave, without changing the nonlinearity in the
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medium. With the help of Noether operators and new conservation theorem, the new conserved
vectors are obtained successfully along with formal Lagrangian, which are used in the study of
global behaviour and the stability of solutions of FCDSW equations. One can use conservation
laws for mathematical analysis to develop appropriate numerical methods and for stability,
uniqueness and existence analysis.

In this work, we have discussed only one vector field for both the systems for symmetry
reductions; however, for remaining vector fields, the symmetry reductions can also be discussed.
We have avoided the discussion of remaining vector fields due to the lack of physical importance
of their results. There are some possible extensions of this study, e.g. symmetry analysis for
space-time fractional systems of non-linear PDEs with or without variable coefficients. Some of
the extensive work will be discussed in the future work.
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