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Abstract (243/250 words) 
SARS-CoV-2, the agent of the COVID-19 pandemic, emerged in late 2019 in China, and rapidly spread 
throughout the world to reach all continents. As the virus expanded in its novel human host, viral 
lineages diversified through the accumulation of around two mutations a month on average. Different 
viral lineages have replaced each other since the start of the pandemic, with the most successful Alpha, 
Delta and Omicron Variants of Concern (VoCs) sequentially sweeping through the world to reach high 
global prevalence. Neither Alpha nor Delta was characterised by strong immune escape, with their 
success coming mainly from their higher transmissibility. Omicron is far more prone to immune evasion 
and spread primarily due to its increased ability to (re-)infect hosts with prior immunity. As host 
immunity reaches high levels globally through vaccination and prior infection, the epidemic is expected 
to transition from a pandemic regime to an endemic one where seasonality and waning host 
immunisation are anticipated to become the primary forces shaping future SARS-CoV-2 lineage 
dynamics. In this review, we provide an overview of the available evidence on the host tropism, 
epidemiology, genomic and immunogenetic evolution of SARS-CoV-2 and other coronaviruses 
infecting humans. We conclude by delineating scenarios for the future dynamic of SARS-CoV-2, 
ranging from the good – circulation of a fifth endemic ‘common cold’ coronavirus of potentially low 
virulence, the bad – a situation roughly comparable to seasonal flu, and the ugly – extensive 
diversification into serotypes with long-term high-level endemicity. 
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Lay Summary (194/200 words) 
SARS-CoV-2, the agent of the COVID-19 pandemic, emerged in late 2019 and spread globally causing 
the COVID-19 pandemic. When SARS-CoV-2 jumped into humans, it had essentially no genetic 
diversity, but as the viral population expanded, it diversified into myriad genetically distinct lineages 
through the acumulation of approximately two mutations a month. The vast majority of those lineages 
are now extinct. The most successful lineages so far were the Alpha, Delta and Omicron variants which 
all reached global prevalence and replaced each other in the process. Alpha and Delta emerged in late 
2020 and spread at a time when immunisation of the human population was still low and reached global 
prevalence primarily by being more transmissible. Omicron started expanding in late 2021, at a time 
when a large proportion of the human population had already been vaccinated and/or exposed to SARS-
CoV-2. Omicron was so successful mainly due to its ability to (re-)infect hosts with prior immunity. In 
this review, we provide an overview of the immunogenetic evolution of SARS-CoV-2 and put it in 
context of what is known about other coronaviruses infecting humans. We conclude by delineating 
plausible scenarios for the ‘endemic’ future of SARS-CoV-2.  
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INTRODUCTION 
On New Year’s Eve of 2019, a cluster of cases of pneumonia was reported in Wuhan, China. The 
causative agent was identified as a novel coronavirus, and the first genome sequence was made available 
to the scientific community by mid-January 2020 [1]. Soon thereafter, an additional five complete 
genomes collected from patients infected during the early stages of the outbreak were reported. 
Sequences were near-identical, a result in line with a recent host jump into humans from a single source 
[2]. The newly identified coronavirus, initially called 2019-nCoV, was renamed SARS-CoV-2 due to 
its relatedness to SARS-CoV-1, the agent of the 2003 SARS outbreak. These early efforts were followed 
by a remarkable and unprecedented undertaking by the international scientific community to sequence 
large numbers of SARS-CoV-2 genomes. Over 500 genomes from 39 countries and nine continents 
were available by the time the WHO declared the COVID-19 pandemic on March 11th 2020, and the 
milestone of one million SARS-CoV-2 genomes was reached a year later in March 2021 [3]. The 
international sequencing effort intensified as the pandemic progressed and by early April 2022 nearly 
ten million SARS-CoV-2 genomes had been deposited on the GISAID database [4, 5]. 
 
Phylogenetic analyses point to a Most Recent Common Ancestor (MRCA) of all sequenced SARS-
CoV-2 dating back to late 2019 [6, 7]. When the WHO announced that the outbreak of pneumonia in 
Wuhan was caused by a novel coronavirus on January 9th 2020, 59 cases had been reported in Wuhan, 
China. While some of the earliest cases have epidemiological links to the Huanan Seafood Wholesale 
Market [8], the lack of direct isolates from animals at the market [9] leaves the proximal origin and 
early stages of the COVID-19 pandemic timeline largely unclear. The first confirmed cases outside 
China were identified in Thailand and Japan on January 20th, and a day later, a Washington state resident 
who had returned from Wuhan on January 15th tested positive [10]. The first confirmed cases in Europe 
were reported in France on January 24th 2020 [11]. Though, it is suspected SARS-CoV-2 was present 
in Europe earlier, in particular with some evidence the virus may have been circulating in Northern Italy 
already in December 2019 [12]. 
 
Genome sequencing can shed only limited light on the early timeline of the pandemic due to the small 
number of genomes available from that period. Though, from March 2020 onward, the global spread 
and genetic evolution of SARS-CoV-2 can be exquisitely documented. Over the first half of 2020 the 
global population of SARS-CoV-2 remained largely unstructured geographically, with the entire viral 
genetic diversity distributed in most regions of the world [6, 13], with the notable exception of China, 
which rapidly contained the initial outbreak. As different countries implemented travel bans and other 
mitigations measures, the global SARS-CoV-2 population became more geographically structured with 
different viral lineages attaining high prevalence locally from mid to late 2020 onwards [14, 15]. 
 
From the start of the pandemic, multiple lineages emerged while others went extinct, thereby keeping 
the genetic diversity of the SARS-CoV-2 population in circulation at a largely constant level during the 
first two years. Until the near-simultaneous characterisation of four Variants of Concern (VoCs) 
towards the end of 2020 and the Omicron VoC in late 2021, this lineage-replacement dynamic remained 
mostly unnoticed with the exception of the emergence and global spread of the B.1 lineage carrying the 
D614G mutation that swept the world during the early stages of the pandemic [16, 17]. The more 
transmissible Alpha VoC, which emerged in the UK, spread globally [18, 19]. However, before it 
reached worldwide prevalence, was replaced by the even more transmissible Delta VoC and daughter 
lineages, first identified in India, in 2021 [20, 21]. Delta was subsequently displaced by the Omicron 
VoC, identified in late November 2021 in South Africa [22], and which rapidly establishes global 
prevalence. Other designated VoCs of the pandemic include Beta, first detected in South Africa [23], 
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and Gamma, first identified in cases linked to Brazil [24]. The emergence of VoCs represented a sharp 
turn in the evolutionary picture of SARS-CoV-2 and prompted the need for the early definition (Variants 
Under Investigation / Monitoring), detection and monitoring of lineages that pose an increased risk to 
global health. 
 
With the pandemic in its third year, it is becoming increasingly urgent to understand the long-term 
evolutionary dynamics of SARS-CoV-2. Here we first overview key aspects of SARS-CoV-2 genetic 
and immunogenetic evolution and draw parallels with what is known for other coronaviruses infecting 
humans. We conclude the review by delineating possible scenarios for the future. 

AN OVERVIEW OF CORONAVIRUSES 
Coronaviruses belong to the viral family Coronaviridae, which comprises three subfamilies: 
Orthocoronavirinae, Pitovirinae and Letovirinae. The Orthocoronavirinae subfamily comprises the 
four genera: Alpha-, Beta-, Gamma- and Deltacoronavirus [25]. SARS-CoV-2 falls within the 
Sarbecovirus subgenus in the genus Betacoronavirus, together with SARS-CoV-1, the agent of the 
SARS 2002-2004 epidemic, and related lineages circulating in populations of horseshoe bats 
(Rhinolophus sp.). Betacoronavirus also include MERS-CoV and two seasonal human endemic 
coronaviruses; HCoV-OC43 and HCoV-HKU1 (Figure 1A). Lineages within Gammacoronavirus are 
restricted to birds but Alpha- and Deltacoronaviruses infect mammals [26]. Deltacoronaviruses have 
been primarily isolated from domestic pigs, but Alphacoronaviruses infect a broad range of mammals, 
including humans, with the genus comprising the two other seasonal human endemic coronaviruses 
HCoV-229E and HCoV-NL63 (Figure 1A). 
 
Coronaviruses are enveloped viruses with a single-strand, positive-sense RNA genome which, at ~26-
32 kilobases, is amongst the largest known genome for RNA viruses (Figure 1B). The basic 
organization of the genome is conserved across members of the Orthocoronavirinae. The bulk of the 
genome (around two thirds) extending from the 5’end comprises the replicase Open Reading Frame 
(ORF) 1a/b which encode two polyproteins which are cleaved into a suite of Non-Structural Proteins 
(NSPs; ORF1a: NSP1-11, ORF1b: NSP12-16) involved in proteolytic processing, transcription and 
genome replication [27, 28]. These include the NSP12 RNA-dependent RNA polymerase (RdRp) that 
is essential for RNA synthesis, and associated exoribonuclease NSP14 that exhibits proof-reading 
activity [29]. The remaining third of the genome encodes the structural proteins in 5’ to 3’ order; the 
surface or spike glycoprotein (S), the membrane glycoprotein (M), the envelope (E) and the 
nucleocapsid (N).  
 
Of all ORFs identified in the Orthocoronavirinae, only ORF1ab, S, M and N can be considered 
homologues in >99% of sequenced coronavirus genomes (i.e., ‘core’ genes). Additionally, only ~43% 
of the average coronavirus genome can be meaningfully aligned at the nucleotide level [30]. Some 
Betacoronaviruses, most notably HCoV-HKU1 and HCoV-OC43, harbour an additional 
hemagglutinin-esterase (HE) glycoprotein which can act as a secondary viral attachment protein [31]. 
Additionally, coronavirus genomes typically harbour a variable complement of accessory proteins 
depending on the genus, or even the individual species [32] (Figure 1B). 
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Figure 1. Overview of the Orthocoronavirinae A. Phylogenetic representation of 2529 coronavirus genomes. 
The branch colour indicates the assignment into the four genera (Alpha-, Beta-, Gamma-, and Deltacoronavirus). 
The coloured outer circle and icons provide the host the strains were isolated from. Each of the seven human-
associated coronaviruses (HCoVs) are highlighted on the inner ring. B. Genome structure of major human 
associated coronaviruses. Gene annotations are provided for the coding RNA sequences of seven representative 
human associated coronaviruses (HCoV-229E NC_002645.1; HCoV-NL63 JX504050.1; HCoV-HKU1 
NC_006577.2; HCoV-OC43 KX344031.1; MERS-CoV NC_019843.3; SARS-CoV-1 NC_004718.3; SARS-
CoV-2 NC_045512.2). Gene annotations are provided as per the colour legend at bottom, aligned to the 
coronavirus spike protein. Figure made using the R package gggenes (https://cran.r-
project.org/web/packages/gggenes). 
 
Viral characterisation has particularly focused on the spike glycoprotein, whose club-shaped surface 
projections from the lipid bilayer envelope give coronaviruse virions their appearance [33] - reminiscent 
of the sun’s corona or halo during an eclipse [34]. The spike protein plays a key role in viral entry in 
the host cell, mediating host receptor recognition, cell attachment, and membrane fusion [35]. Notably, 
the host receptors recognised and used by the spike for viral entry vary between different coronavirus 
species. SARS-CoV-2 binds to the Angiotensin-converting enzyme 2 (ACE2), as does SARS-CoV-1 
and HCoV-NL63, whereas other species within the same genus (including MERS-CoV) recognise a 
cell-surface serine peptidase, dipeptidyl peptidase 4 (DDP4), and others bind with 9-O-acetylated sialic 
acid (HCoV-OC43 and HCoV-HKU1) [32, 36-38]. Finally, HCoV-229E uses the human 
aminopeptidase N (hAPN) receptor [39]. All four host receptors are expressed in a wide range of human 
cell types, including those in the respiratory and gastrointestinal tracts [29-31], which may explain the 
broad tissue tropism, and hence the diverse symptoms and transmission routes of coronavirus infections 
in humans [35]. 
 
The spike protein comprises two subunits, known as S1 and S2, with the former including important 
regions such as the N-terminal domain (NTD) and receptor binding domain (RBD) that directly binds 
host receptors during viral entry [37]. The S2 domain additionally supports the fusion and eventual 
entry of the virus into host cells. Given its critical role in receptor binding, membrane fusion and 
immunogenicity, the spike protein is subject to natural selection for enhanced infectivity and 
antigenicity [40]. The S1 and S2 regions, as well as the S1/S2 junction are the only targets of 
neutralising antibodies (antibodies precluding pathogen entry into host cells). Due to this property, the 
spike protein was selected as the sole source of antigens in the majority of COVID-19 vaccines 
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developed so far, including those based on mRNA (Pfizer/BioNTech / Moderna) and adenovirus 
recombinant technologies (Oxford/AstraZeneca / Sputnik V/ Johnson and Johnson). 
 
Coronavirus accessory proteins are more poorly characterised. While these proteins are generally not 
considered essential for viral replication [41], they play a role in pathogenesis, host interactions and 
transmissibility [42, 43]. ORF3a, the largest accessory protein in SARS-CoV-2 has been shown to 
interact strongly with the host immune system, activating the NLRP3 inflammasome and contributing 
to the generation of a cytokine storm [44]. Its functional role in cell apoptosis has been documented for 
both SARS-CoV-1 [45] and SARS-CoV-2 [46]. Consistently, in a SARS-CoV-1 animal model, deletion 
of ORF3a was shown to reduce viral replication [47].The accessory proteins ORF6, ORF7a, and ORF8 
act as interferon antagonists in SARS-CoV-2 [42]. Of these, SARS-CoV-2 ORF8 is particularly 
interesting in that its presence as an intact gene (rather than fragmented into ORF8a/b) is unique 
amongst human associated coronaviruses, with ORF8 being identified as highly immunogenic amongst 
the accessory genes [48]. A large deletion in ORF8 (D382) in SARS-CoV-2 circulating in a cohort of 
patients in Singapore in early 2020, was identified as being potentially associated with milder disease 
[49], further reinforcing its possible role in pathogenesis. While coronavirus accessory proteins have 
been studied most closely in SARS-CoV-2, many uncertainties remain about the exact role of different 
ORFs. For instance, to date no function has been associated to ORF10, and it has been questioned 
whether it should be considered a gene [50]. 

THE EVOLVING HOST RANGE OF SARS-COV-2 
Despite remarkable global genome sequencing and characterisation efforts, the proximal phylogenetic 
origin of SARS-CoV-2 and its mode of introduction into human circulation remain unclear. There is no 
evidence for SARS-CoV-2 having been ‘engineered’ in a lab. Conversely, the escape of a strain from a 
lab, or an accidental contamination during field work cannot formally be ruled out at this stage. 
However, a zoonotic spillover event in nature is considered as the most plausible scenario in the 
scientific community [2, 51-54]. A diversity of viruses closely related to SARS-CoV-2 have been 
isolated from multiple species of horseshoe bats (Rhinolophus sp.) sampled across East and Southeast 
Asia [2, 52-57]. Thus far, RaTG13 isolated from R. affinis in Yunnan in 2013 shares the highest whole-
genome sequence identity with SARS-CoV-2 at 96.2% [2], followed by RpYN06 from R. pusillus at 
94.5% [53]. However, identity along the genome is highly variable. For example, phylogenetic analysis 
identified RmYN02 (R. malayanus; 93.3% identity) as the closest relative over the ORF1ab region 
(97.2%) [54]. The lower whole-genome sequence identity relative to that for RaTG13 is largely due to 
the sequences in the spike (71.9% sequence identity) [54]. However, at the region critical for host 
receptor binding – the RBD - RaTG13 has a low genetic similarity to SARS-CoV-2.  
 
Other bat coronaviruses, most notably those recently recovered from R. malayanus, R. marshalli and R. 
pusillus in Northern Laos, Indonesia, harbour RBD motifs far closer to SARS-CoV-2 and have been 
demonstrated to efficiently bind to human ACE2 [55]. The genetic similarity between RaTG13 and 
SARS-CoV-2 is largely comparable to that of the viral lineages most closely related to SARS-CoV-1 
found in horseshoe bats (Rhinolophus spp.) [58, 59]. As such, it may be argued that the progenitor of 
SARS-CoV-1 has never been identified. Though, in contrast to the situation for SARS-CoV-2, viral 
strains with near-perfect whole-genome sequence identity have been isolated from captive Himalayan 
palm civets (Paguma larvata) and a raccoon dog (Nyctereutes procyonoides) [60]. These observations 
led to the hypothesis that a carnivore may have acted as an intermediate host in the jump of SARS-
CoV-1 into humans [61]. Early in the COVID-19 pandemic, there were suggestions that pangolins 
(Manis javanica) could have acted as an intermediate host for SARS-CoV-2 [62]. However, current 
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evidence does not indicate an established reservoir outside of bats may have been required for the host 
jump into humans [63] (Figure 2). 
 

 
Figure 2. SARS-CoV-2 host range evolution before during and after the COVID-19 pandemic. The box on 
the left summarises possible scenarios predating the host jump into humans, followed by key processes during the 
establishment of human-to-human transmission (central box). The box at the right displays the processes and risks 
associated with secondary spillovers from humans to wild and domestic animals. Icon choice is emblematic, 
sourced from flaticon.com. 
 
Studies of the proximal origins of SARS-CoV-2 have focused on the RRAR furin recognition motif at 
the S1/S2 spike subunits junction. Pre-activation of the SARS-CoV-2 spike by host proprotein 
convertase furin at this motif is crucial for cellular entry [64], viral replication and pathogenesis [65]. 
The presence of the RRAR motif in SARS-CoV-2 and its absence in close relatives has been suggested 
as a sign of bioengineering. However, while close relatives such as RmYN02 lack the exact furin 
recognition motif, they share a genomic region homologous to that in SARS-CoV-2 (positions 23603-
23615) within the spike protein [66]. This observation suggests that recombination with a yet unsampled 
coronavirus may have played a role in the emergence of the furin recognition motif in SARS-CoV-2. 
Further, furin recognition motifs (RXXR) have emerged independently multiple times in the evolution 
of Betacoronaviruses [67], with MERS-CoV, HCoV-OC43 and HCoV-HKU1 also carrying 
furin cleavage sites. Hence, the natural emergence of the RRAR motif in SARS-CoV-2 through 
recombination and/or other evolutionary processes (point mutations and indels) represents a 
parsimonious explanation (Figure 2). 
 
As with other coronaviruses, SARS-CoV-2 can infect and transmit efficiently within different 
populations of mammals (Figure 1A). This is evidenced by the plethora of studies that have probed the 
host tropism of SARS-CoV-2, in vitro (cell lines), in vivo (live inoculation), and through wildlife 
surveillance (Table 1). Human-to-animal spillover (i.e., anthroponosis) of SARS-CoV-2 into multiple 
wild, captive and domestic mammalian species has been observed repeatedly, and is particularly well-
documented in zoo animals [68], farmed mink [69, 70] and wild white-tailed deer [71, 72] (Table 1). 
Notably, evidence for natural or experimental infection may not necessarily entail efficient animal-
animal transmission. For example, porcine cell lines are permissive to infection [73, 74] but studies 
have failed to experimentally infect pigs in vivo [74, 75]. Further, while animal hosts such as dogs and 
cattle have been shown to be susceptible to infection, transmission is poor or non-existent [76, 77], 
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indicating that SARS-CoV-2 is not yet adapted for efficient transmission in these species. The broad 
host tropism of SARS-CoV-2 may be in part due to the usage of the ACE2 receptors for viral entry. 
ACE2 is fairly conserved across vertebrates [78], which entails that the accumulation of only few 
mutations may be required to evolve efficient binding to receptors in a novel host species. To exploit 
this, several studies have suggested that bioinformatic screening of key residues on animal ACE2 that 
govern binding affinity may be useful in assessing potential animal reservoirs [78-81]. 
 
The host range of SARS-CoV-2 is likely dynamic and the virus may further expand its host repertoire. 
For example, mice and rats were not susceptible to the first strains of SARS-CoV-2 circulating in 
humans [82]. However, following the global spread of the Alpha VoC, which carries the N501Y 
mutation facilitating infection in those species, they have become susceptible hosts [83]. Given the 
broad host tropism of SARS-CoV-2, there is a risk that viral mutations may emerge while circulating 
in novel animal host species following anthroponotic spillover. This entails a further risk that the 
transmission of animal-adapted SARS-CoV-2 back into humans (i.e., reverse anthroponosis) may alter 
the evolutionary trajectory of the virus, potentially leading to the emergence of more transmissible or 
immune-escape variants (Figure 2). There is evidence for the emergence of host-adaptive mutations in 
SARS-CoV-2 strains circulating in farmed minks and wild white-tailed deer that have arisen recurrently 
and have reached a high frequency [84, 85]. For example spike mutations, Y453F and F486L, are good 
candidates for adaptation in mink in addition to dampening human humoral and T cell-mediated 
immunity [86-89]. Similarly, following introduction in a research colony of cats [90] spike mutation 
H655Y rapidly reached fixation; a substitution which has been associated with immune escape in 
humans [91]. Reverse-anthroponotic transmission of SARS-CoV-2 has been documented for farmed 
minks [70, 84], white-tailed deer [92], and pet-shop hamsters [93] and it is to be expected that SARS-
CoV-2 can also jump from other animal species back into humans. Putatively, mink-adaptive mutations 
are currently only maintained at a low frequency in human-associated SARS-CoV-2, suggesting that 
they do not confer a significant advantage in human circulation [84, 89]. As yet, the circulation of 
SARS-CoV-2 in mink and deer has not resulted in a significant alteration in extant genomic diversity 
[84].  
 
Table 1. Reports of susceptibility of different animal hosts to SARS-CoV-2. 

Host Species In vitro 
susceptibility 

In vivo 
susceptibility Transmission Detected in 

wild Anthroponosis Reverse 
anthroponosis 

White-
tailed deer 

Odocoileus 
virginianus Yes Yes [94, 95] Yes [94, 95] Yes [71] Yes [72, 96] Probable [92] 

American 
mink / 
European 
mink 

Neogale vison 
/ Mustela 
lutreola 

Yes Yes Yes [69, 70] Yes [97] Yes [70] Yes [70] 

Other 
mustelids 

Mustela 
putorius furo 
Martes 
martes 
Meles meles 

Yes Yes [98] Yes [75, 98-
100] Yes [101] Yes [101]   

Domestic 
cats Felis catus Yes [73] Yes [90, 102] Yes [90, 103]  Yes [104, 105]  

Dogs Canis lupus 
familiaris Yes Yes [90, 102] No [90]  Yes [77, 105]  

Big cats 
Panthera spp.  
Puma 
concolor 

Yes1 Yes [68]   Yes [68]  

Spotted 
hyenas 

Crocuta 
crocuta Yes1 Yes1   Yes1   

Bearcat Arctictis 
binturong Yes1 Yes1   Yes1  
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1 https://www.aphis.usda.gov/aphis/dashboards/tableau/sars-dashboard 
 
The emergence of reservoirs in wildlife is of further concern since it is more difficult to assess and 
control anthroponotic or reverse-anthroponotic movement of SARS-CoV-2 between humans and wild 
animal populations than domestic species. Such reservoirs may emerge due to direct anthroponotic 
transmission from humans living in close proximity to wild animals, or indirect transmission via 
domesticated animals or contaminated water sources. SARS-CoV-2 has already established itself in 
wild white-tailed deer populations with a detected seroprevalence of 7-67% across different states in 
the US [71, 72]. Further, there have been reports of deer-associated viral sequences that are considerably 
divergent from the human-associated sequences sampled within the same geographic region and time 
period [92, 109]. Given the broad host tropism of SARS-CoV-2, the emergence of other wild or farmed 
animal reservoirs remains a possibility. This may be particularly problematic in animals that already 
harbour a vast diversity of coronaviruses such as bats [52, 110, 111], since the propensity for 
recombination in coronaviruses [112] might lead to the emergence of novel recombinant viruses with 
the ability to transmit efficiently in humans (Figure 2). 

SARS-COV-2 IN THE CONTEXT OF OTHER HUMAN CORONAVIRUSES 
Prior to the emergence of SARS-CoV-2, six other coronaviruses were known to infect humans (Figure 
1). HCoVs were first observed in the 1960s in samples at the Common Cold Unit in Salisbury, England 
[113] (Figure 3). However, they were not considered highly pathogenic until the outbreak of SARS-
CoV-1 in 2002 [114]. SARS-CoV-1 affected at least 8000 individuals causing severe respiratory disease 
with a case fatality rate of ~10% [115]. Approximately 10 years later MERS-CoV was identified in 
Saudi Arabia, thought to have also originated in bats [116] (Figure 3). MERS-CoV also causes severe 
to fatal respiratory disease in humans and since its discovery over 2500 MERS-CoV cases have been 
reported with >850 associated deaths [117]. MERS-CoV is not well adapted to transmission in humans 
and is believed to spread through zoonotic reservoirs (mainly dromedary camels) with frequent ongoing 
spillovers into susceptible human populations [118]. MERS-CoV has been circulating in dromedary 

Fishing cat Prionailurus 
viverrinus Yes1 Yes1   Yes1  

Canada 
Lynx 

Lynx 
canadensis Yes1 Yes1   Yes1  

Coati Nasua nasua Yes1 Yes1   Yes1  

Cattle Bos taurus Yes Yes [76] No [76]    

Pigs Sus scrofa Yes [73, 74] No [74, 75]     

Chickens Gallus gallus  No [75]     

Fruit bats Rousettus 
aegyptiacus Yes Yes [75]     

Horseshoe 
bats 

Rhinolophus 
sinicus 

Yes [73, 106, 
107]      

Vesper bats Pipistrellus 
abramus Low [107]      

Rats / Mice 
Rattus 
norvegicus 
Mus musculus 

Variants only 
[82] 

Variants only 
[82]  No [82]     

Hamsters Mesocri-cetus 
auratus Yes Yes [108]   Yes [93] Yes [93] 

Non-human 
primates 

Macaca 
mulatta 
Macaca 
fascicularis 
Chlorocebus 
aethiops 

Yes Yes [73, 108]     
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camels for decades as evidenced by MERS-positive serum samples from East Africa dating back to 
1983 [119]. 
 

 
Figure 3. Timeline of the age of first observation for the seven HCoVs; endemic coronaviruses are shown in 
blue, epidemic coronaviruses in yellow. Pandemic SARS-CoV-2 is represented in red. Additionally, in the 1960s 
several strains including B814, 692 and HCoV-OC16, -OC37 and -OC48 were observed, but lost for follow-up 
studies. It is unclear whether these strains may have been later identified or represent yet uncharacterised HCoVs. 
The figure is informed by the following sources [2, 113, 114, 120-122]. 
 
The four endemic respiratory seasonal coronaviruses (HCoV-229E, -OC43, -NL63 and -HKU1) 
circulate in all age groups with the first exposure generally happening in childhood. HCoVs tend to 
cause mild self-limiting upper respiratory or gastrointestinal disease in the immunocompetent 
accounting for ~10-30% of common cold cases [123-125]. HCoVs tend to induce only relatively short 
term protection against reinfection, which occurs repeatedly throughout life [126, 127].This is likely 
due to fairly rapid waning of post-infection antibody titres to coronaviruses but there is also evidence 
that HCoV-OC43 and -229E undergo constant adaptive evolution to escape host immune recognition 
[128]. Both HCoVs tend to constantly acquire mutations in the S1 region of the spike protein and their 
genetic diversity over three decades falls into ladder-like phylogenetic trees compatible with antigenic 
drift, similar to those observed for seasonal flu (influenza A) [128]. Moreover, it has been demonstrated 
that historic sera able to potently neutralise virions pseudotyped with contemporary HCoV-229E spike 
proteins had little to no activity against spike proteins from HCoV-229E strains isolated 8-17 years later 
[129]. In the same study, modern adult sera were found to neutralise spike proteins from a variety of 
historical viruses, whereas modern sera from children best neutralised spike proteins from recent viruses 
that would have circulated in their lifetime [129]. These patterns provide evidence for antigenic 
evolution of the CoV spike protein in HCoV-229E, particularly in the spike RBD permitting the escape 
of neutralisation by polyclonal sera within one or two decades [129]. No consistent evidence for 
antigenic drift has been found to date for HCoV-NL63 and -HKU1, but this may simply reflect the lack 
of sufficient longitudinal sequencing data to identify adaptive evolution [130].  
 
Estimates for the age of emergence of the four endemic HCoVs remain under debate, though it is widely 
accepted that they were in circulation a good deal prior to first observations. For example, while HCoV-
NL63 was first identified in 2004 (Figure 3), the earliest available genome was later generated from a 
sample collected in 1983 [131] and the inferred MRCA of HCoV-NL63 strains currently in circulation 
has been estimated to date back to the ~1920s [132]. HCoV-229E and -NL63 likely evolved in bats 
[133, 134], with camelids having possibly acted as an intermediatory for HCoV-229E transmission to 
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humans [135]; a scenario similar to that of MERS-CoV. Both HCoV-OC43 and -HKU1 are thought to 
have originated in rodents and there is debate over whether cattle, pigs or other animals may have acted 
as an intermediate host for HCoV-OC43, with bovine coronavirus suggested as a possible ancestor 
[136]. It has also been hypothesised that the Russian flu pandemic (1889-1990) may have been caused 
by HCoV-OC43 [137, 138]. This hypothesis is primarily based on the list of respiratory, gastrointestinal 
and neurological symptoms including loss of taste and smell recorded at the time, which are more 
reminiscent of COVID-19 than influenza infections. Early phylogenetic analysis of the HCoV-OC43 
spike protein sequence pointed to a time to the Most Recent Common Ancestor (tMRCA) compatible 
with a HCoV-OC43 host jump into humans in the late 19th century [136]. However, this estimated date 
does not seem supported by analyses of additional genomes, which point to a more recent common 
ancestor for HCoV-OC43 currently circulating in humans [130, 139].  
 
Additional coronavirus spillovers into humans have been documented for species outside of the seven 
generally categorised as ‘human coronaviruses’. There is evidence of multiple separate cases of cattle 
strains being transmitted to humans. For instance, two samples of human enteric coronavirus 4408 
strains have been documented, collected in 1988 and 2009 [131]. Further, there are clinical, 
epidemiological and serological observations that bovine coronaviruses can infect human subjects 
causing diarrhoea [140]; and a recent study indicated that bovine coronavirus can be carried in human 
nasal mucosa after exposure to virus-shedding calves [141]. Coronavirus RNA identified as a novel 
canine-feline recombinant alphacoronavirus (since named CCoV-HuPn-2018) has been detected in 
nasopharyngeal swab samples from eight patients during 2017-2018 in Sarawak, Malaysia [142]. 
Additionally, isolates with high identity to feline enteric coronavirus (Alphacoronavirus) were detected 
in three nasal swab samples collected in Arkansas in 2010, from patients exhibiting acute respiratory 
symptoms. One of these samples contained a 400 base pair fragment in the S region, which revealed an 
OC43-like spike protein, suggestive of feline coronavirus and HCoV-OC43 coinfection [143]. Porcine 
deltacoronavirus strains were also recently identified in blood plasma samples from three children in 
Haiti with acute undifferentiated febrile illness [144]. Prior to this, documented human coronavirus 
infections had been limited to Alpha- and Betacoronavirus strains, therefore, this example provides the 
first known case of Deltacoronavirus adaptation to human transmission [144].  
 
These recently documented spillover events point to a wider diversity of coronaviruses circulating in 
wild and domestic animal populations being able to infect humans than previously recognised. Together 
with the emergence of three pandemic / epidemic human coronaviruses in the last two decades (SARS-
CoV-1, SARS-CoV-2 and MERS-CoV), this observation illustrates the relative ease with which 
coronaviruses can jump into humans, and sometimes subsequently adapt and spread. Coronaviruses 
infecting humans cover the entire epidemiological spectrum, ranging from rare to common spillover 
events, outbreaks, epidemics, a pandemic to a global endemic quasi-equilibrium state achieved by the 
four seasonal HCoVs. 

GENETIC EVOLUTION OF SARS-COV-2  
The genetic diversity of SARS-CoV-2 was initially very low, and mutations accumulated steadily over 
the first two years of the pandemic at a rate of approximately 25-30 mutations per lineage, per year 
(Figure 4A) [3]. Interestingly the same mutations can often be observed at a low frequency in many 
different lineages (Figure 4A insets). As mutations accumulated over time, this led to more recently 
emerging lineages being a larger number of mutations away from the hypothetical ancestor of all SARS-
CoV-2 strains circulating in humans (Figure 4B). Even before the emergence of the Alpha, Delta and 
Omicron VoCs that successively swept the world, the dynamic of the SARS-CoV-2 population was 
characterised by a birth and death dynamic of lineages replacing each other (Figure 4C). Interestingly, 



 12 

despite all three variants having achieved global prevalence, they do not derive from each other (Figure 
4A). Both the Delta and then the Alpha variant are descendants of early pandemic lineages that had 
been displaced globally first by Alpha and then Delta. It remains to be seen whether this pattern will 
persist, or whether successful variants of the future will derive from each other as is typical for seasonal 
flu or HCoVs. 
 

 
Figure 4. Lineage dynamic of the SARS-CoV-2 population. A. Phylogenetic tree of ~200,000 SARS-CoV-2 
strains coloured by their Nextstrain clade assignment with the inset providing the presence of the Spike L452R 
and N501Y mutations highlighting the recurrence of independent emergence of mutations in multiple lineages. 
B. Distributions of distances (in number of mutations) from the root of the tree (Wuhan-Hu-1) of Nextstrain clades 
(ordered by emergence). C. Daily prevalence of each NextStrain clade estimated as the proportion of uploads to 
the GISAID genome database highlighting the dynamic of lineage replacement in SARS-CoV-2. Only Nextrain 
clades corresponding to VoC lineages were attributed a color, others were represented in grey. 
 
Direct competition between lineages can only occur when two lineages simultaneously infect the same 
host leading to only one lineage being successfully transmitted. Even when SARS-CoV-2 is at high 
prevalence, such mixed infections are expected to be rare. Thus, the dynamic of lineage replacement is 
likely primarily fuelled by the emergence of new strains that are more transmissible and/or more able 
to (re-)infect hosts immunised through vaccination or prior infection. Additionally fitness decay of 
lineages in circulation through the accumulation of slightly deleterious mutations (Muller’s ratchet 
[145]) may also play a role in lineage extinction [146, 147]. 
 
The mutation rate of SARS-CoV-2 is fairly unremarkable amongst RNA viruses [148-150] despite the 
proof-reading activity of its replication mechanism [151]. While genetic diversity of the SARS-CoV-2 
population in circulation remains low two years into the pandemic (Figure 4A, 4B), mutations can at 
this stage be found at every single base of the SARS-CoV-2 genome [4, 5]. The majority of these 
mutations have independently emerged many times in unrelated lineages [6, 15] (Figure 4A). The bulk 
of the segregating diversity in SARS-CoV-2 is expected to be adaptively neutral or slightly deleterious. 
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However, early selective sweeps of mutations essential for transmissibility in humans may have been 
missed [152]. Indeed, the earliest available SARS-CoV-2 genomes were sampled in late December 
2019, by which time the virus had probably been in human circulation for several weeks [6]. 
 
Host antiviral defence mechanisms inducing mutations at specific sites of the viral genome [15, 153, 
154] represent an additional selective force shaping the genetic diversity segregating in the SARS-CoV-
2 population. Host-mediated editing of SARS-CoV-2 includes the activity of the APOlipoprotein B 
Editing Complex (APOBEC), Reactive Oxygen Species (ROS), and Adenosine Deaminase Acting on 
RNA (ADAR), all suspected to introduce mutations in a nucleotide and sequence-context specific 
manner. For instance, the mutation spectrum of SARS-CoV-2 is largely dominated by C to U and G to 
U substitutions [15, 155]. These processes, coupled with ongoing selective reduction of CpGs [153, 
155], create complex mutational dynamics [155, 156]. Host antiviral defence likely provides a potent 
selective pressure following spillover to a new host. As such, with the establishment of widespread 
human to human transmission, the rate of evolution in SARS-CoV-2 might slow down, with increasing 
fixation of advantageous mutations and depletion of sites susceptible to host-induced mutagenesis. 
 
The accumulation of diversity in SARS-CoV-2 motivated the development of classification schemes to 
designate distinct lineages (Figure 4A, 4C). Among the two most widely used SARS-CoV-2 
classification schemes are the Nextstrain clade naming system, which provides an up-to-date 
nomenclature based on phylogeny, VoC status and global and regional frequency [157], and the 
PANGO nomenclature scheme which relies on the phylogeny and carriage of diagnostic mutations 
[158]. The latter classification includes many more sub-divisions (numbered labels). While such 
schemes are essential tools in scientific discourse, any taxonomic delineation into lineages is bound to 
remain somewhat arbitrary. Additionally, irrespective of the accuracy of the cut-off points separating 
lineages, any genetic based taxonomy may struggle with the noise generated by recurrent and backwards 
mutations [6, 15], as well as lineage extinction, both prevailing properties of SARS-CoV-2 evolution 
(Figure 4A and 4C). 
 
While most mutations are expected to have no functional impact [159], some sites in the SARS-CoV-2 
genome have been associated with changes in viral phenotype. Unsupervised assessment of the 
phenotypic effect of mutations have focused on characterising proximal phenotypes such as binding 
affinity to the ACE2 host cell receptor or spike protein expression revealing a heterogenous phenotypic 
landscape over the spike protein [160]. Such an approach pinpointed spike mutation N501Y, 
characteristic of three of the five currently identified VoCs, as having a notable effect on receptor 
binding [160, 161]. Functional evidence for association of individual mutations with traits such as 
receptor binding affinity or gene expression provides useful mechanistic insight. However, more 
complex traits, such as virulence, transmissibility and immune escape are more relevant 
epidemiologically. The genetic basis of complex traits is more challenging to infer mainly because they 
are affected by multiple mutations that do not necessarily act independently of each other. As such, a 
specific mutation may not always lead to the same phenotypic changes in different SARS-CoV-2 
genetic backgrounds. 
 
There is indeed evidence for extensive epistasis being involved in the evolution of SARS-CoV-2, with 
the fitness of viral lineages likely dependent on combinations of co-adapted mutations and deletions 
[162, 163]. More transmissible SARS-CoV-2 lineages did not primarily evolve through the sequential 
accumulation of mutations [15]. Instead, some VoCs seem to have emerged through the rapid 
acquisition of a set of mutations and deletions rarely observed together previously. For Alpha and 
Omicron in particular, it is suspected that new combinations of mutations arose during long-term 
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infection in immunocompromised hosts [164, 165]. Rapid accumulation of rare mutations have been 
observed in chronic infections [166], and persistent infection in immunocompromised hosts may 
provide the virus with a possibility to explore a wider range of the fitness landscape. Favourable 
combinations of mutations that are deleterious in isolation may be unlikely to be acquired sequentially 
during transmission among immunocompetent hosts, as those less fit fitness lineages may rapidly go 
extinct. Persistent infections in immunocompromised hosts may allow such transient low fitness 
lineages to persist, with some eventually acquiring novel combinations of well co-adapted mutations. 
The evidence for the emergence in an immunocompromised host is particularly strong for the Omicron 
VoC, which acquired a large number of non-synonymous mutations in the immunodominant regions of 
the spike RBD region [22]. Additionally, Omicron-associated mutations confer significant escape from 
neutralising antibodies but not T cell immunity [167, 168]. The unusual mutation pattern of Omicron 
might have arisen in an untreated HIV/AIDS patient with advanced CD4+ T-cell lymphopenia, who 
was unable to clear the infection [169]. Interestingly, Omicron comprises two deeply diverging lineages, 
BA.1 and BA.2 (Nextstrain clades 21K and 21L). It is possible that both emerged in the same host 
before independently spreading in the community. 
 
Recombination is also key for viral evolution as it allows for the combination, within a single genome, 
of mutations that arose independently in different genetic backgrounds. It is generally accepted that the 
emergence of all three human epidemic coronaviruses: SARS-CoV-1 [170-172], MERS-CoV [173], 
and SARS-CoV-2 [174-176] involved recombination events. Recombination also provides a 
mechanism for the generation of new antigenic combinations within species [177]. Recombination, 
however, requires co-infection of the same host by distinct lineages [178]. So far, relatively few 
recombinant SARS-CoV-2 genomes have been identified [179-183]. Given the large number of 
genomes available and epidemiological settings likely favouring co-infections by distinct lineages, for 
example during mid 2021 (when prevalence was high and Alpha and Delta VoC were in co-circulation 
in multiple regions of the world), the relatively small number of recombinant SARS-CoV-2 genomes 
detected to date is intriguing. This may in part stem from difficulty in identifying recombinants because 
of low levels of SARS-CoV-2 genetic diversity in circulation at this stage. Low recombination in SARS-
CoV-2 would however be in variance with the high recombination rates reported for other 
coronaviruses, including in human [112, 184-187] and animal associated lineages [188-190], as inferred 
from genomic approaches [191], observed in cell culture [192, 193] and in vivo [194]. The low 
proportion of recombinant genomes detected to date might also in part be attributable to most of them 
having lower fitness, with recombinant lineages becoming extinct before they can be sampled. 
 
Any replicating entity will be present in the future at a higher frequency if it makes more copies of itself 
[195]. Viruses are no exception to this fundamental rule of evolution. As such, through whatever means, 
viral lineages will evolve towards higher possible transmissibility. Efforts to computationally assess 
and predict transmissibility have focused on approaches based on logistic regression models of lineage 
growth rates [196] or phylogeny-based quantification of the association between carriage of specific 
mutations leading to an increase or decrease in the number of inferred descendants [146]. The latter 
approach capitalises on the high rate of recurrent substitutions and deletions in SARS-CoV-2 [6, 15, 
146, 197, 198] (Figure 4A insets). Both those approaches to estimate transmissibility (viral fitness) 
highlight the propensity for a plethora of mutations, not only those within the critical spike RBD, to be 
implicated in increasing viral fitness [146, 196]. This is not entirely surprising since transmissibility 
reflects multiple underlying mechanisms such as the binding affinity to the human receptor ACE2 (i.e., 
fewer viral particles needed to generate a new infection) [160, 199], or viral replication rates [200, 201], 
or the ability to (re-)infect a larger fraction of the human population through immune escape. 
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Genetic determinants of virulence are difficult to assess not least because virulence is not a property of 
a pathogenic strain alone, but rather of an interaction with its host. Moreover there are currently no large 
datasets available with the necessary information to associate individual viral mutations with disease 
severity and outcomes, whilst controlling for key host factors such as age, sex or health. It is sometimes 
assumed that as a pathogen adapts to its host, it becomes intrinsically less virulent [202, 203]. However, 
such a prediction is only true under two conditions. The first is when transmission is primarily vertical 
(e.g., from mother to child) as in Human Cytomegalovirus (HCMV) where fitness of the virus and the 
host are closely correlated, so that the pathogen would reduce its transmissibility by harming its host. 
The second is for extremely lethal pathogens where mortality of the host upon infection is so high that 
it precludes transmission of the pathogen. The textbook example for pathogen attenuation is 
myxomatosis in rabbit populations with initial mortalities of 99% upon initial introduction of the 
pathogen going down after a few years of coevolution [204]. Neither of those conditions are fulfilled 
by SARS-CoV-2. Despite its mortality and morbidity burden, SARS-CoV-2 remains a moderately lethal 
pathogen. Moreover, about half of transmissions are from pre- and asymptomatic carriers [205], which 
further reduces the selective pressure on the virus to spare its host. 
 
The morbidity and mortality resulting from SARS-CoV-2 infection have however reduced significantly 
since the start of the pandemic and will do so further as an increasing proportion of the human 
population is immunised through natural infection and vaccination. However, the evolution of the 
intrinsic virulence of SARS-CoV-2 is difficult to predict. The Alpha and Delta variants were both 
associated with increased virulence, with a higher proportion of people infected requiring 
hospitalisation [18, 206-209]. The higher virulence of the Alpha and Delta VoCs is likely a secondary 
(pleiotropic) consequence of their increased replication rate and transmissibility. Conversely, Omicron 
is intrinsically less virulent than the Alpha and Delta VoCs [210], and its severity is roughly comparable 
to early pandemic strains. One explanation for its reduced pathogenicity has been its altered use of 
TMPRSS2, restricting infection to the upper respiratory tract [211, 212].  
 
A lower frequency of severe COVID-19 and fatalities from Omicron infection appears to be the result 
of both intrinsic differences in the virus pathogenicity and widespread cross-reactive immunity [213]. 
This is mirrored in vaccine breakthrough data from South Africa, that shows reduced frequency of 
severe disease with omicron relative to previous VoCs [214]. Relatively low case fatality rates were 
recorded during the Omicron wave both in countries with high vaccination rates (e.g. New Zealand) 
and high levels of prior infection (e.g. South Africa). Very high levels of neutralising antibodies may 
be able to overcome partial escape to provide some cross-neutralisation, whilst non-neutralising 
immunity through antibody-dependent cellular cytotoxicity and T cells are postulated to provide 
protection against disease when breakthrough Omicron infection occurs [215-218]. However, in 
populations with hardly any prior infection and low immunisation rates among the elderly, Omicron 
still caused devastating outbreaks as was observed in Hong Kong, which recorded the highest per capita 
death rate of any country, at any time throughout the pandemic in March 2022. 

How ‘specific’ is SARS-CoV-2-specific Immunity 
A major focus of SARS-CoV-2 research has been to understand the extent to which immunity generated 
by infection or vaccination can cross-recognise and cross-protect against different lineages of SARS-
CoV-2 and other members of the Coronaviridae family. This is particularly relevant now that the global 
population consists of a mixture of individuals with different histories of exposure to SARS-CoV-2 
antigens [219].  
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The vast majority of immunocompetent individuals infected with SARS-CoV-2 develop both T and B 
cell responses, and these remain detectable in the circulation for at least 9-12 months [220, 221]. 
Previous infection has been shown to offer protection from reinfection with the same SARS-CoV-2 
variant for at least six months [222-224], although this may be reduced in the elderly, or when exposed 
to a heterologous viral strain. Likewise, vaccine-induced immunity against SARS-CoV-2 has shown 
impressive efficacy against severe disease, hospitalisation and death, at least in the short-term [225]. 
Accumulating data suggest T cells play an important role in the resolution of SARS-CoV-2 infection 
[226, 227], and probably against disease following breakthrough infection post-vaccination. However 
it is likely that vaccine efficacy against infection is mediated predominantly by antibody responses. For 
example, titres of binding antibodies to spike and RBD are predictive of breakthrough Delta infection 
following mRNA-1273 vaccination, supporting their utility as correlates of protection (COP) [225]. 
 
Waning of effective immune protection over time can occur through a combination of changes in the 
circulating virus itself and subsequent loss of recognition by the immune response (escape), and/or by 
reduction in the number of immune effectors over time, such as antibody levels (reflective of plasma 
cells), memory B cells (able to generate new affinity-matured antibodies upon re-infection), and 
memory T cells. SARS-CoV-2 binding and neutralising antibodies show measurable waning post-
infection [220, 228, 229], which may correlate with risk of breakthrough infection [230]. However, 
memory B cells can persist after SARS-CoV-2 infection and vaccination [220, 231] even after 
neutralising antibodies become undetectable in the blood [232].  
 
Many mechanisms can be used by viruses to evade adaptive immunity (e.g. shielding epitopes with 
glycans/lipoproteins, cell-cell spread, induction of interfering antibodies, disrupting antigen 
presentation). For SARS-CoV-2, much attention has been paid to mutational changes in the spike 
protein [233]. Point mutations within the spike can lead to loss of recognition by monoclonal antibodies, 
including those used as therapeutics [160, 234], however, single mutations do not significantly evade 
polyclonal responses (that recognise many regions of spike) present in convalescent serum. 
Combinations of these point mutations are, however, common to certain variants and when occurring 
together result in a significant reduction in the ability of antibody responses to recognise and neutralise 
variants. This has been well demonstrated by the emergence of the omicron variant with 30 spike 
substitutions, six deletions and three insertions, which together lead to significantly reduced 
neutralisation in vitro by convalescent and post-vaccination serum relative to other strains [217, 218, 
235], and a higher rate of breakthrough infection.  
 
Prior to the emergence of the Omicron variant, the rise and decline of VoCs did not broadly correlate 
with immune escape. Alpha emerged with a comparatively small number of spike mutations but was 
relatively well neutralised by convalescent and post-vaccination serum [236]. The Beta and Gamma 
variants demonstrated much more evidence of antibody escape, for instance evading 12 of 17 
monoclonal tested and convalescent and post-vaccination serum [162, 236, 237], however, they failed 
to outcompete the Alpha VoC that was globally dominant at the time. Sufficient cross-reactive 
immunity may have been retained despite the changes in Beta and Gamma spike proteins [219]. 
Subsequently Delta outcompeted all other strains, accounting for up to 99% of infections globally in 
Oct 2021 despite showing modest evidence of immune escape relative to ancestral strains [238-240], 
which suggests that infectivity and transmissibility may have been the dominant factors determining 
variants of concern in the earlier stages of the pandemic. For example, S:E484K is the individual 
mutation most strongly implicated in partial immune escape yet the Beta and Gamma VOCs, each 
carrying E484K, failed to dominate in the same manner as Alpha, Delta and Omicron. The E484K 
mutation has also been acquired repeatedly by strains belonging to the Alpha and Delta VoCs (referred 
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to as ‘Alpha+’ and ‘Delta+’) and significantly reduces neutralisation in those genetic backgrounds [241, 
242]. Yet, Alpha+ and Delta+ lineages have not been particularly successful. With a large proportion 
of the human population having been vaccinated and/or previously exposed to SARS-CoV-2 from early 
2022, the major selective pressure likely shifted from higher infectiousness to an increased ability to 
(re-)infect already immunised hosts. The Omicron strains broke pre-conceptions of how much room 
SARS-CoV-2 spike had to evolve; Omicron spike contains a complex pattern of mutations that retain 
RBD ACE2 binding while changing the shape of the RBD sufficiently to escape a significant proportion 
of neutralising antibodies [235]. 
 
As with antibody recognition, mutations within epitopes can also lead to escape from the cellular arm 
of the adaptive immune response, whereby T cells fail to recognise infected cells, for instance due to 
the mutant epitope failing to be processed and presented effectively, or due to loss of recognition of the 
MHC-peptide complex by the T Cells Receptor (TCR) [87, 243-246]. Studies to date suggest the 
majority of T cells induced by vaccination or infection retain their ability to recognise epitopes within 
Omicron and other variants [247, 248]. T cell responses to SARS-CoV-2 post-infection are highly 
multispecific, targeting multiple potential HLA-restricted epitopes within all viral proteins, not just the 
structural proteins and surface epitopes available to antibodies [219, 249-252]. Notably, all widely used 
SARS-CoV-2 vaccines also induced T cells responses which are polyclonal and multispecific in most 
individuals, however these are restricted to the proteins contained within the vaccine, currently largely 
the spike [225, 253-255]. Human leukocyte antigens (HLA) have evolved to be highly polymorphic, 
meaning that the epitopes recognised vary substantially between individuals, implying that T cell escape 
variants are less likely to contribute to transmission within a population unless representing a highly 
immunodominant response restricted by a frequent HLA allele. TCRs, the receptors by which infected 
cells are recognised, are also randomly generated meaning each individual recognises epitopes with a 
unique combination of TCRs, therefore, viral mutations will impact recognition in subtly different ways 
for each individual. Overall, these mechanisms reduce the selection pressure for individual escape 
mutations at the population level, in particular for an acute resolving infection. In other words, the 
advantage gained by mutating a single epitope would only be advantageous in another host if they share 
the same HLA restriction. 
 
Related to SARS-CoV-2 lineage cross-immunity, pre-exposure to non-SARS-CoV-2 viruses can 
mediate cross-immunity. For instance, T cell responses that can cross-recognise SARS-CoV-2 can be 
detected in pre-pandemic samples taken before it circulated in humans in as many as 80% of individuals, 
depending on the sensitivity of the assay used [221, 256-259]. Due to sequence conservation with 
SARS-CoV-2, many groups have started to investigate the possibility that these pre-existing T cells 
were induced by universal exposure to HCoVs [250, 251, 256, 260, 261]. While it is unlikely that 
HCoVs are the sole source of pre-existing T cell responses [30], it has been demonstrated that T cells 
can cross-recognise SARS-CoV-2 and all four HCoVs in vitro at certain epitopes [250, 256, 260-262], 
and that T cells transduced with TCRs from convalescent samples could recognise HCoVs and SARS-
CoV-2 with similar affinities [263].  
 
Prior immunity would be expected to limit disease on exposure to SARS-CoV-2 as pre-existing memory 
T cells are imbued with characteristics which make them more efficient at viral control than naïve T 
cells. As an example, pre-existing T cells that target the highly conserved core replication transcription 
complex (NSP7 polymerase cofactor, NSP12 polymerase, NSP13 helicase) were shown to be enriched 
in health care workers that showed signs of exposure to SARS-CoV-2 but who appeared to control 
infection before it was detectable by PCR or induced an antibody response [256]. This early control of 
viral replication, before an infection could be established, may be explained by the rapid response of 
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pre-existing T cells that target the earliest expressed proteins of the viral lifecycle in ORF1ab. Pre-
existing cross-reactive T cells expand in vivo upon infection and vaccination [260] and have been 
associated with protection from infection [256, 264] and severe disease [265], but epidemiological data 
are still limited to support [266] or refute [267] that recent HCoV infection and associated immune 
responses are directly associated with protection from severe COVID-19.  
 
Cross-reactive antibodies are less common in pre-pandemic samples, likely due to their targeting of less 
conserved structural viral proteins and greater sensitivity to point mutations altering structural epitopes 
[268, 269], and they have not been associated with protection from disease [270]. Nonetheless, it has 
been suggested that pre-existing cross-reactive immunity is the reason we have so few endemic 
coronaviruses, rather than lack of opportunity or lack of identification of coronavirus outbreaks in 
humans [271]. For another coronavirus to establish itself in the human population like SARS-CoV-2, it 
would have to circumvent significant pre-existing immunity generated by previous coronaviruses in 
circulation.  
 
The biggest unknown in SARS-CoV-2 immunity is what correlates with protection from disease and 
from infection. Attempts have been made to identify antibody COP for SARS-CoV-2 by integrating 
efficacy and antibody data from vaccine trials [272, 273], however, a single COP may be hard to identify 
for all SARS-CoV-2 VoCs without measuring variant specific neutralising antibodies, as well as non-
neutralising antibodies, and cellular immunity. A greater understanding of the immune responses at 
mucosal airway surfaces, the site of viral control, will likely be required [274]. Despite difficulties in 
accessing samples, compartmentalised immunity within the airway mucosa in the form of tissue-
resident T cells [275-277] and local IgA, memory B cells [278, 279] have been described and associated 
with protection from severe disease and infection with SARS-CoV-2 [280].  
 
A growing body of evidence suggests vaccines for global health priorities should be focused on inducing 
both antibodies and T cells [281, 282]. Due to their longevity, multispecificity and propensity to target 
conserved regions, T cells could be particularly effective at mediating long-term protection against 
SARS-CoV-2. Since most T cell targets lie outside of the spike protein [249, 250, 256], it may be 
prudent to include non-spike antigens in vaccines, possibly targeting regions that are conserved across 
the wider Coronaviridae. Clinical trials are already underway to test second-generation vaccines to 
improve durability, infection and transmission blocking, and the potential for inducing cross-reactive 
immunity that can protect against future SARS-COV-2 variants and acquisition of novel coronaviruses 
in the future.  

THE FOUR FUNDAMENTAL FORCES OF AN EPIDEMIC 
The epidemic dynamic of respiratory viruses such as SARS-CoV-2 is driven by four main factors, 
namely, seasonality, viral evolution, population immunisation rates and mitigation measures affecting 
host behaviour (Figure 5A). Seasonal forcing expresses the higher transmissibility of respiratory 
viruses during winter than summer in both hemispheres. This is in part due to physical conditions, such 
as viruses remaining infectious for longer in cold, dry air [283], and under low sunlight (UV) exposure 
[284]. However, there is also a host behaviour component with humans tending to spend more time 
indoors in poorly ventilated conditions during the winter [285, 286]. Viral evolution will always tend 
to push transmissibility upwards but it is expected to tend towards a fitness maximum. Population 
immunisation reduces viral transmissibility by removing susceptible hosts from the population, but is 
constantly refuelled by viral antigenic drift, waning of immunisation and introduction into the 
population of unexposed newborn hosts, thus eventually reaching a dynamic quasi-equilibrium. Finally, 
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mitigation measures, which encompass interventions such as aiming to increase social distancing, will 
reduce transmission but for the most part are unlikely to stay in place indefinitely. 
 
Together these four forces will jointly affect the effective reproduction number of a pathogen (Rt), the 
average number of new infections caused by a single infected individual at time t. When Rt is above 1.0, 
case numbers increase, and when it falls below 1.0, they go down (Figure 5B). In an epidemic dynamic, 
Rt, and hence case numbers, can fluctuate wildly leading to marked epidemic waves (Figure 5C). Herd 
immunity is reached when Rt falls below 1.0, but for viruses such as SARS-CoV-2, where immunisation 
against re-infection is relatively short lived, this endemic state is only transient. The only force in the 
system that remains unaltered is seasonal forcing, which ultimately becomes a major driver of the 
system, leading to higher case numbers in winter than in summer in the temperate zone (Figure 5D).  

 
Figure 5. Schematic representation of the four main forces acting on pathogen transmission. A. Effect of 
the four main forces on transmission. B. Cumulative effect of the forces in three hypothetical countries. In country 
1 and 3, the cumulative effects of the four forces keeps the epidemic from growing (R<1), whereas in country 2, 
the epidemic is growing. C. Epidemic behaviour over a two-year period under a continental climate with blue area 
depicting colder months in the year and red warmer months. D. Seasonal dynamic of endemic pathogen with 
smaller amplitude of cases and regular peaks during the colder months. 
 
Essentially all ~200 endemic human respiratory viruses are seasonal in temperate regions of the world. 
Many endemic respiratory viruses including the four endemic HCoVs also tend to exhibit a biannual 
dynamic, with case number higher every second year [287]. This might in part stem from a non-
equilibrium state caused by immune protection from reinfection following prior exposure lasting on 
average for longer than one year, but less than two. SARS-CoV-2 is no exception to the general pattern 
of seasonality, and its transmissibility, at the time of writing, is already higher in winter. Seasonal 
variation in the transmissibility of SARS-CoV-2 had little impact during the early stages of the 
pandemic. This is because as long as immunisation rates remained limited, SARS-CoV-2 could readily 
transmit at any time of year as long as conditions were otherwise favourable, and case rates were mainly 
driven by variation in the stringency of mitigation measures and the emergence of more transmissible 
lineages. For instance, India experienced a major epidemic peak outside the winter season, during the 
spread of the Delta variant in late spring 2021. As immunisation levels increase further, SARS-CoV-2 
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is expected to adopt a seasonal endemic dynamic, with outbreaks and epidemics mostly happening in 
winter. 

THE GOOD, THE BAD AND THE UGLY 
 
While there is little doubt that SARS-CoV-2 will eventually become a seasonal endemic pathogen, there 
is limited consensus in the scientific community about what ‘endemic SARS-CoV-2’ entails in terms 
of future morbidity and mortality, both upon infection and through Long COVID / PASC (Post 
acute sequelae of SARS-CoV-2 infection). However, during the endemic phase of COVID-19, 
morbidity and mortality will primarily be dictated by the ability of SARS-CoV-2 to bypass global host 
immunity and the intrinsic virulence of future SARS-CoV-2 variants. 
 
Worst case scenarios include high case numbers and circulation of a diversity of serotypes with limited 
protection across strains, possibly fuelled by reverse anthroponosis and recombination between human 
and animal coronaviruses. For example Infectious Bronchitis Virus (IBV), a 
Gammacoronavirus infecting chicken, circulates in the form of multiple serotypes with highly 
divergent sequences in their spike protein, and minimal cross-immunisation between certain strains in 
circulation [288]. This would present a highly challenging situation, leading to constantly high case 
numbers and a need for continual vaccine updates to match at least a subset of dominant serotypes in 
circulation. While such a scenario of diversification into multiple serotypes cannot be formally ruled 
out as the future for endemic SARS-CoV-2, it remains relatively unlikely. Humans, as long-lived hosts, 
are typically exposed multiple times in their lives to the four HCoVs, and will in all likelihood be to 
SARS-CoV-2 in the future. Repeated exposure to the five coronaviruses in circulation is expected to 
restrict the immunological space that SARS-CoV-2 lineages can explore at any time [271]. The extent 
to which immune-escape mutations in the spike RBD act independently from each other will be critical 
for the emergence of new serotypes through previously unexplored epistatic combinations. There is 
currently no consensus on the evolutionary potential of SARS-CoV-2 to generate new serotypes through 
novel epistatic combinations of mutations [289, 290]. However, at the least, we can anticipate that 
SARS-CoV-2 will undergo antigenic drift in common with other HCoVs [129]. 
 
A situation where SARS-CoV-2 will circulate in the future as one or two serotypes at any time, 
constantly evolving through antigenic drift, and with sequential lineage replacement represents the most 
likely scenario. This is the situation we currently experience with the four HCoVs and seasonal 
influenza A and B. People are generally infected for the first time to both HCoVs and seasonal influenza 
early in life and build immunity through multiple exposures throughout life. The majority of influenza 
infections are asymptomatic and people tend to get exposed to influenza multiple times [291]; the same 
is true for HCoVs [123-125]. In terms of epidemiology and public health, the major difference between 
HCoVs and influenza is the higher virulence of seasonal influenza. While not always harmless, in 
particularly in the elderly, HCoVs are generally considered to exert only a minor burden on human 
health, and are often tellingly categorised among ‘common colds’. While often underascertained, the 
burden of influenza tends to be more widely recognised. A recent study estimated the number of yearly 
deaths associated with seasonal influenza to around 400,000 globally (with considerable year on year 
variation), with around two thirds of these among people over the age of 65 years old [292]. 
 
COVID-19 has been the worst respiratory disease pandemic since the the ‘Spanish flu’ in 1918/20 when 
influenza H1N1 may have killed up to 50 million. The 1918-1920 flu pandemic came to an end with 
H1N1 becoming the agent of endemic seasonal flu until it got displaced by the 1957-1958 H2N2 
pandemic lineage. H1N1 then made a comeback in the 1970s, again contributing to the yearly burden 
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of seasonal flu, before disappearing around 2019. While pandemics of respiratory viruses end, the 
causal agents remain in circulation for decades. As such, whether SARS-CoV-2 will in time become a 
fifth ‘common cold HCoV’, or exert a more significant burden on human health comparable to, or even 
higher than, seasonal influenza will largely depend on the intrinsic virulence of future viral lineages. 
We have essentially no control over the global evolution of the virus, and the trajectory in terms of 
virulence of future SARS-CoV-2 variants is unknown, if not unknowable. However, what we have 
considerable control over is the morbidity and mortality associated with endemic SARS-CoV-2 in the 
future. By far the best tool is global vaccination of the elderly and those otherwise most at risk, which 
needs to be scaled up and maintained globally if we hope to live with a fifth HCoV, rather than an 
additional seasonal flu-type virus.  
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