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Executive Summary 

The overall objective of the InTheMED project is to implement innovative and sustainable 

management tools and remediation strategies for MED aquifers (inland and coastal) in order 

to mitigate anthropogenic and climate-change threats by creating new long-lasting spaces of 

social learning among different interdependent stakeholders, NGOs, and scientific 

researchers in five field case studies. These are located at the two shores of the MED basin, 

namely in Spain, Greece, Portugal, Tunisia, and Turkey. 

InTheMED will develop an inclusive process that will establish an ensemble of innovative 

assessment and management tools and methodologies including a high-resolution 

monitoring approach, smart modelling, a socio-economic assessment, web-based decision 

support systems (DSS) and new configurations for governance to validate efficient and 

sustainable integrated groundwater management in the MED considering both the 

quantitative and qualitative aspects. 

This Deliverable aims to illustrate surrogate models and their applications for groundwater 

purposes. An extended scientific literary review was carried out to evaluate the most 

promising surrogate models. Three examples are presented in order to illustrate pros and 

cons of the surrogate models. 
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1. Overview 

Stakeholders need simplified models, yet accurate enough, to analyse alternative scenarios 

and make decisions under uncertain future conditions. Aquifer numerical modelling has 

reached high levels of completeness and reliability. However, models, made by specialized 

software packages are complex to set up, have extensive data requirements, take long time 

to run, and require specialized personnel to perform the simulations and analyse the results. 

For this reason, InTheMED focuses on the development of new simplified “smart” models. 

These new models will be built on the basis of long-time historical data and/or detailed 

numerical models with the aim to provide specific answers tailored to the stakeholder needs. 

The smart and calibrated models developed in this way can also be used to analyse the 

effects of climate change and hypothetical scenarios of socio-economic activities that may 

induce a change in groundwater exploitation. 

The choice of the most suitable models is closely linked to the purpose of the investigation 

and to the problem at hand. Several activities in order to complete Task 3.1 were carried out: 

• scientific literary review of recent documents related to surrogate modelling in 

groundwater (Attachment A); 

• development and analysis of a survey regarding the study sites (results are reported 

in the Milestone M3.1, see Tanda et al., 2021); 

• identification of the best surrogate models suitable for pilot sites: artificial neural 

network (ANN), random forest (RF) and linear regression; 

• application of ANN, RF to synthetic cases and linear regression to field data; 

• presentation of the results (see Section 2) to project partners during the meeting of 

May 7th; 

• discussion with each project partner regarding the case studies (Section 3). 

Following, the results of the synthetic cases and of the meeting with project partners are 

reported. 
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2. Test cases 

The goal of surrogate models is to achieve a rapid response following a stress. For example, 

the knowledge of the nitrate concentrations at monitoring wells (MWs) due to the spread of 

a fertilizer in a specific area is of primary importance. The surrogate models, once calibrated, 

allow the evaluation of different scenarios that consider, for instance, different releases. 

Both ANN and RF (Figure 1) are promising approaches for surrogate modelling. To evaluate 

the applicability of these methods, two literary test cases were considered: the first deals 

with groundwater flow (effect of recharge and pumping rate on hydraulic heads at 

monitoring points) and the second with groundwater transport (estimation of concentrations 

at monitoring wells starting from different releases). Before the realization of the surrogate 

model, in order to solve flow or transport problems, various procedures must be performed. 

Since it is a data-driven surrogate model, observed data generation is required. Therefore, 

groundwater flow and transport numerical models have been applied for dataset generation. 

Inputs necessary for the numerical model, in order to reduce the number of forward 

simulations, are usually obtained by means of the Latin Hypercube Sampling (LHS) which 

represents a statistical method to randomly generate variable from a multidimensional 

distribution. Then, the generated dataset is divided into three different subsamples: training, 

validation and test dataset. By means of a learning process, the training dataset will be used 

to calibrate the network so that it would be able to provide the desired output. The validation 

set is used to verify that the training process does not generate overfitting, while the test set 

verifies the generalization capacity of the network. 
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Figure 1 – (left) Scheme of Artificial Neural Network. (right) Scheme of random forest. 

The last example deals with the effect of climate change on groundwater resource. A linear 

regression model is applied to project future groundwater levels using historical rainfall, 

temperature and groundwater level data and climate models outputs. 

 

2.1. Case 1: Groundwater Flow 

The study case proposed by Hendricks Franssen et al. (2009) was considered. The test case 

consists of a confined aquifer of 5000 m×5000 m with 50×50 cells (Figure 2). The West and 

East boundary conditions are assigned hydraulic heads respectively of 0 m and 5 m, while the 

North and South are no-flow boundaries. The aquifer presents a surface recharge and a 

pumping well (Figure 2). The transmissivity field is Gaussian and was generated with an 

exponential variogram with σ2
Y = 1 (where Y = ln(T)) and correlation length of 500 m (Figure 

2). 

The objective of the test was to reproduce hydraulic heads (output of the surrogate model) 

at monitoring wells knowing only the recharge rate and pumping well rate (inputs of the 

surrogate model). Both ANN and RF (Figure 1) were trained using data collected through the 

numerical modelling. In particular, the effects of several pumping well flow rate (0.02-0.095 

m3/s) and recharge rate (100-600 mm/y) were simulated. For a total of 176 forward 

simulations, the hydraulic heads at 25 monitoring wells were collected. The dataset has been 

divided in training (70%), validation (15%), and test (15%).  
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Figure 2 – (left) Synthetic example for groundwater flow. Each colour represents the natural 
logarithm of the transmissivity; (right) example of computed hydraulic heads in meters. The 
red crosses are monitoring wells and the blue circle denotes the pumping wells. Numbers on 
axis identify the cells. 

Figure 3 reports the results obtained with the application of the two surrogate models. Both 

models can reproduce observed data with satisfactory accuracy. 

 

Figure 3 – (left) Observed-estimated hydraulic heads ANN approach. (right) Observed-
estimated hydraulic heads RF approach. 
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2.2. Case 2: Groundwater Transport 

To evaluate the performance of ANN and RF, a literature case introduced by Ayvaz (2018) 

and later adopted in Xing et al. (2019) and Jamshidi et al. (2020) has been considered. Figure 

4 shows the discretization grid of the numerical model of the studied aquifer. See Ayvaz 

(2018) for hydraulic and geometry characteristics of the studied case. 

The aquifer system consists of 5 different hydraulic conductivity zones whose isotropic 

conductivity values ranges from 0.0001 m/s to 0.0007 m/s. The conductivity values are taken 

as uniform inside each zone. The aquifer case dealt with a steady-state and non-uniform flow 

conditions; since the transport problem behaves ad an uncoupled problem, piezometric 

heads and velocity have been computed once. There is one active contaminant source and 7 

monitoring locations in the aquifer domain (Figure 4). The total simulation time is 5 years 

divided into 10 stress periods of 6 months each. It is assumed that the source releases (input 

for the surrogate model) conservative compounds during the first 24 months (Figure 4). The 

concentrations at MWs (output of the surrogate model) were collected after 5 years of the 

starting of the release. Therefore, the contaminant transport process in the aquifer is 

transient. 256 samples of release mass rate located in the source and selected by means of 

LHS algorithm, run as forward simulations in order to compute contaminant concentration 

through the groundwater domain. Since the release mass rate and the concentration values 

are available by means of the numerical model, the surrogate model can be trained to 

estimate concentrations by knowing the release history. For the ANN computation, the 

dataset was divided in training (70%) and validation (30%). For the test phase a golden test 

has been used in order to compare the results obtained with the literature (Ayvaz, 2018). 
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Figure 4 – (left) Numerical grid of the study case. (right) Released mass rate at source 

A comparison of the results obtained through ANN and RF can be made analysing the Figure 

5 and Figure 6 that show the observed and estimated concentration at MWs respectively. It is 

clear that both approaches well reproduce the true concentration values. 

  
Figure 5 – ANN Observed and Estimated concentration at monitoring wells, forward 
simulation with one release source. 
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Figure 6 – RF (left) Observed and Estimated concentration at monitoring wells, forward 
simulation with one release source. (right) Observed estimated concentrations 

 

2.3. Case 3: Linear Regression Approach 

A linear regression approach has been applied to simple evaluate the impacts of climate 

change on groundwater levels (Secci et al., 2021). Possible correlations between the 

meteorological and groundwater indices have been examined making use of historical rainfall 

and temperature data and water levels collected in monitoring wells. The climate variables 

are investigated in terms of Standardized Precipitation Indices (SPIs) and Standardized 

Precipitation Evapotranspiration Indices (SPEIs); the groundwater levels are analysed with 

reference to the Standardized Groundwater Index (SGI). For those wells presenting 

satisfactory correlation, a linear regression relationship has been computed between SGIs 

and SPIs, and SGIs and SPEIs. The same relationships have been applied to future SPI and SPEI 

values, estimated by means of an ensemble of regional climate models (RCMs), to infer 

future SGI indices under different climate scenarios (RCP 4.5 and RCP 8.5). This methodology 

has been applied to data collected in Northern Italy (Secci et al., 2021), but the procedure 

can be easily applied to different areas of interest.  

As an example, Figure 7 shows the couples SGI-SPI plotted together with the regression line 

and the identity line for a specific well (Paganico). The results for the Paganico monitoring 

well are presented in terms of box-plots of the SGIs obtained through the SGI-SPI (Figure 8a) 
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and SGI-SPEI (Figure 8b) regression equations for the historical period and at short-, medium- 

and long-term under the two RCP scenarios. 

 

Figure 7 – SGIs versus SPIs (left) and SGIs versus SPEIs (right); the points represent the SGI 
data, the blue line indicates the regression line and the dashed line denotes the identity line. 
For each well, the correlation coefficient (R) and the regression equation is reported. 

 

Figure 8 –Box-plots of the SGIs obtained for the Paganico monitoring well through the SGI-SPI 
(a) and SGI-SPEI (b) regression equations for the historical period and at short- (ST), medium- 
(MT) and long-term (LT) under the two RCP scenarios. 

 



      
 

16  D3.1 Selection of the Smart Model v2.0 
 

3. Virtual meetings with project partners 

On May 7th, 2021 (14:30-16:30 CEST) all partners virtually met to discuss about surrogate 

models. UNIPR presented the results of the survey sent to partners in autumn 2020. The 

survey (results are reported in the Milestone M3.1, see Tanda et al., 2021) regarded the 

objectives of each site. Considering that all the study sites will investigate several scenarios of 

climate change; UNIPR presented a brief introduction on climate data and sea level rise. The 

survey allowed to distinct the sites into two groups: sites with numerical models (Requena - 

Utiel (Spain), Tympaki (Greece), Castro Verde (Portugal), Konya (Turkey)) and without 

(Grombalia (Tunisia) and Mediterranean Sea region). 

In order to focus on each study case from July 7 to July 12, 2021 individual meetings with 

each project partners have been carried out. Following, the main outcomes are briefly 

reported. 

Requena-Utiel (Spain) 

The main objective of the surrogate modelling is to evaluate the groundwater drawdown 

taking into account different pumping, crop and climate scenarios. For this purpose, a 

surrogate model of the studied area based on Random Forest theory will be developed. UPV 

is improving a numerical groundwater flow model developed with MODFLOW in order to set 

up the surrogate model. 

Tympaki (Greece) 

The main goal of the surrogate modelling is to assess groundwater levels and nitrate 

concentrations in monitoring wells taking into account different pumping, crop and climate 

scenarios. TUC is developing a groundwater flow and transport model with FEFLOW to 

simulate the state of the art and provide data for the surrogate model. Artificial Neural 

Networks are suitable surrogate models for this problem. 

Castro Verde (Portugal) 

The objective of the pilot site is to forecast the depth of the water table under different 

climate scenarios. At this aim meteorological data, hydraulic heads at monitoring wells and 

pumping rate will be collected to set up a surrogate model. 
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Konya (Turkey) 

The objective of the pilot site is to estimate the water budget for the entire basin and analyse 

the effects of different climate scenarios on water availability in the basin. At this aim a 

groundwater numerical model is under development and will be ready before the end of the 

year. The results of the numerical model and field data will be used to set up a surrogate 

model. 

Grombalia (Tunisia) 

The site is affected by groundwater contamination. The research group will focus on organic 

pollution and chemical oxygen demand (COD). CERTE will collect field data (such as rainfall, 

temperature, water depth, COD concentrations at MWs) and geological information in order 

to set up a surrogate model with a linear regression approach or with artificial neural 

network. 

Mediterranean Sea Region 

UFZ will perform trend analysis and clustering of groundwater quality and dynamic using the 

long-term time’s series data collected from different Mediterranean countries. At this aim 

Random Forest and/or Artificial Neural Network will be developed. 
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