Introduction to GraphBLAS

A linear algebraic approach for concise, portable,
and high-performance graph algorithms

Gabor Szarnyas (CWI)

GRAPHBLAS

GRAPHBLAS

» Graph algorithms are challenging to program

o irregular access patterns — poor locality
o caching and parallelization are difficult

= Optimizations often limit portability =
ADQOO®®0G ®

= The GraphBLAS introduces an abstraction s
layer using the language of linear algebra ® o
. @|0 o
o graph = sparse matrix ® o
_ : T : ® @)
o traversal step = vector-matrix multiplication 5 oolo

GRAPHBLAS

» Graph algorithms are challenging to program

o irregular access patterns — poor locality
o caching and parallelization are difficult

= Optimizations often limit portability =
ADOO®OBO GO

= The GraphBLAS introduces an abstraction s
layer using the language of linear algebra ® o
. @|0 o
o graph = sparse matrix ® o
_ : c 0 : ® @)
o traversal step = vector-matrix multiplication o oolo
ODOBB®OG®G ,
v | o] | P |

D@00 60

What makes graph computations difficult?

GRAPH PROCESSING CHALLENGES

oolalalalan=le gl the “curse of connectedness”

contemporary computer architectures are good at

processing linear and hierarchical data structures,
such as lists, stacks, or trees

computer
architectures

a massive amount of random data access is required,
CPU has frequent cache misses, and implementing
parallelism is difficult

caching and

parallelization

——= | B.Shao, Y. Li, H. Wang, H. Xia (Microsoft Research),
— | Trinity Graph Engine and its Applications,
- | IEEE Data Engineering Bulleting 2017

GRAPH PROCESSING CHALLENGES

Graph algorithms have a high communication-to-computation ratio.

Speedup with a CPU that has better arithmetic performance:
= machine learning — alot

= relational queries — some

= graph processing — very little

Standard latency hiding techniques break down, e.g. pre-fetching
and branch prediction provide little benefit.

Use a data representation and computation model which are
expressive, machine-friendly, and portable.

LINEAR ALGEBRA-BASED GRAPH PROCESSING

= Graphs are encoded as sparse adjacency matrices.
= Use vector/matrix operations to express graph algorithms.

ORORON - NONRY

AOQOOGB®OG GO
1 1

1 1

SEELECECES,

f |

1

1

1] |2 | fA

frontier

The GraphBLAS standard

THE GRAPHBLAS STANDARD

Goal: separate the concerns of the hardware, library, and application designers.
= 1979: BLAS Basic Linear Algebra Subprograms
= 2001: Sparse BLAS an extension to BLAS (little uptake)

= 2013: GraphBLAS an effort to define standard building blocks
for graph algorithms in the language of linear algebra

Numerical applications Graph analytical apps
| LINPACK/LAPACK | LAGraph
| BLAS || GraphBLAS |
‘ Hardware architecture ‘ ‘ Hardware architecture ‘

el S McMillan @ SEI Research Review (Carnegie Mellon University, 2015):
B Graph algorithms on future architectures

GRAPHBLAS TIMELINE

Book — Papers — GraphBLAS standards — SuiteSparse:GraphBLAS releases

2011 2016 2017 2018 2019 2020 2021 2022
| | | @9| 1.0 | 1.2 | 1.3 | | Zo@l |
| 1.0 22 |3.0 | 4050 60
Graph Algorithms Mathematical CAP|, LAGraph, SuiteSparse:

in the Language foundations, GABB@ GrAPL GraphBLAS,
of Linear Algebra HPEC IPDPS @IPDPS TOMS

GRAPH ALGORITHMS IN LINEAR ALGEBRA

Notation: n = |V|,m = |E|. The complexity cells contain asymptotic bounds.
Takeaway: The majority of common graph algorithms can be expressed efficiently in LA.

roblem aleorithm canonical LA-based
P & complexity © complexity ©
breadth-first search m m
, Dijkstra m + nlogn n*
single-source shortest paths
Bellman-Ford mn mn
all-pairs shortest paths Floyd-Warshall n3 n3
. , Prim m+ nlogn n?
minimum spanning tree -
Boruvka mlogn mlogn
maximum flow Edmonds-Karp m?n m*n
reed m+nlogn mn + n?
maximal independent set 5 Y 5
Luby m+nlogn
— | Based on the table in J. Kepner: = | See also L. Dhulipala, G.E. Blelloch, J. Shun:
"""""" = |Analytic Theory of Power Law Graphs, - Theoretically Efficient Parallel Graph Algorithms
— 1 SIAM Workshop for HPC on Large Graphs, 2008 Can Be Fast and Scalable, SPAA 2018

KEY FEATURES OF GRAPHBLAS
= Portable: supports x86, Arm (Apple M1); GPUs (WIP)

= Efficient: within one order-of-magnitude
compared to hand-tuned code

= Concise: most textbook algorithms can be
expressed with a few operations

= Composable: the output of an algorithm can be used
as an input of a subsequent algorithm

= Flexible: can express algorithms on typed graphs
and property graphs

Theoretical foundations of the GraphBLAS

DENSE MATRIX MULTIPLICATION

Definition: B ® ©® ®
C=AB 0|05
C(i,j) = 2 A(i, k)xB(k, j) @|o ool
®|0|o0[4]
rfelete e
C(2,3) = A(2,1)xB(1,3) +
@ 2]3]ie]l |00 34
A(2,2)xB(2,3) +
C=AD.XB

A(2,3)xB(3,3)
= 2X54+3%x0+ 6X4 = 34

SPARSE MATRIX MULTIPLICATION

Definition:
C=AB=A®P.¥B
C@i,j) = D A(i, k)®B(k, j)

keind(A(i,:))nind(B(:,)))

Sparse matrix multiplication only evaluates
the multiplication operator ® for positions
where there is a non-zero element in both

A(i, k) and B(k, j).

Example:

C(2,3) = A(2,1)xB(1,3) +
A(2,3)xB(3,3)

= 2X5 +6X4 =34

B © @ O
® 5]
@
o] 4]
AO @0
. 9@
o[2]| 3 |[6 34
C=AD.KXB

MATRIX MULTIPLICATION C=A®.Q® B

Multiplication on dense matrices Multiplication on sparse matrices
C(i,j) = ® A(i, k) ®B(k, j) C@i,j) = D A, k)®B(k,j)
j keind(A(i,:))nind(B(:,j))

Example:C=A®.Q B

B B _
®|o|o|5] @ 5
@|o|o]o] @ j
®| oo 4] o] 4
A0 @ o AlO® @ 6
olojo/o||o]o]o @ B
@(2]3]l6]| [0 0 B4 @2] 3|6 34

ADJACENCY MATRIX

A = 1 if (vi,vj) e E
. 0 if (vi,vj) ¢ E

OO0 »

ONONORONONONG
1 1
1 1
1
1 1
1
1
1111

ADJACENCY MATRIX

A = 1 if (vi,vj) e E
. 0 if (vi,vj) ¢ E

target

. S ONONON4 NONORE,
@ 1 1
@ 1 1
©) 1
@1 1
® 1
® 1

source @ 1011

ADJACENCY MATRIX

A = 1 if (vi,vj) e E
. 0 if (vi,vj) ¢ E

OO0 »

ONONORONONONG
1 1
1 1
1
1 1
1
1
1111

ADJACENCY MATRIX TRANSPOSED

B 1 if (vj,vl-) e E
- 0 if (vj,vl-) ¢ E

ATO @20 ® 06 ® O

1

1

1 17

1

SECECECECKCES,

ADJACENCY MATRIX TRANSPOSED

1 if (vj,vl-) e E
- 0 if (vj,vi) ¢ E
target
ATO @06 @06 G @
@ 1
Q| 1
©) 1 111
source 0| 1

GRAPH TRAVERSAL WITH MATRIX MULTIPLICATION

fA* means k hops in the graph

OO 06 6 0
1 1

1 1

QOO O »

OO ® O G 6

s
—
—
—
—

GRAPH TRAVERSAL WITH MATRIX MULTIPLICATION

OO ® O G 6

QOO O »

fA* means k hops in the graph
DQOOOO®DADDO DO OB

1

1

1

1

111

f |

111

006 6 0

nop: fA

OO0 00O0

1

1

1

1

1

1

(1] |1

2

020O0®606 0

two hops: fA?

GRAPHBLAS SEMIRINGS*
The (D,®,Q, 0) algebraic structure is a GraphBLAS semiring if

= (D,, 0) is a commutative monoid using the addition operation
@:DxD — D, where Va, b, c € D, if the following hold:

o Commutative a@b=b&Pa
o Associative (a@®Bb)Bc=a®P®bBc)
o ldentity a@0=a

= The multiplication operator is a closed binary operator
X:DXD — D.

The mathematical definition of a semiring requires that & is a monoid and
distributes over @. GraphBLAS omits these requirements.

SEMIRINGS

semiring domain graph semantics
any-pair {T, F} any pair F traversal step
integer arithmetic N + X 0 number of paths
min-plus R U {400} min 4+ +4oo shortest path

The default semiring is the conventional one:
= & defaults to the arithmetic multiplication operator.
= @ defaults to the arithmetic addition operator.

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring domain & @ O
any-pair {T, F} any pair F AOQO6O®06bG O
. ol |©] |©
Semantics: traversal step @ o e
€) O
0|0 ©
® . O
6 O
@ EIEE
©300060 —
f | o o |[e] |o |

f any.pair A

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring domain & ® O

integer arithmetic N + x 0 AOQOO®B®GOGG®
Semantics: number of paths g 1 1 r r
© 1
Ol1 1
® | 1
6 1
@ 111
@ ——
HiaRE |

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring domain @ ® 0

min-plus RU{+0} min + +oo ADDO®O® O
Semantics: shortest path g 1 1 1 1
S, 1
0O|.2 4
®] 1
6 .5
@ 1111
©300060 —
f | sl 16l][7] 1.9 |

fmin.+ A

ELEMENT-WISE MULTIPLICATION: AQ B

€) ®
ADQOO®O GO
O 10| |O

@ @
®

@|0

®

®

@ @

@ 3%
@
3 ®
B ODQOO®® G G @
O O
O

X
9606000

®

@

®

) .

®

AXRBOOO®® O G O

SECKSECKCKSES,

ELEMENT-WISE ADDITION: A© B

) .ot Iy

® ©) ®

BOQOBO®OG®G®O AGBOQ@BO®OG ®G®

>

o ©
Q|®

©

®

@

©®

Q

® © ® ol |e] |@

@ @) @ @ |0) o |
€ € ©

®|o D @ = @|e

® ® ®)

® ® ®

@ o @ ©) %) e

TURNING A GRAPH INTO UNDIRECTED: A €

ADODQOO®O GO

SECKCECKCKSES

>

SECKCECECKCKS,

TOPB®OO®O

APDAT DB BB ®Q

OOO®OO O

MASKING

Prevent redundant computations by
reducing the scope of an operation

Operations can be executed

= without a mask
= with a regular mask

= with a complemented mask

QOO®dWE O »

OO 06 6 0
@ |0

@)

O

OO ® O G 6

f |

MASKING

Prevent redundant computations by ADOOOOG G O
reducing the scope of an operation o| o] |@
Operations can be executed @ © |©
= without a mask @ ©

: @|0| |0
= with a regular mask © o
= with a complemented mask ® O

@ @00
OO0 ®06 b O
f | o|| O | w(m) =

@@@ﬂ@@@f@®A
m | |

MASKING

Prevent redundant computations by ADOO OO6 6 O
reducing the scope of an operation o| o] |@
Operations can be executed @ © |©
= without a mask @ ©

. @|0| |0
= with a regular mask © o
= with a complemented mask ® O

@ @00
OO0 ®06 b O
f | .l | @) W<—|m> —

Do 0oee DDA

m|

NOTATION=*

operation notation
3 Sym bols: matrix-matrix multiplication C(M)=A®.® B

@.® vector-matrix multiplication w(m)=v @.® A

o A,B,C,M - matrices , —
matrix-vector multiplication wim)=A®@.Q v

o u,v,w,m - vectors
o s - scalar 0%

element-wise multiplication CM)=A&® B
(set intersection of patterns) wim)=u ® v

o i,j - indices o element-wise addition CM)=ADB
o (M), (m) - masks (set union of patterns) wim)=u®v
= Operators: C(M) = f(A)
f apply unary operator
o @ - addition w(m) = f(v)
o ® - multiplication @] MEElES 19 UaeeT w(m) = [®; ACG,j)]
o @ - division reduce to scalar s=|®;; AG,)]
o T - transpose AT transpose matrix C(M)=A"

Vectors can act as both column and row vectors.
(Notation omitted for accumulator, selection, extraction, assignment...)

LINEAR ALGEBRAIC PRIMITIVES FOR GRAPHS #1

Element-wise addition: Element-wise multiplication:
union of non-zero elements intersection of non-zero elements
@ |0 |o o |O @ (@] o @ |o
0 0 o |o 0 0 o |o
oo ol ® ool oo ol ®Teolole
oo o| oo oo o |o|e
Sparse matrix times sparse vector: Sparse vector times sparse matrix:
process incoming edges process outgoing edges
@ o |o © @ o |o
0 0 0 0
oo o@@. o] [0/0] | D& oo 0
oo ° oo

LINEAR ALGEBRAIC PRIMITIVES FOR GRAPHS #2

Sparse matrix times sparse matrix: Reduction:
process connecting outgoing edges aggregate values in each row
o] |0 |@ Ll 1] 1] |1 3
o (0 Al :
oo OEB'®:.. 111 [@l []lz
olo 1 1
. e
Matrix transpose: Apply:
reverse edges apply unary operator on all values
o] Jo| To| T 12] 3 1T 4] |9
0 0 f(x) = x?
olo o 3[2 > 914
Q|0 1 1

Graph algorithms in GraphBLAS

Breadth-first search

BFS: BREADTH-FIRST SEARCH

= Algorithm:
o Start from a given vertex

o “Explore all neighbour vertices at the present level prior to
moving on to the vertices at the next level” [Wikipedia]

= Variants:
o Levels compute traversal level for each vertex
o Parents compute parent for each vertex
o MSBFS start traversal from multiple source vertices

Graph algorithms in GraphBLAS

Breadth-first search / Levels

BFS - LEVELS

ADBOBOOG GO
semiring domain & o 0 |0

@ @ |0
any-pair {T, F} any pair F ©)
level =1 g © © S

® O

@ © 0 0

L NORONONONONE
f|O® | Xe] Teo |

ﬂ level f(—s) = f any. pair A

0003 ®0O G O
s |1 |

BFS - LEVELS

semiring domain & &
any-pair {T, F} any pair F
level = 2

R EONNONOCRG

OO ®6 6 6
e |0

OO0
O
O

| D<DeDe] o]

(@)
ﬂ level

f(—s) = f any. pair A

R EONNONOCRG

s |1

2

2

BFS - LEVELS

ADOO® OGO O
semiring domain & ® @ |0

@ @ |0
any-pair {T, F} any pair F ©)
level = 3 C;) © © S

® O

7 000

O 06 ®6 b
o To[To] [OI0TTeA

ﬂ level f(—s) = f any. pair A

BFS - LEVELS

. HONGRONONONONE),
semiring domain & ® ol Tel Te
@ @ |0
any-pair {T, F} any pair F 5 S
ol[e O
level = 4 2 .
6 O
@ 0|0
ONGRONONONG NE)
o] | DXIXIXIXIXIXIX]
ﬂ level f(—s) = f any. pair A
ONGRONONONG NE) f is empty
12]3]2]3/4 3' — terminate

BFS - LEVELS: ALGORITHM {}

= Input: adjacency matrix A, source vertex s, #vertices n
= Qutput: vector of visited vertices v (integer)
= Workspace: frontier vector f (Boolean)

1. f(s) =T

2. forleve/l=1ton—1 *terminate earlier if f is empty

3. s(f) = level assign the level value to the vertices in the frontier
4, clear(f) clear the frontier f

5.

f(—s) = f any. pair A advance the frontier

Graph algorithms in GraphBLAS

Breadth-first search / Parents

BFS - PARENTS

ADBOOOGO®BGO
semiring domain & ® of 6| |©
@ @ |0
min-first N min first 0 ©
. @0
first(x,y) = x
g ®
®
@ Q0
U HORONORONOR®
£ | DXT1] 11 |

f(—p) = f min.first A

@ f(f) = id

DOOOOO®D DOOOO GO

V2 pif) = f

p [0

1

1

2

4

BFS - PARENTS

ADQOO®®6 G a6
semiring domain & ® Q19| |©
@ @ |0
min-first N min first 0 ©
. 0|0 |©
first(x,y) = x
g ®
® @)
@ © 0|0
O 2NON - NONOR©,
2] [4 | X4 D<[2] [2]
f(—p) = f min.first A
vy pif) = f] fH =id
DO DO O©OOBO G
o|1(4(1/2] |2]| 3] [5] |7]

BFS - PARENTS

semiring

min-first

domain & 0%

N min first

0

first(x,v) = x

OO ®6 6 6

OO ® OGO O

QOO®O0O =

O

O 0

5

7] D3 [X]

f(—p) = f min.first A

VP pif) =f

@ f(f) = id

-|®

@
1

3

2] |

®0 0 D00 ®6G 06 O
2

6

BFS - PARENTS

ADQOO®®OG G G
semiring domain & Q19| |©
@ @ |0
min-first N min first 0 ©)
. @0 |0
first(x,v) = x
(x, y) 5 o
6 O
@ 0|0
OO ®6G06 0
6] DXDXIXIXIXIXINA]

f(—p) = f min.first A

OEORORY) fis empty
11213]2] - terminate

BFS - PARENTS: ALGORITHM {}

* |nput: agjacency matrix A, source vertex s, #vertices n
= Qutput: parent vertices vector p (integer)

= Workspace: vertex index vector idx (integer), frontier vector
f (integer)

1. idx=[12 .. n] we assume 1-based indexing here

2. f(s)=s

3. p(s)=0

4, forl=1ton—1 *terminate earlier if the frontier is empty
5. f(-p) = f min.first A advance the frontier

6. p(f) =f assign parent ids to the frontier’s vertices
7. f(f) = idx assign vertex ids f(i) = i

BFS - PARENTS: OPTIMIZATIONS

= |[f getting deterministic results is not a requirement (i.e. any

parent vertex can be returned), instead of min. sellst,

can use the any. first semiring.

one

= This optimization is allowed by the GAP Benchmark Suite.

= Direction-optimizing traversal (push/pull) can be exp
» The secondi (note the “i") semiring can be used to ex

oited.

oress

the BFS Parent algorithm. When using this semiring, one
does not even have to look at the values in either A of f.

| This algorithm is described in:

Evaluation of Graph Analytics Frameworks Using the GAP Benchmark Suite, 11SWC 2020

Graph algorithms in GraphBLAS

Multi-source BFS

MULTI-SOURCE BFS - LEVELS

. W ONONONONONON®)
semiring domain & ® O 0 O O
any-pair {T, F} any pair F © © et
© @
ol|e O
® @
® @
@ © 0|0
F O 26006 6 0
t1|1@ @ @
t2 O O
t3 @ @ @

F(=S) = F any. pair A

MULTI-SOURCE BFS - PARENTS

ADOOO®O®E® G
semiring domain o o o
min-first NU{+c} min first 4o @ o o
© @
0|0 O
® @
® @
@ © 0|0
F 026 006 e 0
t1] 1 1 1
t2 3 3
t3 4 4 4

F(—P) = F min.first A

BFS - PERFORMANCE

= Naive BFS impls can be slow on real graphs with skewed
distributions - further optimizations are needed.

= Direction-optimizing BFS was published in 2012.

o Switches between push (vA) and pull (ATv) during execution:

 Use the push direction when the frontier is small
 Use the pull direction when the frontier becomes large

o Adopted to GraphBLAS in 2018 (Yang et al.'s ICPP paper)

S. Beamer, K. Asanovic, D. Patterson: - |C Yang: High-performance linear algebra-based graph
Direction-Optimizing Breadth-First Search, SC 2012 framework on the GPU, PhD thesis, UC Davis, 2019

- A. Buluc: GraphBLAS: Concepts, algorithms, and
applications, Scheduling Workshop, 2019

| C. Yang, A. Bulug, J.D. Owens: Implementing
Push-Pull Efficiently in GraphBLAS, ICPP 2018

Graph algorithms in GraphBLAS

Single-source shortest paths

SSSP - SINGLE-SOURCE SHORTEST PATHS

= Problem:

o From a given start vertex s, find the shortest paths to every other
(reachable) vertex in the graph

= Bellman-Ford algorithm:

o Relaxes all edges in each step
o Guaranteed to find the shortest path using at most n — 1 steps

= Observation:
o The relaxation step can be captured using a VM multiplication

o Unlike in BFS, there is no masking here, as revisiting edges that
have been visited previously can be useful.

SSSP - ALGEBRAIC BELLMAN-FORD

semiring domain @ ® 0

min-plus RU{+o} min + +oo

000 ®O G O

OOO®LO O =

=
o

d|0

d min.+ A

SSSP - ALGEBRAIC BELLMAN-FORD

semiring domain @ ® 0

min-plus RU{+c} min + +o ADOO®®OG G O
0|0|.3 8
@ |0 N
® 0
@|.2 4|0
® 0|.
® .5
@ .11.5].9
000 ®0O6 G O
d|0 | [0].3] |.8

d min.+ A

SSSP - ALGEBRAIC BELLMAN-FORD

semiring

min-plus

domain

R U {400}

@ &

min

+ +oo

AD@O @B G Q
o[o[3] |8
e (o Al 17
® 0
o|2] 4]0
® 0].
® 5
@ 1].5[.9] |0
0000066
3] [.8 | [0].3[12].8T.4] |1]

d|0

d min.+ A

SSSP - ALGEBRAIC BELLMAN-FORD

semiring domain ®d ®
min-plus RU{+o} min + Hoo ADOB®GOG® G® @
0|0(.3] |.8
(2] 0 N v/
0 .5
01.2| |4/0
(5] 0.1
® 5 0
(7] 11.51.9 0
0606006 6 e
d|0]|.3112[.8].4] |1]|[0].3[1.1.8].4].5/1]

d min.+ A

SSSP - ALGEBRAIC BELLMAN-FORD

semiring domain ®d ®
min-plus RU{+o} min + Hoo ADOB®GOG® G® @
0|0(.3] |.8
(2] 0 N v/
0 .5
01.2| |4/0
(5] 0.1
6] .5 0
(7] 11.51.9 0
0600006060
d|[0].3[1.1.8].4].5/1]| [0].3] 1].8].4].5| 1]

d min.+ A

SSSP - ALGEBRAIC BELLMAN-FORD ALGO. L}

Input: adjacency matrix A, source vertex s, #vertices n
(0 ifi=j
Aij = { W(eij) if el-j eE

\
Output: distance vector d (real)

1. d=[o0o00.. 00]

2. d(s)=0

3. fork=1ton—1 *terminate earlier if we reach a fixed point
4, d =dmin+A

Optimizations for BFS (push/pull) also work here.

Graph algorithms in GraphBLAS

Triangle count / Definition

TRIANGLE COUNT

» |[EEE GraphChallenge: an annual
competition at the HPEC conference

= The task of the 2017 GraphChallenge
was triangle count: given a graph G,
count the number of triangles.

= Triangle = “set of three mutually

adjacent vertices in a graph Number of unique triangles:

= Many solutions employed a linear 30
algebraic computation model 6

" GraphChallenge.org: Raising the Bar on Graph Analytic Performance, HPEC 2018

Graph algorithms in GraphBLAS

Triangle count / Naive algorithm

NAIVE APPROACH

tri2 = diag ' (AD.Q AD.® A)

TC EXAMPLE

ADOOO@®O B®OADQOO® O G® @

tri2

N| | O|<T|O[(N[N|O
|| 499”946
— | — Mmn|NSloo|n|
-]| |0 TN |(N|O|OD
- —]|F|O T[0T |INO
- — —|Jlo|lv]|V|[Z ||]|O
-— -— N O | INTFT| M|
— || N N|~—|N|fv— M|
- | v — | N | v | mMm | M
- —j T~ (N[O M -
— ||]l]| NN M|+~ | N
-— TN M N[N| ™|
-~ -~]| || N[N|~—~ | NN
- — N[~ |~ (v~ |~ |+~ | N
000806 T
© Y
o [+~ I
D=+~ - |«
® - I
Q- - |« -
© —
<

Graph algorithms in GraphBLAS

Triangle count / Masked algorithm

TC EXAMPLE: ELEMENT-WISE MULTIPLICATION

ADQOO® O G G

"IN

@ 1 1 TRI=AD.QARKRA
@[1 1/1] [1] tri2z = [@,; TRIG,))]
€ 1 11

®[1]1]1 1)1

® 1 111

® 1011

@ T1]1]1]1 TRI
211111172 1] |1
1]al2]2]1]2]2]] 211 |2
1]2]3]2]2]1]1 2| |11 [,
1]2]2]s]3]1]2|]1]2]2 1]2
1]1]2]3]3] |1 1 1
1]2]1]1] [3]3 1)1
2(2]1]2]1]3]4 21121

=+
IO\NNOO-hO\NIE_

TC EXAMPLE: ELEMENT-WISE MULTIPLICATION

ADQOO® O G G

1

1

1

1

1

1

—] | | —

Masking limits where the
operation is computed.
Here, we use A as a mask
for A®.Q A.

TRI(A) =AD.Q A
triz = [@®; TRI(:,)]
tri2

- (N =1N

\ 4
IO\NNOO-hO\NI

Graph algorithms in GraphBLAS

The importance of masking

THE IMPORTANCE OF MASKING

Q: Is masking absolutely necessary?

A: Yes, it can reduce the complexity of some algorithms.
We demonstrate this with two examples.

A simple corner case is
the star graph: there are
(n — 1) wedges but
none of them close into
triangles.

A We do quadratic work
1 while it's clear that there
i I s
@1 111111

@1 111111

@11 111111

A AD.RA APRADRA

AOOOD®OADBO O @O
o T1[1]1]1 111111
el 1| A 117
o171 111

4) (5) @|1] 11
o171 111

000 ®06

1T [11] [413T1 11 3[111]1

1 [[3Tal1 1] [3] 111

111 11212721 [1]1

111 1127272 [1]1

111 1127212 [1]1

A AD.RA ADRADQA

A full bipartite graph K, 5
with the vertices in the top
partition connected.

A bipartite graph only has
cycles of even length, so
it's easy to see that all
triangles will contain the
two vertices in the top
partition. Still, A .Q A
enumerates all wedges
starting and ending in the
bottom partition, thus
performing a lot of
unnecessary work.

AO0OBO®OG
1) 1111111 Masking avoids the
materialization of large
a1 TIT1T] interim data sets by
111 ensuring that we only
@ @111 enumerate wedges whose
endpoints are already
A 3 @ ®® 111 connected.
@ 1]71]1 3[1]1]1 B
a1 111117113 11111 . 6
e|1]1 1)1 [@fTRI("J)l 2
@111 11 2
®] 1 11 2

A TRI(A) = A B.Q A tri

Graph algorithms in GraphBLAS

Triangle count / Cohen's algorithm

COHEN'S ALGORITHM: PSEUDOCODE

Input: adjacency matrix A
Output: triangle count t
Workspace: matrices L, U, B, C

1. L = tril(A) extract the lower triangle from A

2. U =triu(A) extract the upper triangle from A
3. B=LH.QXU

4., C=BQA

5. t=)C/2 sum the values in C and divide by 2

J. Cohen: Graph Twiddling in a MapReduce World, Comput. Sci. Eng. 2009

COHEN'S ALGORITHM

UDOQOO®O G O

L
@
@
©)
@
®
®
@

OROGRONORONOCRO

ESEORCECKCKCSES,

1

1

ADODQ@O®OG®O

1

1

1

1

1

1

1

1

1

—] | | —

1

— | | | —

1

1

N[(=] =W

W= N

t=YC/2

COHEN'S ALGORITHM: MASKING

UDOQO®O G O

1

1

—] | | —

1

1

CAA)=LH.QRU
t=YC/2

Graph algorithms in GraphBLAS

Triangle count / Sandia algorithm

SANDIA ALGORITHM

Input: adjacency matrix A
Output: triangle count t
Workspace: matrices L, U, B, C

1. L =tril(A) extract the lower triangle from A
2. C(L)=LO.Q®L multiply matrices L and L using mask L
3. t=)C sum the values in C

M.M. Wolf et al. (Sandia National Laboratories):
Fast linear algebra-based triangle counting with KokkosKernels, HPEC 2017

SANDIA ALGORITHM

LOQOO®OG®G O

1

1

1

1

L) =LO.QL
t=>0C

Graph algorithms in GraphBLAS

Triangle count / CMU algorithm

CMU ALGORITHM A j

= |[terates on the vertices of the graph, Ao [202 Az
extracts corresponding submatrices and ;[[o 2l
computest=t+a{, B.Q 4,0 B.Q a,,

= Tradeoffs: o .
o does not require mxm, only vxm and mxv

o requires efficient subgraph extraction

= The formula is derived using the matrix trace tr(A) =
Yoot A;; and its invariant property under cyclic permutation,
e.g. tr(ABC) = tr(BCA) = tr(CAB). See the paper for details.

~|T.M. Low et al. (Carnegie Mellon University):
First look: linear algebra-based triangle counting without matrix multiplication, HPEC 2017

CMU ALGORITHM: PSEUDOCODE {}

Input: adjacency matrix A
Output: triangle count t
Workspace: matrices A,,, C, vectors a,, a,, A i

1. fori=2ton—-1

2. A,, =Ali+1:n,0:i — 1]
3. a0 =A[0:i —1,i]
A
5

dio = A[l,l + 1: Tl] Az a2 Az

t=1+ aIO @@ AZO @@ aq-

. |T.M. Low et al. (Carnegie Mellon University):
First look: linear algebra-based triangle counting without matrix multiplication, HPEC 2017

PROVABLY CORRECT ALGORITHMS
The “CMU algorithm” [Redtn 2 - X0 AR NEY

A A
A__)(ATL ATR) A—)(TL TR)

. A A A Apr
belOngS to a faml |y Of where /{TRL is aB(fxOmatrix where AT;R is a 0 X 0 matrix
. . while m(Arr) < m(A) do while m(Arr) < m(A) do
algorlthms WhICh Can Ary | Arr A;{O . Afﬁz (Arp | Arg) A%O o1 A;Q
T — ap; | a11 | aiq T i 3 ap1 | @11 | @iz
(ATg I ABRr) Aon | Apr Ads | a1z | A2z

. ° AT A
be derlved USIng the where a1 isalxlmaﬁfix = ” where i1 is a1 X 1 matrix

" ’r Algorithm 1 Algorithm 2 Algorithm 5 Algorithm 6
FLAME approach”.

A=A+ 1aliAvao: | A = A+ af; Agzan A=A+ 1ali Agao: | A = A+ af; Apzan
Th ere are 8 S| m | | ar Algorithm 3 Algorithm 4 Algorithm 7 Algorithm 8
. . A:= A+ 1af;Accaor | A=A+ alzAna12 A := A+ laf;Accaor | A=A+ JaizAznarr
algorithms in total, 3= 8+ fof Ao =2+ o dmor
the one presented (Grepe) - (Eimde) || CGeb) - (S
here is Algorithm 2. Lusu e e
“|M. Lee, T.M. Low (Carnegie Mellon University): - lSource
A family of provably correct algorithms for exact triangle counting, i of the
CORRECTNESS @ SC 2017 figure

Graph algorithms in GraphBLAS

Vertex-wise triangle count

VERTEX-WISE TRIANGLE COUNT

Triangle: a set of three mutually adjacent vertices.

&

Usages:

= Global clustering coefficient
= Local clustering coefficient (transitivity)

= Finding communities

" GraphChallenge.org: Raising the Bar on Graph Analytic Performance, HPEC 2018

TC: ELEMENT-WISE MULTIPLICATION

ADQOOO® O G O

et |]
by =N | N | [~ |— | M
e
e
5 WJT
N
S~ C @
< — Q ——
- O
R = - N|— ||~
< £
AI)] — |
(a' >
e B ~
@ (Vp)] T122 — | N
(Vp)]
< o— (o\| — | —
11l < < <
. - -
z =5 Q&
T @ «— «—
< A_,
™| v | v N AN|s~= N[0| T
= | v | v | N | v [v M| M
- — [v (| NN [M -
— [v | v — [v — NN (M|~ | N
- — [v — (N M| N[N | ™|
— — | v | T I NN~ | NN
- — N |~ ||| (N
CECRCECHCRCHS)
@ - || v [v
—
@ — | v |
@ - - |
@111 - | —
@ - - |
®1 - | -
® - -
<

TC: ELEMENT-WISE MULTIPLICATION

ADQOO® O G G

SECECKCKCKSES,

ORCRONORONOCKO,

1

1

1

1

1

1

—] | | —

1

1

Masking limits where the
operation is computed.
Here, we use A as a mask
for A ®.Q A.

TRI(A)=ADB.Q A
tri = |®; TRI(,))|/2

A
@
@
®
@
®
®
@

1 111 1 1 2|1 2
1 1 2 1
111 1 1 2
1 1 1
111 1
1 111 2|1

tri

[

3

(@] |2
> | 4

/2 1
1

=2

TC: ALGORITHM {}

Input: adjacency matrix A
Output: vector tri
Workspace: matrix TRI

1. TRIIA)=AD.R A compute the triangle count matrix
2. tri=|@®; TRI(:,j)|/2 compute the triangle count vector

Optimization: use L, the lower triangular part of A to avoid duplicates.
TRI(A) = A D.Q L

Worst-case optimal joins: There are deep theoretical connections between masked matrix multiplication and
relational joins. It has been proven in 2013 that for the triangle query, binary joins always provide suboptimal
runtime, which gave rise to new research on the family of worst-case optimal multi-way joins algorithms.

Graph algorithms in GraphBLAS

Local clustering coefficient (transitivity)

LCC: LOCAL CLUSTERING COEFFICIENT

LCCw) = #possible edges between neighbours of v B

#edges between neighbours of v (&)

If IN(v)| <1,LCC(v) =0
Important metric in social network analysis.

The numerator is the number of triangles in v, tri(v).

The denominator is the number of wedges in v, wed(v).
tri(v)

LCC) = Fed)

The difficult part is tri(v).

LCC: NUMBER OF WEDGES IN EACH VERTEX

tri(v)

LCC) = 25

= For wed(v), we determine the #wedges for each vertex as
the 2-combination of its degree:

x-(x—1)
2

comb2(x) =

= Given the degrees deg = |®; A(:,)|, we compute wed
by applying a unary function on the elements of the vector:

wed = comb2(deg)

LCC EXAMPLE: NUMBER OF WEDGES

ADQOO® O G O

SECECKCKCKSES,

LE: COMPLETE ALGORITHM

TRI(A) = A ©.Q A

ADQOO® O G G

Q) 1 1
@] 1 111 1
033 © 1 1
@l 1|1 1
® 1 1
0.33 © 1]
ADRO O ® e ® LTI
1 1 1 1
1 111 1 1 2|1 2
1 111 2 1
111 111 112 2
1 111 1 1
111 1
1 111 2 2|1

deg

@,
—

tri

comb2(:-)
\ 4
wed[1] lcc
6
3
@ ol =
3
3
6

1.00

0.50

0.67

0.40

0.33

0.33

0.50

LCC: ALGORITHM

Input: adjacency matrix A
Output: vector Icc
Workspace: matrix TRI, vectors tri, deg, wed, and lcc

s W=

TRIA) =AP.R A compute triangle count matrix
tri = [@; TRI(,j)|/2 reduce to triangle count vector

deg = |D; A(:,))] reduce to vertex degree vector

wed = comb2(deg) apply comb2 to get wedge count vector
Icc = tri) wed LCC vector

M. Aznaveh, J. Chen, T.A. Davis, B. Hegyi, S.P. Kolodziej, T.G. Mattson, G. Szarnyas:
Parallel GraphBLAS with OpenMP, Workshop on Combinatorial Scientific Computing 2020

LCC: FURTHER OPTIMIZATIONS

Further optimization: use L, the lower triangular part of A.
TRI(A) = A D.Q L

The number of wedges is now the 2-combination of deg.
x-(x—1)

2
Permuting the adjacency matrix allows further optimizations.

comb2(x) =

SECECKCKCKSES,

LE: LOWER TRIANGULAR PART OF MX.

TRI(A) = A ©.Q L

0.33

AD@O®® G ®

LOQO® OGO

SECECKCKCKSES,

@

1

1

1

1

1

1

1

1

1

—] | o —

deg

@,
—

comb2()
\ 4
wed[1] lcc
6
3
@ ol =
3
3
6

1.00

0.50

0.67

0.40

0.33

0.33

0.50

Graph algorithms in GraphBLAS

PageRank

PAGERANK - DEFINITION (LDBC GRAPHALYTICS)

For k = 1 to t iterations:

1
PRy (v) = -
1—« PR, _;(u) a
PR, (v) = " Foa - z N ()] + - z PR, _;(w)
UEN;in (V) out wedng
. ~ _J . ~ _J g ~ J
teleport influence dangling

a. damping factor
dng: dangling vertices,dng ={w €V : |Nyy,: (W)| = 0}

There are dozens of PR definitions, some treat dangling vertices differently.

PAGERANK - IN LINEAR ALGEBRA

Initially:
pro =[11..1]@n, outd = [D; AC,))|

In each iteration:

PRk(v)=1_a o« 2 PRi—1 () | z 2 PR, _{(w)

" UEN ;i (V) |Nout(u)| wWEdng
— PTg—1
pry = — e a®()@@A @ - ®[69 (pri ® outd)(i)]
W_/ - ~ J - ~ J
constant SpMV element-wise sparse vector-

dense vector multiplication

PAGERANK - ALGORITHM {}

Input: adjacency matrix A, damping factor «, #iterations t,
#vertices n

Output: PageRank vector pr (real); Workspace: vectors (real)
1. pr=]11..1]On

2. outdegrees = [@; A(:,))|

3. fork=1tot

4, importance = a Q (pr @ outdegrees) . A

5 danglingVertexRanks(—outdegrees) = pr(:)

6

7/

totalDanglingRank = % Q |P; danglingVertexRanks(i)]

pr = 1_Ta @D totalDanglingRank @ importance

Graph algorithms in GraphBLAS

k-truss

K-TRUSS

= Definition: the k-truss is a subset of the graph with the
same number of vertices, where each edge appears in at
least k — 2 triangles in the original graph.

K-TRUSS ALGORITHM {}

= Input: adjacency matrix A, scalar k
= Qutput: k-truss adjacency matrix C
= Helper: f(x, support) = x = support

1. C=A

2. fori=1ton—-1

3. C(C)=Ch.AC use the “plus-and” semiring

4, C=f(Ck—-2) drop entries in C less than k — 2

5 terminate if the number of non-zero values in C did not change

T.A. Davis: Graph algorithms via SuiteSparse:GraphBLAS: triangle counting and k-truss, HPEC 2018

Graph algorithms in GraphBLAS

Community detection using label propagation

CDLP: COMMUNITY DETECTION USING LABEL PROPAGATION

Goal: assign a label to each vertex representing the community it
belongs to. The algorithm (originally published in network science)
is slightly altered to ensure deterministic execution. Initially:

Lo(v) =v
In the k™ iteration:
Li(v) = min(argmax; [{u € N(v) : Lx_,(w) = 1}]),
where N(v) is the set of neighbours of v.

Run for t iterations or until reaching a fixed point.

|U.N. Raghavan, R. Albert, S. Kumara: Near linear time algorithm to
detect community structures in large-scale networks, Phys. Rev. E, 2007

IDEA: CAPTURE CDLP IN PURE GRAPHBLAS

= Define a semiring that operates over occurrence vectors

= (P operator: combines two occurrence vectors
of6 -1, 9-1}p{6-1, 7-2}={6-2, 7-2, 9> 1}

= Convert each element in a row to an occurrence vector
o{6 -1}, {6 - 1}, {7 - 1},{7 - 1},{9 - 1}

= Reduce each row into a single occurrence vector:
of{6>2,7—>2,9->1}

= Select the min. mode element from the occurrence vector: 6

= Works on paper, but occurrence vectors need dynamic
memory allocation, which leads to poor performance with
the current GraphBLAS API

CDLP IN LINEAR ALGEBRA: FASTER ALGORITHM

= Extract each row from F
o Easy if the matrix is stored in CSR format

= Select the minimum mode value in each row
o Sort elements using parallel merge sort
o Pick the min value that has the longest run (done in a single pass)

= Sorteachrowr
= Use the sorted list to compute mode(r)

= The matrix multiplications are always performed with a
diagonal matrix as the second operand so we never need
the addition operator. Therefore, we set it to @ = any.

CDLP EXAMPLE

diag(lab) ® @ @ ® ® ® @

D1 1
@ 2
€ 3
@ 4
® 5
> ® 6
@ 7
ADQOO®®BO®®
O |®| |o 2 4
@] e ® ® 1 5 7
©) ® L N 4 6|7
= [|nitially, lab = [1 2 ...n] @| e ° o |1 3 7
= Propagate labels to create O | o o 2 6|7
a “frequency matrix”: ® o |o 3| |5
F = A any . sel2nd diag(lab) @| |o|o|0 o 2/3(4|5

CDLP EXAMPLE

OO »

diag(lab) ® @ @ ® ® ® @

SECKCECECKCKS,

ORGRONORONCNO

1

2

NIN(N | N

min.
mode

~

CDLP EXAMPLE

OO »

diag(lab) ® @ @ ® ® ® @

SECKCECECKCKS,

ORGRONORONCNO

2

1

NININIDN

min.
mode

~

CDLP EXAMPLE

OO »

diag(lab) ® @ @ ® ® ® @

SECKCECECKCKS,

ORGRONORONCNO

1

2

[N . N N

min.
mode

~

CDLP EXAMPLE

A
O,
@
€)

step: 4 - same resultas instep 2 @

The original non-deterministic

©),

variant of the algorithm is better ®

at avoiding such oscillations.

@

diag(lab) ® @ @ ® ® ® @

D] 2
®) 1
©),
@
®
®
@ 1
ORORONONONGCN®)
o o 1
o o o 2 1
o o O 1
° ol |2 1
° 1

min.
mode

~

CDLP: ALGORITHM {}

Input: adjacency matrix A, #vertices n, #iterations t
Output: vector lab
Workspace: matrix F, vector r

1. lab=[12..n]

2. fork=1tot

3 F = A any.sel2nd diag(lab)

4, fori =1ton)

5 r=F(,:)

. sort(r) > Can be batched and parallelized
7/ lab(i) = select_min_mode(r) |

CDLP: ALGORITHM {}

Input: adjacency matrix A, #vertices n, #iterations t

Output: vector lab
Workspace: matrix F, vector r, array of row indices I, array of values X

1. lab=[12..n]

2. fork=1tot

3. F = A any.sel2nd diag(lab)

4, (I, _, X) = extract_tuples(F)

5 merge_sort_pairs({I, X))

6 lab = for each row in I, select min mode value from X

CDLP ON DIRECTED GRAPHS

For directed graphs, we compute the labels L, (v) as:
min(argmax; [[{u € N, (v) @ Ly—1(u) = [+ [{u € Noye(v) © L1 (w) = [H])

= In linear algebra, this can be expressed with two matrices:
o Fj; = A any.sel2nd diag(lab)
o F,ut = AT any. sel2nd diag(lab)

= Simultaneously iterate over rows r;, of F;, and r . of F_;
= For each row pair, sortr;,, Ur,,: and select the minimum mode value

= Batching also works:

o (Iin, _, Xjn) = extract_tuples(F;,

merge_sort pairs({(I;, Ul X;, UX
o (Iyut o Xout) = extract_tuples(F,,t) > 5€_S0TLP ({lin U Toue Xin out?)

Graph algorithms in GraphBLAS

Graph algorithms & GraphBLAS primitives

GRAPH ALGORITHMS & GRAPHBLAS PRIMITIVES

Misc. Centrality Graph clustering Shortest paths
Connectivity, subgraph PageRank, Markov cluster, All-pairs shortest,
matching, traversal (BFS), betweenness peer pressure, single-source,
max. independent set centrality spectral, local temporal
SpMSpV SpMV SpMM SPpGEMM SpDM3
Sparse Matrix Sparse Matrix Sparse Matrix Sparse Matrix Sparse-Dense
Sparse Vector Dense Vector Multiple Dense Vectors Sparse Matrix Matrix-Matrix M.

>

GraphBLAS primitives in increasing cost

-z Based on the figure in A. Bulug:

Graph algorithms, computational motifs, and GraphBLAS, ECP Meeting 2018

GraphBLAS and SuiteSparse internals

GRAPHBLAS C API

= “A crucial piece of the GraphBLAS effort is to translate the
mathematical specification to an APl that

o is faithful to the mathematics as much as possible, and
o enables efficient implementations on modern hardware.”

C(—-M) O=D.Q (A",B')

VRN

mxm(Matrix *C, Matrix M, BinaryOp accum, Semiring op, Matrix A, Matrix B, Descriptor desc)

| A. Buluc et al.: Design of the GraphBLAS C APl, GABB@IPDPS 2017

GRAPHBLAS OBJECTS

= GraphBLAS objects are opaque: the matrix representation
can be adjusted to suit the data distribution, hardware, etc.

= The typical representations compressed formats are:
o CSR: Compressed Sparse Row

ADQOO®O GO
.8

3

N

v

SECKCECECKCKS,

(also known as CRS)

o CSC: Compressed Sparse Column (also known as CCS)
CSR representation of A:

OO0 ® OGO

row ptr |1

3

5

6

8

9

10

13|

e

3

| |

col index | 2

4

5

7

6

1

6

3

W <

value |.3

.8

N

v

.5

2.

N

S

SUITESPARSE:GRAPHBLAS INTERNALS

= Authored by Prof. Tim Davis at Texas A&M University, based
on his SuiteSparse library (used in MATLAB).

= Design decisions, algorithms and data structures are
discussed in the TOMS paper and in the User Guide.

= Extensions: methods and types prefixed with GxB.
= Sophisticated load balancer for multi-threaded execution.
= A GPU implementation is work-in-progress.

graph algorithms in the language of sparse linear
algebra, ACM TOMS, 2019

— | T.A. Davis: Algorithm 1000: SuiteSparse:GraphBLAS: | sz

T.A. Davis: SuiteSparse:GraphBLAS: graph
algorithms via sparse matrix operations
on semirings, Sparse Days 2017

Further reading and libraries

RESOURCES

Presentations and tutorials for learning GraphBLAS:

,, J.R. Gilbert:
— GraphBLAS: Graph Algorithms in the Language of Linear Algebra, Seminar talk since 2014

-~ | S. McMillan and T.G. Mattson:
- | A Hands-On Introduction to the GraphBLAS, Tutorial at HPEC since 2018

S A. Buluc:
GraphBLAS: Concepts, algorithms, and applications, Scheduling Workshop, 2019

M. Kumar, J.E. Moreira, P. Pattnaik:
GraphBLAS: Handling performance concerns in large graph analytics,
Computing Frontiers 2018

O List of GraphBLAS-related books, papers, presentations, posters, software, etc.
szarnyasg/graphblas-pointers

https://github.com/szarnyasg/graphblas-pointers

THE LAGRAPH LIBRARY

= Similar to the LAPACK library for BLAS
= Uses SuiteSparse:GraphBLAS

= [mplementations of common algorithms
o BFS, SSSP, LCC, PageRank, Boruvka
o Triangle count, k-truss
o CDLP (community detection using label propagation)
o Weakly connected components, Strongly Connected Components
o Betweenness centrality
o Deep neural network

~ |T.G. Mattson et al.: LAGraph: A Community Effort to Collect Graph O GranhBLAS/LAGFaDh
Algorithms Built on Top of the GraphBLAS, GrAPL@IPDPS 2019 2 P

https://github.com/GraphBLAS/LAGraph

REQUIREMENTS BY GRAPH COMPUTATIONS

Libraries for linear-algebra based graph processing support the
following features (prioritized):

1. Sparse matrices For reasonable performance
2. Arbitrary semirings For expressive power
3. Masking A big reduction in complexity for some algos

4. Parallel execution Constant speedup, ideally by #threads

Most libraries only satisfy requirement #1: Intel MKL, Eigen, Boost
uBLAS, MTL4, Armadillo, NIST Sparse BLAS, GMM++, CUSP, Numpy

Exceptions are the Efficient Java Matrix Library (EJML) and Julia’s
SparseArrays library, where arbitrary semirings can be used.

GRAPHBLAS PAPERS AND BOOKS

= Standards for Graph Algorithm Primitives
o Position paper by 19 authors @ IEEE HPEC 2013

~|= Novel Algebras for Advanced Analytics in Julia
o Technical paper on semirings in Julia @ IEEE HPEC 2013

“|= Mathematical Foundations of the GraphBLAS
o Theory paper by 16 authors @ I[EEE HPEC 2016

|= Design of the GraphBLAS C API
o Design decisions and overview of the C APl @ GABB@IPDPS 2017

— 1= Algorithm 1000: SuiteSparse:GraphBLAS: graph algorithms
in the language of sparse linear algebra
o Algorithms in the SuiteSparse implementation @ ACM TOMS 2019

Graph Algorithms in the Language of Linear Algebra
o o Edited by J. Kepner and J.R. Gilbert, published by SIAM in 2011

o Algorithms for connected components, shortest paths, max-flow,
. \ | betwenness centrality, spanning tree, graph generation, etc.

o Algorithms and data structure for fast matrix multiplication
o Predates GraphBLAS: preliminary notation, no APl usage

= Mathematics of Big Data
o Authored by Jananthan & Kepner, published by MIT Press in 2018
o Generalizes the semiring-based approach for associative arrays
o Contains important papers, including the HPEC'16 paper above
o Discusses D4M (Dynamic Distributed Dimensional Data Model)

GRAPHBLAS COMMUNITY

Wiki: graphblas.org | Communication: primarily mailing list
Annual events:

= May: IEEE IPDPS conference

o GrAPL workshop (Graphs, Architectures, Programming and Learning), a merger of
» GABB (Graph Algorithms Building Blocks)
« GraML (Graph Algorithms and Machine Learning)

o See graphanalysis.org for previous editions
= Sep: |EEE HPEC conference
o GraphBLAS BoF meeting
= Nov: |[EEE/ACM Supercomputing conference
o GraphBLAS Working Group
o 1A3 workshop (Workshop on Irregular Applications: Architectures and Algorithms)

http://graphblas.org/
http://graphanalysis.org/

REDISGRAPH

= Graph database built on top of Redis with partial (but
extending) support for the Cypher language

= Uses SuiteSparse:GraphBLAS for graph operations

= Preliminary benchmark results show good performance on
traversal-heavy workloads

R. Lipman, T.A. Dauvis:
L= | Graph Algebra - Graph operations in the language of linear algebra
- = |RedisConf 2018

R. Lipman:
o RedisGraph internals

GRAPHBLAS IMPLEMENTATIONS

= SuiteSparse:GraphBLAS
o Vv1.0.0: Nov 2017 - sequential
o v3.0.1: July 2019 - parallel
o v4.0.1draft: Dec 2020 - many optimizations, incl. bitmap format

» |IBM GraphBLAS

o Complete implementation in C++, released in May 2018
o Concise but sequential

= GBTL (GraphBLAS Template Library): C++
o v1.0: parallel but no longer maintained
o v2.0, v3.0: sequential

= GraphBLAST: GPU implementation, based on GBTL

GRAPHULO

= Build on top of the Accumulo distributed key-value store
= Written in Java
= Focus on scalability

= | V. Gadepally et al.:

Graphulo: Linear Algebra Graph Kernels GW’Q@M

for NoSQL Databases, GABB@IPDPS 2015

COMBBLAS: COMBINATORIAL BLAS

= “an extensible distributed memory parallel graph library
offering a small but powerful set of linear algebra primitives”

= Not a GraphBLAS implementation but serves as an incubator
for new ideas that may later find their way into GraphBLAS

= Scales to 250k+ CPU cores
= Used on supercomputers such as Cray

— | A Bulug, J.R. Gilbert: The Combinatorial BLAS: design, implementation, and application,

International Journal of High Performance Computing Applications, 2011

PYGRAPHBLAS: PYTHON WRAPPER

H Goak Pythonic def sssp(matrix, start):

v = Vector.from_type(matrix.gb type, matrix.nrows)

GraphBLAS wrapper, Jstart] - 0
close to pseudo-code

= See example code for

with min_plus, Accum(min_int64):

for _ in range(matrix.nrows):

SSSP and triangle count = eztorsduni]
= Comes with Jupyter v @= matrix
notebooks i wES
break
return v

def sandia(A, L):
return L.mxm(L, mask=L).reduce _int()

O mIChE|D/DygraDhb|aS sandia(M, M.tril())

https://github.com/michelp/pygraphblas

GRBLAS: PYTHON WRAPPER

» Goal: wrapper with an almost 1-to-1 mapping to the GrB API
o Comes with a Conda package
o Compiles user-defined functions to C
o Supports visualization

M(mask, accum) << A.mxm(B, semiring) # mxm
w(mask, accum) << A.mxv(v, semiring) # mxv
w(mask, accum) << v.vxm(B, semiring) # vxm
M(mask, accum) << A.ewise_add(B, binaryop) # eWiseAdd
M(mask, accum) << A.ewise mult(B, binaryop) # eWiseMult
M(mask, accum) << A.kronecker(B, binaryop) # kronecker
M(mask, accum) << A.T # transpose

O metagraph-dev/grblas

https://github.com/metagraph-dev/grblas

Parallelism in GraphBLAS

PARALLELISM IN GRAPHBLAS edgl;es

ORCRONONONCKY,
o o

A
@
@
€) O
O,
®
®

Q
@)
@)
@)

1
FOQOO®O ®OQ
1@ O O

traversals 4 t2 o o
t3 @) @) O O O O

Frontier any . pair A

“—

THE CASE FOR LINEAR ALGEBRA-BASED GRAPH ALGORITHMS

Many irregular applications contain coarse-grained parallelism that
can be exploited by abstractions at the proper level.

Graphs in the language
of linear algebra

Traditional graph computation

Data-driven, unpredictable

L Fixed communication patterns
communication

Irregular and unstructured, poor Operations on matrix blocks
locality of reference exploit memory hierarchy
Fine-grained data accesses, Coarse-grained parallelism,
dominated by latency bandwidth-limited

D. Bader et al., The GraphBLAS effort and its implications for Exascale,
SIAM Workshop on Exascale Applied Mathematics Challenges and Opportunities, 2014

SUMMARY

= Linear algebra is a powerful abstraction
o Good expressive power
o Concise formulation of most graph algorithms
o Good performance
o Still lots of ongoing research

= Trade-offs:
o Learning curve (maths, C programming, GraphBLAS API)
o Some algorithms are difficult to formulate in linear algebra
o Only a few GraphBLAS implementations (yet)

= Overall: GraphBLAS is a good abstraction layer for graph
algorithms in the age of heterogeneous hardware

“Nuances” - Some important

adjustments to the definitions

GRAPHBLAS SEMIRINGS*

The GraphBLAS specification defines semirings as follows:
(Dout, Din,» Din,,D,®, 0) structure is a GraphBLAS semiring defined by

Doutr Dinlr and Dinz
D: DoutXDout = Dout
X: Din1XDin2 = Doyt
0 € Doyt

three domains

an associative and commutative addition operation
a multiplicative operation

an identity element for @

A = (D,ut,D, 0) is a commutative monoid.
F = (Dout Din,» Din,,®) is a closed binary operator.

“It is expected that implementations will utilize IEEE-754 floating point
arithmetic, which is not strictly associative.” (C API specification)

NOTATION*
= Symbols:

o A,B,C,M - matrices
o u,V,w,m - vectors
o S,k —scalar
o i,j - indices
o {m), (M) - masks
= Operators:
o @ - addition
o ® - multiplication, @ - division
o ' -transpose
o (- accumulator} simplified table

This table contains all GrB and GxB
(SuiteSparse-specific) operations.

Not included in the <

notation

operation

matrix-matrix multiplication

CM) O=ADP.QB

D.Q vector-matrix multiplication wim) O=vh.R A
matrix-vector multiplication wim) O=AD.Qv
® element-wise multiplication CM)O=AQB
(set intersection of patterns) wim) O=u®v
& element-wise addition CM) O=AODB
(set union of patterns) wim) O=u®v
f apply unary operator M) O=/(a)
w(m) O= f(v)
- reduce to vector w(m) O= [®; AG,j)]
reduce to scalar s O= [AG)]
AT transpose matrix CM) O=AT
: C(M) O= A(,j)
- extract submatrix :
w(m) O= v(i)
_ assign submatrix CM)(i,j) O=A
with submask for C(1,) w(m)(i) O=v
. assign submatrix CGj){M) ©O=A
with mask for C w(i)(m) O= v

apply select operator (GxB)

CM) O= f(A k)

w(m) O= f(v, k)

Kronecker product

C(M) O= kron(A,B)

LINEAR ALGEBRAIC PRIMITIVES FOR GRAPHS #3*

Sparse matrix extraction: Sparse submatrix assignment:
induced subgraph replace subgraph
o [o |e@ e (@ |@ 7 7
O O |o|o|o] O O 12]1]9]
oo) > [ol Tol ole ol < [51 4]
Q|0)) Q|0
Sparse matrix selection: Kronecker product:
filtering edges graph generation
(@) Q|0 (@) :
o |@ ® [TeT9] °rrll p B
> e 1] = =k
©e - © ©e - e 1 : 0

MATRIX-VECTOR MULTIPLICATION?*

The operation v @.Q A gives the vertices reachable from the ones inv.

However, GraphBLAS publications and implementations often use

A" ®.Q vinstead. The difference between these is that the former

produces a row vector, while the latter produces a column vector:
vVPEP.RA=ATH.RQvH)T

The GraphBLAS does not distinguish row/column vectors, therefore

the notations are (formally) equivalent:

VPRA.RA=ATOARvV

ELEMENT-WISE SUBTRACTION

Element-wise subtraction can be defined as an element-wise addition on the
INT64_MINUS monoid. It has the following semantics C = A © B is computed on
the union of the patterns of the input matrices A and B.

For cells where only one input matrix has a non-zero value but the other does not
(e.g. B[0,0] = 1 but A[0,0] is empty), the result is the non-zero value: C[0,0] = 1.

A B

1 1

1

© T

1

C

1

0

1

1

This might come across as counter-intuitive first but it confirms the specification:

s The intermediate matrix T = (Doy(op), nrows(A), ncols(A), {(i, j, T i) ind(A) Nind(B) # 0})
so11 1S created. The value of each of its elements is computed by

3072 Ti; = (A(i,7) @ B(i,5)),¥(i,5) € ind(A) N ind(B)
o Tij = A(i,), ¥(i,j) € (ind(A) — (ind(B) N ind(A)))
3076 T;; = B(i.5),V(i,j) € (ind(B) — (ind(B) N ind(A)))

3077 where the difference operator in the previous expressions refers to set difference.

More semirings

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring

lor-land {T, F} V. A F

Semantics: reachability

SEICE I CECRSR S
—]

O QIO 06 0

f | LN

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring

real arithmetic R + X 0

Semantics: strength of all paths

QOO O0WE O »
N

O QIO 06 0

f| s Lol 17

020300606 0
11 |1
1 |1
1
4
- 1
5
(1] 1
HE |

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring

min-times RU{+0} min X 4o ADOOdO 6O
Semantics: shortest product of connections g © 1© ~Er
S O
0|.2] |4
®] O
6/ .
@ o 00
©300060 —
f | sl 16l][]]2 |

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring
max-min {0, +o0} max min 0 ADDO®DO GO
Semantics: longest of all shortest connections g o @ o o
® O
0l.2] |4
©| | | o
6 .3
@ o 00
©300060 —
f | sl 16l][2] |5 |

f max.min A

MATRIX-VECTOR MULTIPLICATION SEMANTICS

max-plus RU{—-o} max + - AODQO®®O GO
Semantics: matching (independent edge set) g L 1 r r
© 1
O|.2 4
® | 1
(6 .5
@ 111
ONONE 9@ 0 O —
f | s 16l] [7] |

fmax.+ A

Case study: SIGMOD 2014 Contest

Overview

SIGMOD 2014 PROGRAMMING CONTEST

Annual contest
= Teams compete on database-related programming tasks
= Highly-optimized C++ implementations

2014 event
= Tasks on the LDBC social network graph

o Benchmark data set for property graphs @
o People, forums, comments, hashtags, etc. LDBC

= 4 queries
o Mix of filtering operations and graph algorithms

QUERY TEMPLATE

. Compute an induced subgraph over Person-knows-Person
Il. Run the graph algorithm on the subgraph

| Create induced subgraph from (pA)-[:knows]-(pB).
[]

hasTag hasTag
> t: Tag <€

name = $t

Forum Forum

hasMember hasMember

Y Y

pA: Person knows pB: Person

In the subgraph, compute the closeness centrality value
for each Person p, then return top-k Persons with the highest values.

Person

knows*

p: Person

0.67 0.80
| | [exact closeness centrality }

key kernel: all-source BFS

OVERVIEW OF QUERIES 1, 2, 3

o [)
I F I |te r t h e I n d u C e d S u bg ra p h (S) Collect Person vertices who are located in/work/study in Place $p.
[}
Place
name = $p
. A
Create induced subgraph from (pA)-[:knows]-(pB)
where count(ci) > $x and count(cj) > $x.
| comttizi isPartof*0..2 | isPartOf*0..1 isPartof+0..2
| ci: Comment —:—repIyOf—> Comment |
ooy cosrer— . City Country City
hasCreator hasCreator : T T 4 A \
v v For each Tag t, create an induced subgraph from (pA)-[:knows]-(pB). isLocatedIn lhGeataali
pA: Person knows pB: Person > t: Tag < Company University
A A P 4 A
hasCreator hasCreator isLocatedIn workAt studyAt
___________________ hasinterest hasinterest
I I
Comment «<—replyOf —H cj: Comment | pA: Person pB: Person Person Person Person
| |
| . .
:____________c_ogng(gj_)} birthday = $d knows birthday = $d located in $p OR worksin $p| OR studies in $p
Compute shortest path length in the subgraph between two Persons.| For each t's subgraph, compute range(t) as the size of the largest Among p1l, p2 in the collected Persons, who are at most h steps away
connected component. Return the top-k tags based on their range. in the original graph, return the top-k (p1, p2) pairs based on count(t).
pl: Person knows* p2: Person
. 2 Person knows* Person [3
id = $p1 id = $p2 hasinterest 1. 1 _haslinterest
i t: Tag ‘:
| |
: S count(t)
unweighted shortest path connected components
pl: Person ——— knows*1..h——— p2: Person

{ pairwise reachability }

Il. Run the graph algorithm

GRAPHBLAS SOLUTION OF THE QUERIES

* Loading includes relabelling UINT64 vertex IDs to a
contiguous sequence 0..N — 1.

= Filtering the induced subgraph from the property graph is
mostly straightforward and composable with the algorithms.

= The algorithms can be concisely expressed in GraphBLAS:
o Connected components vV — FastSV [Zhang et al., PPSC'20]
o BFS v
o Bidirectional BFS
o All-source BFS + bitwise optimization
o Multi-source bidirectional BFS

https://arxiv.org/pdf/1910.05971.pdf

Case study: SIGMOD 2014 Contest

BFS

BFS: BREADTH-FIRST SEARCH

frontig

Boolean
MEHEAES

and vectors

©® OO
©® OO »

O|0O

@: any next(—seen) =
®: pair A any . pair frontier

BFS: BREADTH-FIRST SEARCH

frontier
@)

wg
9@ 000

seen ADOOB® — seen’

ole] of Jo] Jo] |[X ole

@ @0 @ Ol |0 @|0

® ®| |o] |o|o =) O

@ @|0| |O O @|0

@ | ®| (0|0 | ®
next(—seen) = seen’ =

A any . pair frontier seen any next

BFS: BREADTH-FIRST SEARCH

©® O =

frontier
®
@
© mask prevents
@ redundqnt
. computations
ONONONONON
O O
O O O
O 0|0
O O
0|0
next(—seen) = seen’ =

A any . pair frontier seen any next

Case study: SIGMOD 2014 Contest

All-source BFS

Q4: CLOSENESS CENTRALITY VALUES

Q4 computes the top-k Person vertices based on their exact
closeness centrality values:

(C(p) — 1)°
(n—1) - s(p)

CCV(p) =

where
= C(p) is the size of the connected component of vertex p,
= nis the number of vertices in the induced graph,

= s(p) is the sum of geodesic distances to all other reachable
persons from p.

s(p) is challenging: needs unweighted all-pairs shortest paths.

BOOLEAN ALL-SOURCE BFS ALGORITHM

Seen tl t2 t3 t4 t5

©® OO

Frontier t1 t2 t3 t4 t5 m

Next(—-Seen) =

O [©
@ @)
€) @)
@
® o
OO0 ® 06
o o
o ol |O o o
© 0 o o
o o o
o OO

Seen’t1 t2 t3 t4 t5

—

A any . pair Frontier

©® 0o

@Ol |0
O|®@ 0| |0
O|®@ 0|0
o (0@
OO0 |©
Seen’ =

Seen any Next

BOOLEAN ALL-SOURCE BFS ALGORITHM

Frontiert1 t2 t3 t4 t5

Seen tl t2 t3 t4 t5

©® OO

@ 0 o

©l0|0 o
©l0e/00

o © 0
O 0 o

A
@
@
€)
O,
©)

@) @)

@) @)

o

o

@) @)

@
@
®| (0| |O
@
®

Next(—-Seen) =

Seen’t1 t2 t3 t4 t5

—

A any . pair Frontier

©® 0o

0| e 0|0
©l0/0e 0o
@ 0|0 0|0
e 0o 0| e
@ 0|00 0

“~

Seen’ =
Seen any Next

Case study: SIGMOD 2014 Contest

Bitwise all-source BFS

BITWISE ALL-SOURCE BFS ALGORITHM

= For large graphs, the all-source BFS algorithm might need
to run 500k+ traversals

= Two top-ranking teams used bitwise operations to process
traversals in batches of 64 [Then et al., VLDB'15]

* This idea can be adopted in the GraphBLAS algorithm by

o using UINT64 values

o performing the multiplication on the bor.second semiring, where
bor is “bitwise or” and second(x,y) =y

= 5-10x speedup compared to the Boolean all-source BFS

http://www.vldb.org/pvldb/vol8/p449-then.pdf

BITWISE ALL-SOURCE BFS ALGORITHM

_ Using UINT4s here
Frontier t1-t4 5

1 2 ® 11000
210100
" 3 @ |e010
@ |0001
® 1000
Seen ti-t4 5 ADOOB®®0OG Seen’ ti-t4 5
® 11000 ® O @) 0101 ® 0101
210100 |0 @) @) 1010|1000 211010(1000
310010 ©) O O 0| |9101|1000 ‘ 310101(1000
@ |0001 @0 O 1010 @ 11010
® 1000 ® © 0 0110 ® 10110
Next = Seen’ =

A bor.second Frontier Seen bor Next

BITWISE ALL-SOURCE BFS ALGORITHM

Seen t1-t4

©® O

t5

0101

1010

1000

0101

1000

1010

0110

Frontier ti1-t4

OB G

©® OO

t5

0101

1010

1000

0101

1000

1010

0110

0010

1000

0001

1000

0100

1000

A
@
@
® (0| (0|0
O,
®

1001

Next =
A bor.second Frontier

Full VLDB paper
on this algorithm

VS.

9 GrB operations

—l

Seen’ t1-t4 t5

©® OO

1111

1000

1111

1000

1111

1000

1111

1000

1111

1000

Seen’ =
Seen bor Next

Case study: SIGMOD 2014 Contest

Bidirectional BFS

BIDIRECTIONAL BFS Advance frontiers alternately

and intersect them

Length=1 x
frontierl frontier2 next1 land frontier2
ofe o 10 [
@ 1 @ O =
© © A
3 @ 4 @ O
® ®|®] 19 ||
ADODQOB®B®OG — ADQRO®O -
o[Te] TJe] | [X o[o] Je
@|0 O Q| |O @10 O Q| |© o| 0] |O
©), O Q@ O ©), O Q@ 0| |0 Al@|=
@O O O @O O O
®| @@ | | ole IXI L] [
next1 next2 Length=2 v

next1 land next2

Case study: SIGMOD 2014 Contest

Bidirectional MSBFS

BIDIRECTIONAL MSBFS ALGORITHM

= Pairwise reachability problem:
From a given set of k vertices, which pairs of vertices are
reachable from each other with at most h hops?

= Naive solution:
Run a k-source MSBFS for h steps and check reachability.
The frontiers get large as they grow exponentially.

= Better solution:
Advance all frontiers simultaneously for [h/2] iterations.

BIDIRECTIONALMSBFS A ©®@ 0 ® 6 65[0]0 @9 ®© ®

@ |@ OJK
Seen[1]: reachability with <1 hops 5 [g o o
> ®| |e| |e|e| |OB
O—2 9‘ : ® o |oo|®
(4 © olo ® 0
® O ® O
F 20 ®06®
D|@ o O|® O
@ @
® ®
@ @
® O Q|0 ® 0|0o|®
® @) o ® o @
Next[1] Seen|1]

BIDIRECTIONALMSBFS A ©®@0 ® 06 6S[1]|0 009 ® O ®

Dl |@ D|® |0
Seen|2]: reachability with < 2 hops ole o o
> ®| | |o|®@ ©
O—2 9‘ o @ o| |o|o|®
(4 ® olo ® olole
® @) ® @) @
F Q903 ® 06 ®
@ @) @ O] AKX,
@ @
® ®
@ @
® OO0 @ | ® @ OO0 o
® @) O @ ® @ OO0 e
Next[2](Seen|[1]) Seen[2

BIDIRECTIONAL MSBFS: Seen[2]'
PATHS OF LENGTH <4 OB B®O G

Ol From vertex 1, we could get to
@lo 'Y these vertices with < 2 hops
Q|@® ORN
@ ©|©o| To get paths of at most
®) e o| 4hops, wecompute
® AN
Seenl2] D @ ® @ ® ©® Seen[2] any.pair Seen[2]'
EIC | JE

Here, we found paths
between all pairs:
N « from @ to ©,

e from ® to ®,
@ ©00/® o0 @ . from®to ®.

CECECECKCES

BIDIRECTIONAL MSBFS: Next[2]"
PATHS OF LENGTH =3 OROROROBOBOI - om vertex 1, we could get

@ to this vertex with 2 hops
5 @ —
D——G(] O ole
(4) @ To get exactly 3-length
® @ | paths we compute
Next|[1] © ©
ORORONORORC, Next[1] any.pair Next[2]'
®| |o | O
) A varte] We found two 3-length
©) ould get to these paths:
@ N 0 « from®to®
« from ® to ®.
® OO0 @) @)
® O

Case study: SIGMOD 2014 Contest

Results

BENCHMARK RESULTS

= The top solution of AWFY vs. SuiteSparse:GraphBLAS v3.3.3
= AWFY's solution uses SIMD instructions — difficult to port

—
o
T

= GraphBLAS load times are slow (see details in paper)
Q1 Q2
0.1

Q3
10E 1004
0.01 | 1 & 1
0.001 l / E T g

Execution time [s]

1 :

0.0001 =
80 executions with tool [l AWrFY Bl GraphBLAS
different parameters

SUMMARY

* An interesting case study, see technical report | -

= GraphBLAS can capture mixed workloads

o Induced subgraph computations are simple to express
o Algorithms are concise, bitwise optimizations can be adopted
o Performance is sometimes on par with specialized solutions

= Future optimizations

o Q1: filter the induced subgraph on-the-fly
o Q4. use more sophisticated unweighted shortest path algorithms

- -~ | M. Elekes et al., A GraphBLAS solution to the SIGMOD 2014
2014- - hbl ’
® sigmod2014-contest-graphblas Programming Contest using multi-source BFS, HPEC 2020

https://arxiv.org/abs/2010.12243
https://github.com/ldbc/sigmod2014-contest-graphblas

ACKNOWLEDGEMENTS

= Than

ks for feedback on these slides to Tim Mattson, Tim

Davis, Jeremy Kepner, John Gilbert, Aydin Buluc, Tamas

Nyiri,

Gyula Katona, David Sandor, Attila Nagy, Janos

Benjamin Antal, Marton Elekes, Florentin Dorre.

= Than
benc

= Than

Ks to the LDBC Graphalytics task force for creating the
nmark and assisting in the measurements.

Ks to the Master's students at BME for exploring the

area of GraphBLAS: Balint Hegyi, Petra Varhegyi, Lehel Boér

ABOUT THIS PRESENTATION

This presentation is intended to serve as an introduction to
semiring-based graph processing and the GraphBLAS.

Common graph algorithms (BFS, shortest path, PageRank, etc.)
are used to demonstrate the features of GraphBLAS. Many of
the algorithms presented are part of the LAGraph library.

The presentation complements existing technical talks on
GraphBLAS and can form a basis of anything from a short
20min overview to 2x90min lectures on the GraphBLAS.

The slides contain numerous references to papers and talks.

There are detailed textual explanations on some slides to make
them usable as a learning material.

TECHNICAL DETAILS

* The slides were created with PowerPoint 2016 using the
Open Sans and DejaVu Sans Mono font families (embedded

in the presentation).

* The mathematical expressions are typeset with
PowerPoint’'s built-in Equation Editor.

* The circled numbers (denoting graph vertices) are rendered
using the standard Wingdings font.

» The text is written in Oxforo

English.

= The icons for referenced pa

ners and talks are clickable and

will lead to an open-access / preprint / author’s copy version
of the referred work (if such copy exists). The icons depict
the first page of the cited document.

