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Abstract—Among the wide variety of image generative models,
two models stand out: Variational Auto Encoders (VAE) and
Generative Adversarial Networks (GAN). GANs can produce
realistic images, but they suffer from mode collapse and do not
provide simple ways to get the latent representation of an image.
On the other hand, VAEs do not have these problems, but they
often generate images less realistic than GANs. In this article,
we explain that this lack of realism is partially due to a common
underestimation of the natural image manifold dimensionality.
To solve this issue we introduce a new framework that combines
VAE and GAN in a novel and complementary way to produce
an auto-encoding model that keeps VAEs properties while gen-
erating images of GAN-quality. We evaluate our approach both
qualitatively and quantitatively on five image datasets.

I. INTRODUCTION

Since the original GAN paper [1], generative models have
successfully leveraged the power of deep learning to generate
complex data distribution with increasing fidelity. Generative
models are now used for a wide variety of tasks, including
notably sample generation but also photo manipulation [2],
style transfer [3], pre-processing for face recognition [4], text
to image translation [5] and controlled image generation [6].

In the literature, two families of generative models stand
out for image data: Variational Auto Encoders (VAE) [7] and
Generative Adversarial Networks (GAN) [1], each exhibiting
respective advantages and limitations. GANs usually produce
more realistic images [8], [9] but they are notoriously difficult to
train and suffer from mode collapse [10]. Moreover, when using
GANs, there is no trivial way to get the latent representation
of an image, limiting their use. In contrast, VAE models do
not share these problems but the images they generate suffer
from a lack of realism. It is often explained by the use of
inappropriate reconstruction errors. Some previous works [11],
[12], [13] have proposed solutions to solve these problems by
combining or modifying these two frameworks. However, these
methods exhibit a trade-off between the realism of the generated
images and the fidelity of the reconstructions. In this paper,
we show that GANs and VAEs can be complementary in the
sense that we can derive two complementary losses from them.
From this observation, we propose the AVAE model which is
a VAE style model to produce samples of comparable quality
as those generated by a GAN while allowing high fidelity
reconstructions when used as an auto-encoder. In comparison
to [11] who first introduces the idea of a combination of the
two frameworks, we provide theoretical insights to show the

pertinence of our approach and we address the problem of the
trade-off between realism and reconstruction accuracy.

The paper is organized as follows. We begin with a reminder
of GAN and VAE frameworks and explain their limitations.
Then we investigate how they can be combined effectively. We
thus propose an effective approach to do so, named AVAE.
At last, we present a qualitative and quantitative evaluation of
the performance of our model on a variety of image datasets
comparing it with the state of the art. We also show that our
method scales well to high resolution images.

II. BACKGROUND

A. Variational Auto Encoders

VAE [7] is a framework to learn deep latent variable
models. It assumes that observed data X result from random
variables z ∼ p(z) in a latent space Z such that it exists a
deterministic function f : (z, ε) → x, ε being a stochastic
noise. The probability of observing x knowing z is estimated
by a decoder model pθd : z 7→ pθd(x|z) parametrized by θd
and on the contrary, the probability that z is the latent source
of x is estimated by a encoder model qθe : x 7→ qθe(z|x)
parametrized by θe. To estimate the parameters of the generative
model of the data X = (x(1), ..., x(N)) with N the number
of observed samples, we maximize the log likelihood of
the observations: log pθd

(
x(i)
)

= log
∫
Z pθd

(
x(i)
∣∣ z) p(z)dz.

Computing log pθd
(
x(i)
)

is nevertheless intractable in practice,
thus [7] proposes to maximize a tractable lower bound, leading
to the following loss to train the VAE:

LVAE (θe, θd;x) = Eqθe (z|x) [− log pθd (x|z)]︸ ︷︷ ︸
LR

+ KL (qθe (z|x)‖ p(z))︸ ︷︷ ︸
LP

(1)

with pθd usually chosen as a Gaussian distribution
N (x;µθd(z), Id) and KL the Kullback-Leibler divergence.
Hence, the term LR = Eqθe (z|x) [− log pθd (x|z)] =

Eqθe (z|x)
[
1
2 ‖µθd(z)− x‖2

]
can be interpreted as a reconstruc-

tion error and is estimated by Monte-Carlo method (usually
with a single sample), and the term LP = KL (qθe (z|x)‖ p(z))
forces the distribution of the latent space to match the
prior p(z). Usually, p(z) is a standard Gaussian distribution
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Fig. 1. Illustration on why VAEs produce blurry reconstructions. Consider
the example of a binary frontier in an image i and a latent code z which
corresponds to the position of the frontier xfront. If qθe (z|i) = N (xfront, σ)
then pθe (xfront|z) = N (z, σ) and the optimal reconstruction of the pixel
at position x is E [pixel(x)|z] = 1 × Pθe (x > z) + 0 × Pθe (x < z) =
1
2

(
1 + erf( x−z√

2σ
)
)

which is a smooth transition between black and white
instead of a sharp transition in the original binary image.

N (z; 0, Id)). The LP term acts as an information bottleneck
on the latent produced by the encoder. Indeed:

E [LP ] = E [KL (qθe (z|x) ‖p(z))]

=

N∑
i=1

p(x(i))

∫
Z
qθe(z|x(i)) log

qθe(z|x(i))
p(z)

dz

=

N∑
i=1

∫
Z
pθe(z, x

(i)) log
pθe(z, x

(i))

p(x(i))p(z)
dz

=

N∑
i=1

∫
Z
pθe(z, x

(i)) log
pθe(z, x

(i))pθe(z)

p(x(i))p(z)pθe(z)
dz

=

N∑
i=1

∫
Z
pθe(z, x

(i)) log
pθe(z, x

(i))

p(x(i))pθe(z)
dz

+

∫
Z
pθe(z) log

pθe(z)

p(z)
dz

= Iθ(x; z) + KL(pθe(z)||p(z))

(2)

with I the mutual information between x and z. This term thus
limits the amount of information about the original image that
goes through the latent code and pushes the distribution of the
latent code produced by the encoder to match the prior latent
code distribution.

Limitations of the VAE framework: Understanding and
improving VAE are active subjects of research. Some works
have focused on reducing the gap in quality which often
exists between reconstructions produced by VAEs and images
sampled with them [14]. Others have aimed at learning more
interpretable latent space structure [15]. While dealing with
interesting issues, these papers are not in line with the problem
tackled in this paper related to the lack or realism and the
blurry aspect of images generated or reconstructed with VAEs.

As we have seen, LP acts as an information bottleneck
which limits the information about the original image x that
passes through the latent code. This creates an uncertainty on
the attributes of the original image x when trying to reconstruct
it. This uncertainty combined with the use of the mean square
error as a reconstruction error causes the generated images
µθd(z) to be blurry. Indeed under those circumstances, the
optimal value for each pixel of the reconstructed image is its

expected value given the information available in the latent
code [16] (See Figure 1 for an illustration).

The second aspect that prevents VAE and AE in general
to produce realistic samples is the use of a pixel-wise recon-
struction error combined with the high dimensionality of the
natural image manifold. Indeed, it is often assumed that natural
images lie on a low dimensional manifold of image space, in
particular because of a strong redundancy at a local scale [17].
This point is globally asserted by empirical evidence [18]
but can be mitigated with regard to textures. We argue that
textures like wood, hair or waves of the ocean are living
in a much higher dimensional manifold. This manifold thus
cannot be captured in the low dimensional latent space of
generative models even in the absence of an explicit information
bottleneck. Indeed, it would require a network with a very
high capacity to map the low dimensional latent into a high
dimensional manifold. One can convince himself of this fact
by considering that hair configuration is the product of the
configuration of each individual strand of hair. GANs can
partially overcome this problem with mode collapse on textures
by generating only a subset of this manifold which is enough to
fool the discriminator network. However, the use of a powerful
pixel-wise reconstruction error in the case of VAE prevents the
decoder from using this strategy leading to unrealistic results.

B. Generative Adversarial Networks

GAN globally consists in training two neural networks with
adversarial objectives to generate samples indistinguishable
from the samples taken from the dataset. The generator network
parametrized by θg is trained to map a random vector to the
data space. The discriminator or critic network parametrized by
θc is a classifier that is trained to distinguish real samples from
generated ones. The key point is that the generator does not
have access to real data and can only improve its parameters
through its ability to fool the discriminator. The objective of
the critic is:

OC(θc) = Ex∼p(x) [log (1− Cθc(x))]

+ Ex∼pθg (x|z) [logCθc(x)]
(3)

while the generator tries to fool the critic by minimizing:

OG(θg) = Ex∼pθg (x|z) [log (1− Cθc(x))] (4)

Limitations of the GAN framework: GANs have proven to
be very successful for generation tasks but suffer from two
major limitations in comparison to VAEs: mode collapse and
the absence of an encoder network. Mode collapse occurs
when, at each step, the generator is able to only produce a
few different samples. In its extreme case, the generator only
produces one type of sample, that is thus easily recognized by
the discriminator. In return, the discriminator does not need
real data to train and its feedback to the generator through
back-propagation does no longer contain useful information.
More commonly, the generator produces a limited number of
samples and interpolation of them.

Even when a GAN appears to have attained a good solution,
mode collapse may have occurred slightly and some modes



of the data distribution may be missed by the generator.
Mode collapse also raises the question of the existence of
an acceptable pseudo-inverse mapping of the generator defined
on the entire dataset space. The second issue is that the GAN
framework does not provide an explicit model to find the latent
space fibers of samples as it does not have an encoder.

III. RELATED WORKS

To leverage both the advantages of GANs and VAEs, [11]
proposed the VAE/GAN architecture which combines them.
They propose to add a discriminator to push reconstructions
from the VAE toward more realism and replaced the standard
reconstruction error by a perceptual similarity metric based
on the filters learned by the discriminator. This approach is
problematic because the discriminator is trained to predict
whether an image is a real one or a fake one. Thus, the
features extracted from it may not be adapted to describe
image content making them a disputable choice to base a
similarity metric on. As an example, we noticed that VAE/GAN
sometimes fails to reconstruct precisely skin color on the
CelebA dataset (see Figure 7) as this information might be
useless to some extent for the discriminator. If carefully tuned,
this approach tends to work well in practice and allows
sharper reconstructions. Nevertheless, [13] pointed out that
this approach also tends to exhibit a compromise between
VAE and GAN and produces less realistic samples than GAN.
They propose the BiGAN architecture [12] which is composed
of an encoder that transforms real images into latent codes,
a generator that transforms latent codes sampled randomly
into images and a discriminator which tries to guess the
origin of a couple of image/latent. While this approach is
very elegant and produces samples of the same quality as
GANs, it is aimed at finding good feature representations in
an unsupervised way and often fails to produce very accurate
reconstructions. In [19] and [20], the authors propose variations
of the BiGAN framework and additional theoretical insights
about the latter. They produce more accurate reconstructions
in terms of MSE but they are blurry (no hair texture when
trained on faces images) which is precisely the issue we aim
at solving here. In [2], the authors propose a variation of the
VAE/GAN framework where the encoder and the discriminator
network are a unique model. While it is not clear why this
choice is a good one or not, the model reconstruction loss is
the combination between a pixel-wise error and the VAE/GAN
reconstruction loss which introduces a compromise between the
blurriness of the reconstructions and the features reconstruction
fidelity. Similarly, [21] have proposed an elegant framework
where the discrimination is made on the latent space. Our
approach introduces a reconstruction loss that does not interfere
with the realism of the images while being linked with the
MSE. By combining our reconstruction loss with adversarial
training, we are able to produce photo-realistic reconstructions
with no compromise on fidelity. Moreover, our framework is
theoretically grounded and is not limited to image data as we
show on a toy example (Section V-A) that it can be used in a
more general context.

IV. THE AVAE FRAMEWORK

A. Complementarity between VAE and GAN

Despite their differences, we show that VAE and GAN
exhibit some form of complementarity and that we can build a
hybrid approach that solves several problems listed above. One
naive hybridization could be to train a VAE with an additional
adversarial loss term to push reconstructions toward more
realism. However, as we have seen, optimal reconstructions are
not always realistic. This approach would lead to choosing a
trade-off between reconstruction accuracy and realism as both
have conflicting objectives. One of the contributions of this
paper is to show that we can derive two complementary losses
from the VAE and GAN frameworks which share an optimal
solution allowing accurate and realistic reconstructions. In the
GAN framework, we can derive a manifold loss LM from
the discriminator network which judges the realism of a given
sample. This loss can be interpreted as a “distance” between
the data manifold and a sample as described in [22]. In the
VAE framework, we train an encoder which maps data in a
latent space Z . This latent space can be seen as a map of the
data manifold. Distances in the latent space can be interpreted
as a distance between two points of the data manifold. This
loss is noted LZ . Our intuition, depicted by Figure 2, is that
these two losses can be used in conjunction to train a model
which produces realistic images while keeping approximately
the latent space organization of a VAE.

We give here further explanation on why the VAE framework
fails to produce realistic images and what conditions a
reconstruction error should satisfy to achieve accurate and
realistic reconstructions. Let us consider an auto encoder that
uses a reconstruction error of the form L (x, y) = ‖x− y‖2.
Let us note x the input, z the output of the encoder Eθe and
x̂ the output of the decoder Dθd . With the parameters of the
encoder fixed, the optimal reconstruction should minimize the
expected cost over the potential images x̃ that could have
produced the observed z. i.e.

x̂∗(z) ∈ argmin
x̂

Ex̃∼pθe (x̃|z)
[
‖x̃− x̂‖2

]
(5)

Thus the optimal solution is given by x̂∗(z) = Ex̃∼pθe (x̃|z) [x̃].
The problem is that, in this case the optimal reconstruction
x̂∗ is the expected value of all the possible reconstructions
given the knowledge of the latent code. It leads to a blurry
reconstruction, quite unlikely under the data distribution pD
(i.e. pD(x̂∗) is small).

In a more general setting we can consider objectives of
the form: L(x, a) = ||f(x) − a||2 where f is an arbitrary
differentiable function and a is a random variable. In this case,
the optimal solution verifies:

f(x̂∗(z)) = Ea∼pθe (a|z) [a] (6)

This objective has a common optimum with the GAN objective,
if and only if we have p(f(x∗(z))) = p(f(x)) for z ∼ p(z)
and x ∼ pD(x). However, to be what we can call a good
reconstruction error, f(x) should also carry the maximum of
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Fig. 2. The figure depicts a small portion of data space. The cylinders
symbolize the real data high-dimensional manifold, the black line the low-
dimensional manifold on which the reconstructions of VAEs are restricted.
The images on the black circle where the image I is located are all mapped
to the same latent code by the encoder network. Thus, they share a common
reconstruction: IVAE. This reconstruction is outside of the data manifold as it
is the expected value of the original image given the latent code computed
by the encoder which is blurry. The arrows represent the gradient of different
losses (w.r.t the reconstruction) that are minimized during training: (a) the loss
derived from the GAN framework that pushes the reconstructions toward the
data manifold, (b) the loss derived from the VAE framework that pushes the
reconstructions toward a region where images are mapped to the same latent
code by the encoder, (c) their combination and (d) the VAE reconstruction
loss i.e. the mean square error. (Note that gradients are represented on a single
plane, while there is a radial symmetry around the black line)

information about f . Indeed we could otherwise choose f = a
but it would be useless as a reconstruction error.

B. Architecture

Similarly to VAE, the proposed AVAE framework is based
on an encoder Eθe and a decoder Dθd . We add two additional
models: a generator Gθg and a critic Cθc . The role of the
generator is to produce realistic samples from latent codes.

The VAE part of our framework is similar to classical VAE:
it is a parametrized model qθe(z|x) = N (z;µθe(x),Σθe) with
Σθe a diagonal matrix of the form diag(σ2

θe
). The prior distribu-

tion of the latent codes is p(z) = N (z; 0, Id) and pθd(x|z) =
N (x;µθd(z), Id). With such choices, OVAE(θe, θd;x) can be
estimated by a Monte-Carlo method. Indeed, the Kullback-
Leibler divergence term of the loss KL (qθe (z|x) ‖p(z)) is
equal to:

1

2

dim(Z)∑
j=1

σ2
θej + µ2

θe(x)j − 1− log σ2
θej (7)

The reconstruction term of the loss Eqθe (z|x) [log pθd(x|z)] can
be estimated by Monte-Carlo, sampling z from qθe(z|x) and
noting that:

log pθd(x|z) = −dim(x)

2
log 2π − 1

2
‖µθd(z)− x‖2 (8)

z being sampled from qθe (z|x), the loss of the VAE for one
sample is the following (without constant terms):

LVAE(θe, θd;x) =
1

2
‖µθd(z)− x‖2

+
1

2

dim(Z)∑
j=1

σ2
θej + µ2

θe(x)j − log σ2
θej

(9)

For the generator part, when we want to use it for reconstruction,
we build its input by concatenating z the latent code produced
by the encoder with a random vector ξ sampled from N (0, Id)

Eθe Dθd

CθcGθg

Eθe

LM

z ∼ qθe (z|x)

z ∼ p(z)

µθe (z|x)

LZ

x ∼ pθg (x|z)

x ∼ p(x)

Cθg (x)

µθd (x|z)

LR

Fig. 3. Summary of our Adversarial Variational Auto Encoder framework.
Eθe , Dθd , Gθg , Cθc are respectively the encoder, decoder, generator and
critic (discriminator). Note that the weights of the encoder Eθe are shared
between the two architectures. Images are denoted by the letter x and latent
codes by the letter z.

to form the latent code for our generator. z encodes the
information captured by the encoder while ξ encode the
variation not captured by it. With this choices, we sample from
pθg (x|z) by taking x = Gθg (z, ξ). Note that ξ can be removed
if we consider that for a given z there is only one possible
reconstruction but we present here the general setting as we
consider. To sample a random image from the generator we
simply sample z from the prior distribution defined in the VAE
part and ξ from N (0, Id). Ideally, the generator should invert
the encoder and thus pθg (x|z) should be as close as possible
than pθe(x|z). This consideration leads us to minimizing the
following negative log likelihood with z ∼ N (0, Id) and
x ∼ pθg (x|z) :

LG(θg) = E [− log pθe(x|z)]
= E [− log pθe(z|x)p(x)] + C

= E [− log pθe(z|x)] + E
[
log

pθg (x)

p(x)pθg (x)

]
+ C

= E [− log pθe(z|x)] + KL(pθg (x)‖p(x)) +Hθg + C
(10)

with Hθg the differential entropy of the distribution pθg (x).
The term log pθe (z|x) can be computed directly:

log pθe (z|x) = logN (z;µθe(x),Σθe)

= − dim(Z)

2
log 2π − 1

2
log |Σθe |

− 1

2

∥∥∥∥µθe(x)− z
σθe

∥∥∥∥2
(11)

We define the reconstruction loss LZ by removing constant
terms in Equation 11:

LaZ(θg; z, θe) =
1

2

∥∥∥∥µθe(x)− z
σθe

∥∥∥∥2 (12)

We can estimate the second term by training a classifier C that
discriminates generated images from real ones by minimizing
the cross-entropy:

LC(θc) = − Ex∼p(x) [log (1− Cθc(x))]

− Ex∼pθg (x|z) [logCθc(x)]
(13)



Initialize parameters of the models: θe, θd, θg , θc
while training do
{Forward pass.}
xreal ← batch of images sampled from the dataset.
zreal
µ , zreal

σ ← Eθe(x
real)

zreal ← zreal
µ + εzreal

σ with ε ∼ N (0, Id)
µreal ← Dθd(zreal)
xfake ← Gθg (zfake, ξ) with zfake, ξ ∼ N (0, Id)
zfake
µ , zfake

σ ← Eθe(x
fake)

C real, C fake ← Cθc(x
real), Cθc(x

fake)
{Compute losses gradients and update parameters.}
θe
−←− ∇θeLVAE(θe, θd) ; θg

−←− ∇θgLG(θg)

θd
−←− ∇θdLVAE(θe, θd) ; θc

−←− ∇θcLC(θc)
end while
Fig. 4. Algorithm to train the Adversarial Variational Auto Encoder.

Under this loss, the optimal solution for C is:

C∗ : x→ pθg (x)

p(x) + pθg (x)
(14)

LM is then defined by sampling x from pθg (x). Hence:

LM(θg;x, θe) = logitC (15)

Indeed, logitC ≈ logitC∗ = log
(
pθg (x)

p(x)

)
which is an

unbiased estimator of the Kullback-Leibler divergence term.
Minimizing the differential entropy Hθg of the distribution
pθg (x) will push it to be as peaked as possible and is not
data dependent. Moreover, this term is intractable. Hence, as
a form of regularization, we remove it. One problem still
remains. Indeed the optimal reconstruction for LaZ verifies the
following equation: µθe(x̂

∗(z)) = z and thus p(µθe(x̂
∗(z))) =

N (µθe(x̂
∗(z)); 0, I) while p(µθe(x)) = N (µθe(x); 0, I − Σ).

To solve this problem, we propose to replace the expression
of LaZ by:

LbZ(θg; z, θe) =
1

2

∥∥∥∥∥∥
µθe(x)−

√
1− σ2

θe
z

σθe

∥∥∥∥∥∥
2

(16)

With this loss the optimal solution x̂∗(z) verifies µθe(x̂
∗(z)) =√

1− σ2
θe
z thus p(µθe(x̂

∗(z))) = N (µθe(x); 0, I − Σ) =

p(µθe(x)) as we have seen, its ensure that this loss has a
common optimum with the GAN objective. This new loss
takes into account the fact that when σθe is large, the observed
z is mostly noise and µθe(x) is close to zero. The loss resulting
from these considerations is LG = LbZ + LM. It combines a
GAN type loss LM and a reconstruction loss on the latent
codes LZ which is similar to that described in Section IV-A.
The AVAE framework is globally presented in Figure 3, with
the relations between its components, and Figure IV-B gives the
algorithm to train it. From a GAN perspective, the method can
be viewed as constraining the latent space organization of the
generator with the encoder model. It thus limits to some point
the problem of mode collapse as the reconstruction error on the
latent code prevents the generator to produce similar samples.
As a consequence, it counteracts the mechanism pointed out by

GENERATOR
Dense

units: w ∗ 128,
Reshape

new size: (4, 4, w ∗ 8)
Batch normalization

ReLU
Up-block

channels: w ∗ 4
Up-block

channels: w ∗ 2
Up-block

channels: w
Transposed convolution

channels: 3, stride: 2
Tanh

DOWN-BLOCK
Convolution

stride: 2, no bias
Batch normalization

ReLU
CRITIC

Convolution
channels: w,

stride: 2
Leaky-ReLU
Down-block

channels: w ∗ 2
Down-block

channels: w ∗ 4
Down-block

channels: w ∗ 8
Dense

units: 1
Sigmoid

Fig. 5. Generator and critic architectures. The decoder architecture is identical
to the generator architecture and the encoder architecture differs from the
critic architecture by the number of units in the last layer and by the absence
of a Sigmoid activation at the end. Up-block is similar to Down-block but
with transposed convolutions instead of convolutions and ReLUs instead of
leaky-ReLUs. All convolutions and transposed convolutions share the same
filter size (5) and use ‘same‘ padding. σz is chosen independent of x and is
learned directly. w is a width multiplier (we typically use w = 128). For the
BiGAN implementation, we use a two-hidden-layer MLP for the latent code
inputs and a critic-style architecture for the image inputs. The two outputs
representations are then concatenated and used as input of a two-hidden-layers
MLP.

[10] to explain mode collapse by pushing generated samples
apart from each other. The proposed architecture differs from
VAE/GAN on several important aspects. The decoder and
generator are separated in our work and our reconstruction
error is based on the encoder model and not on the discriminator
as in VAE/GAN to ensure that the error is informative about
the image content.

V. EXPERIMENTAL RESULTS

Datasets: We evaluate the models on six image datasets:
LSUN bedroom [23] (64x64 images of bedrooms), CelebA
[24] (64x64 faces cropped images), FFHQ dataset (256x256
faces) [9], CIFAR10, CIFAR100 [25] (32x32 images of 10
and 100 categories) and SVHN [26] (32x32 images of house
numbers images). Images are resized to the sizes mentioned
above and CelebA images are center-cropped at 70%.

Implementation details: all the low resolution experiments
have been conducted with Tensorflow 2.0 [27] on an NVIDIA
GTX 1080 Ti GPU with 11Go of memory. Full code will
be available on github. All models share similar architecture
blocks, inspired by [28], to allow a fair comparison. Architec-
ture details are presented in Figure 5. Each model is trained
with hyper-parameters recommended in [28] for 5e4 iterations
with a batch size of 64. Because the reconstruction loss of
the VAE part of VAE/GAN is a perceptual loss which differs
from the MSE used in our model and in the classical VAE, the
balance between the Kullback-Leibler divergence term and the
reconstruction term in the VAE loss is not the same between
models. We observed that the Kullback-Leibler divergence term
is usually much higher for the VAE/GAN model which indicates



Fig. 6. Illustration of a toy example with two-dimensional data and a one-
dimensional latent space. Points: data, dotted line: manifold of reconstructions
from VAE, dashed line/density: manifold of reconstruction with our model.
Color encodes the position in the one-dimensional latent space. Top: with a
deterministic generator. Bottom: with a probabilistic generator. (best seen with
zoom and color)

that it conveys much more information in its latent code and
thus introduces a bias in the reconstruction performance com-
parison between models. To solve this problem, we introduced
a hyper-parameter β to weight the Kullback-Leibler divergence
in the encoder loss as in [29] in order to get similar Kullback-
Leibler divergences. This hyper-parameter search leads us to
the following (βLSUN bedroom = 4, βceleba = 5, βCIFAR10 = 10,
βCIFAR100 = 10, βSVHN = 20). The high resolution experiment
was conducted with a network architecture derived from the
StyleGAN V2 architecture [30] trained on 8 NVIDIA Quadro
P5000 GPUs.

A. Toy dataset

We begin by testing our approach on a toy dataset to validate
the theory. The dataset is composed of 2D points generated from
two generative factors z1 and z2. The data generation procedure
is the following: z1, z2, ε ∼ N (0, 1) and x = f(z1, z2, ε) =
(3z1 + 0.1ε, cos(3z1 + tanh(3z2)) + 0.1ε). For the model, we
use a latent space of dimension one to simulate the problem
of the low dimensionality of the latent space compared to the
high dimensionality of the data manifold. Models are two-
hidden-layer perceptrons with 128 units. Models are trained
with the method described proposed in this paper. We then
draw the manifold of the generated points to see how the model
behave compared to a VAE. Results of this experiment can
be seen in Figure 6 where we can see that reconstructions
from the VAE are in a region of low likelihood of the data
distribution while AVAE reconstructions follow the shape of the
VAE manifold while covering regions of higher likelihood. It
shows that our model is able to produce realistic reconstructions
even when the latent code do not contain all the information
needed to reconstruct the original image perfectly. Here there
is an ambiguity as we do not know if the original sample is
from the top distribution or the bottom one given a latent code
corresponds to two. In order to produce a realistic result the
generator has to make an arbitrary choice. Our approach allows
the generator to make such choice while the decoder from the

real

VAE

VAE/GAN

BiGAN

Our

real

VAE

VAE/GAN

BiGAN

Our

real

VAE

VAE/GAN

BiGAN

Our

Fig. 7. Qualitative comparison of the quality of reconstructions between
several frameworks namely VAE, VAE/GAN, BiGAN and our model on three
datasets: CelebA, SVHN and LSUN bedroom.

VAE outputs the average of possible choices resulting in an
unlikely/unrealistic reconstruction. On the same Figure we can
see that when using a stochastic generator with additional
latent variables, it learns to generate missing regions of the
data distribution while keeping the VAE latent space structure.

B. Qualitative results

Here, we present some qualitative results on the CelebA
SVHN and LSUN bedroom datasets. A comparison of samples
reconstruction between our model and other models is presented
in Figure 7. We also present a visual comparison of samples
generated by our model and other generative models in Figure 8.
Additional qualitative results will be available on github. We can
see on these figures that generated images are of comparable
quality of GAN generated images for both generation and
reconstructions. VAE reconstructions and generated samples
look blurry, BiGAN generated images are of good quality but
reconstructions are not accurate. VAE/GAN produces both good
reconstructions and generated samples. However, while our
judgment is subjective, we find that reconstructions produced
by VAE/GAN are less accurate than ours and images are less
realistic than with GAN, BiGAN or our approach.

One may notice that for the LSUN bedroom dataset,
reconstructions produced by our model are not convincing.
However, we can explain this by the very poor performance of
the VAE suggesting that not enough information passes through
the latent code to create a reconstruction visually close to the



TABLE I
RECONSTRUCTION ERRORS (MSE AND LPIPS [31]) AND FID [32] OF GENERATED IMAGES FOR DIFFERENT MODELS. LOWER VALUES ARE BETTER FOR

ALL METRICS. REPORTED RESULTS ARE THE AVERAGE AND STANDARD DEVIATION OVER FIVE RUNS.

BEDROOM CELEBA CIFAR10 CIFAR100 SVHN
MSE 0.06± 0.00 0.03± 0.00 0.05± 0.00 0.05± 0.00 0.02± 0.00

VAE LPIPS 0.58± 0.00 0.18± 0.00 0.26± 0.00 0.25± 0.00 0.08± 0.00
FID 229.75± 1.45 60.04± 0.47 136.75± 0.57 129.71± 1.01 68.16± 2.10

GAN FID 110.59± 19.55 14.54± 0.41 32.01± 0.41 34.51± 0.59 23.83± 3.99
MSE 0.18± 0.01 0.07± 0.00 0.14± 0.02 0.15± 0.02 0.06± 0.02

VAE/GAN LPIPS 0.26± 0.01 0.09± 0.00 0.08± 0.01 0.08± 0.01 0.08± 0.02
FID 60.02± 2.36 26.45± 4.66 39.04± 2.42 40.03± 0.71 17.02± 2.58

MSE 0.42± 0.05 0.18± 0.01 0.31± 0.02 0.33± 0.01 0.12± 0.01
BIGAN LPIPS 0.44± 0.02 0.16± 0.00 0.14± 0.00 0.16± 0.00 0.12± 0.01

FID 91.72± 18.10 18.49± 5.06 34.61± 1.29 35.40± 1.23 27.77± 2.96
OURS WITH ξ MSE 0.12± 0.00 0.05± 0.00 0.09± 0.00 0.09± 0.00 0.04± 0.00

WITH LaZ LPIPS 0.36± 0.00 0.11± 0.00 0.10± 0.00 0.11± 0.00 0.10± 0.00
FID 85.11± 2.87 16.99± 0.58 33.65± 0.28 39.81± 0.60 27.64± 2.41

OURS WITHOUT ξ MSE 0.12± 0.00 0.05± 0.00 0.09± 0.00 0.09± 0.00 0.04± 0.00
WITH LaZ LPIPS 0.35± 0.00 0.11± 0.00 0.10± 0.00 0.11± 0.00 0.09± 0.00

FID 84.29± 5.28 16.23± 0.50 33.49± 0.50 38.69± 0.62 28.47± 8.24
OURS WITHOUT ξ MSE 0.12± 0.00 0.05± 0.00 0.09± 0.00 0.09± 0.00 0.04± 0.00

WITH LbZ LPIPS 0.35± 0.00 0.11± 0.00 0.10± 0.00 0.11± 0.00 0.08± 0.00
FID 80.99± 1.82 15.01± 0.82 33.67± 0.61 38.35± 0.57 21.11± 0.42
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Fig. 8. Generated images for randomly sampled latent codes for CelebA,
SVHN and LSUN bedroom.

Fig. 9. Qualitative results on high resolution images. left to right: original
images, reconstructions with the VAE decoder, reconstructions with the
generator. This figure shows that with a limited amount of information the
decoder fails to produce realistic reconstruction while our generator is capable
of it. Note that the fidelity of the reconstruction is ultimately limited by the
information contained in the latent code produced by the encoder.

original image. However, even here, our model still produces
sharp images close to the target ones in terms of MSE showing
that our model follows the latent structure of the VAE trained
with the MSE as a reconstruction error.

We also conducted an experiment on higher resolution
images (256x256 FFHQ face images) to see if our method
can be scaled to high resolution images. To conduct this
experiment, we made straightforward modifications to the style
GAN V2 [30] using the approach proposed here. Results of this
experiments are presented in Figure 9. These results confirm
the scalability of the proposed approach to bigger architectures.

C. Quantitative results

To quantitatively evaluate the performance of our method,
we selected several metrics. The quality of the reconstructed
images is evaluated by the Mean Squared Error or MSE and
the LPIPS [31]. We use the FID [32] to measure the realism of
generated images. A comparison between VAE, GAN, BiGAN
[13], [12], VAE/GAN [11], and our model is presented in
Table I. Reconstructions errors are computed on validation
images not used during training, namely the test or validation
splits of TensorFlow datasets. FID is computed over 50000
randomly generated samples and compared to training data



samples as FID requires a lot of samples to be calibrated.
It must be noted that some metrics are biased toward some
architectures: the MSE is favorable to the VAE model because
it is the loss used to train it. It is also the case for our approach,
as information contained in the latent code is optimized to
produce accurate reconstructions in terms of MSE. VAE/GAN
is also advantaged in terms of LPIPS and FID as this model
uses a perceptual similarity metric based on a classifier as a
reconstruction error and the FID and LPIPS are also based on
deep features. Globally, our model exhibits a good compromise
between accurate reconstructions (MSE and LPIPS) and realism
(FID), thus combining the best of VAE and GAN.

VI. DISCUSSION

The proposed framework can be used to generate images
from a pre-trained representation. Thus, it is not a feature
learning method and only features learned by the VAE are
described by the representation. However, while we focused
on a VAE architecture to produce the latent representation,
our approach can be further extended. Indeed one could for
example train a classifier while constraining its last feature
layer in the same way the latent code is constrained and use it
as a latent code in our method in order to focus on different
features of the image. One could even concatenate several of
these representation to train a model which fits their needs.
We keep this extension as a potential future work.
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