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Abstract

In this book, some notions are introduced about “Girth in Neutrosophic
Graphs.” Three chapters are devised as “Neutrosophic Girth Based On Crisp
Cycle in Neutrosophic Graphs”, “Neutrosophic Girth Based On Neutrosophic
Cycle in Neutrosophic Graphs” and “Neutrosophic Girth Polynomial Based
On Neutrosophic Cycle and Crisp Cycle in Neutrosophic Graphs”. Three
manuscripts are cited as the references of these chapters which are my 62nd,
63rd, and 64th manuscripts. I’ve used my 62nd, 63rd, and 64th manuscripts to
write this book.
In first chapter, there are some points as follow. New setting is introduced to
study girth and neutrosophic girth arising from shortest cycles. Forming cycles
from a sequence of consecutive vertices is key type of approach to have these
notions namely girth and neutrosophic girth arising from shortest cycles. Two
numbers are obtained but now both settings leads to approach is on demand
which is finding minimum cardinality and minimum neutrosophic cardinality
in the terms of vertices, which have edges which form a shortest cycle. Let
NTG : (V,E, σ, µ) be a neutrosophic graph. Then Girth G(NTG) for a neutro-
sophic graph NTG : (V,E, σ, µ) is minimum crisp cardinality of vertices forming
shortest cycle. If there isn’t, then girth is ∞; neutrosophic girth Gn(NTG) for
a neutrosophic graph NTG : (V,E, σ, µ) is minimum neutrosophic cardinality
of vertices forming shortest cycle. If there isn’t, then girth is ∞. As concluding
results, there are some statements, remarks, examples and clarifications about
some classes of neutrosophic graphs namely path-neutrosophic graphs, cycle-
neutrosophic graphs, complete-neutrosophic graphs, star-neutrosophic graphs,
complete-bipartite-neutrosophic graphs, complete-t-partite-neutrosophic graphs
and wheel-neutrosophic graphs. The clarifications are also presented in both
sections “Setting of Girth,” and “Setting of Neutrosophic Girth,” for introduced
results and used classes. Neutrosophic number is reused in this way. It’s applied
to use the type of neutrosophic number in the way that, three values of a vertex
are used and they’ve same share to construct this number to compare with
other vertices. Summation of three values of vertex makes one number and
applying it to a comparison. This approach facilitates identifying vertices which
form girth and neutrosophic girth arising from shortest cycles. In both settings,
some classes of well-known neutrosophic graphs are studied. Some clarifications
for each result and each definition are provided. The cardinality of a set has
eligibility to girth but the neutrosophic cardinality of a set has eligibility to call
neutrosophic girth. Some results get more frameworks and perspective about
these definitions. The way in that, a sequence of consecutive vertices forming a
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cycle, opens the way to do some approaches. These notions are applied into
neutrosophic graphs as individuals but not family of them as drawbacks for
these notions. Finding special neutrosophic graphs which are well-known, is
an open way to pursue this study. Some problems are proposed to pursue this
study. Basic familiarities with graph theory and neutrosophic graph theory are
proposed for this chapter.
In second chapter, there are some points as follow. New setting is introduced
to study girth and neutrosophic girth arising from shortest neutrosophic
cycles. Forming neutrosophic cycles from a sequence of consecutive vertices
is key type of approach to have these notions namely girth and neutrosophic
girth arising from shortest neutrosophic cycles. Two numbers are obtained
but now both settings leads to approach is on demand which is finding
minimum cardinality and minimum neutrosophic cardinality in the terms of
vertices, which have edges which form a shortest neutrosophic cycle. Let
NTG : (V,E, σ, µ) be a neutrosophic graph. Then Girth G(NTG) for a
neutrosophic graph NTG : (V,E, σ, µ) is minimum crisp cardinality of vertices
forming shortest neutrosophic cycle. If there isn’t, then girth is∞; neutrosophic
girth Gn(NTG) for a neutrosophic graph NTG : (V,E, σ, µ) is minimum
neutrosophic cardinality of vertices forming shortest neutrosophic cycle. If
there isn’t, then girth is ∞. As concluding results, there are some statements,
remarks, examples and clarifications about some classes of strong neutrosophic
graphs namely strong-path-neutrosophic graphs, strong-cycle-neutrosophic
graphs, complete-neutrosophic graphs, strong-star-neutrosophic graphs, strong-
complete-bipartite-neutrosophic graphs, strong-complete-t-partite-neutrosophic
graphs and strong-wheel-neutrosophic graphs. The clarifications are also
presented in both sections “Setting of Girth,” and “Setting of Neutrosophic
Girth,” for introduced results and used classes. Neutrosophic number is reused
in this way. It’s applied to use the type of neutrosophic number in the way
that, three values of a vertex are used and they’ve same share to construct
this number to compare with other vertices. Summation of three values of
vertex makes one number and applying it to a comparison. This approach
facilitates identifying vertices which form girth and neutrosophic girth arising
from shortest neutrosophic cycles. In both settings, some classes of well-known
strong neutrosophic graphs are studied. Some clarifications for each result and
each definition are provided. The cardinality of a set has eligibility to girth but
the neutrosophic cardinality of a set has eligibility to call neutrosophic girth.
Some results get more frameworks and perspective about these definitions. The
way in that, a sequence of consecutive vertices forming a neutrosophic cycle,
opens the way to do some approaches. These notions are applied into strong
neutrosophic graphs as individuals but not family of them as drawbacks for
these notions. Finding special strong neutrosophic graphs which are well-known,
is an open way to pursue this study. Some problems are proposed to pursue
this study. Basic familiarities with graph theory and neutrosophic graph theory
are proposed for this chapter.
In third chapter, there are some points as follow. New setting is introduced
to study girth polynomial and neutrosophic girth polynomial arising counting
neutrosophic cycles and crisp cycles in strong neutrosophic graphs based on
neutrosophic cycles and in neutrosophic graphs based on crisp cycles. Forming
neutrosophic cycles from a sequence of consecutive vertices is key type of
approach to have these notions namely girth polynomial and neutrosophic
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girth polynomial arising from counting neutrosophic cycles and crisp cycles in
strong neutrosophic graphs based on neutrosophic cycles and in neutrosophic
graphs based on crisp cycles. Two numbers are obtained but now both settings
leads to approach is on demand which is counting minimum cardinality and
minimum neutrosophic cardinality in the terms of vertices, which have edges
which form neutrosophic cycle and crisp cycles. Let NTG : (V,E, σ, µ) be a
neutrosophic graph. Then girth polynomial G(NTG) for a neutrosophic graph
NTG : (V,E, σ, µ) is n1x

m1 + n2x
m2 + · · · + nsx

3 where ni is the number of
cycle with mi as its crisp cardinality of the set of vertices of cycle; neutrosophic
girth polynomial Gn(NTG) for a neutrosophic graph NTG : (V,E, σ, µ) is
n1x

m1 + n2x
m2 + · · · + nsx

ms where ni is the number of cycle with mi as
its neutrosophic cardinality of the set of vertices of cycle. As concluding
results, there are some statements, remarks, examples and clarifications about
some classes of strong neutrosophic graphs namely (strong-)path-neutrosophic
graphs, (strong-)cycle-neutrosophic graphs, complete-neutrosophic graphs,
(strong-)star-neutrosophic graphs, (strong-)complete-bipartite-neutrosophic
graphs, (strong-)complete-t-partite-neutrosophic graphs and (strong-)wheel-
neutrosophic graphs. The clarifications are also presented in both sections
“Setting of Girth Polynomial,” and “Setting of Neutrosophic Girth Polynomial,”
for introduced results and used classes. Neutrosophic number is reused in this
way. It’s applied to use the type of neutrosophic number in the way that, three
values of a vertex are used and they’ve same share to construct this number to
compare with other vertices. Summation of three values of vertex makes one
number and applying it to a comparison. This approach facilitates identifying
vertices which form girth polynomial and neutrosophic girth polynomial arising
from counting neutrosophic cycles and crisp cycles in strong neutrosophic
graphs based on neutrosophic cycles and in neutrosophic graphs based on crisp
cycles. In both settings, some classes of well-known (strong) neutrosophic
graphs are studied. Some clarifications for each result and each definition are
provided. The cardinality of a set has eligibility to define girth polynomial
but the neutrosophic cardinality of a set has eligibility to define neutrosophic
girth polynomial. Some results get more frameworks and perspective about
these definitions. The way in that, a sequence of consecutive vertices forming
a neutrosophic cycle and crisp cycles, opens the way to do some approaches.
These notions are applied into strong neutrosophic graphs and neutrosophic
graphs as individuals but not family of them as drawbacks for these notions.
Finding special strong neutrosophic graphs and neutrosophic graphs which are
well-known, is an open way to pursue this study. Some problems are proposed
to pursue this study. Basic familiarities with graph theory and neutrosophic
graph theory are proposed for this chapter.
The following references are cited by chapters.
[Ref1] Henry Garrett, “Neutrosophic Girth Based On Crisp Cycle in Neutro-
sophic Graphs”, ResearchGate 2022 (doi: 10.13140/RG.2.2.14011.69923).
[Ref2] Henry Garrett, “Finding Shortest Sequences of Consecutive Vertices in
Neutrosophic Graphs”, ResearchGate 2022 (doi: 10.13140/RG.2.2.22924.59526).
[Ref3] Henry Garrett, “Some Polynomials Related to Numbers in
Classes of (Strong) Neutrosophic Graphs”, ResearchGate 2022 (doi:
10.13140/RG.2.2.36280.83204).
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Abstract

Three chapters are devised as “Neutrosophic Girth Based On Crisp Cycle in Neutro-
sophic Graphs”, “Neutrosophic Girth Based On Neutrosophic Cycle in Neutrosophic
Graphs” and “Neutrosophic Girth Polynomial Based On Neutrosophic Cycle and Crisp
Cycle in Neutrosophic Graphs”.
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CHAPTER 1

Neutrosophic Girth Based On
Crisp Cycle in Neutrosophic

Graphs

The following sections are cited as [Ref1] which is my 62nd manuscript and I
use prefix 62 as number before any labelling for items.

1.1 Neutrosophic Girth Based On Crisp Cycle in
Neutrosophic Graphs

1.2 Abstract

New setting is introduced to study girth and neutrosophic girth arising from
shortest cycles. Forming cycles from a sequence of consecutive vertices is
key type of approach to have these notions namely girth and neutrosophic
girth arising from shortest cycles. Two numbers are obtained but now both
settings leads to approach is on demand which is finding minimum cardinality
and minimum neutrosophic cardinality in the terms of vertices, which have
edges which form a shortest cycle. Let NTG : (V,E, σ, µ) be a neutrosophic
graph. Then Girth G(NTG) for a neutrosophic graph NTG : (V,E, σ, µ)
is minimum crisp cardinality of vertices forming shortest cycle. If there
isn’t, then girth is ∞; neutrosophic girth Gn(NTG) for a neutrosophic graph
NTG : (V,E, σ, µ) is minimum neutrosophic cardinality of vertices forming
shortest cycle. If there isn’t, then girth is ∞. As concluding results, there
are some statements, remarks, examples and clarifications about some classes
of neutrosophic graphs namely path-neutrosophic graphs, cycle-neutrosophic
graphs, complete-neutrosophic graphs, star-neutrosophic graphs, complete-
bipartite-neutrosophic graphs, complete-t-partite-neutrosophic graphs and
wheel-neutrosophic graphs. The clarifications are also presented in both sections
“Setting of Girth,” and “Setting of Neutrosophic Girth,” for introduced results
and used classes. Neutrosophic number is reused in this way. It’s applied to
use the type of neutrosophic number in the way that, three values of a vertex
are used and they’ve same share to construct this number to compare with
other vertices. Summation of three values of vertex makes one number and
applying it to a comparison. This approach facilitates identifying vertices which
form girth and neutrosophic girth arising from shortest cycles. In both settings,
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1. Neutrosophic Girth Based On Crisp Cycle in Neutrosophic Graphs

some classes of well-known neutrosophic graphs are studied. Some clarifications
for each result and each definition are provided. The cardinality of a set has
eligibility to girth but the neutrosophic cardinality of a set has eligibility to call
neutrosophic girth. Some results get more frameworks and perspective about
these definitions. The way in that, a sequence of consecutive vertices forming a
cycle, opens the way to do some approaches. These notions are applied into
neutrosophic graphs as individuals but not family of them as drawbacks for
these notions. Finding special neutrosophic graphs which are well-known, is
an open way to pursue this study. Some problems are proposed to pursue this
study. Basic familiarities with graph theory and neutrosophic graph theory are
proposed for this article.
Keywords: Girth, Neutrosophic Girth, Shortest Cycle

AMS Subject Classification: 05C17, 05C22, 05E45

1.3 Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 1.3.1. Is it possible to use mixed versions of ideas concerning
“Neutrosophic Girth”, “Girth” and “Neutrosophic Graph” to define some notions
which are applied to neutrosophic graphs?

It’s motivation to find notions to use in any classes of neutrosophic graphs.
Real-world applications about time table and scheduling are another thoughts
which lead to be considered as motivation. Lack of connection amid two edges
have key roles to assign girth and neutrosophic girth arising from shortest cycles.
Thus they’re used to define new ideas which conclude to the structure of girth
and neutrosophic girth arising from shortest cycles. The concept of having
common shortest cycle inspires us to study the behavior of vertices in the way
that, some types of numbers, girth and neutrosophic girth arising from shortest
cycles are the cases of study in the setting of individuals. In both settings, a
corresponded number concludes the discussion. Also, there are some avenues to
extend these notions.
The framework of this study is as follows. In the beginning, I introduce
basic definitions to clarify about preliminaries. In subsection “Preliminaries”,
new notions of girth and neutrosophic girth arising from shortest cycles,
are highlighted, are introduced and are clarified as individuals. In section
“Preliminaries”, sequence of consecutive vertices forming cycles have the key
role in this way. General results are obtained and also, the results about the
basic notions of girth and neutrosophic girth arising from shortest cycles, are
elicited. Some classes of neutrosophic graphs are studied in the terms of girth
arising from shortest cycles, in section “Setting of Girth,” as individuals. In
section “Setting of Girth,” girth is applied into individuals. As concluding
results, there are some statements, remarks, examples and clarifications about
some classes of neutrosophic graphs namely path-neutrosophic graphs, cycle-
neutrosophic graphs, complete-neutrosophic graphs, star-neutrosophic graphs,
complete-bipartite-neutrosophic graphs, complete-t-partite-neutrosophic graphs
and wheel-neutrosophic graphs. The clarifications are also presented in both
sections “Setting of Girth,” and “Setting of Neutrosophic Girth,” for introduced
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1.4. Preliminaries

results and used classes. In section “Applications in Time Table and Scheduling”,
two applications are posed for quasi-complete and complete notions, namely
complete-t-neutrosophic graphs and complete-neutrosophic graphs concerning
time table and scheduling when the suspicions are about choosing some subjects
and the mentioned models are considered as individual. In section “Open
Problems”, some problems and questions for further studies are proposed. In
section “Conclusion and Closing Remarks”, gentle discussion about results
and applications is featured. In section “Conclusion and Closing Remarks”, a
brief overview concerning advantages and limitations of this study alongside
conclusions is formed.

1.4 Preliminaries

In this subsection, basic material which is used in this article, is presented.
Also, new ideas and their clarifications are elicited.
Basic idea is about the model which is used. First definition introduces basic
model.

Definition 1.4.1. (Graph).
G = (V,E) is called a graph if V is a set of objects and E is a subset of V × V
(E is a set of 2-subsets of V ) where V is called vertex set and E is called
edge set. Every two vertices have been corresponded to at most one edge.

Neutrosophic graph is the foundation of results in this paper which is defined
as follows. Also, some related notions are demonstrated.

Definition 1.4.2. (Neutrosophic Graph And Its Special Case).
NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) is called a neutrosophic
graph if it’s graph, σi : V → [0, 1], and µi : E → [0, 1]. We add one condition
on it and we use special case of neutrosophic graph but with same name. The
added condition is as follows, for every vivj ∈ E,

µ(vivj) ≤ σ(vi) ∧ σ(vj).

(i) : σ is called neutrosophic vertex set.

(ii) : µ is called neutrosophic edge set.

(iii) : |V | is called order of NTG and it’s denoted by O(NTG).

(iv) :
∑
v∈V σ(v) is called neutrosophic order of NTG and it’s denoted by

On(NTG).

(v) : |E| is called size of NTG and it’s denoted by S(NTG).

(vi) :
∑
e∈E

∑3
i=1 µi(e) is called neutrosophic size of NTG and it’s denoted

by Sn(NTG).

Some classes of well-known neutrosophic graphs are defined. These classes
of neutrosophic graphs are used to form this study and the most results are
about them.

Definition 1.4.3. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

3
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(i) : a sequence of vertices P : x0, x1, · · · , xO is called path where xixi+1 ∈
E, i = 0, 1, · · · , n− 1;

(ii) : strength of path P : x0, x1, · · · , xO is
∧
i=0,··· ,n−1 µ(xixi+1);

(iii) : connectedness amid vertices x0 and xt is

µ∞(x0, xt) =
∨

P :x0,x1,··· ,xt

∧
i=0,··· ,t−1

µ(xixi+1);

(iv) : a sequence of vertices P : x0, x1, · · · , xO is called cycle where xixi+1 ∈
E, i = 0, 1, · · · , n − 1 and there are two edges xy and uv such that
µ(xy) = µ(uv) =

∧
i=0,1,··· ,n−1 µ(vivi+1);

(v) : it’s t-partite where V is partitioned to t parts, V s1
1 , V s2

2 , · · · , V st
t and

the edge xy implies x ∈ V si
i and y ∈ V sj

j where i 6= j. If it’s complete,
then it’s denoted by Kσ1,σ2,··· ,σt

where σi is σ on V si
i instead V which

mean x 6∈ Vi induces σi(x) = 0. Also, |V si
j | = si;

(vi) : t-partite is complete bipartite if t = 2, and it’s denoted by Kσ1,σ2 ;

(vii) : complete bipartite is star if |V1| = 1, and it’s denoted by S1,σ2 ;

(viii) : a vertex in V is center if the vertex joins to all vertices of a cycle. Then
it’s wheel and it’s denoted by W1,σ2 ;

(ix) : it’s complete where ∀uv ∈ V, µ(uv) = σ(u) ∧ σ(v);

(x) : it’s strong where ∀uv ∈ E, µ(uv) = σ(u) ∧ σ(v).

Definition 1.4.4. (Girth and Neutrosophic Girth).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) Girth G(NTG) for a neutrosophic graph NTG : (V,E, σ, µ) is minimum
crisp cardinality of vertices forming shortest cycle. If there isn’t, then
girth is ∞;

(ii) neutrosophic girth Gn(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is minimum neutrosophic cardinality of vertices forming
shortest cycle. If there isn’t, then girth is ∞.

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.
In next part, clarifications about main definition are given. To avoid confusion
and for convenient usages, examples are usually used after every part and names
are used in the way that, abbreviation, simplicity, and summarization are the
matters of mind.

Example 1.4.5. In Figure (1.1), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a path and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this path implies there’s
no cycle since if the length of a sequence of consecutive vertices is at most
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2, then it’s impossible to have cycle. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but it
isn’t neutrosophic cycle. The length of crisp cycle implies there’s one cycle
since if the length of a sequence of consecutive vertices is at most 3, then
it’s possible to have cycle but there aren’t two weakest edges which imply
there is no neutrosophic cycle. So this crisp cycle isn’t a neutrosophic
cycle but it’s crisp cycle. The crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth G(NTG) but neutrosophic length of this crisp
cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s two crisp cycles with length two and three. It’s also a path and
there are three edges but there are some crisp cycles but there are only
two neutrosophic cycles with length three, n1, n3, n4, and with length
four, n1, n2, n3, n4. The length of this sequence implies there are some
crisp cycles and there are two neutrosophic cycles since if the length of a
sequence of consecutive vertices is at most 4 and it’s crisp complete, then
it’s possible to have some crisp cycles and two neutrosophic cycles with
two different length three and four. So this neutrosophic path forms some
neutrosophic cycles and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but
it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive vertices is at
most 3, then it’s possible to have cycle but there are two weakest edges,
n3n4 and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to girth G(NTG) and neutrosophic length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth Gn(NTG);

5
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Figure 1.1: A Neutrosophic Graph in the Viewpoint of its Girth and its
Neutrosophic Girth. 62NTG1

(v) 3 is girth and its corresponded sets are {n1, n2, n3}, {n1, n2, n4}, and
{n2, n3, n4};

(vi) 3.9 is neutrosophic girth and its corresponded set is {n1, n3, n4}.

1.5 Setting of Girth

In this section, I provide some results in the setting of girth. Some
classes of neutrosophic graphs are chosen. Complete-neutrosophic graph,
path-neutrosophic graph, cycle-neutrosophic graph, star-neutrosophic graph,
bipartite-neutrosophic graph, and t-partite-neutrosophic graph, are both of
cases of study and classes which the results are about them.

Proposition 1.5.1. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

G(NTG) = 3.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. The
length of longest cycle is O(NTG). In other hand, there’s a cycle if and only if
O(NTG) ≥ 3. It’s complete. So there’s at least one neutrosophic cycle which
its length is O(NTG) = 3. By shortest cycle is on demand, the girth is three.
Thus

G(NTG) = 3.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.2. In Figure (1.2), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.
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(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a path and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this path implies there’s
no cycle since if the length of a sequence of consecutive vertices is at most
2, then it’s impossible to have cycle. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but it
isn’t neutrosophic cycle. The length of crisp cycle implies there’s one cycle
since if the length of a sequence of consecutive vertices is at most 3, then
it’s possible to have cycle but there aren’t two weakest edges which imply
there is no neutrosophic cycle. So this crisp cycle isn’t a neutrosophic
cycle but it’s crisp cycle. The crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth G(NTG) but neutrosophic length of this crisp
cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s two crisp cycles with length two and three. It’s also a path and
there are three edges but there are some crisp cycles but there are only
two neutrosophic cycles with length three, n1, n3, n4, and with length
four, n1, n2, n3, n4. The length of this sequence implies there are some
crisp cycles and there are two neutrosophic cycles since if the length of a
sequence of consecutive vertices is at most 4 and it’s crisp complete, then
it’s possible to have some crisp cycles and two neutrosophic cycles with
two different length three and four. So this neutrosophic path forms some
neutrosophic cycles and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but
it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive vertices is at
most 3, then it’s possible to have cycle but there are two weakest edges,
n3n4 and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle implies

n1, n3, n4
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Figure 1.2: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG2

is corresponded to girth G(NTG) and neutrosophic length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth Gn(NTG);

(v) 3 is girth and its corresponded sets are {n1, n2, n3}, {n1, n2, n4}, and
{n2, n3, n4};

(vi) 3.9 is neutrosophic girth and its corresponded set is {n1, n3, n4}.

Another class of neutrosophic graphs is addressed to path-neutrosophic
graph.

Proposition 1.5.3. Let NTG : (V,E, σ, µ) be a path-neutrosophic graph. Then

G(NTG) =∞.

Proof. Suppose NTG : (V,E, σ, µ) is a path-neutrosophic graph. There’s no
crisp cycle. If NTG : (V,E, σ, µ) isn’t a crisp cycle, then NTG : (V,E, σ, µ)
isn’t a neutrosophic cycle. There’s no cycle from every version. Let
x0, x1, · · · , xO(NTG) be a path-neutrosophic graph. Since x0, x1, · · · , xO(NTG)
is a sequence of consecutive vertices, there’s no repetition of vertices in this
sequence. So there’s no cycle. Girth is corresponded to shortest cycle but
there’s no cycle. Thus it implies

G(NTG) =∞.

�

Example 1.5.4. There are two sections for clarifications.

(a) In Figure (1.3), an odd-path-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.

8
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So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. So adding points has to effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are four
edges, n1n2, n2n3 and n4n5, according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding shortest cycle. Finding shortest cycle has
no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic path is either
a neutrosophic cycle nor crisp cycle. So adding vertices has to effect
to find a crisp cycle. There is only one path amid two given vertices.
The structure of this neutrosophic path implies

n1, n2, n3, n4, n5

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(v) ∞ is girth and there are no corresponded sets;
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(vi) ∞ is neutrosophic girth and there are no corresponded sets.

(b) In Figure (1.4), an even-path-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. So adding points has to effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are four
edges, n1n2, n2n3 and n4n5, according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding shortest cycle. Finding shortest cycle has
no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic path is either
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Figure 1.3: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG3

Figure 1.4: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG4

a neutrosophic cycle nor crisp cycle. So adding vertices has to effect
to find a crisp cycle. There is only one path amid two given vertices.
The structure of this neutrosophic path implies

n1, n2, n3, n4, n5

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(v) ∞ is girth and there are no corresponded sets;
(vi) ∞ is neutrosophic girth and there are no corresponded sets.

Proposition 1.5.5. Let NTG : (V,E, σ, µ) be a cycle-neutrosophic graph where
O(NTG) ≥ 3. Then

G(NTG) = O(NTG).

Proof. Suppose NTG : (V,E, σ, µ) is a cycle-neutrosophic graph. Let
x1, x2, · · · , xO(NTG), x1 be a sequence of consecutive vertices of NTG :
(V,E, σ, µ) such that

xixi+1 ∈ E, i = 1, 2, · · · ,O(NTG)− 1, xO(NTG)x1 ∈ E.

11
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There are two paths amid two given vertices. The degree of every vertex is two.
But there’s one crisp cycle for every given vertex. So the efforts leads to one
cycle for finding a shortest crisp cycle. For a given vertex xi, the sequence of
consecutive vertices

xi, xi+1, · · · , xi−2, xi−1, xi

is a corresponded crisp cycle for xi. Every cycle has same length. The length is
O(NTG). Thus the crisp cardinality of set of vertices forming shortest crisp
cycle is O(NTG). It implies

G(NTG) = O(NTG).

�

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.6. There are two sections for clarifications.

(a) In Figure (1.5), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);
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(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. So adding points has to effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4, n5, n6, n1 is a sequence of consecutive vertices, then
it’s obvious that there’s one cycle. It’s also a path and there
are six edges, n1n2, n2n3, n3n4, n4n5, n5n6 and n6n1, according to
corresponded neutrosophic path and it’s neutrosophic cycle since it
has two weakest edges, n4n5 and n5n6 with same values (0.1, 0.1, 0.2).
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is both of a neutrosophic cycle and crisp
cycle. So adding vertices has effect on finding a crisp cycle. There
are only two paths amid two given vertices. The structure of this
neutrosophic path implies n1, n2, n3, n4, n5, n6, n1 is corresponded to
both of girth G(NTG) and neutrosophic girth Gn(NTG);

(v) 6 is girth and its corresponded set is only {n1, n2, n3, n4, n5, n6, n1};
(vi) 8.1 = O(NTG) is neutrosophic girth and its corresponded set is only

{n1, n2, n3, n4, n5, n6, n1}.

(b) In Figure (1.6), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
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for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. So adding points has to effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4, n5, n1 is a sequence of consecutive vertices, then it’s
obvious that there’s one cycle. It’s also a path and there are five
edges, n1n2, n2n3, n3n4, n4n5 and n5n1, according to corresponded
neutrosophic path and it isn’t neutrosophic cycle since it has only
one weakest edge, n1n2, with value (0.2, 0.5, 0.4) and not more.
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is not a neutrosophic cycle but it is a
crisp cycle. So adding vertices has effect on finding a crisp cycle.
There are only two paths amid two given vertices. The structure of
this neutrosophic path implies n1, n2, n3, n4, n5, n1 is corresponded
to both of girth G(NTG) and neutrosophic girth Gn(NTG);

(v) 5 is girth and its corresponded set is only {n1, n2, n3, n4, n5, n1};
(vi) 8.5 = O(NTG) is neutrosophic girth and its corresponded set is only

{n1, n2, n3, n4, n5, n1}.

Proposition 1.5.7. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph with
center c. Then

G(NTG) =∞.

Proof. Suppose NTG : (V,E, σ, µ) is a star-neutrosophic graph. Every vertex
isn’t a neighbor for every given vertex. Every vertex is a neighbor for center.
Furthermore, center is only neighbor for any given vertex. So center is only
neighbor for all vertices. It’s possible to have some paths amid two given vertices
but there’s no crisp cycle. In other words, if O(NTG) > 2, then there are at
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Figure 1.5: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG5

Figure 1.6: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG6

least three vertices x, y and z such that if x is a neighbor for y and z, then y
and z aren’t neighbors and x is center. To get more precise, if if x and y are
neighbors then either x or y is center. Every edge have one common endpoint
with other edges which is called center. Thus there is no triangle but there are
some edges. One edge has two endpoints which one of them is center. There
are no crisp cycle. Hence trying to find shortest cycle has no result. There is
no crisp cycle. Then there is shortest crisp cycle. So

G(NTG) =∞.

�

The clarifications about results are in progress as follows. A star-neutrosophic
graph is related to previous result and it’s studied to apply the definitions on it.
To make it more clear, next part gives one special case to apply definitions and
results on it. Some items are devised to make more sense about new notions. A
star-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it, too.

Example 1.5.8. There is one section for clarifications. In Figure (1.7), a star-
neutrosophic graph is illustrated. Some points are represented in follow-up
items as follows.
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(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a star and it’s only one edge but it is neither crisp
cycle nor neutrosophic cycle. The length of this star implies there’s no
cycle since if the length of a sequence of consecutive vertices is at most 2,
then it’s impossible to have cycle. So this neutrosophic star has neither a
neutrosophic cycle nor crisp cycle. The length of this star implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a star and there are two edges, n1n2 and
n1n3, according to corresponded neutrosophic star but it doesn’t have
neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic star has neither a neutrosophic cycle nor crisp cycle.
The structure of this neutrosophic star implies

n1, n2, n3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a star and there are three edges, n1n2, n1n3
and n1n4, according to corresponded neutrosophic star but it doesn’t have
neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic star has neither a neutrosophic cycle nor crisp cycle. So
adding vertices has no effect to find a crisp cycle. The structure of this
neutrosophic star implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a star and there are four edges,
n1n2, n1n3, n1n4 and n1n5, according to corresponded neutrosophic star
but it isn’t neutrosophic cycle. First step is to have at least one crisp
cycle for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic star has neither a neutrosophic cycle
nor crisp cycle. So adding vertices has no effect to find a crisp cycle.
There are some paths amid two given vertices. The structure of this
neutrosophic star implies

n1, n2, n3, n4, n5

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);
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Figure 1.7: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG7

(v) ∞ is girth and there is no corresponded set;

(vi) ∞ is neutrosophic girth and there is no corresponded set.

Proposition 1.5.9. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph. Then

G(NTG) = 4
where O(NTG) ≥ 4. And

G(NTG) =∞
where O(NTG) ≤ 3.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-bipartite-neutrosophic graph.
Every vertex is a neighbor for all vertices in another part. If O(NTG) ≤ 3,
then it’s neutrosophic path implying

G(NTG) =∞.

If O(NTG) ≥ 4, then it’s possible to have two vertices in every part. In this
case, four vertices form a crisp cycle which crisp cardinality of its vertices are
four. It’s impossible to have a crisp cycle which crisp cardinality of its vertices
are three. Since the sequence of consecutive vertices are x1, x2, x3 and there’s
no edge more. It implies there are two edges. It’s neutrosophic path but neither
crisp cycle nor neutrosophic cycle. So the first step of finding shortest crisp
cycle is impossible but in second step, there’s one crisp cycle corresponded to
number four. Thus

G(NTG) = 4
where O(NTG) ≥ 4. And

G(NTG) =∞
where O(NTG) ≤ 3. �

The clarifications about results are in progress as follows. A complete-
bipartite-neutrosophic graph is related to previous result and it’s studied to
apply the definitions on it. To make it more clear, next part gives one special
case to apply definitions and results on it. Some items are devised to make
more senses about new notions. A complete-bipartite-neutrosophic graph is
related to previous result and it’s studied to apply the definitions on it, too.
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Example 1.5.10. There is one section for clarifications. In Figure (1.8),
a complete-bipartite-neutrosophic graph is illustrated. Some points are
represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a complete-bipartite and it’s only one edge but it
is neither crisp cycle nor neutrosophic cycle. The length of this complete-
bipartite implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle. So
this neutrosophic complete-bipartite has neither a neutrosophic cycle nor
crisp cycle. The length of this complete-bipartite implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-bipartite and there are two
edges, n1n2 and n1n3, according to corresponded neutrosophic complete-
bipartite but it doesn’t have neutrosophic cycle. First step is to have
at least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-bipartite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-bipartite implies

n1, n2, n3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-bipartite and there are two
edges, n1n2 and n2n4, according to corresponded neutrosophic complete-
bipartite but it doesn’t have neutrosophic cycle. First step is to have
at least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-bipartite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-bipartite implies

n1, n2, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a complete-bipartite and there are four
edges, n1n2, n1n3, n2n4 and n3n4, according to corresponded neutrosophic
complete-bipartite and it has neutrosophic cycle where n2n4 and n3n4
are two weakest edge with same amount (0.3, 0.2, 0.3). First step is to
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Figure 1.8: A Neutrosophic Graph in the Viewpoint of Girth. 62NTG8

have at least one crisp cycle for finding shortest cycle. Finding shortest
cycle only has one result. Since there’s one cycle. Neutrosophic cycle
is a crisp cycle with at least two weakest edges. So this neutrosophic
complete-bipartite has both of a neutrosophic cycle and crisp cycle. So
adding vertices has some effects to find a crisp cycle. The structure of
this neutrosophic complete-bipartite implies

n1, n2, n3, n4

is corresponded to girth G(NTG) and uniqueness of this cycle implies the
sequence

n1, n2, n3, n4

is corresponded to neutrosophic girth Gn(NTG);

(v) 4 is girth and its corresponded sequence is n1, n2, n3, n4;

(vi) 5.8 is neutrosophic girth and its corresponded sequence is n1, n2, n3, n4.

Proposition 1.5.11. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph. Then

G(NTG) = 3

where t ≥ 3.
G(NTG) = 4

where t ≤ 2. And
G(NTG) =∞

where O(NTG) ≤ 2.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-t-partite-neutrosophic graph.
Every vertex is a neighbor for all vertices in another part. If O(NTG) ≤ 2,
then it’s neutrosophic path implying

G(NTG) =∞.
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If t ≥ 3,O(NTG) ≥ 3, then it has crisp cycle implying

G(NTG) = 3.

If t ≥ 2,O(NTG) ≥ 4, then it’s possible to have two vertices in every part. In
this case, four vertices form a crisp cycle which crisp cardinality of its vertices
are four. It’s impossible to have a crisp cycle which crisp cardinality of its
vertices are three. Since the sequence of consecutive vertices are x1, x2, x3 and
there’s no edge more. It implies there are two edges. It’s neutrosophic path but
neither crisp cycle nor neutrosophic cycle. So the first step of finding shortest
crisp cycle is impossible but in second step, there’s one crisp cycle corresponded
to number four. Thus

G(NTG) = 3

where t ≥ 3.
G(NTG) = 4

where t ≤ 2. And
G(NTG) =∞

where O(NTG) ≤ 2. �

The clarifications about results are in progress as follows. A complete-t-
partite-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case
to apply definitions and results on it. Some items are devised to make more
sense about new notions. A complete-t-partite-neutrosophic graph is related to
previous result and it’s studied to apply the definitions on it, too.

Example 1.5.12. There is one section for clarifications. In Figure (1.9), a
complete-t-partite-neutrosophic graph is illustrated. Some points are represented
in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a complete-t-partite and it’s only one edge
but it is neither crisp cycle nor neutrosophic cycle. The length of this
complete-t-partite implies there’s no cycle since if the length of a sequence
of consecutive vertices is at most 2, then it’s impossible to have cycle. So
this neutrosophic complete-t-partite has neither a neutrosophic cycle nor
crisp cycle. The length of this complete-t-partite implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-t-partite and there are two
edges, n1n2 and n1n3, according to corresponded neutrosophic complete-
t-partite but it doesn’t have neutrosophic cycle. First step is to have at
least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-t-partite
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has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-t-partite implies

n1, n2, n3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-t-partite and there are two
edges, n1n2 and n2n4, according to corresponded neutrosophic complete-
t-partite but it doesn’t have neutrosophic cycle. First step is to have at
least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-t-partite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-t-partite implies

n1, n2, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n4, n5 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a complete-t-partite and there are four
edges, n1n2, n1n5, n2n4 and n5n4, according to corresponded neutrosophic
complete-t-partite and it has neutrosophic cycle where n2n4 and n5n4
are two weakest edge with same amount (0.3, 0.2, 0.3). First step is to
have at least one crisp cycle for finding shortest cycle. Finding shortest
cycle only has one result. Since there’s one cycle. Neutrosophic cycle
is a crisp cycle with at least two weakest edges. So this neutrosophic
complete-t-partite has both of a neutrosophic cycle and crisp cycle. So
adding vertices has some effects to find a crisp cycle. The structure of
this neutrosophic complete-t-partite implies

n1, n2, n4, n5

is corresponded to girth G(NTG) and minimum neutrosophic cardinality
implies the sequence

n1, n2, n4, n5

is corresponded to neutrosophic girth Gn(NTG);

(v) 4 is girth and its corresponded sequence is n1, n2, n4, n5;

(vi) 5.7 is neutrosophic girth and its corresponded sequence is n1, n2, n4, n5.

Proposition 1.5.13. Let NTG : (V,E, σ, µ) be a wheel-neutrosophic graph.
Then

G(NTG) = 3
where t ≥ 3.

G(NTG) =∞
where t ≥ 2.
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Figure 1.9: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG9

Proof. SupposeNTG : (V,E, σ, µ) is a wheel-neutrosophic graph. The argument
is elementary. Since all vertices of a path join to one vertex. Thus

G(NTG) = 3

where t ≥ 3.
G(NTG) =∞

where t ≥ 2. �

The clarifications about results are in progress as follows. A complete-t-
partite-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case
to apply definitions and results on it. Some items are devised to make more
sense about new notions. A complete-t-partite-neutrosophic graph is related to
previous result and it’s studied to apply the definitions on it, too.

Example 1.5.14. There is one section for clarifications. In Figure (1.10), a
wheel-neutrosophic graph is illustrated. Some points are represented in follow-
up items as follows.

(i) If s1, s2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a wheel and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this wheel implies there’s
no cycle since if the length of a sequence of consecutive vertices is at
most 2, then it’s impossible to have cycle. So this neutrosophic wheel
has neither a neutrosophic cycle nor crisp cycle. The length of this wheel
implies

s1, s2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if s4, s2, s3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a wheel and there are two edges, s3s2 and
s4s3, according to corresponded neutrosophic wheel but it doesn’t have
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neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic wheel has neither a neutrosophic cycle nor crisp cycle.
The structure of this neutrosophic wheel implies

s4, s2, s3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if s1, s2, s3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a wheel and there are three edges,
s1s2, s2s3 and s1s3 according to corresponded neutrosophic wheel but it
doesn’t have neutrosophic cycle. First step is to have at least one crisp
cycle for finding shortest cycle. Finding shortest cycle has one result.
Since there’s one crisp cycle. Neutrosophic cycle is a crisp cycle with at
least two weakest edges. So this neutrosophic wheel has no neutrosophic
cycle but it has crisp cycle. The structure of this neutrosophic wheel
implies

s1, s2, s3

is corresponded to girth G(NTG) but minimum neutrosophic cardinality
implies

s1, s2, s3

isn’t corresponded to neutrosophic girth Gn(NTG);

(iv) if s1, s3, s4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a wheel and there are three edges,
s1s4, s4s3 and s1s3 according to corresponded neutrosophic wheel and it
has a neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has one result. Since
there’s one crisp cycle. Neutrosophic cycle is a crisp cycle with at least
two weakest edges. So this neutrosophic wheel has one neutrosophic cycle
with two weakest edges s1s4 and s3s4 concerning same values (0.1, 0.1, 0.5)
and it has a crisp cycle. The structure of this neutrosophic wheel implies

s1, s3, s4

is corresponded to girth G(NTG) and minimum neutrosophic cardinality
implies

s1, s3, s4

is corresponded to neutrosophic girth Gn(NTG);

(v) 3 is girth and its corresponded sequences are s1, s3, s4 and s1, s2, s3
alongside s1, s4, s5;

(vi) 3.8 is neutrosophic girth and its corresponded sequence is s1, s3, s4.
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Figure 1.10: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG10

1.6 Setting of Neutrosophic Girth

In this section, I provide some results in the setting of neutrosophic girth.
Some classes of neutrosophic graphs are chosen. Complete-neutrosophic graph,
path-neutrosophic graph, cycle-neutrosophic graph, star-neutrosophic graph,
bipartite-neutrosophic graph, and t-partite-neutrosophic graph, are both of
cases of study and classes which the results are about them.

Proposition 1.6.1. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. The
length of longest cycle is O(NTG). In other hand, there’s a cycle if and only if
O(NTG) ≥ 3. It’s complete. So there’s at least one neutrosophic cycle which
its length is O(NTG) = 3. By shortest cycle is on demand, the girth is three.
Thus

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.6.2. In Figure (1.11), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a path and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this path implies there’s
no cycle since if the length of a sequence of consecutive vertices is at most
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2, then it’s impossible to have cycle. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but it
isn’t neutrosophic cycle. The length of crisp cycle implies there’s one cycle
since if the length of a sequence of consecutive vertices is at most 3, then
it’s possible to have cycle but there aren’t two weakest edges which imply
there is no neutrosophic cycle. So this crisp cycle isn’t a neutrosophic
cycle but it’s crisp cycle. The crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth G(NTG) but neutrosophic length of this crisp
cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s two crisp cycles with length two and three. It’s also a path and
there are three edges but there are some crisp cycles but there are only
two neutrosophic cycles with length three, n1, n3, n4, and with length
four, n1, n2, n3, n4. The length of this sequence implies there are some
crisp cycles and there are two neutrosophic cycles since if the length of a
sequence of consecutive vertices is at most 4 and it’s crisp complete, then
it’s possible to have some crisp cycles and two neutrosophic cycles with
two different length three and four. So this neutrosophic path forms some
neutrosophic cycles and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but
it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive vertices is at
most 3, then it’s possible to have cycle but there are two weakest edges,
n3n4 and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to girth G(NTG) and neutrosophic length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth Gn(NTG);
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Figure 1.11: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG11

(v) 3 is girth and its corresponded sets are {n1, n2, n3}, {n1, n2, n4}, and
{n2, n3, n4};

(vi) 3.9 is neutrosophic girth and its corresponded set is {n1, n3, n4}.

Another class of neutrosophic graphs is addressed to path-neutrosophic
graph.

Proposition 1.6.3. Let NTG : (V,E, σ, µ) be a path-neutrosophic graph. Then

Gn(NTG) =∞.

Proof. Suppose NTG : (V,E, σ, µ) is a path-neutrosophic graph. There’s no
crisp cycle. If NTG : (V,E, σ, µ) isn’t a crisp cycle, then NTG : (V,E, σ, µ)
isn’t a neutrosophic cycle. There’s no cycle from every version. Let
x0, x1, · · · , xO(NTG) be a path-neutrosophic graph. Since x0, x1, · · · , xO(NTG)
is a sequence of consecutive vertices, there’s no repetition of vertices in this
sequence. So there’s no cycle. Girth is corresponded to shortest cycle but
there’s no cycle. Thus it implies

Gn(NTG) =∞.

�

Example 1.6.4. There are two sections for clarifications.

(a) In Figure (1.12), an odd-path-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);
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(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. So adding points has to effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are four
edges, n1n2, n2n3 and n4n5, according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding shortest cycle. Finding shortest cycle has
no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic path is either
a neutrosophic cycle nor crisp cycle. So adding vertices has to effect
to find a crisp cycle. There is only one path amid two given vertices.
The structure of this neutrosophic path implies

n1, n2, n3, n4, n5

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(v) ∞ is girth and there are no corresponded sets;
(vi) ∞ is neutrosophic girth and there are no corresponded sets.

(b) In Figure (1.13), an even-path-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
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it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. So adding points has to effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are four
edges, n1n2, n2n3 and n4n5, according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding shortest cycle. Finding shortest cycle has
no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic path is either
a neutrosophic cycle nor crisp cycle. So adding vertices has to effect
to find a crisp cycle. There is only one path amid two given vertices.
The structure of this neutrosophic path implies

n1, n2, n3, n4, n5

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);
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Figure 1.12: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG12

Figure 1.13: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG13

(v) ∞ is girth and there are no corresponded sets;
(vi) ∞ is neutrosophic girth and there are no corresponded sets.

Proposition 1.6.5. Let NTG : (V,E, σ, µ) be a cycle-neutrosophic graph where
O(NTG) ≥ 3. Then

Gn(NTG) = On(NTG).

Proof. Suppose NTG : (V,E, σ, µ) is a cycle-neutrosophic graph. Let
x1, x2, · · · , xO(NTG), x1 be a sequence of consecutive vertices of NTG :
(V,E, σ, µ) such that

xixi+1 ∈ E, i = 1, 2, · · · ,O(NTG)− 1, xO(NTG)x1 ∈ E.

There are two paths amid two given vertices. The degree of every vertex is two.
But there’s one crisp cycle for every given vertex. So the efforts leads to one
cycle for finding a shortest crisp cycle. For a given vertex xi, the sequence of
consecutive vertices

xi, xi+1, · · · , xi−2, xi−1, xi
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is a corresponded crisp cycle for xi. Every cycle has same length. The length is
O(NTG). Thus the crisp cardinality of set of vertices forming shortest crisp
cycle is O(NTG). It implies

Gn(NTG) = On(NTG).

�

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.6.6. There are two sections for clarifications.

(a) In Figure (1.14), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
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cycle nor crisp cycle. So adding points has to effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4, n5, n6, n1 is a sequence of consecutive vertices, then
it’s obvious that there’s one cycle. It’s also a path and there
are six edges, n1n2, n2n3, n3n4, n4n5, n5n6 and n6n1, according to
corresponded neutrosophic path and it’s neutrosophic cycle since it
has two weakest edges, n4n5 and n5n6 with same values (0.1, 0.1, 0.2).
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is both of a neutrosophic cycle and crisp
cycle. So adding vertices has effect on finding a crisp cycle. There
are only two paths amid two given vertices. The structure of this
neutrosophic path implies n1, n2, n3, n4, n5, n6, n1 is corresponded to
both of girth G(NTG) and neutrosophic girth Gn(NTG);

(v) 6 is girth and its corresponded set is only {n1, n2, n3, n4, n5, n6, n1};
(vi) 8.1 = O(NTG) is neutrosophic girth and its corresponded set is only

{n1, n2, n3, n4, n5, n6, n1}.

(b) In Figure (1.15), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);
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Figure 1.14: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG14

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. So adding points has to effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4, n5, n1 is a sequence of consecutive vertices, then it’s
obvious that there’s one cycle. It’s also a path and there are five
edges, n1n2, n2n3, n3n4, n4n5 and n5n1, according to corresponded
neutrosophic path and it isn’t neutrosophic cycle since it has only
one weakest edge, n1n2, with value (0.2, 0.5, 0.4) and not more.
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is not a neutrosophic cycle but it is a
crisp cycle. So adding vertices has effect on finding a crisp cycle.
There are only two paths amid two given vertices. The structure of
this neutrosophic path implies n1, n2, n3, n4, n5, n1 is corresponded
to both of girth G(NTG) and neutrosophic girth Gn(NTG);

(v) 5 is girth and its corresponded set is only {n1, n2, n3, n4, n5, n1};
(vi) 8.5 = O(NTG) is neutrosophic girth and its corresponded set is only

{n1, n2, n3, n4, n5, n1}.

Proposition 1.6.7. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph with
center c. Then

Gn(NTG) =∞.
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Figure 1.15: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG15

Proof. Suppose NTG : (V,E, σ, µ) is a star-neutrosophic graph. Every vertex
isn’t a neighbor for every given vertex. Every vertex is a neighbor for center.
Furthermore, center is only neighbor for any given vertex. So center is only
neighbor for all vertices. It’s possible to have some paths amid two given vertices
but there’s no crisp cycle. In other words, if O(NTG) > 2, then there are at
least three vertices x, y and z such that if x is a neighbor for y and z, then y
and z aren’t neighbors and x is center. To get more precise, if if x and y are
neighbors then either x or y is center. Every edge have one common endpoint
with other edges which is called center. Thus there is no triangle but there are
some edges. One edge has two endpoints which one of them is center. There
are no crisp cycle. Hence trying to find shortest cycle has no result. There is
no crisp cycle. Then there is shortest crisp cycle. So

Gn(NTG) =∞.

�

The clarifications about results are in progress as follows. A star-neutrosophic
graph is related to previous result and it’s studied to apply the definitions on it.
To make it more clear, next part gives one special case to apply definitions and
results on it. Some items are devised to make more sense about new notions. A
star-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it, too.

Example 1.6.8. There is one section for clarifications. In Figure (1.16), a star-
neutrosophic graph is illustrated. Some points are represented in follow-up
items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a star and it’s only one edge but it is neither crisp
cycle nor neutrosophic cycle. The length of this star implies there’s no
cycle since if the length of a sequence of consecutive vertices is at most 2,
then it’s impossible to have cycle. So this neutrosophic star has neither a
neutrosophic cycle nor crisp cycle. The length of this star implies

n1, n2
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is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a star and there are two edges, n1n2 and
n1n3, according to corresponded neutrosophic star but it doesn’t have
neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic star has neither a neutrosophic cycle nor crisp cycle.
The structure of this neutrosophic star implies

n1, n2, n3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a star and there are three edges, n1n2, n1n3
and n1n4, according to corresponded neutrosophic star but it doesn’t have
neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic star has neither a neutrosophic cycle nor crisp cycle. So
adding vertices has no effect to find a crisp cycle. The structure of this
neutrosophic star implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a star and there are four edges,
n1n2, n1n3, n1n4 and n1n5, according to corresponded neutrosophic star
but it isn’t neutrosophic cycle. First step is to have at least one crisp
cycle for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic star has neither a neutrosophic cycle
nor crisp cycle. So adding vertices has no effect to find a crisp cycle.
There are some paths amid two given vertices. The structure of this
neutrosophic star implies

n1, n2, n3, n4, n5

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(v) ∞ is girth and there is no corresponded set;

(vi) ∞ is neutrosophic girth and there is no corresponded set.
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Figure 1.16: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG16

Proposition 1.6.9. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph. Then

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z) + σi(w))}x,y∈V1, z,w∈V2 .

where O(NTG) ≥ 4 and min{|V1|, |V2|} ≥ 2. Also,

Gn(NTG) =∞

where O(NTG) ≤ 3.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-bipartite-neutrosophic graph.
Every vertex is a neighbor for all vertices in another part. If O(NTG) ≤ 3,
then it’s neutrosophic path implying

Gn(NTG) =∞.

If O(NTG) ≥ 4, then it’s possible to have two vertices in every part. In this
case, four vertices form a crisp cycle which crisp cardinality of its vertices are
four. It’s impossible to have a crisp cycle which crisp cardinality of its vertices
are three. Since the sequence of consecutive vertices are x1, x2, x3 and there’s
no edge more. It implies there are two edges. It’s neutrosophic path but neither
crisp cycle nor neutrosophic cycle. So the first step of finding shortest crisp
cycle is impossible but in second step, there’s one crisp cycle corresponded to
number four. Thus

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z) + σi(w))}x,y∈V1, z,w∈V2 .

where O(NTG) ≥ 4 and min{|V1|, |V2|} ≥ 2. Also,

Gn(NTG) =∞

where O(NTG) ≤ 3. �

The clarifications about results are in progress as follows. A complete-
bipartite-neutrosophic graph is related to previous result and it’s studied to
apply the definitions on it. To make it more clear, next part gives one special
case to apply definitions and results on it. Some items are devised to make
more senses about new notions. A complete-bipartite-neutrosophic graph is
related to previous result and it’s studied to apply the definitions on it, too.
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Example 1.6.10. There is one section for clarifications. In Figure (1.17),
a complete-bipartite-neutrosophic graph is illustrated. Some points are
represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a complete-bipartite and it’s only one edge but it
is neither crisp cycle nor neutrosophic cycle. The length of this complete-
bipartite implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle. So
this neutrosophic complete-bipartite has neither a neutrosophic cycle nor
crisp cycle. The length of this complete-bipartite implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-bipartite and there are two
edges, n1n2 and n1n3, according to corresponded neutrosophic complete-
bipartite but it doesn’t have neutrosophic cycle. First step is to have
at least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-bipartite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-bipartite implies

n1, n2, n3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-bipartite and there are two
edges, n1n2 and n2n4, according to corresponded neutrosophic complete-
bipartite but it doesn’t have neutrosophic cycle. First step is to have
at least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-bipartite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-bipartite implies

n1, n2, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a complete-bipartite and there are four
edges, n1n2, n1n3, n2n4 and n3n4, according to corresponded neutrosophic
complete-bipartite and it has neutrosophic cycle where n2n4 and n3n4
are two weakest edge with same amount (0.3, 0.2, 0.3). First step is to
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Figure 1.17: A Neutrosophic Graph in the Viewpoint of Girth. 62NTG17

have at least one crisp cycle for finding shortest cycle. Finding shortest
cycle only has one result. Since there’s one cycle. Neutrosophic cycle
is a crisp cycle with at least two weakest edges. So this neutrosophic
complete-bipartite has both of a neutrosophic cycle and crisp cycle. So
adding vertices has some effects to find a crisp cycle. The structure of
this neutrosophic complete-bipartite implies

n1, n2, n3, n4

is corresponded to girth G(NTG) and uniqueness of this cycle implies the
sequence

n1, n2, n3, n4

is corresponded to neutrosophic girth Gn(NTG);

(v) 4 is girth and its corresponded sequence is n1, n2, n3, n4;

(vi) 5.8 is neutrosophic girth and its corresponded sequence is n1, n2, n3, n4.

Proposition 1.6.11. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph. Then

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}x∈V1, y∈V2, z∈V3 .

where t ≥ 3.

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z) + σi(w))}x,y∈V1, z,w∈V2 .

where t ≤ 2. And
Gn(NTG) =∞

where O(NTG) ≤ 2.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-t-partite-neutrosophic graph.
Every vertex is a neighbor for all vertices in another part. If O(NTG) ≤ 2,
then it’s neutrosophic path implying

Gn(NTG) =∞.
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If t ≥ 3,O(NTG) ≥ 3, then it has crisp cycle implying

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}x∈V1, y∈V2, z∈V3 .

If t ≥ 2,O(NTG) ≥ 4, then it’s possible to have two vertices in every part. In
this case, four vertices form a crisp cycle which crisp cardinality of its vertices
are four. It’s impossible to have a crisp cycle which crisp cardinality of its
vertices are three. Since the sequence of consecutive vertices are x1, x2, x3 and
there’s no edge more. It implies there are two edges. It’s neutrosophic path but
neither crisp cycle nor neutrosophic cycle. So the first step of finding shortest
crisp cycle is impossible but in second step, there’s one crisp cycle corresponded
to number four. Thus

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}x∈V1, y∈V2, z∈V3 .

where t ≥ 3.

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z) + σi(w))}x,y∈V1, z,w∈V2 .

where t ≤ 2. And
Gn(NTG) =∞

where O(NTG) ≤ 2. �

The clarifications about results are in progress as follows. A complete-t-
partite-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case
to apply definitions and results on it. Some items are devised to make more
sense about new notions. A complete-t-partite-neutrosophic graph is related to
previous result and it’s studied to apply the definitions on it, too.

Example 1.6.12. There is one section for clarifications. In Figure (1.18), a
complete-t-partite-neutrosophic graph is illustrated. Some points are represented
in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a complete-t-partite and it’s only one edge
but it is neither crisp cycle nor neutrosophic cycle. The length of this
complete-t-partite implies there’s no cycle since if the length of a sequence
of consecutive vertices is at most 2, then it’s impossible to have cycle. So
this neutrosophic complete-t-partite has neither a neutrosophic cycle nor
crisp cycle. The length of this complete-t-partite implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-t-partite and there are two
edges, n1n2 and n1n3, according to corresponded neutrosophic complete-
t-partite but it doesn’t have neutrosophic cycle. First step is to have at
least one crisp cycle for finding shortest cycle. Finding shortest cycle
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has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-t-partite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-t-partite implies

n1, n2, n3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-t-partite and there are two
edges, n1n2 and n2n4, according to corresponded neutrosophic complete-
t-partite but it doesn’t have neutrosophic cycle. First step is to have at
least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-t-partite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-t-partite implies

n1, n2, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n4, n5 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a complete-t-partite and there are four
edges, n1n2, n1n5, n2n4 and n5n4, according to corresponded neutrosophic
complete-t-partite and it has neutrosophic cycle where n2n4 and n5n4
are two weakest edge with same amount (0.3, 0.2, 0.3). First step is to
have at least one crisp cycle for finding shortest cycle. Finding shortest
cycle only has one result. Since there’s one cycle. Neutrosophic cycle
is a crisp cycle with at least two weakest edges. So this neutrosophic
complete-t-partite has both of a neutrosophic cycle and crisp cycle. So
adding vertices has some effects to find a crisp cycle. The structure of
this neutrosophic complete-t-partite implies

n1, n2, n4, n5

is corresponded to girth G(NTG) and minimum neutrosophic cardinality
implies the sequence

n1, n2, n4, n5

is corresponded to neutrosophic girth Gn(NTG);

(v) 4 is girth and its corresponded sequence is n1, n2, n4, n5;

(vi) 5.7 is neutrosophic girth and its corresponded sequence is n1, n2, n4, n5.

Proposition 1.6.13. Let NTG : (V,E, σ, µ) be a wheel-neutrosophic graph.
Then

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}xy,xz,zy∈E .
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Figure 1.18: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG18

where t ≥ 3.
Gn(NTG) =∞

where t ≥ 2.

Proof. SupposeNTG : (V,E, σ, µ) is a wheel-neutrosophic graph. The argument
is elementary. Since all vertices of a path join to one vertex. Thus

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}xy,xz,zy∈E .

where t ≥ 3.
Gn(NTG) =∞

where t ≥ 2. �

The clarifications about results are in progress as follows. A wheel-
neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A wheel-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.6.14. There is one section for clarifications. In Figure (1.19), a
wheel-neutrosophic graph is illustrated. Some points are represented in follow-
up items as follows.

(i) If s1, s2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a wheel and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this wheel implies there’s
no cycle since if the length of a sequence of consecutive vertices is at
most 2, then it’s impossible to have cycle. So this neutrosophic wheel
has neither a neutrosophic cycle nor crisp cycle. The length of this wheel
implies

s1, s2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);
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(ii) if s4, s2, s3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a wheel and there are two edges, s3s2 and
s4s3, according to corresponded neutrosophic wheel but it doesn’t have
neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic wheel has neither a neutrosophic cycle nor crisp cycle.
The structure of this neutrosophic wheel implies

s4, s2, s3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if s1, s2, s3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a wheel and there are three edges,
s1s2, s2s3 and s1s3 according to corresponded neutrosophic wheel but it
doesn’t have neutrosophic cycle. First step is to have at least one crisp
cycle for finding shortest cycle. Finding shortest cycle has one result.
Since there’s one crisp cycle. Neutrosophic cycle is a crisp cycle with at
least two weakest edges. So this neutrosophic wheel has no neutrosophic
cycle but it has crisp cycle. The structure of this neutrosophic wheel
implies

s1, s2, s3

is corresponded to girth G(NTG) but minimum neutrosophic cardinality
implies

s1, s2, s3

isn’t corresponded to neutrosophic girth Gn(NTG);

(iv) if s1, s3, s4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a wheel and there are three edges,
s1s4, s4s3 and s1s3 according to corresponded neutrosophic wheel and it
has a neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has one result. Since
there’s one crisp cycle. Neutrosophic cycle is a crisp cycle with at least
two weakest edges. So this neutrosophic wheel has one neutrosophic cycle
with two weakest edges s1s4 and s3s4 concerning same values (0.1, 0.1, 0.5)
and it has a crisp cycle. The structure of this neutrosophic wheel implies

s1, s3, s4

is corresponded to girth G(NTG) and minimum neutrosophic cardinality
implies

s1, s3, s4

is corresponded to neutrosophic girth Gn(NTG);

(v) 3 is girth and its corresponded sequences are s1, s3, s4 and s1, s2, s3
alongside s1, s4, s5;

(vi) 3.8 is neutrosophic girth and its corresponded sequence is s1, s3, s4.
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Figure 1.19: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG19

1.7 Applications in Time Table and Scheduling

In this section, two applications for time table and scheduling are provided where
the models are either complete models which mean complete connections are
formed as individual and family of complete models with common neutrosophic
vertex set or quasi-complete models which mean quasi-complete connections
are formed as individual and family of quasi-complete models with common
neutrosophic vertex set.
Designing the programs to achieve some goals is general approach to apply on
some issues to function properly. Separation has key role in the context of this
style. Separating the duration of work which are consecutive, is the matter and
it has importance to avoid mixing up.

Step 1. (Definition) Time table is an approach to get some attributes to do
the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid
consecutive sections. Beyond that, sometimes sections are not the same.

Step 3. (Model) The situation is designed as a model. The model uses data to
assign every section and to assign to relation amid sections, three numbers
belong unit interval to state indeterminacy, possibilities and determinacy.
There’s one restriction in that, the numbers amid two sections are at least
the number of the relations amid them. Table (1.1), clarifies about the
assigned numbers to these situations.

Table 1.1: Scheduling concerns its Subjects and its Connections as a neutrosophic
graph in a Model. 62tbl1

Sections of NTG n1 n2· · · n5
Values (0.7, 0.9, 0.3) (0.4, 0.2, 0.8)· · · (0.4, 0.2, 0.8)

Connections of NTG E1 E2· · · E6
Values (0.4, 0.2, 0.3) (0.5, 0.2, 0.3)· · · (0.3, 0.2, 0.3)
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1.8. Case 1: Complete-t-partite Model alongside its Girth and its
Neutrosophic Girth

Figure 1.20: A Neutrosophic Graph in the Viewpoint of its Girth and its
Neutrosophic Girth 62NTG20

1.8 Case 1: Complete-t-partite Model alongside its
Girth and its Neutrosophic Girth

Step 4. (Solution) The neutrosophic graph alongside its girth and its neutro-
sophic girth as model, propose to use specific number. Every subject has
connection with some subjects. Thus the connection is applied as pos-
sible and the model demonstrates quasi-full connections as quasi-possible.
Using the notion of strong on the connection amid subjects, causes the
importance of subject goes in the highest level such that the value amid
two consecutive subjects, is determined by those subjects. If the config-
uration is star, the number is different. Also, it holds for other types
such that complete, wheel, path, and cycle. The collection of situations is
another application of its girth and its neutrosophic girth when the notion
of family is applied in the way that all members of family are from same
classes of neutrosophic graphs. As follows, There are five subjects which
are represented as Figure (1.20). This model is strong and even more it’s
quasi-complete. And the study proposes using specific number which is
called its girth and its neutrosophic girth. There are also some analyses
on other numbers in the way that, the clarification is gained about being
special number or not. Also, in the last part, there is one neutrosophic
number to assign to this model and situation to compare them with same
situations to get more precise. Consider Figure (1.20). In Figure (1.20),
an complete-t-partite-neutrosophic graph is illustrated. Some points are
represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a complete-t-partite and it’s only
one edge but it is neither crisp cycle nor neutrosophic cycle. The
length of this complete-t-partite implies there’s no cycle since if the
length of a sequence of consecutive vertices is at most 2, then it’s
impossible to have cycle. So this neutrosophic complete-t-partite
has neither a neutrosophic cycle nor crisp cycle. The length of this
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complete-t-partite implies
n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a complete-t-partite and there are
two edges, n1n2 and n1n3, according to corresponded neutrosophic
complete-t-partite but it doesn’t have neutrosophic cycle. First step
is to have at least one crisp cycle for finding shortest cycle. Finding
shortest cycle has no result. Since there’s no cycle. Neutrosophic
cycle is a crisp cycle with at least two weakest edges. So this
neutrosophic complete-t-partite has neither a neutrosophic cycle nor
crisp cycle. The structure of this neutrosophic complete-t-partite
implies

n1, n2, n3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a complete-t-partite and there are
two edges, n1n2 and n2n4, according to corresponded neutrosophic
complete-t-partite but it doesn’t have neutrosophic cycle. First step
is to have at least one crisp cycle for finding shortest cycle. Finding
shortest cycle has no result. Since there’s no cycle. Neutrosophic
cycle is a crisp cycle with at least two weakest edges. So this
neutrosophic complete-t-partite has neither a neutrosophic cycle nor
crisp cycle. The structure of this neutrosophic complete-t-partite
implies

n1, n2, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n4, n5 is a sequence of consecutive vertices, then it’s obvious
that there’s one crisp cycle. It’s also a complete-t-partite and there
are four edges, n1n2, n1n5, n2n4 and n5n4, according to corresponded
neutrosophic complete-t-partite and it has neutrosophic cycle where
n2n4 and n5n4 are two weakest edge with same amount (0.3, 0.2, 0.3).
First step is to have at least one crisp cycle for finding shortest cycle.
Finding shortest cycle only has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic complete-t-partite has both of a neutrosophic
cycle and crisp cycle. So adding vertices has some effects to find a
crisp cycle. The structure of this neutrosophic complete-t-partite
implies

n1, n2, n4, n5

is corresponded to girth G(NTG) and minimum neutrosophic
cardinality implies the sequence

n1, n2, n4, n5

is corresponded to neutrosophic girth Gn(NTG);
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Viewpoint of its Girth and its Neutrosophic Girth

Figure 1.21: A Neutrosophic Graph in the Viewpoint of its Girth and its
Neutrosophic Girth 62NTG21

(v) 4 is girth and its corresponded sequence is n1, n2, n4, n5;
(vi) 5.7 is neutrosophic girth and its corresponded sequence is

n1, n2, n4, n5.

1.9 Case 2: Complete Model alongside its A
Neutrosophic Graph in the Viewpoint of its Girth and its
Neutrosophic Girth

Step 4. (Solution) The neutrosophic graph alongside its girth and its neutro-
sophic girth as model, propose to use specific number. Every subject has
connection with every given subject in deemed way. Thus the connection
applied as possible and the model demonstrates full connections as pos-
sible between parts but with different view where symmetry amid vertices
and edges are the matters. Using the notion of strong on the connection
amid subjects, causes the importance of subject goes in the highest level
such that the value amid two consecutive subjects, is determined by those
subjects. If the configuration is complete multipartite, the number is
different. Also, it holds for other types such that star, wheel, path, and
cycle. The collection of situations is another application of its girth and
its neutrosophic girth when the notion of family is applied in the way that
all members of family are from same classes of neutrosophic graphs. As
follows, There are four subjects which are represented in the formation
of one model as Figure (1.21). This model is neutrosophic strong as
individual and even more it’s complete. And the study proposes using
specific number which is called its girth and its neutrosophic girth for this
model. There are also some analyses on other numbers in the way that,
the clarification is gained about being special number or not. Also, in the
last part, there is one neutrosophic number to assign to these models as
individual. A model as a collection of situations to compare them with
another model as a collection of situations to get more precise. Consider
Figure (1.21). There is one section for clarifications.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
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path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s one crisp cycle. It’s also a path and there are three edges
but it isn’t neutrosophic cycle. The length of crisp cycle implies
there’s one cycle since if the length of a sequence of consecutive
vertices is at most 3, then it’s possible to have cycle but there aren’t
two weakest edges which imply there is no neutrosophic cycle. So
this crisp cycle isn’t a neutrosophic cycle but it’s crisp cycle. The
crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth G(NTG) but neutrosophic length of this
crisp cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth Gn(NTG);
(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious

that there’s two crisp cycles with length two and three. It’s also a
path and there are three edges but there are some crisp cycles but
there are only two neutrosophic cycles with length three, n1, n3, n4,
and with length four, n1, n2, n3, n4. The length of this sequence
implies there are some crisp cycles and there are two neutrosophic
cycles since if the length of a sequence of consecutive vertices is at
most 4 and it’s crisp complete, then it’s possible to have some crisp
cycles and two neutrosophic cycles with two different length three
and four. So this neutrosophic path forms some neutrosophic cycles
and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s one crisp cycle. It’s also a path and there are three edges
but it is also neutrosophic cycle. The length of crisp cycle implies
there’s one cycle since if the length of a sequence of consecutive
vertices is at most 3, then it’s possible to have cycle but there
are two weakest edges, n3n4 and n1n4, which imply there is one
neutrosophic cycle. So this crisp cycle is a neutrosophic cycle and
it’s crisp cycle. The crisp length of this neutrosophic cycle implies

n1, n3, n4
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is corresponded to girth G(NTG) and neutrosophic length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth Gn(NTG);
(v) 3 is girth and its corresponded sets are {n1, n2, n3}, {n1, n2, n4}, and
{n2, n3, n4};

(vi) 3.9 is neutrosophic girth and its corresponded set is {n1, n3, n4}.

1.10 Open Problems

In this section, some questions and problems are proposed to give some avenues
to pursue this study. The structures of the definitions and results give some
ideas to make new settings which are eligible to extend and to create new study.
Notion concerning its girth and its neutrosophic girth are defined in neutrosophic
graphs. Neutrosophic number is also reused. Thus,

Question 1.10.1. Is it possible to use other types of its girth and its neutrosophic
girth?

Question 1.10.2. Are existed some connections amid different types of its girth
and its neutrosophic girth in neutrosophic graphs?

Question 1.10.3. Is it possible to construct some classes of neutrosophic graphs
which have “nice” behavior?

Question 1.10.4. Which mathematical notions do make an independent study
to apply these types in neutrosophic graphs?

Problem 1.10.5. Which parameters are related to this parameter?

Problem 1.10.6. Which approaches do work to construct applications to create
independent study?

Problem 1.10.7. Which approaches do work to construct definitions which use
all definitions and the relations amid them instead of separate definitions to
create independent study?

1.11 Conclusion and Closing Remarks

In this section, concluding remarks and closing remarks are represented. The
drawbacks of this article are illustrated. Some benefits and advantages of this
study are highlighted.
This study uses two definitions concerning girth and neutrosophic girth arising
from shortest cycles to study neutrosophic graphs. New neutrosophic number
is reused which is too close to the notion of neutrosophic number but it’s
different since it uses all values as type-summation on them. Comparisons amid
number, corresponded vertices and edges are done by using neutrosophic tool.
The connections of vertices which aren’t clarified by a cycle differ them from
each other and put them in different categories to represent a number which is
called girth and neutrosophic girth arising from shortest cycles. Further studies
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Table 1.2: A Brief Overview about Advantages and Limitations of this Study 62tbl2

Advantages Limitations
1. Neutrosophic Girth 1. Connections amid Classes

2. Girth

3. Neutrosophic Number 2. Study on Families

4. Classes of Neutrosophic Graphs

5. Shortest Cycles 3. Same Models in Family

could be about changes in the settings to compare these notions amid different
settings of neutrosophic graphs theory. One way is finding some relations amid
all definitions of notions to make sensible definitions. In Table (1.2), some
limitations and advantages of this study are pointed out.
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CHAPTER 2

Neutrosophic Girth Based On
Neutrosophic Cycle in
Neutrosophic Graphs

The following sections are cited as [Ref2] which is my 63rd manuscript and I
use prefix 63 as number before any labelling for items.

2.1 Finding Shortest Sequences of Consecutive Vertices
in Neutrosophic Graphs

2.2 Abstract

New setting is introduced to study girth and neutrosophic girth arising from
shortest neutrosophic cycles. Forming neutrosophic cycles from a sequence of
consecutive vertices is key type of approach to have these notions namely girth
and neutrosophic girth arising from shortest neutrosophic cycles. Two numbers
are obtained but now both settings leads to approach is on demand which
is finding minimum cardinality and minimum neutrosophic cardinality in the
terms of vertices, which have edges which form a shortest neutrosophic cycle.
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then Girth G(NTG) for a
neutrosophic graph NTG : (V,E, σ, µ) is minimum crisp cardinality of vertices
forming shortest neutrosophic cycle. If there isn’t, then girth is∞; neutrosophic
girth Gn(NTG) for a neutrosophic graph NTG : (V,E, σ, µ) is minimum
neutrosophic cardinality of vertices forming shortest neutrosophic cycle. If
there isn’t, then girth is ∞. As concluding results, there are some statements,
remarks, examples and clarifications about some classes of strong neutrosophic
graphs namely strong-path-neutrosophic graphs, strong-cycle-neutrosophic
graphs, complete-neutrosophic graphs, strong-star-neutrosophic graphs, strong-
complete-bipartite-neutrosophic graphs, strong-complete-t-partite-neutrosophic
graphs and strong-wheel-neutrosophic graphs. The clarifications are also
presented in both sections “Setting of Girth,” and “Setting of Neutrosophic
Girth,” for introduced results and used classes. Neutrosophic number is reused
in this way. It’s applied to use the type of neutrosophic number in the way
that, three values of a vertex are used and they’ve same share to construct
this number to compare with other vertices. Summation of three values of
vertex makes one number and applying it to a comparison. This approach
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facilitates identifying vertices which form girth and neutrosophic girth arising
from shortest neutrosophic cycles. In both settings, some classes of well-known
strong neutrosophic graphs are studied. Some clarifications for each result and
each definition are provided. The cardinality of a set has eligibility to girth but
the neutrosophic cardinality of a set has eligibility to call neutrosophic girth.
Some results get more frameworks and perspective about these definitions. The
way in that, a sequence of consecutive vertices forming a neutrosophic cycle,
opens the way to do some approaches. These notions are applied into strong
neutrosophic graphs as individuals but not family of them as drawbacks for
these notions. Finding special strong neutrosophic graphs which are well-known,
is an open way to pursue this study. Some problems are proposed to pursue
this study. Basic familiarities with graph theory and neutrosophic graph theory
are proposed for this article.
Keywords: Girth, Neutrosophic Girth, Shortest Neutrosophic Cycle

AMS Subject Classification: 05C17, 05C22, 05E45

2.3 Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 2.3.1. Is it possible to use mixed versions of ideas concerning
“Neutrosophic Girth”, “Girth” and “Strong Neutrosophic Graph” to define some
notions which are applied to neutrosophic graphs?

It’s motivation to find notions to use in any classes of strong neutrosophic
graphs. Real-world applications about time table and scheduling are another
thoughts which lead to be considered as motivation. Lack of connection
amid two edges have key roles to assign girth and neutrosophic girth arising
from neutrosophic shortest cycles. Thus they’re used to define new ideas
which conclude to the structure of girth and neutrosophic girth arising
from neutrosophic shortest cycles. The concept of having common shortest
neutrosophic cycle inspires us to study the behavior of vertices in the way that,
some types of numbers, girth and neutrosophic girth arising from neutrosophic
shortest cycles are the cases of study in the setting of individuals. In both
settings, a corresponded number concludes the discussion. Also, there are some
avenues to extend these notions.
The framework of this study is as follows. In the beginning, I introduce basic
definitions to clarify about preliminaries. In subsection “Preliminaries”, new
notions of girth and neutrosophic girth arising from neutrosophic shortest
cycles, are highlighted, are introduced and are clarified as individuals. In
section “Preliminaries”, sequence of consecutive vertices forming neutrosophic
cycles have the key role in this way. General results are obtained and also, the
results about the basic notions of girth and neutrosophic girth arising from
shortest neutrosophic cycles, are elicited. Some classes of strong neutrosophic
graphs are studied in the terms of girth arising from shortest neutrosophic cycles,
in section “Setting of Girth,” as individuals. In section “Setting of Girth,” girth
is applied into individuals. As concluding results, there are some statements,
remarks, examples and clarifications about some classes of strong neutrosophic
graphs namely strong-path-neutrosophic graphs, strong-cycle-neutrosophic
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graphs, complete-neutrosophic graphs, strong-star-neutrosophic graphs, strong-
complete-bipartite-neutrosophic graphs, strong-complete-t-partite-neutrosophic
graphs and strong-wheel-neutrosophic graphs. The clarifications are also
presented in both sections “Setting of Girth,” and “Setting of Neutrosophic
Girth,” for introduced results and used classes. In section “Applications in
Time Table and Scheduling”, two applications are posed for quasi-complete and
complete notions, namely complete-t-neutrosophic graphs and strong-complete-
neutrosophic graphs concerning time table and scheduling when the suspicions
are about choosing some subjects and the mentioned models are considered as
individual. In section “Open Problems”, some problems and questions for further
studies are proposed. In section “Conclusion and Closing Remarks”, gentle
discussion about results and applications is featured. In section “Conclusion
and Closing Remarks”, a brief overview concerning advantages and limitations
of this study alongside conclusions is formed.

2.4 Preliminaries

In this subsection, basic material which is used in this article, is presented.
Also, new ideas and their clarifications are elicited.
Basic idea is about the model which is used. First definition introduces basic
model.

Definition 2.4.1. (Graph).
G = (V,E) is called a graph if V is a set of objects and E is a subset of V × V
(E is a set of 2-subsets of V ) where V is called vertex set and E is called
edge set. Every two vertices have been corresponded to at most one edge.

Neutrosophic graph is the foundation of results in this paper which is defined
as follows. Also, some related notions are demonstrated.

Definition 2.4.2. (Neutrosophic Graph And Its Special Case).
NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) is called a neutrosophic
graph if it’s graph, σi : V → [0, 1], and µi : E → [0, 1]. We add one condition
on it and we use special case of neutrosophic graph but with same name. The
added condition is as follows, for every vivj ∈ E,

µ(vivj) ≤ σ(vi) ∧ σ(vj).

(i) : σ is called neutrosophic vertex set.

(ii) : µ is called neutrosophic edge set.

(iii) : |V | is called order of NTG and it’s denoted by O(NTG).

(iv) :
∑
v∈V σ(v) is called neutrosophic order of NTG and it’s denoted by

On(NTG).

(v) : |E| is called size of NTG and it’s denoted by S(NTG).

(vi) :
∑
e∈E

∑3
i=1 µi(e) is called neutrosophic size of NTG and it’s denoted

by Sn(NTG).
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Some classes of well-known neutrosophic graphs are defined. These classes
of neutrosophic graphs are used to form this study and the most results are
about them.

Definition 2.4.3. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) : a sequence of vertices P : x0, x1, · · · , xO is called path where xixi+1 ∈
E, i = 0, 1, · · · , n− 1;

(ii) : strength of path P : x0, x1, · · · , xO is
∧
i=0,··· ,n−1 µ(xixi+1);

(iii) : connectedness amid vertices x0 and xt is

µ∞(x0, xt) =
∨

P :x0,x1,··· ,xt

∧
i=0,··· ,t−1

µ(xixi+1);

(iv) : a sequence of vertices P : x0, x1, · · · , xO is called cycle where xixi+1 ∈
E, i = 0, 1, · · · , n − 1 and there are two edges xy and uv such that
µ(xy) = µ(uv) =

∧
i=0,1,··· ,n−1 µ(vivi+1);

(v) : it’s t-partite where V is partitioned to t parts, V s1
1 , V s2

2 , · · · , V st
t and

the edge xy implies x ∈ V si
i and y ∈ V sj

j where i 6= j. If it’s complete,
then it’s denoted by Kσ1,σ2,··· ,σt

where σi is σ on V si
i instead V which

mean x 6∈ Vi induces σi(x) = 0. Also, |V si
j | = si;

(vi) : t-partite is complete bipartite if t = 2, and it’s denoted by Kσ1,σ2 ;

(vii) : complete bipartite is star if |V1| = 1, and it’s denoted by S1,σ2 ;

(viii) : a vertex in V is center if the vertex joins to all vertices of a cycle. Then
it’s wheel and it’s denoted by W1,σ2 ;

(ix) : it’s complete where ∀uv ∈ V, µ(uv) = σ(u) ∧ σ(v);

(x) : it’s strong where ∀uv ∈ E, µ(uv) = σ(u) ∧ σ(v).

Definition 2.4.4. (Girth and Neutrosophic Girth).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) Girth G(NTG) for a neutrosophic graph NTG : (V,E, σ, µ) is minimum
crisp cardinality of vertices forming shortest neutrosophic cycle. If there
isn’t, then girth is ∞;

(ii) neutrosophic girth Gn(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is minimum neutrosophic cardinality of vertices forming
shortest neutrosophic cycle. If there isn’t, then girth is ∞.

63thm Theorem 2.4.5. Let NTG : (V,E, σ, µ) be a neutrosophic graph. If NTG :
(V,E, σ, µ) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CY C, such that σ(u) = min σ(x)x∈V (CY C). u has two
neighbors y, z in CY C. Since NTG is strong, µ(uy) = µ(uz) = σ(u). It implies
there are two weakest edges in CY C. It means CY C is neutrosophic cycle. �
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For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.
In next part, clarifications about main definition are given. To avoid confusion
and for convenient usages, examples are usually used after every part and names
are used in the way that, abbreviation, simplicity, and summarization are the
matters of mind.

Example 2.4.6. In Figure (2.1), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a path and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this path implies there’s
no cycle since if the length of a sequence of consecutive vertices is at most
2, then it’s impossible to have cycle. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but it
isn’t neutrosophic cycle. The length of crisp cycle implies there’s one cycle
since if the length of a sequence of consecutive vertices is at most 3, then
it’s possible to have cycle but there aren’t two weakest edges which imply
there is no neutrosophic cycle. So this crisp cycle isn’t a neutrosophic
cycle but it’s crisp cycle. The crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth G(NTG) but neutrosophic length of this crisp
cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s two crisp cycles with length two and three. It’s also a path and
there are three edges but there are some crisp cycles but there are only
two neutrosophic cycles with length three, n1, n3, n4, and with length
four, n1, n2, n3, n4. The length of this sequence implies there are some
crisp cycles and there are two neutrosophic cycles since if the length of a
sequence of consecutive vertices is at most 4 and it’s crisp complete, then
it’s possible to have some crisp cycles and two neutrosophic cycles with
two different length three and four. So this neutrosophic path forms some
neutrosophic cycles and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);
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Figure 2.1: A Neutrosophic Graph in the Viewpoint of its Girth and its
Neutrosophic Girth. 63NTG1

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but
it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive vertices is at
most 3, then it’s possible to have cycle but there are two weakest edges,
n3n4 and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to girth G(NTG) and neutrosophic length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth Gn(NTG);

(v) 3 is girth and its corresponded sets are {n1, n2, n3}, {n1, n2, n4}, and
{n2, n3, n4};

(vi) 3.9 is neutrosophic girth and its corresponded set is {n1, n3, n4}.

2.5 Setting of Girth

In this section, I provide some results in the setting of girth. Some
classes of neutrosophic graphs are chosen. Complete-neutrosophic graph,
path-neutrosophic graph, cycle-neutrosophic graph, star-neutrosophic graph,
bipartite-neutrosophic graph, and t-partite-neutrosophic graph, are both of
cases of study and classes which the results are about them.

Proposition 2.5.1. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

G(NTG) = 3.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. The
length of longest cycle is O(NTG). In other hand, there’s a cycle if and only if
O(NTG) ≥ 3. It’s complete. So there’s at least one neutrosophic cycle which
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its length is O(NTG) = 3. By shortest cycle is on demand, the girth is three.
Thus

G(NTG) = 3.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.2. In Figure (2.2), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a path and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this path implies there’s
no cycle since if the length of a sequence of consecutive vertices is at most
2, then it’s impossible to have cycle. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but it
isn’t neutrosophic cycle. The length of crisp cycle implies there’s one cycle
since if the length of a sequence of consecutive vertices is at most 3, then
it’s possible to have cycle but there aren’t two weakest edges which imply
there is no neutrosophic cycle. So this crisp cycle isn’t a neutrosophic
cycle but it’s crisp cycle. The crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth G(NTG) but neutrosophic length of this crisp
cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s two crisp cycles with length two and three. It’s also a path and
there are three edges but there are some crisp cycles but there are only
two neutrosophic cycles with length three, n1, n3, n4, and with length
four, n1, n2, n3, n4. The length of this sequence implies there are some
crisp cycles and there are two neutrosophic cycles since if the length of a
sequence of consecutive vertices is at most 4 and it’s crisp complete, then
it’s possible to have some crisp cycles and two neutrosophic cycles with
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Figure 2.2: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG2

two different length three and four. So this neutrosophic path forms some
neutrosophic cycles and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but
it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive vertices is at
most 3, then it’s possible to have cycle but there are two weakest edges,
n3n4 and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to girth G(NTG) and neutrosophic length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth Gn(NTG);

(v) 3 is girth and its corresponded sets are {n1, n2, n3}, {n1, n2, n4}, and
{n2, n3, n4};

(vi) 3.9 is neutrosophic girth and its corresponded set is {n1, n3, n4}.

Another class of neutrosophic graphs is addressed to path-neutrosophic
graph.

Proposition 2.5.3. Let NTG : (V,E, σ, µ) be a strong-path-neutrosophic graph.
Then

G(NTG) =∞.

Proof. Suppose NTG : (V,E, σ, µ) is a strong-path-neutrosophic graph. There’s
no crisp cycle. If NTG : (V,E, σ, µ) isn’t a crisp cycle, then NTG : (V,E, σ, µ)
isn’t a neutrosophic cycle. There’s no cycle from every version. Let
x0, x1, · · · , xO(NTG) be a path-neutrosophic graph. Since x0, x1, · · · , xO(NTG)
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is a sequence of consecutive vertices, there’s no repetition of vertices in this
sequence. So there’s no cycle. Girth is corresponded to shortest cycle but
there’s no cycle. Thus it implies

G(NTG) =∞.

�

Example 2.5.4. There are two sections for clarifications.

(a) In Figure (2.3), an odd-path-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);
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(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are four
edges, n1n2, n2n3 and n4n5, according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding shortest cycle. Finding shortest cycle has
no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. So adding vertices has no effect
to find a crisp cycle. There is only one path amid two given vertices.
The structure of this neutrosophic path implies

n1, n2, n3, n4, n5

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(v) ∞ is girth and there are no corresponded sets;
(vi) ∞ is neutrosophic girth and there are no corresponded sets.

(b) In Figure (2.4), an even-path-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
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Figure 2.3: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG3

for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are four
edges, n1n2, n2n3 and n4n5, according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding shortest cycle. Finding shortest cycle has
no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. So adding vertices has no effect
to find a crisp cycle. There is only one path amid two given vertices.
The structure of this neutrosophic path implies

n1, n2, n3, n4, n5

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(v) ∞ is girth and there are no corresponded sets;
(vi) ∞ is neutrosophic girth and there are no corresponded sets.

Proposition 2.5.5. Let NTG : (V,E, σ, µ) be a strong-cycle-neutrosophic graph
where O(NTG) ≥ 3. Then

G(NTG) = O(NTG).

Proof. Suppose NTG : (V,E, σ, µ) is a strong-cycle-neutrosophic graph.
Let x1, x2, · · · , xO(NTG), x1 be a sequence of consecutive vertices of NTG :
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Figure 2.4: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG4

(V,E, σ, µ) such that

xixi+1 ∈ E, i = 1, 2, · · · ,O(NTG)− 1, xO(NTG)x1 ∈ E.

There are two paths amid two given vertices. The degree of every vertex is two.
But there’s one crisp cycle for every given vertex. So the efforts leads to one
cycle for finding a shortest crisp cycle. For a given vertex xi, the sequence of
consecutive vertices

xi, xi+1, · · · , xi−2, xi−1, xi

is a corresponded crisp cycle for xi. Every cycle has same length. The length is
O(NTG). Thus the crisp cardinality of set of vertices forming shortest crisp
cycle is O(NTG). By Theorem (3.4.5),

G(NTG) = O(NTG).

�

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.6. There are two sections for clarifications.

(a) In Figure (2.5), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2
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is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4, n5, n6, n1 is a sequence of consecutive vertices, then
it’s obvious that there’s one cycle. It’s also a path and there
are six edges, n1n2, n2n3, n3n4, n4n5, n5n6 and n6n1, according to
corresponded neutrosophic path and it’s neutrosophic cycle since it
has two weakest edges, n4n5 and n5n6 with same values (0.1, 0.1, 0.2).
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is both of a neutrosophic cycle and crisp
cycle. So adding vertices has effect on finding a crisp cycle. There
are only two paths amid two given vertices. The structure of this
neutrosophic path implies n1, n2, n3, n4, n5, n6, n1 is corresponded to
both of girth G(NTG) and neutrosophic girth Gn(NTG);

(v) 6 is girth and its corresponded set is only {n1, n2, n3, n4, n5, n6, n1};

(vi) 8.1 = O(NTG) is neutrosophic girth and its corresponded set is only
{n1, n2, n3, n4, n5, n6, n1}.

(b) In Figure (2.6), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4, n5, n1 is a sequence of consecutive vertices, then it’s
obvious that there’s one cycle. It’s also a path and there are five
edges, n1n2, n2n3, n3n4, n4n5 and n5n1, according to corresponded
neutrosophic path and it isn’t neutrosophic cycle since it has only
one weakest edge, n1n2, with value (0.2, 0.5, 0.4) and not more.
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is not a neutrosophic cycle but it is a
crisp cycle. So adding vertices has effect on finding a crisp cycle.
There are only two paths amid two given vertices. The structure of
this neutrosophic path implies n1, n2, n3, n4, n5, n1 is corresponded
to both of girth G(NTG) and neutrosophic girth Gn(NTG);
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Figure 2.5: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG5

Figure 2.6: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG6

(v) 5 is girth and its corresponded set is only {n1, n2, n3, n4, n5, n1};

(vi) 8.5 = O(NTG) is neutrosophic girth and its corresponded set is only
{n1, n2, n3, n4, n5, n1}.

Proposition 2.5.7. Let NTG : (V,E, σ, µ) be a strong-star-neutrosophic graph
with center c. Then

G(NTG) =∞.

Proof. Suppose NTG : (V,E, σ, µ) is a strong-star-neutrosophic graph. Every
vertex isn’t a neighbor for every given vertex. Every vertex is a neighbor for
center. Furthermore, center is only neighbor for any given vertex. So center
is only neighbor for all vertices. It’s possible to have some paths amid two
given vertices but there’s no crisp cycle. In other words, if O(NTG) > 2, then
there are at least three vertices x, y and z such that if x is a neighbor for y and
z, then y and z aren’t neighbors and x is center. To get more precise, if if x
and y are neighbors then either x or y is center. Every edge have one common
endpoint with other edges which is called center. Thus there is no triangle
but there are some edges. One edge has two endpoints which one of them is
center. There are no crisp cycle. Hence trying to find shortest cycle has no
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result. There is no crisp cycle. Then there is shortest crisp cycle. So

G(NTG) =∞.

�

The clarifications about results are in progress as follows. A star-neutrosophic
graph is related to previous result and it’s studied to apply the definitions on it.
To make it more clear, next part gives one special case to apply definitions and
results on it. Some items are devised to make more sense about new notions. A
star-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it, too.

Example 2.5.8. There is one section for clarifications. In Figure (2.7), a star-
neutrosophic graph is illustrated. Some points are represented in follow-up
items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a star and it’s only one edge but it is neither crisp
cycle nor neutrosophic cycle. The length of this star implies there’s no
cycle since if the length of a sequence of consecutive vertices is at most 2,
then it’s impossible to have cycle. So this neutrosophic star has neither a
neutrosophic cycle nor crisp cycle. The length of this star implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a star and there are two edges, n1n2 and
n1n3, according to corresponded neutrosophic star but it doesn’t have
neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic star has neither a neutrosophic cycle nor crisp cycle.
The structure of this neutrosophic star implies

n1, n2, n3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a star and there are three edges, n1n2, n1n3
and n1n4, according to corresponded neutrosophic star but it doesn’t have
neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic star has neither a neutrosophic cycle nor crisp cycle. So
adding vertices has no effect to find a crisp cycle. The structure of this
neutrosophic star implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);
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Figure 2.7: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG7

(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a star and there are four edges,
n1n2, n1n3, n1n4 and n1n5, according to corresponded neutrosophic star
but it isn’t neutrosophic cycle. First step is to have at least one crisp
cycle for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic star has neither a neutrosophic cycle
nor crisp cycle. So adding vertices has no effect to find a crisp cycle.
There are some paths amid two given vertices. The structure of this
neutrosophic star implies

n1, n2, n3, n4, n5

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(v) ∞ is girth and there is no corresponded set;

(vi) ∞ is neutrosophic girth and there is no corresponded set.

Proposition 2.5.9. Let NTG : (V,E, σ, µ) be a strong-complete-bipartite-
neutrosophic graph. Then

G(NTG) = 4

where O(NTG) ≥ 4. And
G(NTG) =∞

where O(NTG) ≤ 3.

Proof. Suppose NTG : (V,E, σ, µ) is a strong-complete-bipartite-neutrosophic
graph. Every vertex is a neighbor for all vertices in another part. If
O(NTG) ≤ 3, then it’s neutrosophic path implying

G(NTG) =∞.

If O(NTG) ≥ 4, then it’s possible to have two vertices in every part. In this
case, four vertices form a crisp cycle which crisp cardinality of its vertices are
four. It’s impossible to have a crisp cycle which crisp cardinality of its vertices
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are three. Since the sequence of consecutive vertices are x1, x2, x3 and there’s
no edge more. It implies there are two edges. It’s neutrosophic path but neither
crisp cycle nor neutrosophic cycle. So the first step of finding shortest crisp
cycle is impossible but in second step, there’s one crisp cycle corresponded to
number four. By Theorem (3.4.5),

G(NTG) = 4

where O(NTG) ≥ 4. And
G(NTG) =∞

where O(NTG) ≤ 3. �

The clarifications about results are in progress as follows. A complete-
bipartite-neutrosophic graph is related to previous result and it’s studied to
apply the definitions on it. To make it more clear, next part gives one special
case to apply definitions and results on it. Some items are devised to make
more senses about new notions. A complete-bipartite-neutrosophic graph is
related to previous result and it’s studied to apply the definitions on it, too.

Example 2.5.10. There is one section for clarifications. In Figure (2.8),
a complete-bipartite-neutrosophic graph is illustrated. Some points are
represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a complete-bipartite and it’s only one edge but it
is neither crisp cycle nor neutrosophic cycle. The length of this complete-
bipartite implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle. So
this neutrosophic complete-bipartite has neither a neutrosophic cycle nor
crisp cycle. The length of this complete-bipartite implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-bipartite and there are two
edges, n1n2 and n1n3, according to corresponded neutrosophic complete-
bipartite but it doesn’t have neutrosophic cycle. First step is to have
at least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-bipartite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-bipartite implies

n1, n2, n3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);
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(iii) if n1, n2, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-bipartite and there are two
edges, n1n2 and n2n4, according to corresponded neutrosophic complete-
bipartite but it doesn’t have neutrosophic cycle. First step is to have
at least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-bipartite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-bipartite implies

n1, n2, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a complete-bipartite and there are four
edges, n1n2, n1n3, n2n4 and n3n4, according to corresponded neutrosophic
complete-bipartite and it has neutrosophic cycle where n2n4 and n3n4
are two weakest edge with same amount (0.3, 0.2, 0.3). First step is to
have at least one crisp cycle for finding shortest cycle. Finding shortest
cycle only has one result. Since there’s one cycle. Neutrosophic cycle
is a crisp cycle with at least two weakest edges. So this neutrosophic
complete-bipartite has both of a neutrosophic cycle and crisp cycle. So
adding vertices has some effects to find a crisp cycle. The structure of
this neutrosophic complete-bipartite implies

n1, n2, n3, n4

is corresponded to girth G(NTG) and uniqueness of this cycle implies the
sequence

n1, n2, n3, n4

is corresponded to neutrosophic girth Gn(NTG);

(v) 4 is girth and its corresponded sequence is n1, n2, n3, n4;

(vi) 5.8 is neutrosophic girth and its corresponded sequence is n1, n2, n3, n4.

Proposition 2.5.11. Let NTG : (V,E, σ, µ) be a strong-complete-t-partite-
neutrosophic graph. Then

G(NTG) = 3

where t ≥ 3.
G(NTG) = 4

where t ≤ 2. And
G(NTG) =∞

where O(NTG) ≤ 2.
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Figure 2.8: A Neutrosophic Graph in the Viewpoint of Girth. 63NTG8

Proof. Suppose NTG : (V,E, σ, µ) is a strong-complete-t-partite-neutrosophic
graph. Every vertex is a neighbor for all vertices in another part. If
O(NTG) ≤ 2, then it’s neutrosophic path implying

G(NTG) =∞.

If t ≥ 3,O(NTG) ≥ 3, then it has crisp cycle implying

G(NTG) = 3.

If t ≥ 2,O(NTG) ≥ 4, then it’s possible to have two vertices in every part. In
this case, four vertices form a crisp cycle which crisp cardinality of its vertices
are four. It’s impossible to have a crisp cycle which crisp cardinality of its
vertices are three. Since the sequence of consecutive vertices are x1, x2, x3 and
there’s no edge more. It implies there are two edges. It’s neutrosophic path but
neither crisp cycle nor neutrosophic cycle. So the first step of finding shortest
crisp cycle is impossible but in second step, there’s one crisp cycle corresponded
to number four. By Theorem (3.4.5),

G(NTG) = 3

where t ≥ 3.
G(NTG) = 4

where t ≤ 2. And
G(NTG) =∞

where O(NTG) ≤ 2. �

The clarifications about results are in progress as follows. A complete-t-
partite-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case
to apply definitions and results on it. Some items are devised to make more
sense about new notions. A complete-t-partite-neutrosophic graph is related to
previous result and it’s studied to apply the definitions on it, too.
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Example 2.5.12. There is one section for clarifications. In Figure (2.9), a
complete-t-partite-neutrosophic graph is illustrated. Some points are represented
in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a complete-t-partite and it’s only one edge
but it is neither crisp cycle nor neutrosophic cycle. The length of this
complete-t-partite implies there’s no cycle since if the length of a sequence
of consecutive vertices is at most 2, then it’s impossible to have cycle. So
this neutrosophic complete-t-partite has neither a neutrosophic cycle nor
crisp cycle. The length of this complete-t-partite implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-t-partite and there are two
edges, n1n2 and n1n3, according to corresponded neutrosophic complete-
t-partite but it doesn’t have neutrosophic cycle. First step is to have at
least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-t-partite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-t-partite implies

n1, n2, n3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-t-partite and there are two
edges, n1n2 and n2n4, according to corresponded neutrosophic complete-
t-partite but it doesn’t have neutrosophic cycle. First step is to have at
least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-t-partite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-t-partite implies

n1, n2, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n4, n5 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a complete-t-partite and there are four
edges, n1n2, n1n5, n2n4 and n5n4, according to corresponded neutrosophic
complete-t-partite and it has neutrosophic cycle where n2n4 and n5n4
are two weakest edge with same amount (0.3, 0.2, 0.3). First step is to
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Figure 2.9: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG9

have at least one crisp cycle for finding shortest cycle. Finding shortest
cycle only has one result. Since there’s one cycle. Neutrosophic cycle
is a crisp cycle with at least two weakest edges. So this neutrosophic
complete-t-partite has both of a neutrosophic cycle and crisp cycle. So
adding vertices has some effects to find a crisp cycle. The structure of
this neutrosophic complete-t-partite implies

n1, n2, n4, n5

is corresponded to girth G(NTG) and minimum neutrosophic cardinality
implies the sequence

n1, n2, n4, n5

is corresponded to neutrosophic girth Gn(NTG);

(v) 4 is girth and its corresponded sequence is n1, n2, n4, n5;

(vi) 5.7 is neutrosophic girth and its corresponded sequence is n1, n2, n4, n5.

Proposition 2.5.13. Let NTG : (V,E, σ, µ) be a strong-wheel-neutrosophic
graph. Then

G(NTG) = 3

where t ≥ 3.
G(NTG) =∞

where t ≥ 2.

Proof. Suppose NTG : (V,E, σ, µ) is a strong-wheel-neutrosophic graph. The
argument is elementary. Since all vertices of a path join to one vertex. By
Theorem (3.4.5),

G(NTG) = 3

where t ≥ 3.
G(NTG) =∞

where t ≥ 2. �
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The clarifications about results are in progress as follows. A complete-t-
partite-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case
to apply definitions and results on it. Some items are devised to make more
sense about new notions. A complete-t-partite-neutrosophic graph is related to
previous result and it’s studied to apply the definitions on it, too.

Example 2.5.14. There is one section for clarifications. In Figure (2.10), a
wheel-neutrosophic graph is illustrated. Some points are represented in follow-
up items as follows.

(i) If s1, s2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a wheel and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this wheel implies there’s
no cycle since if the length of a sequence of consecutive vertices is at
most 2, then it’s impossible to have cycle. So this neutrosophic wheel
has neither a neutrosophic cycle nor crisp cycle. The length of this wheel
implies

s1, s2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if s4, s2, s3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a wheel and there are two edges, s3s2 and
s4s3, according to corresponded neutrosophic wheel but it doesn’t have
neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic wheel has neither a neutrosophic cycle nor crisp cycle.
The structure of this neutrosophic wheel implies

s4, s2, s3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if s1, s2, s3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a wheel and there are three edges,
s1s2, s2s3 and s1s3 according to corresponded neutrosophic wheel but it
doesn’t have neutrosophic cycle. First step is to have at least one crisp
cycle for finding shortest cycle. Finding shortest cycle has one result.
Since there’s one crisp cycle. Neutrosophic cycle is a crisp cycle with at
least two weakest edges. So this neutrosophic wheel has no neutrosophic
cycle but it has crisp cycle. The structure of this neutrosophic wheel
implies

s1, s2, s3

is corresponded to girth G(NTG) but minimum neutrosophic cardinality
implies

s1, s2, s3

isn’t corresponded to neutrosophic girth Gn(NTG);
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Figure 2.10: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG10

(iv) if s1, s3, s4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a wheel and there are three edges,
s1s4, s4s3 and s1s3 according to corresponded neutrosophic wheel and it
has a neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has one result. Since
there’s one crisp cycle. Neutrosophic cycle is a crisp cycle with at least
two weakest edges. So this neutrosophic wheel has one neutrosophic cycle
with two weakest edges s1s4 and s3s4 concerning same values (0.1, 0.1, 0.5)
and it has a crisp cycle. The structure of this neutrosophic wheel implies

s1, s3, s4

is corresponded to girth G(NTG) and minimum neutrosophic cardinality
implies

s1, s3, s4

is corresponded to neutrosophic girth Gn(NTG);

(v) 3 is girth and its corresponded sequences are s1, s3, s4 and s1, s2, s3
alongside s1, s4, s5;

(vi) 3.8 is neutrosophic girth and its corresponded sequence is s1, s3, s4.

2.6 Setting of Neutrosophic Girth

In this section, I provide some results in the setting of neutrosophic girth.
Some classes of neutrosophic graphs are chosen. Complete-neutrosophic graph,
path-neutrosophic graph, cycle-neutrosophic graph, star-neutrosophic graph,
bipartite-neutrosophic graph, and t-partite-neutrosophic graph, are both of
cases of study and classes which the results are about them.

Proposition 2.6.1. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}.
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Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. The
length of longest cycle is O(NTG). In other hand, there’s a cycle if and only if
O(NTG) ≥ 3. It’s complete. So there’s at least one neutrosophic cycle which
its length is O(NTG) = 3. By shortest cycle is on demand, the girth is three.
Thus

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.6.2. In Figure (2.11), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a path and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this path implies there’s
no cycle since if the length of a sequence of consecutive vertices is at most
2, then it’s impossible to have cycle. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but it
isn’t neutrosophic cycle. The length of crisp cycle implies there’s one cycle
since if the length of a sequence of consecutive vertices is at most 3, then
it’s possible to have cycle but there aren’t two weakest edges which imply
there is no neutrosophic cycle. So this crisp cycle isn’t a neutrosophic
cycle but it’s crisp cycle. The crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth G(NTG) but neutrosophic length of this crisp
cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s two crisp cycles with length two and three. It’s also a path and
there are three edges but there are some crisp cycles but there are only
two neutrosophic cycles with length three, n1, n3, n4, and with length
four, n1, n2, n3, n4. The length of this sequence implies there are some
crisp cycles and there are two neutrosophic cycles since if the length of a
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Figure 2.11: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG11

sequence of consecutive vertices is at most 4 and it’s crisp complete, then
it’s possible to have some crisp cycles and two neutrosophic cycles with
two different length three and four. So this neutrosophic path forms some
neutrosophic cycles and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but
it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive vertices is at
most 3, then it’s possible to have cycle but there are two weakest edges,
n3n4 and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to girth G(NTG) and neutrosophic length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth Gn(NTG);

(v) 3 is girth and its corresponded sets are {n1, n2, n3}, {n1, n2, n4}, and
{n2, n3, n4};

(vi) 3.9 is neutrosophic girth and its corresponded set is {n1, n3, n4}.

Another class of neutrosophic graphs is addressed to path-neutrosophic
graph.

Proposition 2.6.3. Let NTG : (V,E, σ, µ) be a strong-path-neutrosophic graph.
Then

Gn(NTG) =∞.

Proof. Suppose NTG : (V,E, σ, µ) is a strong-path-neutrosophic graph. There’s
no crisp cycle. If NTG : (V,E, σ, µ) isn’t a crisp cycle, then NTG : (V,E, σ, µ)
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isn’t a neutrosophic cycle. There’s no cycle from every version. Let
x0, x1, · · · , xO(NTG) be a path-neutrosophic graph. Since x0, x1, · · · , xO(NTG)
is a sequence of consecutive vertices, there’s no repetition of vertices in this
sequence. So there’s no cycle. Girth is corresponded to shortest cycle but
there’s no cycle. Thus it implies

Gn(NTG) =∞.

�

Example 2.6.4. There are two sections for clarifications.

(a) In Figure (2.12), an odd-path-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);
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(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are four
edges, n1n2, n2n3 and n4n5, according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding shortest cycle. Finding shortest cycle has
no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. So adding vertices has no effect
to find a crisp cycle. There is only one path amid two given vertices.
The structure of this neutrosophic path implies

n1, n2, n3, n4, n5

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(v) ∞ is girth and there are no corresponded sets;
(vi) ∞ is neutrosophic girth and there are no corresponded sets.

(b) In Figure (2.13), an even-path-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
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Figure 2.12: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG12

for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are four
edges, n1n2, n2n3 and n4n5, according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding shortest cycle. Finding shortest cycle has
no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. So adding vertices has no effect
to find a crisp cycle. There is only one path amid two given vertices.
The structure of this neutrosophic path implies

n1, n2, n3, n4, n5

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(v) ∞ is girth and there are no corresponded sets;
(vi) ∞ is neutrosophic girth and there are no corresponded sets.

Proposition 2.6.5. Let NTG : (V,E, σ, µ) be a strong-cycle-neutrosophic graph
where O(NTG) ≥ 3. Then

Gn(NTG) = On(NTG).

Proof. Suppose NTG : (V,E, σ, µ) is a strong-cycle-neutrosophic graph.
Let x1, x2, · · · , xO(NTG), x1 be a sequence of consecutive vertices of NTG :
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Figure 2.13: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG13

(V,E, σ, µ) such that

xixi+1 ∈ E, i = 1, 2, · · · ,O(NTG)− 1, xO(NTG)x1 ∈ E.

There are two paths amid two given vertices. The degree of every vertex is two.
But there’s one crisp cycle for every given vertex. So the efforts leads to one
cycle for finding a shortest crisp cycle. For a given vertex xi, the sequence of
consecutive vertices

xi, xi+1, · · · , xi−2, xi−1, xi

is a corresponded crisp cycle for xi. Every cycle has same length. The length is
O(NTG). Thus the crisp cardinality of set of vertices forming shortest crisp
cycle is O(NTG). By Theorem (3.4.5),

Gn(NTG) = On(NTG).

�

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.6.6. There are two sections for clarifications.

(a) In Figure (2.14), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2
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is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4, n5, n6, n1 is a sequence of consecutive vertices, then
it’s obvious that there’s one cycle. It’s also a path and there
are six edges, n1n2, n2n3, n3n4, n4n5, n5n6 and n6n1, according to
corresponded neutrosophic path and it’s neutrosophic cycle since it
has two weakest edges, n4n5 and n5n6 with same values (0.1, 0.1, 0.2).
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is both of a neutrosophic cycle and crisp
cycle. So adding vertices has effect on finding a crisp cycle. There
are only two paths amid two given vertices. The structure of this
neutrosophic path implies n1, n2, n3, n4, n5, n6, n1 is corresponded to
both of girth G(NTG) and neutrosophic girth Gn(NTG);

(v) 6 is girth and its corresponded set is only {n1, n2, n3, n4, n5, n6, n1};

(vi) 8.1 = O(NTG) is neutrosophic girth and its corresponded set is only
{n1, n2, n3, n4, n5, n6, n1}.

(b) In Figure (2.15), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4, n5, n1 is a sequence of consecutive vertices, then it’s
obvious that there’s one cycle. It’s also a path and there are five
edges, n1n2, n2n3, n3n4, n4n5 and n5n1, according to corresponded
neutrosophic path and it isn’t neutrosophic cycle since it has only
one weakest edge, n1n2, with value (0.2, 0.5, 0.4) and not more.
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is not a neutrosophic cycle but it is a
crisp cycle. So adding vertices has effect on finding a crisp cycle.
There are only two paths amid two given vertices. The structure of
this neutrosophic path implies n1, n2, n3, n4, n5, n1 is corresponded
to both of girth G(NTG) and neutrosophic girth Gn(NTG);
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Figure 2.14: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG14

Figure 2.15: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG15

(v) 5 is girth and its corresponded set is only {n1, n2, n3, n4, n5, n1};

(vi) 8.5 = O(NTG) is neutrosophic girth and its corresponded set is only
{n1, n2, n3, n4, n5, n1}.

Proposition 2.6.7. Let NTG : (V,E, σ, µ) be a strong-star-neutrosophic graph
with center c. Then

Gn(NTG) =∞.

Proof. Suppose NTG : (V,E, σ, µ) is a strong-star-neutrosophic graph. Every
vertex isn’t a neighbor for every given vertex. Every vertex is a neighbor for
center. Furthermore, center is only neighbor for any given vertex. So center
is only neighbor for all vertices. It’s possible to have some paths amid two
given vertices but there’s no crisp cycle. In other words, if O(NTG) > 2, then
there are at least three vertices x, y and z such that if x is a neighbor for y and
z, then y and z aren’t neighbors and x is center. To get more precise, if if x
and y are neighbors then either x or y is center. Every edge have one common
endpoint with other edges which is called center. Thus there is no triangle
but there are some edges. One edge has two endpoints which one of them is
center. There are no crisp cycle. Hence trying to find shortest cycle has no
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result. There is no crisp cycle. Then there is shortest crisp cycle. So

Gn(NTG) =∞.

�

The clarifications about results are in progress as follows. A star-neutrosophic
graph is related to previous result and it’s studied to apply the definitions on it.
To make it more clear, next part gives one special case to apply definitions and
results on it. Some items are devised to make more sense about new notions. A
star-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it, too.

Example 2.6.8. There is one section for clarifications. In Figure (2.16), a star-
neutrosophic graph is illustrated. Some points are represented in follow-up
items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a star and it’s only one edge but it is neither crisp
cycle nor neutrosophic cycle. The length of this star implies there’s no
cycle since if the length of a sequence of consecutive vertices is at most 2,
then it’s impossible to have cycle. So this neutrosophic star has neither a
neutrosophic cycle nor crisp cycle. The length of this star implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a star and there are two edges, n1n2 and
n1n3, according to corresponded neutrosophic star but it doesn’t have
neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic star has neither a neutrosophic cycle nor crisp cycle.
The structure of this neutrosophic star implies

n1, n2, n3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a star and there are three edges, n1n2, n1n3
and n1n4, according to corresponded neutrosophic star but it doesn’t have
neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic star has neither a neutrosophic cycle nor crisp cycle. So
adding vertices has no effect to find a crisp cycle. The structure of this
neutrosophic star implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);
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Figure 2.16: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG16

(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a star and there are four edges,
n1n2, n1n3, n1n4 and n1n5, according to corresponded neutrosophic star
but it isn’t neutrosophic cycle. First step is to have at least one crisp
cycle for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic star has neither a neutrosophic cycle
nor crisp cycle. So adding vertices has no effect to find a crisp cycle.
There are some paths amid two given vertices. The structure of this
neutrosophic star implies

n1, n2, n3, n4, n5

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(v) ∞ is girth and there is no corresponded set;

(vi) ∞ is neutrosophic girth and there is no corresponded set.

Proposition 2.6.9. Let NTG : (V,E, σ, µ) be a strong-complete-bipartite-
neutrosophic graph. Then

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z) + σi(w))}x,y∈V1, z,w∈V2 .

where O(NTG) ≥ 4 and min{|V1|, |V2|} ≥ 2. Also,

Gn(NTG) =∞

where O(NTG) ≤ 3.

Proof. Suppose NTG : (V,E, σ, µ) is a strong-complete-bipartite-neutrosophic
graph. Every vertex is a neighbor for all vertices in another part. If
O(NTG) ≤ 3, then it’s neutrosophic path implying

Gn(NTG) =∞.

If O(NTG) ≥ 4, then it’s possible to have two vertices in every part. In this
case, four vertices form a crisp cycle which crisp cardinality of its vertices are
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four. It’s impossible to have a crisp cycle which crisp cardinality of its vertices
are three. Since the sequence of consecutive vertices are x1, x2, x3 and there’s
no edge more. It implies there are two edges. It’s neutrosophic path but neither
crisp cycle nor neutrosophic cycle. So the first step of finding shortest crisp
cycle is impossible but in second step, there’s one crisp cycle corresponded to
number four. By Theorem (3.4.5),

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z) + σi(w))}x,y∈V1, z,w∈V2 .

where O(NTG) ≥ 4 and min{|V1|, |V2|} ≥ 2. Also,

Gn(NTG) =∞

where O(NTG) ≤ 3. �

The clarifications about results are in progress as follows. A complete-
bipartite-neutrosophic graph is related to previous result and it’s studied to
apply the definitions on it. To make it more clear, next part gives one special
case to apply definitions and results on it. Some items are devised to make
more senses about new notions. A complete-bipartite-neutrosophic graph is
related to previous result and it’s studied to apply the definitions on it, too.

Example 2.6.10. There is one section for clarifications. In Figure (2.17),
a complete-bipartite-neutrosophic graph is illustrated. Some points are
represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a complete-bipartite and it’s only one edge but it
is neither crisp cycle nor neutrosophic cycle. The length of this complete-
bipartite implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle. So
this neutrosophic complete-bipartite has neither a neutrosophic cycle nor
crisp cycle. The length of this complete-bipartite implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-bipartite and there are two
edges, n1n2 and n1n3, according to corresponded neutrosophic complete-
bipartite but it doesn’t have neutrosophic cycle. First step is to have
at least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-bipartite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-bipartite implies

n1, n2, n3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);
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(iii) if n1, n2, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-bipartite and there are two
edges, n1n2 and n2n4, according to corresponded neutrosophic complete-
bipartite but it doesn’t have neutrosophic cycle. First step is to have
at least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-bipartite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-bipartite implies

n1, n2, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a complete-bipartite and there are four
edges, n1n2, n1n3, n2n4 and n3n4, according to corresponded neutrosophic
complete-bipartite and it has neutrosophic cycle where n2n4 and n3n4
are two weakest edge with same amount (0.3, 0.2, 0.3). First step is to
have at least one crisp cycle for finding shortest cycle. Finding shortest
cycle only has one result. Since there’s one cycle. Neutrosophic cycle
is a crisp cycle with at least two weakest edges. So this neutrosophic
complete-bipartite has both of a neutrosophic cycle and crisp cycle. So
adding vertices has some effects to find a crisp cycle. The structure of
this neutrosophic complete-bipartite implies

n1, n2, n3, n4

is corresponded to girth G(NTG) and uniqueness of this cycle implies the
sequence

n1, n2, n3, n4

is corresponded to neutrosophic girth Gn(NTG);

(v) 4 is girth and its corresponded sequence is n1, n2, n3, n4;

(vi) 5.8 is neutrosophic girth and its corresponded sequence is n1, n2, n3, n4.

Proposition 2.6.11. Let NTG : (V,E, σ, µ) be a strong-complete-t-partite-
neutrosophic graph. Then

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}x∈V1, y∈V2, z∈V3 .

where t ≥ 3.

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z) + σi(w))}x,y∈V1, z,w∈V2 .

where t ≤ 2. And
Gn(NTG) =∞

where O(NTG) ≤ 2.

85



2. Neutrosophic Girth Based On Neutrosophic Cycle in Neutrosophic Graphs

Figure 2.17: A Neutrosophic Graph in the Viewpoint of Girth. 63NTG17

Proof. Suppose NTG : (V,E, σ, µ) is a strong-complete-t-partite-neutrosophic
graph. Every vertex is a neighbor for all vertices in another part. If
O(NTG) ≤ 2, then it’s neutrosophic path implying

Gn(NTG) =∞.

If t ≥ 3,O(NTG) ≥ 3, then it has crisp cycle implying

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}x∈V1, y∈V2, z∈V3 .

If t ≥ 2,O(NTG) ≥ 4, then it’s possible to have two vertices in every part. In
this case, four vertices form a crisp cycle which crisp cardinality of its vertices
are four. It’s impossible to have a crisp cycle which crisp cardinality of its
vertices are three. Since the sequence of consecutive vertices are x1, x2, x3 and
there’s no edge more. It implies there are two edges. It’s neutrosophic path but
neither crisp cycle nor neutrosophic cycle. So the first step of finding shortest
crisp cycle is impossible but in second step, there’s one crisp cycle corresponded
to number four. By Theorem (3.4.5),

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}x∈V1, y∈V2, z∈V3 .

where t ≥ 3.

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z) + σi(w))}x,y∈V1, z,w∈V2 .

where t ≤ 2. And
Gn(NTG) =∞

where O(NTG) ≤ 2. �

The clarifications about results are in progress as follows. A complete-t-
partite-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case
to apply definitions and results on it. Some items are devised to make more
sense about new notions. A complete-t-partite-neutrosophic graph is related to
previous result and it’s studied to apply the definitions on it, too.
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Example 2.6.12. There is one section for clarifications. In Figure (2.18), a
complete-t-partite-neutrosophic graph is illustrated. Some points are represented
in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a complete-t-partite and it’s only one edge
but it is neither crisp cycle nor neutrosophic cycle. The length of this
complete-t-partite implies there’s no cycle since if the length of a sequence
of consecutive vertices is at most 2, then it’s impossible to have cycle. So
this neutrosophic complete-t-partite has neither a neutrosophic cycle nor
crisp cycle. The length of this complete-t-partite implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-t-partite and there are two
edges, n1n2 and n1n3, according to corresponded neutrosophic complete-
t-partite but it doesn’t have neutrosophic cycle. First step is to have at
least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-t-partite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-t-partite implies

n1, n2, n3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-t-partite and there are two
edges, n1n2 and n2n4, according to corresponded neutrosophic complete-
t-partite but it doesn’t have neutrosophic cycle. First step is to have at
least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-t-partite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-t-partite implies

n1, n2, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n4, n5 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a complete-t-partite and there are four
edges, n1n2, n1n5, n2n4 and n5n4, according to corresponded neutrosophic
complete-t-partite and it has neutrosophic cycle where n2n4 and n5n4
are two weakest edge with same amount (0.3, 0.2, 0.3). First step is to
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Figure 2.18: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG18

have at least one crisp cycle for finding shortest cycle. Finding shortest
cycle only has one result. Since there’s one cycle. Neutrosophic cycle
is a crisp cycle with at least two weakest edges. So this neutrosophic
complete-t-partite has both of a neutrosophic cycle and crisp cycle. So
adding vertices has some effects to find a crisp cycle. The structure of
this neutrosophic complete-t-partite implies

n1, n2, n4, n5

is corresponded to girth G(NTG) and minimum neutrosophic cardinality
implies the sequence

n1, n2, n4, n5

is corresponded to neutrosophic girth Gn(NTG);

(v) 4 is girth and its corresponded sequence is n1, n2, n4, n5;

(vi) 5.7 is neutrosophic girth and its corresponded sequence is n1, n2, n4, n5.

Proposition 2.6.13. Let NTG : (V,E, σ, µ) be a strong-wheel-neutrosophic
graph. Then

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}xy,xz,zy∈E .

where t ≥ 3.
Gn(NTG) =∞

where t ≥ 2.

Proof. Suppose NTG : (V,E, σ, µ) is a strong-wheel-neutrosophic graph. The
argument is elementary. Since all vertices of a path join to one vertex. By
Theorem (3.4.5),

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}xy,xz,zy∈E .

where t ≥ 3.
Gn(NTG) =∞

where t ≥ 2. �
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The clarifications about results are in progress as follows. A wheel-
neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A wheel-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.6.14. There is one section for clarifications. In Figure (2.19), a
wheel-neutrosophic graph is illustrated. Some points are represented in follow-
up items as follows.

(i) If s1, s2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a wheel and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this wheel implies there’s
no cycle since if the length of a sequence of consecutive vertices is at
most 2, then it’s impossible to have cycle. So this neutrosophic wheel
has neither a neutrosophic cycle nor crisp cycle. The length of this wheel
implies

s1, s2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if s4, s2, s3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a wheel and there are two edges, s3s2 and
s4s3, according to corresponded neutrosophic wheel but it doesn’t have
neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic wheel has neither a neutrosophic cycle nor crisp cycle.
The structure of this neutrosophic wheel implies

s4, s2, s3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if s1, s2, s3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a wheel and there are three edges,
s1s2, s2s3 and s1s3 according to corresponded neutrosophic wheel but it
doesn’t have neutrosophic cycle. First step is to have at least one crisp
cycle for finding shortest cycle. Finding shortest cycle has one result.
Since there’s one crisp cycle. Neutrosophic cycle is a crisp cycle with at
least two weakest edges. So this neutrosophic wheel has no neutrosophic
cycle but it has crisp cycle. The structure of this neutrosophic wheel
implies

s1, s2, s3

is corresponded to girth G(NTG) but minimum neutrosophic cardinality
implies

s1, s2, s3

isn’t corresponded to neutrosophic girth Gn(NTG);
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Figure 2.19: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG19

(iv) if s1, s3, s4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a wheel and there are three edges,
s1s4, s4s3 and s1s3 according to corresponded neutrosophic wheel and it
has a neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has one result. Since
there’s one crisp cycle. Neutrosophic cycle is a crisp cycle with at least
two weakest edges. So this neutrosophic wheel has one neutrosophic cycle
with two weakest edges s1s4 and s3s4 concerning same values (0.1, 0.1, 0.5)
and it has a crisp cycle. The structure of this neutrosophic wheel implies

s1, s3, s4

is corresponded to girth G(NTG) and minimum neutrosophic cardinality
implies

s1, s3, s4

is corresponded to neutrosophic girth Gn(NTG);

(v) 3 is girth and its corresponded sequences are s1, s3, s4 and s1, s2, s3
alongside s1, s4, s5;

(vi) 3.8 is neutrosophic girth and its corresponded sequence is s1, s3, s4.

2.7 Applications in Time Table and Scheduling

In this section, two applications for time table and scheduling are provided where
the models are either complete models which mean complete connections are
formed as individual and family of complete models with common neutrosophic
vertex set or quasi-complete models which mean quasi-complete connections
are formed as individual and family of quasi-complete models with common
neutrosophic vertex set.
Designing the programs to achieve some goals is general approach to apply on
some issues to function properly. Separation has key role in the context of this
style. Separating the duration of work which are consecutive, is the matter and
it has importance to avoid mixing up.
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2.8. Case 1: Complete-t-partite Model alongside its Girth and its
Neutrosophic Girth

Figure 2.20: A Neutrosophic Graph in the Viewpoint of its Girth and its
Neutrosophic Girth 63NTG20

Step 1. (Definition) Time table is an approach to get some attributes to do
the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid
consecutive sections. Beyond that, sometimes sections are not the same.

Step 3. (Model) The situation is designed as a model. The model uses data to
assign every section and to assign to relation amid sections, three numbers
belong unit interval to state indeterminacy, possibilities and determinacy.
There’s one restriction in that, the numbers amid two sections are at least
the number of the relations amid them. Table (2.1), clarifies about the
assigned numbers to these situations.

Table 2.1: Scheduling concerns its Subjects and its Connections as a neutrosophic
graph in a Model. 63tbl1

Sections of NTG n1 n2· · · n5
Values (0.7, 0.9, 0.3) (0.4, 0.2, 0.8)· · · (0.4, 0.2, 0.8)

Connections of NTG E1 E2· · · E6
Values (0.4, 0.2, 0.3) (0.5, 0.2, 0.3)· · · (0.3, 0.2, 0.3)

2.8 Case 1: Complete-t-partite Model alongside its
Girth and its Neutrosophic Girth

Step 4. (Solution) The neutrosophic graph alongside its girth and its neutro-
sophic girth as model, propose to use specific number. Every subject has
connection with some subjects. Thus the connection is applied as pos-
sible and the model demonstrates quasi-full connections as quasi-possible.
Using the notion of strong on the connection amid subjects, causes the
importance of subject goes in the highest level such that the value amid
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two consecutive subjects, is determined by those subjects. If the config-
uration is star, the number is different. Also, it holds for other types
such that complete, wheel, path, and cycle. The collection of situations is
another application of its girth and its neutrosophic girth when the notion
of family is applied in the way that all members of family are from same
classes of neutrosophic graphs. As follows, There are five subjects which
are represented as Figure (2.20). This model is strong and even more it’s
quasi-complete. And the study proposes using specific number which is
called its girth and its neutrosophic girth. There are also some analyses
on other numbers in the way that, the clarification is gained about being
special number or not. Also, in the last part, there is one neutrosophic
number to assign to this model and situation to compare them with same
situations to get more precise. Consider Figure (2.20). In Figure (2.20),
an complete-t-partite-neutrosophic graph is illustrated. Some points are
represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a complete-t-partite and it’s only
one edge but it is neither crisp cycle nor neutrosophic cycle. The
length of this complete-t-partite implies there’s no cycle since if the
length of a sequence of consecutive vertices is at most 2, then it’s
impossible to have cycle. So this neutrosophic complete-t-partite
has neither a neutrosophic cycle nor crisp cycle. The length of this
complete-t-partite implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a complete-t-partite and there are
two edges, n1n2 and n1n3, according to corresponded neutrosophic
complete-t-partite but it doesn’t have neutrosophic cycle. First step
is to have at least one crisp cycle for finding shortest cycle. Finding
shortest cycle has no result. Since there’s no cycle. Neutrosophic
cycle is a crisp cycle with at least two weakest edges. So this
neutrosophic complete-t-partite has neither a neutrosophic cycle nor
crisp cycle. The structure of this neutrosophic complete-t-partite
implies

n1, n2, n3

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iii) if n1, n2, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a complete-t-partite and there are
two edges, n1n2 and n2n4, according to corresponded neutrosophic
complete-t-partite but it doesn’t have neutrosophic cycle. First step
is to have at least one crisp cycle for finding shortest cycle. Finding
shortest cycle has no result. Since there’s no cycle. Neutrosophic
cycle is a crisp cycle with at least two weakest edges. So this
neutrosophic complete-t-partite has neither a neutrosophic cycle nor
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2.9. Case 2: Complete Model alongside its A Neutrosophic Graph in the
Viewpoint of its Girth and its Neutrosophic Girth

Figure 2.21: A Neutrosophic Graph in the Viewpoint of its Girth and its
Neutrosophic Girth 63NTG21

crisp cycle. The structure of this neutrosophic complete-t-partite
implies

n1, n2, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n2, n4, n5 is a sequence of consecutive vertices, then it’s obvious
that there’s one crisp cycle. It’s also a complete-t-partite and there
are four edges, n1n2, n1n5, n2n4 and n5n4, according to corresponded
neutrosophic complete-t-partite and it has neutrosophic cycle where
n2n4 and n5n4 are two weakest edge with same amount (0.3, 0.2, 0.3).
First step is to have at least one crisp cycle for finding shortest cycle.
Finding shortest cycle only has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic complete-t-partite has both of a neutrosophic
cycle and crisp cycle. So adding vertices has some effects to find a
crisp cycle. The structure of this neutrosophic complete-t-partite
implies

n1, n2, n4, n5

is corresponded to girth G(NTG) and minimum neutrosophic
cardinality implies the sequence

n1, n2, n4, n5

is corresponded to neutrosophic girth Gn(NTG);
(v) 4 is girth and its corresponded sequence is n1, n2, n4, n5;

(vi) 5.7 is neutrosophic girth and its corresponded sequence is
n1, n2, n4, n5.

2.9 Case 2: Complete Model alongside its A
Neutrosophic Graph in the Viewpoint of its Girth and its
Neutrosophic Girth

Step 4. (Solution) The neutrosophic graph alongside its girth and its neutro-
sophic girth as model, propose to use specific number. Every subject has
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connection with every given subject in deemed way. Thus the connection
applied as possible and the model demonstrates full connections as pos-
sible between parts but with different view where symmetry amid vertices
and edges are the matters. Using the notion of strong on the connection
amid subjects, causes the importance of subject goes in the highest level
such that the value amid two consecutive subjects, is determined by those
subjects. If the configuration is complete multipartite, the number is
different. Also, it holds for other types such that star, wheel, path, and
cycle. The collection of situations is another application of its girth and
its neutrosophic girth when the notion of family is applied in the way that
all members of family are from same classes of neutrosophic graphs. As
follows, There are four subjects which are represented in the formation
of one model as Figure (2.21). This model is neutrosophic strong as
individual and even more it’s complete. And the study proposes using
specific number which is called its girth and its neutrosophic girth for this
model. There are also some analyses on other numbers in the way that,
the clarification is gained about being special number or not. Also, in the
last part, there is one neutrosophic number to assign to these models as
individual. A model as a collection of situations to compare them with
another model as a collection of situations to get more precise. Consider
Figure (2.21). There is one section for clarifications.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s one crisp cycle. It’s also a path and there are three edges
but it isn’t neutrosophic cycle. The length of crisp cycle implies
there’s one cycle since if the length of a sequence of consecutive
vertices is at most 3, then it’s possible to have cycle but there aren’t
two weakest edges which imply there is no neutrosophic cycle. So
this crisp cycle isn’t a neutrosophic cycle but it’s crisp cycle. The
crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth G(NTG) but neutrosophic length of this
crisp cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth Gn(NTG);
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(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s two crisp cycles with length two and three. It’s also a
path and there are three edges but there are some crisp cycles but
there are only two neutrosophic cycles with length three, n1, n3, n4,
and with length four, n1, n2, n3, n4. The length of this sequence
implies there are some crisp cycles and there are two neutrosophic
cycles since if the length of a sequence of consecutive vertices is at
most 4 and it’s crisp complete, then it’s possible to have some crisp
cycles and two neutrosophic cycles with two different length three
and four. So this neutrosophic path forms some neutrosophic cycles
and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s one crisp cycle. It’s also a path and there are three edges
but it is also neutrosophic cycle. The length of crisp cycle implies
there’s one cycle since if the length of a sequence of consecutive
vertices is at most 3, then it’s possible to have cycle but there
are two weakest edges, n3n4 and n1n4, which imply there is one
neutrosophic cycle. So this crisp cycle is a neutrosophic cycle and
it’s crisp cycle. The crisp length of this neutrosophic cycle implies

n1, n3, n4

is corresponded to girth G(NTG) and neutrosophic length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth Gn(NTG);
(v) 3 is girth and its corresponded sets are {n1, n2, n3}, {n1, n2, n4}, and
{n2, n3, n4};

(vi) 3.9 is neutrosophic girth and its corresponded set is {n1, n3, n4}.

2.10 Open Problems

In this section, some questions and problems are proposed to give some avenues
to pursue this study. The structures of the definitions and results give some
ideas to make new settings which are eligible to extend and to create new study.
Notion concerning its girth and its neutrosophic girth are defined in neutrosophic
graphs. Neutrosophic number is also reused. Thus,

Question 2.10.1. Is it possible to use other types of its girth and its neutrosophic
girth?

Question 2.10.2. Are existed some connections amid different types of its girth
and its neutrosophic girth in neutrosophic graphs?
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Question 2.10.3. Is it possible to construct some classes of neutrosophic graphs
which have “nice” behavior?

Question 2.10.4. Which mathematical notions do make an independent study
to apply these types in neutrosophic graphs?

Problem 2.10.5. Which parameters are related to this parameter?

Problem 2.10.6. Which approaches do work to construct applications to create
independent study?

Problem 2.10.7. Which approaches do work to construct definitions which use
all definitions and the relations amid them instead of separate definitions to
create independent study?

2.11 Conclusion and Closing Remarks

In this section, concluding remarks and closing remarks are represented. The
drawbacks of this article are illustrated. Some benefits and advantages of this
study are highlighted.
This study uses two definitions concerning girth and neutrosophic girth arising
from shortest cycles to study strong neutrosophic graphs. New neutrosophic
number is reused which is too close to the notion of neutrosophic number but
it’s different since it uses all values as type-summation on them. Comparisons
amid number, corresponded vertices and edges are done by using neutrosophic
tool. The connections of vertices which aren’t clarified by a neutrosophic cycle
differ them from each other and put them in different categories to represent

Table 2.2: A Brief Overview about Advantages and Limitations of this Study 63tbl2

Advantages Limitations
1. Neutrosophic Girth 1. Connections amid Classes

2. Girth

3. Neutrosophic Number 2. Study on Families

4. Classes of Strong Neutrosophic Graphs

5. Shortest Cycles 3. Same Models in Family

a number which is called girth and neutrosophic girth arising from shortest
neutrosophic cycles. Further studies could be about changes in the settings to
compare these notions amid different settings of strong neutrosophic graphs
theory. One way is finding some relations amid all definitions of notions to
make sensible definitions. In Table (2.2), some limitations and advantages of
this study are pointed out.
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CHAPTER 3

Neutrosophic Girth Polynomial
Based On Neutrosophic Cycle and

Crisp Cycle in Neutrosophic
Graphs

The following sections are cited as [Ref3] which is my 64th manuscript and I
use prefix 64 as number before any labelling for items.

3.1 Some Polynomials Related to Numbers in Classes of
(Strong) Neutrosophic Graphs

3.2 Abstract

New setting is introduced to study girth polynomial and neutrosophic girth
polynomial arising counting neutrosophic cycles and crisp cycles in strong
neutrosophic graphs based on neutrosophic cycles and in neutrosophic graphs
based on crisp cycles. Forming neutrosophic cycles from a sequence of
consecutive vertices is key type of approach to have these notions namely
girth polynomial and neutrosophic girth polynomial arising from counting
neutrosophic cycles and crisp cycles in strong neutrosophic graphs based on
neutrosophic cycles and in neutrosophic graphs based on crisp cycles. Two
numbers are obtained but now both settings leads to approach is on demand
which is counting minimum cardinality and minimum neutrosophic cardinality
in the terms of vertices, which have edges which form neutrosophic cycle
and crisp cycles. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
girth polynomial G(NTG) for a neutrosophic graph NTG : (V,E, σ, µ) is
n1x

m1 +n2x
m2 + · · ·+nsx

3 where ni is the number of cycle with mi as its crisp
cardinality of the set of vertices of cycle; neutrosophic girth polynomial Gn(NTG)
for a neutrosophic graph NTG : (V,E, σ, µ) is n1x

m1 + n2x
m2 + · · · + nsx

ms

where ni is the number of cycle with mi as its neutrosophic cardinality
of the set of vertices of cycle. As concluding results, there are some
statements, remarks, examples and clarifications about some classes of strong
neutrosophic graphs namely (strong-)path-neutrosophic graphs, (strong-)cycle-
neutrosophic graphs, complete-neutrosophic graphs, (strong-)star-neutrosophic
graphs, (strong-)complete-bipartite-neutrosophic graphs, (strong-)complete-
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t-partite-neutrosophic graphs and (strong-)wheel-neutrosophic graphs. The
clarifications are also presented in both sections “Setting of Girth Polynomial,”
and “Setting of Neutrosophic Girth Polynomial,” for introduced results and
used classes. Neutrosophic number is reused in this way. It’s applied to use
the type of neutrosophic number in the way that, three values of a vertex
are used and they’ve same share to construct this number to compare with
other vertices. Summation of three values of vertex makes one number and
applying it to a comparison. This approach facilitates identifying vertices
which form girth polynomial and neutrosophic girth polynomial arising from
counting neutrosophic cycles and crisp cycles in strong neutrosophic graphs
based on neutrosophic cycles and in neutrosophic graphs based on crisp cycles.
In both settings, some classes of well-known (strong) neutrosophic graphs are
studied. Some clarifications for each result and each definition are provided. The
cardinality of a set has eligibility to define girth polynomial but the neutrosophic
cardinality of a set has eligibility to define neutrosophic girth polynomial. Some
results get more frameworks and perspective about these definitions. The way
in that, a sequence of consecutive vertices forming a neutrosophic cycle and
crisp cycles, opens the way to do some approaches. These notions are applied
into strong neutrosophic graphs and neutrosophic graphs as individuals but
not family of them as drawbacks for these notions. Finding special strong
neutrosophic graphs and neutrosophic graphs which are well-known, is an
open way to pursue this study. Some problems are proposed to pursue this
study. Basic familiarities with graph theory and neutrosophic graph theory are
proposed for this article.
Keywords: Girth Polynomial, Neutrosophic Girth Polynomial, Counting

Neutrosophic Cycle and Crisp Cycle
AMS Subject Classification: 05C17, 05C22, 05E45

3.3 Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 3.3.1. Is it possible to use mixed versions of ideas concerning “Neut-
rosophic Girth Polynomial”, “Girth Polynomial” and “(Strong) Neutrosophic
Graph” to define some notions which are applied to neutrosophic graphs?

It’s motivation to find notions to use in any classes of (strong) neutrosophic
graphs. Real-world applications about time table and scheduling are another
thoughts which lead to be considered as motivation. Lack of connection amid
two edges have key roles to assign girth polynomial and neutrosophic girth
polynomial arising from counting neutrosophic cycles and crisp cycles in strong
neutrosophic graphs based on neutrosophic cycles and in neutrosophic graphs
based on crisp cycles. Thus they’re used to define new ideas which conclude
to the structure of girth polynomial and neutrosophic girth polynomial arising
from counting neutrosophic cycles and crisp cycles in strong neutrosophic graphs
based on neutrosophic cycles and in neutrosophic graphs based on crisp cycles.
The concept of having common number of neutrosophic cycle inspires us to study
the behavior of vertices in the way that, some types of numbers, girth polynomial
and neutrosophic girth polynomial arising from counting neutrosophic cycles
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and crisp cycles in strong neutrosophic graphs based on neutrosophic cycles
and in neutrosophic graphs based on crisp cycles are the cases of study in the
setting of individuals. In both settings, a corresponded number concludes the
discussion. Also, there are some avenues to extend these notions.
The framework of this study is as follows. In the beginning, I introduce
basic definitions to clarify about preliminaries. In subsection “Preliminaries”,
new notions of girth polynomial and neutrosophic girth polynomial arising
from counting neutrosophic cycles and crisp cycles in strong neutrosophic
graphs based on neutrosophic cycles and in neutrosophic graphs based on crisp
cycles, are highlighted, are introduced and are clarified as individuals. In
section “Preliminaries”, sequence of consecutive vertices forming neutrosophic
cycles and crisp cycles have the key role in this way. General results are
obtained and also, the results about the basic notions of girth polynomial
and neutrosophic girth polynomial arising from counting neutrosophic cycles
and crisp cycles in strong neutrosophic graphs based on neutrosophic cycles
and in neutrosophic graphs based on crisp cycles, are elicited. Some classes
of (strong) neutrosophic graphs are studied in the terms of girth polynomial
arising from counting neutrosophic cycles and crisp cycles in strong neutrosophic
graphs based on neutrosophic cycles and in neutrosophic graphs based on crisp
cycles, in section “Setting of Girth Polynomial,” as individuals. In section
“Setting of Girth Polynomial,” girth polynomial is applied into individuals.
As concluding results, there are some statements, remarks, examples and
clarifications about some classes of (strong) neutrosophic graphs namely
strong-path-neutrosophic graphs, (strong-)cycle-neutrosophic graphs, complete-
neutrosophic graphs, (strong-)star-neutrosophic graphs, (strong-)complete-
bipartite-neutrosophic graphs, (strong-)complete-t-partite-neutrosophic graphs
and (strong-)wheel-neutrosophic graphs. The clarifications are also presented in
both sections “Setting of Girth Polynomial,” and “Setting of Neutrosophic Girth
Polynomial,” for introduced results and used classes. In section “Applications in
Time Table and Scheduling”, two applications are posed for quasi-complete and
complete notions, namely complete-neutrosophic graphs and (strong-)complete-
t-neutrosophic graphs concerning time table and scheduling when the suspicions
are about choosing some subjects and the mentioned models are considered as
individual. In section “Open Problems”, some problems and questions for further
studies are proposed. In section “Conclusion and Closing Remarks”, gentle
discussion about results and applications is featured. In section “Conclusion
and Closing Remarks”, a brief overview concerning advantages and limitations
of this study alongside conclusions is formed.

3.4 Preliminaries

In this subsection, basic material which is used in this article, is presented.
Also, new ideas and their clarifications are elicited.
Basic idea is about the model which is used. First definition introduces basic
model.

Definition 3.4.1. (Graph).
G = (V,E) is called a graph if V is a set of objects and E is a subset of V × V
(E is a set of 2-subsets of V ) where V is called vertex set and E is called
edge set. Every two vertices have been corresponded to at most one edge.
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Neutrosophic graph is the foundation of results in this paper which is defined
as follows. Also, some related notions are demonstrated.

Definition 3.4.2. (Neutrosophic Graph And Its Special Case).
NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) is called a neutrosophic
graph if it’s graph, σi : V → [0, 1], and µi : E → [0, 1]. We add one condition
on it and we use special case of neutrosophic graph but with same name. The
added condition is as follows, for every vivj ∈ E,

µ(vivj) ≤ σ(vi) ∧ σ(vj).

(i) : σ is called neutrosophic vertex set.

(ii) : µ is called neutrosophic edge set.

(iii) : |V | is called order of NTG and it’s denoted by O(NTG).

(iv) :
∑
v∈V σ(v) is called neutrosophic order of NTG and it’s denoted by

On(NTG).

(v) : |E| is called size of NTG and it’s denoted by S(NTG).

(vi) :
∑
e∈E

∑3
i=1 µi(e) is called neutrosophic size of NTG and it’s denoted

by Sn(NTG).

Some classes of well-known neutrosophic graphs are defined. These classes
of neutrosophic graphs are used to form this study and the most results are
about them.

Definition 3.4.3. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) : a sequence of vertices P : x0, x1, · · · , xO is called path where xixi+1 ∈
E, i = 0, 1, · · · , n− 1;

(ii) : strength of path P : x0, x1, · · · , xO is
∧
i=0,··· ,n−1 µ(xixi+1);

(iii) : connectedness amid vertices x0 and xt is

µ∞(x0, xt) =
∨

P :x0,x1,··· ,xt

∧
i=0,··· ,t−1

µ(xixi+1);

(iv) : a sequence of vertices P : x0, x1, · · · , xO is called cycle where xixi+1 ∈
E, i = 0, 1, · · · , n − 1 and there are two edges xy and uv such that
µ(xy) = µ(uv) =

∧
i=0,1,··· ,n−1 µ(vivi+1);

(v) : it’s t-partite where V is partitioned to t parts, V s1
1 , V s2

2 , · · · , V st
t and

the edge xy implies x ∈ V si
i and y ∈ V sj

j where i 6= j. If it’s complete,
then it’s denoted by Kσ1,σ2,··· ,σt

where σi is σ on V si
i instead V which

mean x 6∈ Vi induces σi(x) = 0. Also, |V si
j | = si;

(vi) : t-partite is complete bipartite if t = 2, and it’s denoted by Kσ1,σ2 ;

(vii) : complete bipartite is star if |V1| = 1, and it’s denoted by S1,σ2 ;

(viii) : a vertex in V is center if the vertex joins to all vertices of a cycle. Then
it’s wheel and it’s denoted by W1,σ2 ;
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(ix) : it’s complete where ∀uv ∈ V, µ(uv) = σ(u) ∧ σ(v);

(x) : it’s strong where ∀uv ∈ E, µ(uv) = σ(u) ∧ σ(v).

Definition 3.4.4. (Girth Polynomial and Neutrosophic Girth Polynomial).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) girth polynomial G(NTG) for a neutrosophic graph NTG : (V,E, σ, µ)
is n1x

m1 + n2x
m2 + · · ·+ nsx

3 where ni is the number of cycle with mi

as its crisp cardinality of the set of vertices of cycle;

(ii) neutrosophic girth polynomial Gn(NTG) for a neutrosophic graph
NTG : (V,E, σ, µ) is n1x

m1 +n2x
m2 + · · ·+nsxms where ni is the number

of cycle with mi as its neutrosophic cardinality of the set of vertices of
cycle.

63thm Theorem 3.4.5. Let NTG : (V,E, σ, µ) be a neutrosophic graph. If NTG :
(V,E, σ, µ) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CY C, such that σ(u) = min σ(x)x∈V (CY C). u has two
neighbors y, z in CY C. Since NTG is strong, µ(uy) = µ(uz) = σ(u). It implies
there are two weakest edges in CY C. It means CY C is neutrosophic cycle. �

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.
In next part, clarifications about main definition are given. To avoid confusion
and for convenient usages, examples are usually used after every part and names
are used in the way that, abbreviation, simplicity, and summarization are the
matters of mind.

Example 3.4.6. In Figure (3.1), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a path and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this path implies there’s
no cycle since if the length of a sequence of consecutive vertices is at most
2, then it’s impossible to have cycle. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. The length of this path implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but it
isn’t neutrosophic cycle. The length of crisp cycle implies there’s one cycle
since if the length of a sequence of consecutive vertices is at most 3, then
it’s possible to have cycle but there aren’t two weakest edges which imply
there is no neutrosophic cycle. So this crisp cycle isn’t a neutrosophic
cycle but it’s crisp cycle. The crisp length of this crisp cycle implies

n1, n2, n3
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is corresponded to girth polynomial G(NTG) but neutrosophic length of
this crisp cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth polynomial Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s two crisp cycles with length two and three. It’s also a path and
there are three edges but there are some crisp cycles but there are only
two neutrosophic cycles with length three, n1, n3, n4, and with length
four, n1, n2, n3, n4. The length of this sequence implies there are some
crisp cycles and there are two neutrosophic cycles since if the length of a
sequence of consecutive vertices is at most 4 and it’s crisp complete, then
it’s possible to have some crisp cycles and two neutrosophic cycles with
two different length three and four. So this neutrosophic path forms some
neutrosophic cycles and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but
it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive vertices is at
most 3, then it’s possible to have cycle but there are two weakest edges,
n3n4 and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to girth polynomial G(NTG) and neutrosophic length of
this neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth polynomial Gn(NTG);

(v) x4 + 3x3 is girth polynomial and its corresponded sets, for coefficient of
smallest term, are {n1, n2, n3}, {n1, n2, n4}, and {n2, n3, n4};

(vi) x5.9 + x5 + x4.5 + x4.3 + x3.9 is neutrosophic girth polynomial and its
corresponded set, for coefficient of smallest term, is {n1, n3, n4}.

3.5 Setting of Girth Polynomial

In this section, I provide some results in the setting of girth polynomial.
Some classes of neutrosophic graphs are chosen. Complete-neutrosophic graph,
path-neutrosophic graph, cycle-neutrosophic graph, star-neutrosophic graph,
bipartite-neutrosophic graph, and t-partite-neutrosophic graph, are both of
cases of study and classes which the results are about them.

102



3.5. Setting of Girth Polynomial

Figure 3.1: A Neutrosophic Graph in the Viewpoint of its girth polynomial and
its Neutrosophic girth polynomial. 64NTG1

Proposition 3.5.1. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

G(NTG) = xO(NTG) +O(NTG)xO(NTG)−1 + · · ·+
(
O(NTG)

3

)
x3.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. The
length of longest cycle is O(NTG). In other hand, there’s a cycle if and only if
O(NTG) ≥ 3. It’s complete. So there’s at least one neutrosophic cycle which
its length is O(NTG) = 3. By shortest cycle is on demand, the girth polynomial
is three. Thus

G(NTG) = xO(NTG) +O(NTG)xO(NTG)−1 + · · ·+
(
O(NTG)

3

)
x3.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 3.5.2. In Figure (3.2), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a path and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this path implies there’s
no cycle since if the length of a sequence of consecutive vertices is at most
2, then it’s impossible to have cycle. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. The length of this path implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);
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(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but it
isn’t neutrosophic cycle. The length of crisp cycle implies there’s one cycle
since if the length of a sequence of consecutive vertices is at most 3, then
it’s possible to have cycle but there aren’t two weakest edges which imply
there is no neutrosophic cycle. So this crisp cycle isn’t a neutrosophic
cycle but it’s crisp cycle. The crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth polynomial G(NTG) but neutrosophic length of
this crisp cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth polynomial Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s two crisp cycles with length two and three. It’s also a path and
there are three edges but there are some crisp cycles but there are only
two neutrosophic cycles with length three, n1, n3, n4, and with length
four, n1, n2, n3, n4. The length of this sequence implies there are some
crisp cycles and there are two neutrosophic cycles since if the length of a
sequence of consecutive vertices is at most 4 and it’s crisp complete, then
it’s possible to have some crisp cycles and two neutrosophic cycles with
two different length three and four. So this neutrosophic path forms some
neutrosophic cycles and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but
it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive vertices is at
most 3, then it’s possible to have cycle but there are two weakest edges,
n3n4 and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to girth polynomial G(NTG) and neutrosophic length of
this neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth polynomial Gn(NTG);

(v) x4 + 3x3 is girth polynomial and its corresponded sets, for coefficient of
smallest term, are {n1, n2, n3}, {n1, n2, n4}, and {n2, n3, n4};

(vi) x5.9 + x5 + x4.5 + x4.3 + x3.9 is neutrosophic girth polynomial and its
corresponded set, for coefficient of smallest term, is {n1, n3, n4}.
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Figure 3.2: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG2

Another class of neutrosophic graphs is addressed to path-neutrosophic
graph.

Proposition 3.5.3. Let NTG : (V,E, σ, µ) be a strong-path-neutrosophic graph.
Then

G(NTG) = 0.

Proof. Suppose NTG : (V,E, σ, µ) is a strong-path-neutrosophic graph. There’s
no crisp cycle. If NTG : (V,E, σ, µ) isn’t a crisp cycle, then NTG : (V,E, σ, µ)
isn’t a neutrosophic cycle. There’s no cycle from every version. Let
x0, x1, · · · , xO(NTG) be a path-neutrosophic graph. Since x0, x1, · · · , xO(NTG)
is a sequence of consecutive vertices, there’s no repetition of vertices in this
sequence. So there’s no cycle. girth polynomial is corresponded to shortest
cycle but there’s no cycle. Thus it implies

G(NTG) = 0.

�

Example 3.5.4. There are two sections for clarifications.

(a) In Figure (3.3), an odd-path-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
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isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are four
edges, n1n2, n2n3 and n4n5, according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding shortest cycle. Finding shortest cycle has
no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. So adding vertices has no effect
to find a crisp cycle. There is only one path amid two given vertices.
The structure of this neutrosophic path implies

n1, n2, n3, n4, n5

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(v) ∞ is girth polynomial and there are no corresponded sets;
(vi) ∞ is neutrosophic girth polynomial and there are no corresponded

sets.

(b) In Figure (3.4), an even-path-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
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consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are four
edges, n1n2, n2n3 and n4n5, according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding shortest cycle. Finding shortest cycle has
no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. So adding vertices has no effect
to find a crisp cycle. There is only one path amid two given vertices.
The structure of this neutrosophic path implies

n1, n2, n3, n4, n5

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);
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Figure 3.3: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG3

Figure 3.4: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG4

(v) 0 is girth polynomial and there are no corresponded sets;
(vi) 0 is neutrosophic girth polynomial and there are no corresponded

sets.

Proposition 3.5.5. Let NTG : (V,E, σ, µ) be a strong-cycle-neutrosophic graph
where O(NTG) ≥ 3. Then

G(NTG) = xO(NTG).

Proof. Suppose NTG : (V,E, σ, µ) is a strong-cycle-neutrosophic graph.
Let x1, x2, · · · , xO(NTG), x1 be a sequence of consecutive vertices of NTG :
(V,E, σ, µ) such that

xixi+1 ∈ E, i = 1, 2, · · · ,O(NTG)− 1, xO(NTG)x1 ∈ E.

There are two paths amid two given vertices. The degree of every vertex is two.
But there’s one crisp cycle for every given vertex. So the efforts leads to one
cycle for finding a shortest crisp cycle. For a given vertex xi, the sequence of
consecutive vertices

xi, xi+1, · · · , xi−2, xi−1, xi
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is a corresponded crisp cycle for xi. Every cycle has same length. The length is
O(NTG). Thus the crisp cardinality of set of vertices forming shortest crisp
cycle is O(NTG). By Theorem (3.4.5),

G(NTG) = xO(NTG).

�

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 3.5.6. There are two sections for clarifications.

(a) In Figure (3.5), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
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cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iv) if n1, n2, n3, n4, n5, n6, n1 is a sequence of consecutive vertices, then
it’s obvious that there’s one cycle. It’s also a path and there
are six edges, n1n2, n2n3, n3n4, n4n5, n5n6 and n6n1, according to
corresponded neutrosophic path and it’s neutrosophic cycle since it
has two weakest edges, n4n5 and n5n6 with same values (0.1, 0.1, 0.2).
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is both of a neutrosophic cycle and crisp
cycle. So adding vertices has effect on finding a crisp cycle. There
are only two paths amid two given vertices. The structure of this
neutrosophic path implies n1, n2, n3, n4, n5, n6, n1 is corresponded to
both of girth polynomial G(NTG) and neutrosophic girth polynomial
Gn(NTG);

(v) x6=O(NTG) is girth polynomial and its corresponded set, for
coefficient of smallest term, is only {n1, n2, n3, n4, n5, n6, n1};

(vi) x8.1=On(NTG) is neutrosophic girth polynomial and its corresponded
set, for coefficient of smallest term, is only {n1, n2, n3, n4, n5, n6, n1}.

(b) In Figure (3.6), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3
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is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iv) if n1, n2, n3, n4, n5, n1 is a sequence of consecutive vertices, then it’s
obvious that there’s one cycle. It’s also a path and there are five
edges, n1n2, n2n3, n3n4, n4n5 and n5n1, according to corresponded
neutrosophic path and it isn’t neutrosophic cycle since it has only one
weakest edge, n1n2, with value (0.2, 0.5, 0.4) and not more. First step
is to have at least one crisp cycle for finding shortest cycle. Finding
shortest cycle has one result. Since there’s one cycle. Neutrosophic
cycle is a crisp cycle with at least two weakest edges. So this
neutrosophic path is not a neutrosophic cycle but it is a crisp cycle.
So adding vertices has effect on finding a crisp cycle. There are only
two paths amid two given vertices. The structure of this neutrosophic
path implies n1, n2, n3, n4, n5, n1 is corresponded to both of girth
polynomial G(NTG) and neutrosophic girth polynomial Gn(NTG);

(v) x5=O(NTG) is girth polynomial and its corresponded set, for
coefficient of smallest term, is only {n1, n2, n3, n4, n5, n1};

(vi) x8.5=On(NTG) is neutrosophic girth polynomial and its corresponded
set, for coefficient of smallest term, is only {n1, n2, n3, n4, n5, n1}.

Proposition 3.5.7. Let NTG : (V,E, σ, µ) be a strong-star-neutrosophic graph
with center c. Then

G(NTG) = 0.

Proof. Suppose NTG : (V,E, σ, µ) is a strong-star-neutrosophic graph. Every
vertex isn’t a neighbor for every given vertex. Every vertex is a neighbor for
center. Furthermore, center is only neighbor for any given vertex. So center
is only neighbor for all vertices. It’s possible to have some paths amid two
given vertices but there’s no crisp cycle. In other words, if O(NTG) > 2, then
there are at least three vertices x, y and z such that if x is a neighbor for y and
z, then y and z aren’t neighbors and x is center. To get more precise, if if x
and y are neighbors then either x or y is center. Every edge have one common
endpoint with other edges which is called center. Thus there is no triangle
but there are some edges. One edge has two endpoints which one of them is
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Figure 3.5: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG5

Figure 3.6: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG6

center. There are no crisp cycle. Hence trying to find shortest cycle has no
result. There is no crisp cycle. Then there is shortest crisp cycle. So

G(NTG) = 0.

�

The clarifications about results are in progress as follows. A star-neutrosophic
graph is related to previous result and it’s studied to apply the definitions on it.
To make it more clear, next part gives one special case to apply definitions and
results on it. Some items are devised to make more sense about new notions. A
star-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it, too.

Example 3.5.8. There is one section for clarifications. In Figure (3.7), a star-
neutrosophic graph is illustrated. Some points are represented in follow-up
items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a star and it’s only one edge but it is neither crisp
cycle nor neutrosophic cycle. The length of this star implies there’s no
cycle since if the length of a sequence of consecutive vertices is at most 2,
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then it’s impossible to have cycle. So this neutrosophic star has neither a
neutrosophic cycle nor crisp cycle. The length of this star implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a star and there are two edges, n1n2 and
n1n3, according to corresponded neutrosophic star but it doesn’t have
neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic star has neither a neutrosophic cycle nor crisp cycle.
The structure of this neutrosophic star implies

n1, n2, n3

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a star and there are three edges, n1n2, n1n3
and n1n4, according to corresponded neutrosophic star but it doesn’t have
neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic star has neither a neutrosophic cycle nor crisp cycle. So
adding vertices has no effect to find a crisp cycle. The structure of this
neutrosophic star implies

n1, n2, n3, n4

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a star and there are four edges,
n1n2, n1n3, n1n4 and n1n5, according to corresponded neutrosophic star
but it isn’t neutrosophic cycle. First step is to have at least one crisp
cycle for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic star has neither a neutrosophic cycle
nor crisp cycle. So adding vertices has no effect to find a crisp cycle.
There are some paths amid two given vertices. The structure of this
neutrosophic star implies

n1, n2, n3, n4, n5

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(v) 0 is girth polynomial and there is no corresponded set;
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Figure 3.7: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG7

(vi) 0 is neutrosophic girth polynomial and there is no corresponded set.

Proposition 3.5.9. Let NTG : (V,E, σ, µ) be a strong-complete-bipartite-
neutrosophic graph. Then

G(NTG) = c1x
2bO(NT G)

2 c + c2x
2bO(NT G)

2 c−2 + · · ·+ csx
4.

where O(NTG) ≥ 4. And
G(NTG) = 0

where O(NTG) ≤ 3.

Proof. Suppose NTG : (V,E, σ, µ) is a strong-complete-bipartite-neutrosophic
graph. Every vertex is a neighbor for all vertices in another part. If
O(NTG) ≤ 3, then it’s neutrosophic path implying

G(NTG) = 0.

If O(NTG) ≥ 4, then it’s possible to have two vertices in every part. In this
case, four vertices form a crisp cycle which crisp cardinality of its vertices are
four. It’s impossible to have a crisp cycle which crisp cardinality of its vertices
are three. Since the sequence of consecutive vertices are x1, x2, x3 and there’s
no edge more. It implies there are two edges. It’s neutrosophic path but neither
crisp cycle nor neutrosophic cycle. So the first step of finding shortest crisp
cycle is impossible but in second step, there’s one crisp cycle corresponded to
number four. By Theorem (3.4.5),

G(NTG) = c1x
2bO(NT G)

2 c + c2x
2bO(NT G)

2 c−2 + · · ·+ csx
4.

where O(NTG) ≥ 4. And
G(NTG) = 0

where O(NTG) ≤ 3. �

The clarifications about results are in progress as follows. A complete-
bipartite-neutrosophic graph is related to previous result and it’s studied to
apply the definitions on it. To make it more clear, next part gives one special
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case to apply definitions and results on it. Some items are devised to make
more senses about new notions. A complete-bipartite-neutrosophic graph is
related to previous result and it’s studied to apply the definitions on it, too.

Example 3.5.10. There is one section for clarifications. In Figure (3.8),
a complete-bipartite-neutrosophic graph is illustrated. Some points are
represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a complete-bipartite and it’s only one edge but it
is neither crisp cycle nor neutrosophic cycle. The length of this complete-
bipartite implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle. So
this neutrosophic complete-bipartite has neither a neutrosophic cycle nor
crisp cycle. The length of this complete-bipartite implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-bipartite and there are two
edges, n1n2 and n1n3, according to corresponded neutrosophic complete-
bipartite but it doesn’t have neutrosophic cycle. First step is to have
at least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-bipartite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-bipartite implies

n1, n2, n3

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iii) if n1, n2, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-bipartite and there are two
edges, n1n2 and n2n4, according to corresponded neutrosophic complete-
bipartite but it doesn’t have neutrosophic cycle. First step is to have
at least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-bipartite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-bipartite implies

n1, n2, n4

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iv) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a complete-bipartite and there are four
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Figure 3.8: A Neutrosophic Graph in the Viewpoint of girth polynomial. 64NTG8

edges, n1n2, n1n3, n2n4 and n3n4, according to corresponded neutrosophic
complete-bipartite and it has neutrosophic cycle where n2n4 and n3n4
are two weakest edge with same amount (0.3, 0.2, 0.3). First step is to
have at least one crisp cycle for finding shortest cycle. Finding shortest
cycle only has one result. Since there’s one cycle. Neutrosophic cycle
is a crisp cycle with at least two weakest edges. So this neutrosophic
complete-bipartite has both of a neutrosophic cycle and crisp cycle. So
adding vertices has some effects to find a crisp cycle. The structure of
this neutrosophic complete-bipartite implies

n1, n2, n3, n4

is corresponded to girth polynomial G(NTG) and uniqueness of this cycle
implies the sequence

n1, n2, n3, n4

is corresponded to neutrosophic girth polynomial Gn(NTG);

(v) x4=O(NTG) is girth polynomial and its corresponded sequence is
n1, n2, n3, n4;

(vi) x5.8=On(NTG) is neutrosophic girth polynomial and its corresponded
sequence is n1, n2, n3, n4.

Proposition 3.5.11. Let NTG : (V,E, σ, µ) be a strong-complete-t-partite-
neutrosophic graph. Then

G(NTG) = c1x
O(NTG) + c2x

O(NTG)−1 + · · ·+ csx
3

where t ≥ 3.

G(NTG) = c1x
2bO(NT G)

2 c + c2x
2bO(NT G)

2 c−2 + · · ·+ csx
4

where t ≤ 2. And
G(NTG) = 0

where O(NTG) ≤ 2.
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Proof. Suppose NTG : (V,E, σ, µ) is a strong-complete-t-partite-neutrosophic
graph. Every vertex is a neighbor for all vertices in another part. If
O(NTG) ≤ 2, then it’s neutrosophic path implying

G(NTG) = 0.

If t ≥ 3,O(NTG) ≥ 3, then it has crisp cycle implying

G(NTG) = c1x
O(NTG) + c2x

O(NTG)−1 + · · ·+ csx
3.

If t ≥ 2,O(NTG) ≥ 4, then it’s possible to have two vertices in every part. In
this case, four vertices form a crisp cycle which crisp cardinality of its vertices
are four. It’s impossible to have a crisp cycle which crisp cardinality of its
vertices are three. Since the sequence of consecutive vertices are x1, x2, x3 and
there’s no edge more. It implies there are two edges. It’s neutrosophic path but
neither crisp cycle nor neutrosophic cycle. So the first step of finding shortest
crisp cycle is impossible but in second step, there’s one crisp cycle corresponded
to number four. By Theorem (3.4.5),

G(NTG) = c1x
O(NTG) + c2x

O(NTG)−1 + · · ·+ csx
3

where t ≥ 3.

G(NTG) = c1x
2bO(NT G)

2 c + c2x
2bO(NT G)

2 c−2 + · · ·+ csx
4

where t ≤ 2. And
G(NTG) = 0

where O(NTG) ≤ 2. �

The clarifications about results are in progress as follows. A complete-t-
partite-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case
to apply definitions and results on it. Some items are devised to make more
sense about new notions. A complete-t-partite-neutrosophic graph is related to
previous result and it’s studied to apply the definitions on it, too.

Example 3.5.12. There is one section for clarifications. In Figure (3.9), a
complete-t-partite-neutrosophic graph is illustrated. Some points are represented
in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a complete-t-partite and it’s only one edge
but it is neither crisp cycle nor neutrosophic cycle. The length of this
complete-t-partite implies there’s no cycle since if the length of a sequence
of consecutive vertices is at most 2, then it’s impossible to have cycle. So
this neutrosophic complete-t-partite has neither a neutrosophic cycle nor
crisp cycle. The length of this complete-t-partite implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);
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(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-t-partite and there are two
edges, n1n2 and n1n3, according to corresponded neutrosophic complete-
t-partite but it doesn’t have neutrosophic cycle. First step is to have at
least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-t-partite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-t-partite implies

n1, n2, n3

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iii) if n1, n2, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-t-partite and there are two
edges, n1n2 and n2n4, according to corresponded neutrosophic complete-
t-partite but it doesn’t have neutrosophic cycle. First step is to have at
least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-t-partite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-t-partite implies

n1, n2, n4

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iv) if n1, n2, n4, n5 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a complete-t-partite and there are four
edges, n1n2, n1n5, n2n4 and n5n4, according to corresponded neutrosophic
complete-t-partite and it has neutrosophic cycle where n2n4 and n5n4
are two weakest edge with same amount (0.3, 0.2, 0.3). First step is to
have at least one crisp cycle for finding shortest cycle. Finding shortest
cycle only has one result. Since there’s one cycle. Neutrosophic cycle
is a crisp cycle with at least two weakest edges. So this neutrosophic
complete-t-partite has both of a neutrosophic cycle and crisp cycle. So
adding vertices has some effects to find a crisp cycle. The structure of
this neutrosophic complete-t-partite implies

n1, n2, n4, n5

is corresponded to girth polynomial G(NTG) and minimum neutrosophic
cardinality implies the sequence

n1, n2, n4, n5

is corresponded to neutrosophic girth polynomial Gn(NTG);

(v) 36x4 is girth polynomial and some its corresponded sequences, for
coefficient of smallest term, are

118



3.5. Setting of Girth Polynomial

Figure 3.9: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG9

n1, n2, n4, n3, n1

n1, n2, n4, n5, n1

n1, n5, n4, n3, n1

n1, n5, n4, n2, n1

n1, n3, n4, n5, n1

n1, n3, n4, n2, n1;

(vi) x5.8 + 2x5.7 is neutrosophic girth polynomial and its corresponded
sequences, for coefficient of smallest term, are

n1, n2, n4, n5, n1

n1, n5, n4, n2, n1

Proposition 3.5.13. Let NTG : (V,E, σ, µ) be a strong-wheel-neutrosophic
graph. Then

G(NTG) = c1x
O(NTG) + c2x

O(NTG)−1 + · · ·+ csx
3

where t ≥ 3.
G(NTG) = 0

where t ≥ 2.

Proof. Suppose NTG : (V,E, σ, µ) is a strong-wheel-neutrosophic graph. The
argument is elementary. Since all vertices of a path join to one vertex. By
Theorem (3.4.5),

G(NTG) = c1x
O(NTG) + c2x

O(NTG)−1 + · · ·+ csx
3

where t ≥ 3.
G(NTG) = 0

where t ≥ 2. �
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The clarifications about results are in progress as follows. A complete-t-
partite-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case
to apply definitions and results on it. Some items are devised to make more
sense about new notions. A complete-t-partite-neutrosophic graph is related to
previous result and it’s studied to apply the definitions on it, too.

Example 3.5.14. There is one section for clarifications. In Figure (3.10), a
wheel-neutrosophic graph is illustrated. Some points are represented in follow-
up items as follows.

(i) If s1, s2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a wheel and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this wheel implies there’s
no cycle since if the length of a sequence of consecutive vertices is at
most 2, then it’s impossible to have cycle. So this neutrosophic wheel
has neither a neutrosophic cycle nor crisp cycle. The length of this wheel
implies

s1, s2

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(ii) if s4, s2, s3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a wheel and there are two edges, s3s2 and
s4s3, according to corresponded neutrosophic wheel but it doesn’t have
neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic wheel has neither a neutrosophic cycle nor crisp cycle.
The structure of this neutrosophic wheel implies

s4, s2, s3

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iii) if s1, s2, s3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a wheel and there are three edges,
s1s2, s2s3 and s1s3 according to corresponded neutrosophic wheel but it
doesn’t have neutrosophic cycle. First step is to have at least one crisp
cycle for finding shortest cycle. Finding shortest cycle has one result.
Since there’s one crisp cycle. Neutrosophic cycle is a crisp cycle with at
least two weakest edges. So this neutrosophic wheel has no neutrosophic
cycle but it has crisp cycle. The structure of this neutrosophic wheel
implies

s1, s2, s3

is corresponded to girth polynomial G(NTG) but minimum neutrosophic
cardinality implies

s1, s2, s3

isn’t corresponded to neutrosophic girth polynomial Gn(NTG);
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Figure 3.10: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG10

(iv) if s1, s3, s4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a wheel and there are three edges,
s1s4, s4s3 and s1s3 according to corresponded neutrosophic wheel and it
has a neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has one result. Since
there’s one crisp cycle. Neutrosophic cycle is a crisp cycle with at least
two weakest edges. So this neutrosophic wheel has one neutrosophic cycle
with two weakest edges s1s4 and s3s4 concerning same values (0.1, 0.1, 0.5)
and it has a crisp cycle. The structure of this neutrosophic wheel implies

s1, s3, s4

is corresponded to girth polynomial G(NTG) and minimum neutrosophic
cardinality implies

s1, s3, s4

is corresponded to neutrosophic girth polynomial Gn(NTG);

(v) x5 + 2x4 + 3x3 is girth polynomial and its corresponded sequences, for
coefficient of smallest term, are

s1, s3, s4

s1, s2, s3

s1, s4, s5;

(vi) x6.9 + x5.1 + x5.6 + x4.4 + x4 + x3.8 is neutrosophic girth polynomial and
its corresponded sequence is s1, s3, s4.

3.6 Setting of Neutrosophic Girth Polynomial

In this section, I provide some results in the setting of neutrosophic girth
polynomial. Some classes of neutrosophic graphs are chosen. Complete-
neutrosophic graph, path-neutrosophic graph, cycle-neutrosophic graph, star-
neutrosophic graph, bipartite-neutrosophic graph, and t-partite-neutrosophic
graph, are both of cases of study and classes which the results are about them.
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Proposition 3.6.1. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Gn(NTG) = xOn(NTG) +O(NTG)xO(NTG)−
∑3

i=1
σi(x)+

· · ·+
(
O(NTG)

3

)
xmin{Σ3

i=1(σi(x)+σi(y)+σi(z))}.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. The
length of longest cycle is O(NTG). In other hand, there’s a cycle if and only if
O(NTG) ≥ 3. It’s complete. So there’s at least one neutrosophic cycle which
its length is O(NTG) = 3. By shortest cycle is on demand, the girth polynomial
is three. Thus

Gn(NTG) = xOn(NTG) +O(NTG)xO(NTG)−
∑3

i=1
σi(x)+

· · ·+
(
O(NTG)

3

)
xmin{Σ3

i=1(σi(x)+σi(y)+σi(z))}.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 3.6.2. In Figure (3.11), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a path and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this path implies there’s
no cycle since if the length of a sequence of consecutive vertices is at most
2, then it’s impossible to have cycle. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. The length of this path implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but it
isn’t neutrosophic cycle. The length of crisp cycle implies there’s one cycle
since if the length of a sequence of consecutive vertices is at most 3, then
it’s possible to have cycle but there aren’t two weakest edges which imply
there is no neutrosophic cycle. So this crisp cycle isn’t a neutrosophic
cycle but it’s crisp cycle. The crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth polynomial G(NTG) but neutrosophic length of
this crisp cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth polynomial Gn(NTG);
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Figure 3.11: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG11

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s two crisp cycles with length two and three. It’s also a path and
there are three edges but there are some crisp cycles but there are only
two neutrosophic cycles with length three, n1, n3, n4, and with length
four, n1, n2, n3, n4. The length of this sequence implies there are some
crisp cycles and there are two neutrosophic cycles since if the length of a
sequence of consecutive vertices is at most 4 and it’s crisp complete, then
it’s possible to have some crisp cycles and two neutrosophic cycles with
two different length three and four. So this neutrosophic path forms some
neutrosophic cycles and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but
it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive vertices is at
most 3, then it’s possible to have cycle but there are two weakest edges,
n3n4 and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to girth polynomial G(NTG) and neutrosophic length of
this neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth polynomial Gn(NTG);

(v) x4 + 3x3 is girth polynomial and its corresponded sets, for coefficient of
smallest term, are {n1, n2, n3}, {n1, n2, n4}, and {n2, n3, n4};

(vi) x5.9 + x5 + x4.5 + x4.3 + x3.9 is neutrosophic girth polynomial and its
corresponded set, for coefficient of smallest term, is {n1, n3, n4}.

Another class of neutrosophic graphs is addressed to path-neutrosophic
graph.
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Proposition 3.6.3. Let NTG : (V,E, σ, µ) be a strong-path-neutrosophic graph.
Then

Gn(NTG) = 0.

Proof. Suppose NTG : (V,E, σ, µ) is a strong-path-neutrosophic graph. There’s
no crisp cycle. If NTG : (V,E, σ, µ) isn’t a crisp cycle, then NTG : (V,E, σ, µ)
isn’t a neutrosophic cycle. There’s no cycle from every version. Let
x0, x1, · · · , xO(NTG) be a path-neutrosophic graph. Since x0, x1, · · · , xO(NTG)
is a sequence of consecutive vertices, there’s no repetition of vertices in this
sequence. So there’s no cycle. girth polynomial is corresponded to shortest
cycle but there’s no cycle. Thus it implies

Gn(NTG) = 0.

�

Example 3.6.4. There are two sections for clarifications.

(a) In Figure (3.12), an odd-path-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
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weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are four
edges, n1n2, n2n3 and n4n5, according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding shortest cycle. Finding shortest cycle has
no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. So adding vertices has no effect
to find a crisp cycle. There is only one path amid two given vertices.
The structure of this neutrosophic path implies

n1, n2, n3, n4, n5

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(v) 0 is girth polynomial and there are no corresponded sets;
(vi) 0 is neutrosophic girth polynomial and there are no corresponded

sets.

(b) In Figure (3.13), an even-path-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3
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is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are four
edges, n1n2, n2n3 and n4n5, according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding shortest cycle. Finding shortest cycle has
no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. So adding vertices has no effect
to find a crisp cycle. There is only one path amid two given vertices.
The structure of this neutrosophic path implies

n1, n2, n3, n4, n5

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(v) 0 is girth polynomial and there are no corresponded sets;
(vi) 0 is neutrosophic girth polynomial and there are no corresponded

sets.

Proposition 3.6.5. Let NTG : (V,E, σ, µ) be a strong-cycle-neutrosophic graph
where O(NTG) ≥ 3. Then

Gn(NTG) = xOn(NTG).

Proof. Suppose NTG : (V,E, σ, µ) is a strong-cycle-neutrosophic graph.
Let x1, x2, · · · , xO(NTG), x1 be a sequence of consecutive vertices of NTG :
(V,E, σ, µ) such that

xixi+1 ∈ E, i = 1, 2, · · · ,O(NTG)− 1, xO(NTG)x1 ∈ E.

There are two paths amid two given vertices. The degree of every vertex is two.
But there’s one crisp cycle for every given vertex. So the efforts leads to one
cycle for finding a shortest crisp cycle. For a given vertex xi, the sequence of
consecutive vertices

xi, xi+1, · · · , xi−2, xi−1, xi
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Figure 3.12: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG12

Figure 3.13: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG13

is a corresponded crisp cycle for xi. Every cycle has same length. The length is
O(NTG). Thus the crisp cardinality of set of vertices forming shortest crisp
cycle is O(NTG). By Theorem (3.4.5),

Gn(NTG) = xOn(NTG).

�

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 3.6.6. There are two sections for clarifications.

(a) In Figure (3.14), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
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it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iv) if n1, n2, n3, n4, n5, n6, n1 is a sequence of consecutive vertices, then
it’s obvious that there’s one cycle. It’s also a path and there
are six edges, n1n2, n2n3, n3n4, n4n5, n5n6 and n6n1, according to
corresponded neutrosophic path and it’s neutrosophic cycle since it
has two weakest edges, n4n5 and n5n6 with same values (0.1, 0.1, 0.2).
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is both of a neutrosophic cycle and crisp
cycle. So adding vertices has effect on finding a crisp cycle. There
are only two paths amid two given vertices. The structure of this
neutrosophic path implies n1, n2, n3, n4, n5, n6, n1 is corresponded to
both of girth polynomial G(NTG) and neutrosophic girth polynomial
Gn(NTG);
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(v) x6=O(NTG) is girth polynomial and its corresponded set, for
coefficient of smallest term, is only {n1, n2, n3, n4, n5, n6, n1};

(vi) x8.1=On(NTG) is neutrosophic girth polynomial and its corresponded
set, for coefficient of smallest term, is only {n1, n2, n3, n4, n5, n6, n1}.

(b) In Figure (3.15), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

n1, n2, n3

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
n1n2 and n2n3, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1, n2, n3, n4

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iv) if n1, n2, n3, n4, n5, n1 is a sequence of consecutive vertices, then it’s
obvious that there’s one cycle. It’s also a path and there are five
edges, n1n2, n2n3, n3n4, n4n5 and n5n1, according to corresponded
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Figure 3.14: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG14

Figure 3.15: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG15

neutrosophic path and it isn’t neutrosophic cycle since it has only one
weakest edge, n1n2, with value (0.2, 0.5, 0.4) and not more. First step
is to have at least one crisp cycle for finding shortest cycle. Finding
shortest cycle has one result. Since there’s one cycle. Neutrosophic
cycle is a crisp cycle with at least two weakest edges. So this
neutrosophic path is not a neutrosophic cycle but it is a crisp cycle.
So adding vertices has effect on finding a crisp cycle. There are only
two paths amid two given vertices. The structure of this neutrosophic
path implies n1, n2, n3, n4, n5, n1 is corresponded to both of girth
polynomial G(NTG) and neutrosophic girth polynomial Gn(NTG);

(v) x5=O(NTG) is girth polynomial and its corresponded set, for
coefficient of smallest term, is only {n1, n2, n3, n4, n5, n1};

(vi) x8.5=On(NTG) is neutrosophic girth polynomial and its corresponded
set, for coefficient of smallest term, is only {n1, n2, n3, n4, n5, n1}.

Proposition 3.6.7. Let NTG : (V,E, σ, µ) be a strong-star-neutrosophic graph
with center c. Then

Gn(NTG) = 0.
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Proof. Suppose NTG : (V,E, σ, µ) is a strong-star-neutrosophic graph. Every
vertex isn’t a neighbor for every given vertex. Every vertex is a neighbor for
center. Furthermore, center is only neighbor for any given vertex. So center
is only neighbor for all vertices. It’s possible to have some paths amid two
given vertices but there’s no crisp cycle. In other words, if O(NTG) > 2, then
there are at least three vertices x, y and z such that if x is a neighbor for y and
z, then y and z aren’t neighbors and x is center. To get more precise, if if x
and y are neighbors then either x or y is center. Every edge have one common
endpoint with other edges which is called center. Thus there is no triangle
but there are some edges. One edge has two endpoints which one of them is
center. There are no crisp cycle. Hence trying to find shortest cycle has no
result. There is no crisp cycle. Then there is shortest crisp cycle. So

Gn(NTG) = 0.

�

The clarifications about results are in progress as follows. A star-neutrosophic
graph is related to previous result and it’s studied to apply the definitions on it.
To make it more clear, next part gives one special case to apply definitions and
results on it. Some items are devised to make more sense about new notions. A
star-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it, too.

Example 3.6.8. There is one section for clarifications. In Figure (3.16), a star-
neutrosophic graph is illustrated. Some points are represented in follow-up
items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a star and it’s only one edge but it is neither crisp
cycle nor neutrosophic cycle. The length of this star implies there’s no
cycle since if the length of a sequence of consecutive vertices is at most 2,
then it’s impossible to have cycle. So this neutrosophic star has neither a
neutrosophic cycle nor crisp cycle. The length of this star implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a star and there are two edges, n1n2 and
n1n3, according to corresponded neutrosophic star but it doesn’t have
neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic star has neither a neutrosophic cycle nor crisp cycle.
The structure of this neutrosophic star implies

n1, n2, n3

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

131



3. Neutrosophic Girth Polynomial Based On Neutrosophic Cycle and Crisp
Cycle in Neutrosophic Graphs

Figure 3.16: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG16

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a star and there are three edges, n1n2, n1n3
and n1n4, according to corresponded neutrosophic star but it doesn’t have
neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic star has neither a neutrosophic cycle nor crisp cycle. So
adding vertices has no effect to find a crisp cycle. The structure of this
neutrosophic star implies

n1, n2, n3, n4

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iv) if n1, n2, n3, n4, n5 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a star and there are four edges,
n1n2, n1n3, n1n4 and n1n5, according to corresponded neutrosophic star
but it isn’t neutrosophic cycle. First step is to have at least one crisp
cycle for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic star has neither a neutrosophic cycle
nor crisp cycle. So adding vertices has no effect to find a crisp cycle.
There are some paths amid two given vertices. The structure of this
neutrosophic star implies

n1, n2, n3, n4, n5

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(v) 0 is girth polynomial and there is no corresponded set;

(vi) 0 is neutrosophic girth polynomial and there is no corresponded set.

Proposition 3.6.9. Let NTG : (V,E, σ, µ) be a strong-complete-bipartite-
neutrosophic graph. Then
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Gn(NTG) = c1x
On(NTG)+c2xOn(NTG)−(Σ3

i=1(σi(x)+σi(y)))+

· · ·+csxmin{Σ3
i=1(σi(x)+σi(y)+σi(z)+σi(w))}x,y∈V1, z,w∈V2

where O(NTG) ≥ 4 and min{|V1|, |V2|} ≥ 2. Also,

Gn(NTG) = 0

where O(NTG) ≤ 3.

Proof. Suppose NTG : (V,E, σ, µ) is a strong-complete-bipartite-neutrosophic
graph. Every vertex is a neighbor for all vertices in another part. If
O(NTG) ≤ 3, then it’s neutrosophic path implying

Gn(NTG) = 0.

If O(NTG) ≥ 4, then it’s possible to have two vertices in every part. In this
case, four vertices form a crisp cycle which crisp cardinality of its vertices are
four. It’s impossible to have a crisp cycle which crisp cardinality of its vertices
are three. Since the sequence of consecutive vertices are x1, x2, x3 and there’s
no edge more. It implies there are two edges. It’s neutrosophic path but neither
crisp cycle nor neutrosophic cycle. So the first step of finding shortest crisp
cycle is impossible but in second step, there’s one crisp cycle corresponded to
number four. By Theorem (3.4.5),

Gn(NTG) = c1x
On(NTG)+c2xOn(NTG)−(Σ3

i=1(σi(x)+σi(y)))+

· · ·+csxmin{Σ3
i=1(σi(x)+σi(y)+σi(z)+σi(w))}x,y∈V1, z,w∈V2

where O(NTG) ≥ 4 and min{|V1|, |V2|} ≥ 2. Also,

Gn(NTG) = 0

where O(NTG) ≤ 3. �

The clarifications about results are in progress as follows. A complete-
bipartite-neutrosophic graph is related to previous result and it’s studied to
apply the definitions on it. To make it more clear, next part gives one special
case to apply definitions and results on it. Some items are devised to make
more senses about new notions. A complete-bipartite-neutrosophic graph is
related to previous result and it’s studied to apply the definitions on it, too.

Example 3.6.10. There is one section for clarifications. In Figure (3.17),
a complete-bipartite-neutrosophic graph is illustrated. Some points are
represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a complete-bipartite and it’s only one edge but it
is neither crisp cycle nor neutrosophic cycle. The length of this complete-
bipartite implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle. So
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this neutrosophic complete-bipartite has neither a neutrosophic cycle nor
crisp cycle. The length of this complete-bipartite implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-bipartite and there are two
edges, n1n2 and n1n3, according to corresponded neutrosophic complete-
bipartite but it doesn’t have neutrosophic cycle. First step is to have
at least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-bipartite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-bipartite implies

n1, n2, n3

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iii) if n1, n2, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-bipartite and there are two
edges, n1n2 and n2n4, according to corresponded neutrosophic complete-
bipartite but it doesn’t have neutrosophic cycle. First step is to have
at least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-bipartite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-bipartite implies

n1, n2, n4

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iv) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a complete-bipartite and there are four
edges, n1n2, n1n3, n2n4 and n3n4, according to corresponded neutrosophic
complete-bipartite and it has neutrosophic cycle where n2n4 and n3n4
are two weakest edge with same amount (0.3, 0.2, 0.3). First step is to
have at least one crisp cycle for finding shortest cycle. Finding shortest
cycle only has one result. Since there’s one cycle. Neutrosophic cycle
is a crisp cycle with at least two weakest edges. So this neutrosophic
complete-bipartite has both of a neutrosophic cycle and crisp cycle. So
adding vertices has some effects to find a crisp cycle. The structure of
this neutrosophic complete-bipartite implies

n1, n2, n3, n4
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Figure 3.17: A Neutrosophic Graph in the Viewpoint of girth polynomial. 64NTG17

is corresponded to girth polynomial G(NTG) and uniqueness of this cycle
implies the sequence

n1, n2, n3, n4

is corresponded to neutrosophic girth polynomial Gn(NTG);

(v) x4=O(NTG) is girth polynomial and its corresponded sequence is
n1, n2, n3, n4;

(vi) x5.8=On(NTG) is neutrosophic girth polynomial and its corresponded
sequence is n1, n2, n3, n4.

Proposition 3.6.11. Let NTG : (V,E, σ, µ) be a strong-complete-t-partite-
neutrosophic graph. Then

Gn(NTG) = c1x
On(NTG)+c2xOn(NTG)−(Σ3

i=1(σi(x1)+σi(x2)+···++σi(xt)))+

· · ·+csxmin{Σ3
i=1(σi(x)+σi(y)+σi(z)}x∈V1, y∈V2, z∈V3

where t ≥ 3.

Gn(NTG) = c1x
On(NTG)+c2xOn(NTG)−(Σ3

i=1(σi(x)+σi(y)))+

· · ·+csxmin{Σ3
i=1(σi(x)+σi(y)+σi(z)+σi(w))}x,y∈V1, z,w∈V2

where t ≤ 2. And
Gn(NTG) = 0

where O(NTG) ≤ 2.

Proof. Suppose NTG : (V,E, σ, µ) is a strong-complete-t-partite-neutrosophic
graph. Every vertex is a neighbor for all vertices in another part. If
O(NTG) ≤ 2, then it’s neutrosophic path implying

Gn(NTG) = 0.
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If t ≥ 3,O(NTG) ≥ 3, then it has crisp cycle implying

Gn(NTG) = c1x
On(NTG)+c2xOn(NTG)−(Σ3

i=1(σi(x1)+σi(x2)+···++σi(xt)))+

· · ·+csxmin{Σ3
i=1(σi(x)+σi(y)+σi(z)}x∈V1, y∈V2, z∈V3

If t ≥ 2,O(NTG) ≥ 4, then it’s possible to have two vertices in every part. In
this case, four vertices form a crisp cycle which crisp cardinality of its vertices
are four. It’s impossible to have a crisp cycle which crisp cardinality of its
vertices are three. Since the sequence of consecutive vertices are x1, x2, x3 and
there’s no edge more. It implies there are two edges. It’s neutrosophic path but
neither crisp cycle nor neutrosophic cycle. So the first step of finding shortest
crisp cycle is impossible but in second step, there’s one crisp cycle corresponded
to number four. By Theorem (3.4.5),

Gn(NTG) = c1x
On(NTG)+c2xOn(NTG)−(Σ3

i=1(σi(x1)+σi(x2)+···++σi(xt)))+

· · ·+csxmin{Σ3
i=1(σi(x)+σi(y)+σi(z)}x∈V1, y∈V2, z∈V3

where t ≥ 3.

Gn(NTG) = c1x
On(NTG)+c2xOn(NTG)−(Σ3

i=1(σi(x)+σi(y)))+

· · ·+csxmin{Σ3
i=1(σi(x)+σi(y)+σi(z)+σi(w))}x,y∈V1, z,w∈V2

where t ≤ 2. And
Gn(NTG) = 0

where O(NTG) ≤ 2. �

The clarifications about results are in progress as follows. A complete-t-
partite-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case
to apply definitions and results on it. Some items are devised to make more
sense about new notions. A complete-t-partite-neutrosophic graph is related to
previous result and it’s studied to apply the definitions on it, too.

Example 3.6.12. There is one section for clarifications. In Figure (3.18), a
complete-t-partite-neutrosophic graph is illustrated. Some points are represented
in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a complete-t-partite and it’s only one edge
but it is neither crisp cycle nor neutrosophic cycle. The length of this
complete-t-partite implies there’s no cycle since if the length of a sequence
of consecutive vertices is at most 2, then it’s impossible to have cycle. So
this neutrosophic complete-t-partite has neither a neutrosophic cycle nor
crisp cycle. The length of this complete-t-partite implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);
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(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-t-partite and there are two
edges, n1n2 and n1n3, according to corresponded neutrosophic complete-
t-partite but it doesn’t have neutrosophic cycle. First step is to have at
least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-t-partite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-t-partite implies

n1, n2, n3

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iii) if n1, n2, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a complete-t-partite and there are two
edges, n1n2 and n2n4, according to corresponded neutrosophic complete-
t-partite but it doesn’t have neutrosophic cycle. First step is to have at
least one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic complete-t-partite
has neither a neutrosophic cycle nor crisp cycle. The structure of this
neutrosophic complete-t-partite implies

n1, n2, n4

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iv) if n1, n2, n4, n5 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a complete-t-partite and there are four
edges, n1n2, n1n5, n2n4 and n5n4, according to corresponded neutrosophic
complete-t-partite and it has neutrosophic cycle where n2n4 and n5n4
are two weakest edge with same amount (0.3, 0.2, 0.3). First step is to
have at least one crisp cycle for finding shortest cycle. Finding shortest
cycle only has one result. Since there’s one cycle. Neutrosophic cycle
is a crisp cycle with at least two weakest edges. So this neutrosophic
complete-t-partite has both of a neutrosophic cycle and crisp cycle. So
adding vertices has some effects to find a crisp cycle. The structure of
this neutrosophic complete-t-partite implies

n1, n2, n4, n5

is corresponded to girth polynomial G(NTG) and minimum neutrosophic
cardinality implies the sequence

n1, n2, n4, n5

is corresponded to neutrosophic girth polynomial Gn(NTG);

(v) 36x4 is girth polynomial and some its corresponded sequences, for
coefficient of smallest term, are
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Figure 3.18: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG18

n1, n2, n4, n3, n1

n1, n2, n4, n5, n1

n1, n5, n4, n3, n1

n1, n5, n4, n2, n1

n1, n3, n4, n5, n1

n1, n3, n4, n2, n1;

(vi) x5.8 + 2x5.7 is neutrosophic girth polynomial and its corresponded
sequences, for coefficient of smallest term, are

n1, n2, n4, n5, n1

n1, n5, n4, n2, n1

Proposition 3.6.13. Let NTG : (V,E, σ, µ) be a strong-wheel-neutrosophic
graph. Then

Gn(NTG) = xOn(NTG) + c2x
On(NTG)−

∑3
i=1

σi(x)+

· · ·+cO(NTG)−4x
min{Σ3

i=1(σi(x)+σi(y)+σi(z))}.

where t ≥ 3.
Gn(NTG) = 0

where t ≥ 2.

Proof. Suppose NTG : (V,E, σ, µ) is a strong-wheel-neutrosophic graph. The
argument is elementary. Since all vertices of a path join to one vertex. By
Theorem (3.4.5),

Gn(NTG) = xOn(NTG) + c2x
On(NTG)−

∑3
i=1

σi(x)+
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· · ·+cO(NTG)−4x
min{Σ3

i=1(σi(x)+σi(y)+σi(z))}.

where t ≥ 3.
Gn(NTG) = 0

where t ≥ 2. �

The clarifications about results are in progress as follows. A wheel-
neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A wheel-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 3.6.14. There is one section for clarifications. In Figure (3.19), a
wheel-neutrosophic graph is illustrated. Some points are represented in follow-
up items as follows.

(i) If s1, s2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a wheel and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this wheel implies there’s
no cycle since if the length of a sequence of consecutive vertices is at
most 2, then it’s impossible to have cycle. So this neutrosophic wheel
has neither a neutrosophic cycle nor crisp cycle. The length of this wheel
implies

s1, s2

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(ii) if s4, s2, s3 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s also a wheel and there are two edges, s3s2 and
s4s3, according to corresponded neutrosophic wheel but it doesn’t have
neutrosophic cycle. First step is to have at least one crisp cycle for finding
shortest cycle. Finding shortest cycle has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges. So
this neutrosophic wheel has neither a neutrosophic cycle nor crisp cycle.
The structure of this neutrosophic wheel implies

s4, s2, s3

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iii) if s1, s2, s3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a wheel and there are three edges,
s1s2, s2s3 and s1s3 according to corresponded neutrosophic wheel but it
doesn’t have neutrosophic cycle. First step is to have at least one crisp
cycle for finding shortest cycle. Finding shortest cycle has one result.
Since there’s one crisp cycle. Neutrosophic cycle is a crisp cycle with at
least two weakest edges. So this neutrosophic wheel has no neutrosophic
cycle but it has crisp cycle. The structure of this neutrosophic wheel
implies

s1, s2, s3

139



3. Neutrosophic Girth Polynomial Based On Neutrosophic Cycle and Crisp
Cycle in Neutrosophic Graphs

Figure 3.19: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG19

is corresponded to girth polynomial G(NTG) but minimum neutrosophic
cardinality implies

s1, s2, s3

isn’t corresponded to neutrosophic girth polynomial Gn(NTG);

(iv) if s1, s3, s4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a wheel and there are three edges,
s1s4, s4s3 and s1s3 according to corresponded neutrosophic wheel and it
has a neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has one result. Since
there’s one crisp cycle. Neutrosophic cycle is a crisp cycle with at least
two weakest edges. So this neutrosophic wheel has one neutrosophic cycle
with two weakest edges s1s4 and s3s4 concerning same values (0.1, 0.1, 0.5)
and it has a crisp cycle. The structure of this neutrosophic wheel implies

s1, s3, s4

is corresponded to girth polynomial G(NTG) and minimum neutrosophic
cardinality implies

s1, s3, s4

is corresponded to neutrosophic girth polynomial Gn(NTG);

(v) x5 + 2x4 + 3x3 is girth polynomial and its corresponded sequences, for
coefficient of smallest term, are

s1, s3, s4

s1, s2, s3

s1, s4, s5;

(vi) x6.9 + x5.1 + x5.6 + x4.4 + x4 + x3.8 is neutrosophic girth polynomial and
its corresponded sequence is s1, s3, s4.

140



3.7. Applications in Time Table and Scheduling

3.7 Applications in Time Table and Scheduling

In this section, two applications for time table and scheduling are provided where
the models are either complete models which mean complete connections are
formed as individual and family of complete models with common neutrosophic
vertex set or quasi-complete models which mean quasi-complete connections
are formed as individual and family of quasi-complete models with common
neutrosophic vertex set.
Designing the programs to achieve some goals is general approach to apply on
some issues to function properly. Separation has key role in the context of this
style. Separating the duration of work which are consecutive, is the matter and
it has importance to avoid mixing up.

Step 1. (Definition) Time table is an approach to get some attributes to do
the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid
consecutive sections. Beyond that, sometimes sections are not the same.

Step 3. (Model) The situation is designed as a model. The model uses data to
assign every section and to assign to relation amid sections, three numbers
belong unit interval to state indeterminacy, possibilities and determinacy.
There’s one restriction in that, the numbers amid two sections are at least
the number of the relations amid them. Table (3.1), clarifies about the
assigned numbers to these situations.

Table 3.1: Scheduling concerns its Subjects and its Connections as a neutrosophic
graph in a Model. 64tbl1

Sections of NTG n1 n2· · · n5
Values (0.7, 0.9, 0.3) (0.4, 0.2, 0.8)· · · (0.4, 0.2, 0.8)

Connections of NTG E1 E2· · · E6
Values (0.4, 0.2, 0.3) (0.5, 0.2, 0.3)· · · (0.3, 0.2, 0.3)

3.8 Case 1: Complete-t-partite Model alongside its
girth polynomial and its Neutrosophic girth polynomial

Step 4. (Solution) The neutrosophic graph alongside its girth polynomial and
its neutrosophic girth polynomial as model, propose to use specific number.
Every subject has connection with some subjects. Thus the connection
is applied as possible and the model demonstrates quasi-full connections
as quasi-possible. Using the notion of strong on the connection amid
subjects, causes the importance of subject goes in the highest level such
that the value amid two consecutive subjects, is determined by those
subjects. If the configuration is star, the number is different. Also, it
holds for other types such that complete, wheel, path, and cycle. The
collection of situations is another application of its girth polynomial and
its neutrosophic girth polynomial when the notion of family is applied in
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Figure 3.20: A Neutrosophic Graph in the Viewpoint of its girth polynomial
and its Neutrosophic girth polynomial 64NTG20

the way that all members of family are from same classes of neutrosophic
graphs. As follows, There are five subjects which are represented as Figure
(3.20). This model is strong and even more it’s quasi-complete. And the
study proposes using specific number which is called its girth polynomial
and its neutrosophic girth polynomial. There are also some analyses on
other numbers in the way that, the clarification is gained about being
special number or not. Also, in the last part, there is one neutrosophic
number to assign to this model and situation to compare them with same
situations to get more precise. Consider Figure (3.20). In Figure (3.20),
an complete-t-partite-neutrosophic graph is illustrated. Some points are
represented in follow-up items as follows.

(i) If s1, s2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a wheel and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
wheel implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic wheel has neither a neutrosophic cycle nor crisp
cycle. The length of this wheel implies

s1, s2

is corresponded to neither girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(ii) if s4, s2, s3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a wheel and there are two edges,
s3s2 and s4s3, according to corresponded neutrosophic wheel but it
doesn’t have neutrosophic cycle. First step is to have at least one
crisp cycle for finding shortest cycle. Finding shortest cycle has no
result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic wheel has
neither a neutrosophic cycle nor crisp cycle. The structure of this
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neutrosophic wheel implies

s4, s2, s3

is corresponded to neither girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iii) if s1, s2, s3 is a sequence of consecutive vertices, then it’s obvious
that there’s one crisp cycle. It’s also a wheel and there are three
edges, s1s2, s2s3 and s1s3 according to corresponded neutrosophic
wheel but it doesn’t have neutrosophic cycle. First step is to have at
least one crisp cycle for finding shortest cycle. Finding shortest cycle
has one result. Since there’s one crisp cycle. Neutrosophic cycle is
a crisp cycle with at least two weakest edges. So this neutrosophic
wheel has no neutrosophic cycle but it has crisp cycle. The structure
of this neutrosophic wheel implies

s1, s2, s3

is corresponded to girth polynomial G(NTG) but minimum neutro-
sophic cardinality implies

s1, s2, s3

isn’t corresponded to neutrosophic girth polynomial Gn(NTG);
(iv) if s1, s3, s4 is a sequence of consecutive vertices, then it’s obvious

that there’s one crisp cycle. It’s also a wheel and there are three
edges, s1s4, s4s3 and s1s3 according to corresponded neutrosophic
wheel and it has a neutrosophic cycle. First step is to have at least
one crisp cycle for finding shortest cycle. Finding shortest cycle has
one result. Since there’s one crisp cycle. Neutrosophic cycle is a
crisp cycle with at least two weakest edges. So this neutrosophic
wheel has one neutrosophic cycle with two weakest edges s1s4 and
s3s4 concerning same values (0.1, 0.1, 0.5) and it has a crisp cycle.
The structure of this neutrosophic wheel implies

s1, s3, s4

is corresponded to girth polynomial G(NTG) and minimum neutro-
sophic cardinality implies

s1, s3, s4

is corresponded to neutrosophic girth polynomial Gn(NTG);
(v) x5 + 2x4 + 3x3 is girth polynomial and its corresponded sequences,

for coefficient of smallest term, are

s1, s3, s4

s1, s2, s3

s1, s4, s5;

(vi) x6.9 + x5.1 + x5.6 + x4.4 + x4 + x3.8 is neutrosophic girth polynomial
and its corresponded sequence is s1, s3, s4.
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Figure 3.21: A Neutrosophic Graph in the Viewpoint of its girth polynomial
and its Neutrosophic girth polynomial 64NTG21

3.9 Case 2: Complete Model alongside its A
Neutrosophic Graph in the Viewpoint of its girth
polynomial and its Neutrosophic girth polynomial

Step 4. (Solution) The neutrosophic graph alongside its girth polynomial and
its neutrosophic girth polynomial as model, propose to use specific number.
Every subject has connection with every given subject in deemed way.
Thus the connection applied as possible and the model demonstrates
full connections as possible between parts but with different view where
symmetry amid vertices and edges are the matters. Using the notion
of strong on the connection amid subjects, causes the importance of
subject goes in the highest level such that the value amid two consecutive
subjects, is determined by those subjects. If the configuration is complete
multipartite, the number is different. Also, it holds for other types such
that star, wheel, path, and cycle. The collection of situations is another
application of its girth polynomial and its neutrosophic girth polynomial
when the notion of family is applied in the way that all members of family
are from same classes of neutrosophic graphs. As follows, There are four
subjects which are represented in the formation of one model as Figure
(3.21). This model is neutrosophic strong as individual and even more
it’s complete. And the study proposes using specific number which is
called its girth polynomial and its neutrosophic girth polynomial for this
model. There are also some analyses on other numbers in the way that,
the clarification is gained about being special number or not. Also, in the
last part, there is one neutrosophic number to assign to these models as
individual. A model as a collection of situations to compare them with
another model as a collection of situations to get more precise. Consider
Figure (3.21). There is one section for clarifications.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
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cycle. The length of this path implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s one crisp cycle. It’s also a path and there are three edges
but it isn’t neutrosophic cycle. The length of crisp cycle implies
there’s one cycle since if the length of a sequence of consecutive
vertices is at most 3, then it’s possible to have cycle but there aren’t
two weakest edges which imply there is no neutrosophic cycle. So
this crisp cycle isn’t a neutrosophic cycle but it’s crisp cycle. The
crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth polynomial G(NTG) but neutrosophic length
of this crisp cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth polynomial Gn(NTG);
(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious

that there’s two crisp cycles with length two and three. It’s also a
path and there are three edges but there are some crisp cycles but
there are only two neutrosophic cycles with length three, n1, n3, n4,
and with length four, n1, n2, n3, n4. The length of this sequence
implies there are some crisp cycles and there are two neutrosophic
cycles since if the length of a sequence of consecutive vertices is at
most 4 and it’s crisp complete, then it’s possible to have some crisp
cycles and two neutrosophic cycles with two different length three
and four. So this neutrosophic path forms some neutrosophic cycles
and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth polynomial G(NTG) nor neutro-
sophic girth polynomial Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s one crisp cycle. It’s also a path and there are three edges
but it is also neutrosophic cycle. The length of crisp cycle implies
there’s one cycle since if the length of a sequence of consecutive
vertices is at most 3, then it’s possible to have cycle but there
are two weakest edges, n3n4 and n1n4, which imply there is one
neutrosophic cycle. So this crisp cycle is a neutrosophic cycle and
it’s crisp cycle. The crisp length of this neutrosophic cycle implies

n1, n3, n4

is corresponded to girth polynomial G(NTG) and neutrosophic length
of this neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth polynomial Gn(NTG);
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(v) x4 + 3x3 is girth polynomial and its corresponded sets, for coefficient
of smallest term, are {n1, n2, n3}, {n1, n2, n4}, and {n2, n3, n4};

(vi) x5.9 + x5 + x4.5 + x4.3 + x3.9 is neutrosophic girth polynomial and
its corresponded set, for coefficient of smallest term, is {n1, n3, n4}.

3.10 Open Problems

In this section, some questions and problems are proposed to give some avenues
to pursue this study. The structures of the definitions and results give some
ideas to make new settings which are eligible to extend and to create new study.
Notion concerning its girth polynomial and its neutrosophic girth polynomial
are defined in neutrosophic graphs. Neutrosophic number is also reused. Thus,

Question 3.10.1. Is it possible to use other types of its girth polynomial and
its neutrosophic girth polynomial?

Question 3.10.2. Are existed some connections amid different types of its girth
polynomial and its neutrosophic girth polynomial in neutrosophic graphs?

Question 3.10.3. Is it possible to construct some classes of neutrosophic graphs
which have “nice” behavior?

Question 3.10.4. Which mathematical notions do make an independent study
to apply these types in neutrosophic graphs?

Problem 3.10.5. Which parameters are related to this parameter?

Problem 3.10.6. Which approaches do work to construct applications to create
independent study?

Problem 3.10.7. Which approaches do work to construct definitions which use
all definitions and the relations amid them instead of separate definitions to
create independent study?

3.11 Conclusion and Closing Remarks

In this section, concluding remarks and closing remarks are represented. The
drawbacks of this article are illustrated. Some benefits and advantages of this
study are highlighted.
This study uses two definitions concerning girth polynomial and neutrosophic
girth polynomial arising from counting cycles to study strong neutrosophic
graphs based on neutrosophic cycles and neutrosophic graphs based on crisp
cycles. New neutrosophic number is reused which is too close to the notion of
neutrosophic number but it’s different since it uses all values as type-summation
on them. Comparisons amid number, corresponded vertices and edges are
done by using neutrosophic tool. The connections of vertices which aren’t
clarified by a neutrosophic cycle differ them from each other and put them
in different categories to represent a number which is called girth polynomial
and neutrosophic girth polynomial arising from counting neutrosophic cycles
and crisp cycles in strong neutrosophic graphs based on neutrosophic cycles
and in neutrosophic graphs based on crisp cycles. Further studies could be
about changes in the settings to compare these notions amid different settings
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Table 3.2: A Brief Overview about Advantages and Limitations of this Study 64tbl2

Advantages Limitations
1. Neutrosophic girth polynomial 1. Connections amid Classes

2. girth polynomial

3. Neutrosophic Number 2. Study on Families

4. Classes of (Strong) Neutrosophic Graphs

5. Counting Crisp Cycles and Neutrosophic Cycles 3. Same Models in Family

of strong neutrosophic graphs theory. One way is finding some relations amid
all definitions of notions to make sensible definitions. In Table (3.2), some
limitations and advantages of this study are pointed out.
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