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Abstract. In the domain of approximate metric search, the Permutation-
based Indexing (PBI) approaches have been proved to be particularly
suitable for dealing with large data collections. These methods employ
a permutation-based representation of the data, which can be efficiently
indexed using data structures such as inverted files. In the literature, the
definition of the permutation of a metric object was derived by reorder-
ing the distances of the object to a set of pivots. In this paper, we aim at
generalizing this definition in order to enlarge the class of permutations
that can be used by PBI approaches. As a practical outcome, we de-
fined a new type of permutation that is calculated using distances from
pairs of pivots. The proposed technique permits us to produce longer
permutations than traditional ones for the same number of object-pivot
distance calculations. The advantage is that the use of inverted files built
on permutation prefixes leads to greater efficiency in the search phase
when longer permutations are used.

Keywords: Permutation-Based Indexing · Metric Space · Metric Search
· Similarity Search · Approximate search · Planar projection.

1 Introduction

Searching a database for objects that are most similar to a query object is
a fundamental task in many application domains, like multimedia information
retrieval, pattern recognition, data mining, and computational biology. In this
context, the Metric Search framework [24] provides us with a wide class of index-
ing and searching techniques for similarity data management. A common factor
in all these approaches is that they are applicable on generic metric spaces, i.e.
these techniques are not specialised for a particular type of data. A metric space
is a pair (D, d) formed by a domain D and a distance function d : D ×D → R
that satisfies the metric postulates of non-negativity, identity of indiscernibles,
symmetry, and triangle inequality [24]. In a general metric space we cannot use
any algebraic function, e.g. sum of two objects or product by scalars, but the
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only operation that can be exploited is calculating the distance between any
two objects. Therefore any technique that aims mapping a metric object o ∈ D
to another (more tractable) space, e.g. a vector space, must rely only on algo-
rithms that use the distances of the object o to other metric objects, e.g. a set
of reference objects selected within the space.

Many approximate metric search approaches employ transformations of the
original metric space to overcome the curse of dimensionality, which affects
exact metric search techniques whose performance may be not better than a
sequential scan for spaces with high intrinsic dimensionality [18,23]. Successful
examples of approximate methods are the Permutation-based Indexing (PBI)
techniques that transform the metric data into permutations of a set of integers
{1, . . . , N}, which are then indexed and searched using data structures like prefix
trees [13,19] and inverted files [3,20]. The original definition of permutation-based
representation of a metric object was derived by computing the distances of the
object to a set of pivots (reference objects) and then by reordering the pivot
identifiers according these distances [4,9,10]. This characterization have been
adopted in several research papers that further investigated the properties of this
data representations and ways to efficiently index them, e.g.[2,13,14,15,17,18,19].
Moreover, some alternative permutation-based representations have been defined
in the literature [1,21], but only for representing objects of specific metric spaces.

In this work, we aim at generalizing the definition of permutation associated
with a metric object, by introducing the concept of permutation induced by a
transformation f : (D, d) → RN . The function f simply projects the metric
objects of D into an N -dimensional vector space. This function typically relies
only on some distance calculations to transform the objects, such as distances
to a set of pivots as done in traditional permutations, but the way distances
are combined and exploited to represent objects may be different from what is
done in the traditional approach. We believe that this generalization can open
up new lines of research, on the one hand, to understand theoretically what
properties the function f should have in order to generate permutations that
have good performance for the approximate search, and on the other hand,
to define alternative permutation-based representations. In this paper, we have
started investigating the latter aspect by defining permutations that rely on
distances of objects to pairs of pivots. In this way, for a fixed set of n pivots, we
can generate permutations with length N > n, while the length of traditional
permutations is fixed equal to the number of pivots n. The advantage of having
longer permutations (at the same cost in terms of original distance computations)
is the more efficiency at searching time when using inverted index build upon
permutation prefixes (e.g. MI-File [3]). In fact, the inverted index contains as
many posting lists as the number N of permutants (i.e. the length of the full
permutation) and so, for a fixed permutation prefix length λ, the higher N ,
the shorter the posting lists, and hence the smaller the fraction of the database
accessed to answer a query.

The rest of the paper is structured as follows. Section 2 reviews and general-
izes the concept of permutation-based representation of metric objects. Permu-



On Generalizing Permutation-Based Representations for Approximate Search 3

tations built using distances to pivot-pairs are introduced in Section 3. Section
4 reports the experimental evaluation, and Section 5 draws the conclusions.

2 Permutation-based representation(s) of a metric object

Chavez et al. [9,10] and Amato et al. [4] originally defined the permutation-
based representation of a metric object by ordering the identifiers of a fixed set
of pivots according to their distances to the object to be represented, that is

Definition 1 (Permutation of a metric object given a set of pivots). The
permutation-based representation Πo (briefly permutation) of an object o ∈ D
with respect to the pivot set {p1, . . . , pn} ⊂ D is the sequence Πo = [π1, . . . , πn]
that lists the pivot identifiers {1, . . . , n} (called permutants) in an order such
that ∀ i ∈ {1, . . . , n− 1}

d(o, pπi
) < d(o, pπi+1

) or
[
d(o, pπi

) = d(o, pπi+1
)
]
∧ [πi < πi+1] . (1)

This representation is also referred to as the full-length permutation to dis-
tinguish it from the permutation prefix adopted in several PBI methods [3,13,19].
In facts, based on the intuition that the most relevant information in the per-
mutation is present in its very first elements, i.e. the identifiers of the closest
pivots to an object, several researchers proposed to represent the data by using
a fixed-length prefix of the permutation, i.e. Πo,λ = [π1, . . . , πλ] with λ < n. The
use of permutation prefixes may be dictated by either the employed data struc-
ture (e.g. prefix tree), efficiency issues (more compact data encoding and better
performance when using inverted files) or even by effectiveness reasons (in some
cases the use of prefixes gives better results than full-length permutations [2,3]).

Alternative permutation-based representations have been defined in liter-
ature, but only for specific metric spaces. For example, the Deep Permuta-
tions [1,5] were defined by reordering the dimensions of a vector according to the
corresponding element values. This approach can only be used in vector spaces
and has so far only been tested on Convolutional Neural Network features. The
SPLX-Perms [21] use the n-Simplex projection [12] followed by a random ro-
tation to transform a metric object into a Euclidean vector and then computes
the permutation by reordering the components of the vector as done in the Deep
Permutations. This method can be used on the large class of spaces meeting the
n-point property [12] but it is not applicable on general metric spaces.

We now observe that all these approaches belong to the same family of trans-
formations, as explained hereafter, and thus the traditional definition of permu-
tation associated to a metric object (Def. 1) could be generalized to be more
inclusive. In this context, the first trivial but useful observation to make is that
any sorting function defined on a finite-dimensional Coordinate space implicitly
produce a permutation representation of the data. Suppose σ : RN → RN is a
function that sorts the coordinate elements of a N -dimensional real vector with
respect to a predefined criterion (e.g. ascending order). For any v ∈ RN , the
sort function σ is described by the permutation Πσ

v of the indices {1, . . . , N}
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that specifies the arrangement of the elements of v into v′ = σ(v). Specifically,
if v = [v1, . . . , vN ] and σ(v) = [vi1 , . . . , viN ] then Πσ

v = [i1, . . . , iN ]. In other
words, the j-th element of the permutation Πσ

v is the index i ∈ {1, . . . N} such
that the i-th element of v is equal to the j-th element of σ(v). For example, if
v = [8, 10, 6] and σ(v) = [6, 8, 10] then Πσ

v = [3, 1, 2]. However, this characteri-
zation is not well defined if the vector v contains duplicate values, therefore we
give the following definition.

Definition 2 (Permutation of a vector induced by a sort function σ).
A permutation representation of a vector v = [v1, . . . , vN ] ∈ RN associated to a
given sort function σ : RN → RN is the permutation Πσ

v = [π1, . . . , πN ] of the
index identifiers {1, . . . , N} such that for any j = 1, . . . , N the element πj is the
smallest index for which vπj

equals the j-th element of σ(v).

The Deep Permutations can be formalized by using the above definition, but
this of course cannot be used to describe the SPLX-perms or the traditional
permutations. However, these approaches share a common idea, that is using the
distance to a set of pivots to first transform the metric object into a Cartesian
coordinate space and then obtaining the permutation by applying a sort function.
Therefore, for any function f : (D, d) → RN and a given sort function we may
define a permutation representation of a metric objects as follows:

Definition 3 (Permutation of a metric object induced by a space trans-
formation f and a sort function σ). Let f : (D, d)→ RN a space transforma-
tion, and σ : RN → RN a function that sorts the components of a N -dimensional
vector according to some predefined criteria. We define the permutation repre-
sentation of a object o ∈ D induced by the functions f and σ as the permutation
Πσ,f
o = [π1, . . . , πN ] that lists the index identifiers {1, . . . , N} in an order such

that for any j = 1, . . . , N the permutant πj is the smallest index for which the
πj-th element of the vector f(o) is equals to the j-th element of σ(f(o)).

For the sake of simplicity, in the following we assume that the sort function σ
is the sorting of the elements in ascending order and we omit the dependency of
this function in the definition of the permutation. Please note that the effect of
using a different sorting function in most cases could be reproduced by changing
the function f . For example, for a given f and object o the permutation ob-
tained by sorting f(o) in descending order is equal to the permutation obtained
by applying the function −f to the object o and then sorting the elements in
ascending order. Therefore, we use the following characterization:

Definition 4 (Permutation of a metric object induced by a space trans-
formation f). The permutation representation of a object o ∈ (D, d) with re-
spect to the transformation f : (D, d) → RN is the sequence Πf

o = [π1, . . . , πN ]
that lists the permutants {1, . . . , N} in an order such that ∀ i ∈ {1, . . . , N − 1},

f(o)πi
< f(o)πi+1

or
[
f(o)πi

= f(o)πi+1

]
∧ [πi < πi+1] (2)

where f(o)j indicates the j-th value of the vector f(o).
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Fig. 1: Planar Projection of two pivots p1, p2 and a data point o.

Note that, according to this definition, the traditional permutation is in-
duced by the transformation f(o) = [d(o, p1), . . . , d(o, pN )], where {p1, . . . , pN}
is a fixed set of pivots. The Deep Permutation is induced by the identity function.
The SPLX-Perm, instead, is induced by the composition of the n-Simplex pro-
jection and a random rotation. Moreover, this generalization suggests that new
permutation representations of generic metric objects can be defined but assum-
ing that we use a transformation f : (D, d) → RN that relies only on distance
computations and metric postulates to transform the objects. The function f in
some cases can also be generated using machine learning techniques, as in [8].
Nevertheless, for particular metric spaces, e.g. vector spaces, other operations
or properties of the space can be employed when defining the transformation
f . However, not all the transformations may produce permutations which are
suitable for metric search, as we would like that similar objects are projected
into similar permutations. An in-depth theoretical and experimental study on
the properties that the function f should have to produce “good” permutations
for approximate metric search is beyond the scope of this paper and we reserve
it for future work. Here, as proof of concepts, we define a novel permutation-
based representation that uses a transformation f that relies not only on the
distance of the objects to a fixed set of pivots but also exploits information on
the distances between pivot pairs.

3 Pivot Pairs Permutations

Thanks to the triangle inequality, we know that any three points of a metric
space can be isometrically embedded in a two dimensional Euclidean space.
Specifically, let p1, p2 ∈ D two pivots and o ∈ D an arbitrarily metric object.
Without loss of generality, we could consider an isometric embedding that maps
the points p1, p2, o to the vectors vp1 , vp2 , vo ∈ (R2, `2), such that (i) vp1 and vp2
lies in the X-axis; (ii) vo is above the X-axis and its coordinate are given by the
intersection of the ball centered on p1 with radius d(p1, o) and the ball centered
on p2 with radius d(p2, o). Figure 1 depicts this situation in a 2D coordinate space
where the two pivots are projected in the X-axis symmetrically with respect to
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the origin and a single data object o is mapped to the point vo = (xo, yo), where

xo =
d(o, p1)2 − d(o, p2)2

2 · d(p1, p2)
, yo =

√
d(o, p1)2 −

(
xo +

d(p1, p2)

2

)2

(3)

Note that the only information used in the projection is the distances of the
object o to the two pivots and the inter-pivot distance. Moreover, all the three
distances between the points are preserved, i.e. `2(vp1 ,vp2) = d(p1, p2), and
`2(vpi ,vo) = d(pi, o) for i = 1, 2. This projection, called planar projection [11],
could be repeated for all the data points o ∈ D while fixing the two pivots p1, p2.
So we have a projection φp1,p2 : (D, d) → (R2, `2) that preserves the distances
of data objects to the two pivots. Therefore, since the distance to the pivots is
preserved for each data point, it can be easily proved that all the objects in the
hyperplane separating the two pivots in the original space are projected in the
hyperplane Hvp1 ,vp2

= {v ∈ R2 | `2(v,vp1) = `2(v,vp2)} separating the pivots
in the 2D projection.

The Euclidean norm of a projected object (ρo = ‖vo‖) could be interpreted
as the distance of the point o to a synthetic pivot that is equidistant to the two
original pivots, i.e. a sort of midpoint which may not exist in the original metric
space. Its calculation is immediate if we already know d(p1, p2), d(o, p1), and
d(o, p2) as it is equals to

ρo =
√

(xo)2 + (yo)2 =
1

2

√
2 d(o, p1)2 + 2 d(o, p2)2 − d(p1, p2)2 (4)

We can repeat this procedure for several pairs of pivots to characterize a metric
object based on the distribution of its distance from the synthetic midpoints
between the original pivots. Formally, given a set {p1, . . . , pn} ⊂ D of n pivots,
we select m <

(
n
2

)
pivot pairs that we enumerate using an index i, so that

(pi1 , pi2) indicates the i-th pivot pair. For each object o ∈ D and for each selected

pair of pivots (pi1 , pi2) we use Eq. 4 to compute the norm ρ
(i)
o of the projected

point φi(o) = (x
(i)
o , y

(i)
o ). Then we generate a permutation Πf ′

o of length m

by reordering the components of f ′(o) =
(
ρ

(1)
o , . . . , ρ

(m)
o

)
. Moreover, since we

can interpreted the values ρi as the distance to some synthetic pivots, we may
combine these information with the distances to the actual pivots by computing
the permutations induced by the function

f ′′ : o ∈ D →
(
d(o, p1), . . . , d(o, pn), ρ(1)

o , . . . , ρ(m)
o

)
∈ Rn+m (5)

In the following we refer to the permutations Πf ′

o and Πf ′′

o as Pairs Permutation
(P-Perms), and Pivot-Pairs Permutation (PP-Perms), respectively.

4 Experiments

In this section, we compare the performance of P-Perms, PP-Perms, and the
traditional permutations (Perms) for approximate k-nearest neighbors (k-NN)
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search. The experiments were conducted both on real-world and publicly avail-
able datasets (CoPhIR and ANN-SIFT) and on synthetic datasets, which are
described below. In the following, we first introduce the measures used for the
evaluation and then we present the experimental results.

Evaluation Protocol For each dataset we build a ground-truth for the exact k-NN
search related to 1, 000 randomly-selected queries. The ground-truths were used
to evaluate the quality of the approximate results obtained either by performing
a k-NN search in the permutation space or by using the actual distance to
re-rank a candidate result set of size k′ ≥ k that was selected using a k′-NN
search in the permutation space. Please note that the latter is a filter-and-refine
approach, which requires to store the original dataset and access to it at query
time to refine the permutation-based candidate results. In the experiments we
used k = 10. For the filter-and-refine approach we used k′ = 100. The quality of
the approximate results was evaluated using the recall@k, defined as |R ∩ RA|/k,
where R is the result set of the exact k-NN search in the original metric space
and RA is the approximate result set.

As done by many PBI approaches [13,3,19], we index and search the data
using fixed-length permutation prefixes instead of the full-length permutations.
The permutation prefixes were compared using the Spearman’s rho with location
parameter (Sρ,λ), defined as in [1, Sec. 3.5]), where the location parameter is the
length λ of the permutation prefixes. If N is the length of the full permutations
(i.e we have N different permutants that may appear in a permutation prefix)
and we index the permutation prefixes using inverted files [3], we have that

– the inverted index is composed of N posting lists (one for each permutant).
– each object is stored in exactly λ posting lists (corresponding to the per-

mutants appearing in its permutation prefix). Thus, the i-th posting list
contains ti entries related only to the data objects whose permutations pre-
fixes contain the permutant i.

– each entry of the i-th posting list is of the form (IDo, poso(i)), where IDo is
the identifier of a data object, poso(i) is the position of the permutant i in
the permutation prefix associated to the object o.

– at query time, we access only to the λ posting lists corresponding to the per-
mutants in the query permutation prefix. For each object o in those selected
posting lists, we use the stored poso(i) to compute the Sρ,λ distance to the
query permutation prefix.

In this setting, the size in bits of the inverted index is a function of the number
of permutants N , the prefix length λ, and the number of data objects |X|:

Size(Inverted Index) = N dlog2Ne︸ ︷︷ ︸
posting list identifiers

+λ |X| (dlog2 |X|e+ dlog2 λe)︸ ︷︷ ︸
posting list entries

(6)

The cost at query time includes 1) the cost of transforming the query into
the permutation representation; 2) the search cost; 3) the cost of re-ranking the
candidate set using the actual distance (only for the filter-and-refine approach).
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Table 1: Distance computations needed for generating various permutation-based
representations given the same set of n pivots. m is the number of pairs used in
the Pairs and Pivot-Pair Permutations. N is the number of permutants.

Approach N
Number of Distance Calculations

computed for each object/query computed once at indexing time

Perms n n actual distances

P-Perms m n actual distances +
m 2D Euclidean distances

min(m,n(n− 1)/2) actual dis-
tancesPP-Perms n+m

The cost for computing the permutations (Table 1) varies with the employed
permutation-based representation and the specific metric of the space. For a
given set of n pivots the traditional permutation has N = n permutants and
requires the calculation of n object-pivot distances. For the same set of pivots
and for m selected pivot pairs the P-Perms and the PP-Perms have N = m
and N = n + m permutants, respectively, and require n object-pivot distance
calculation plus m 2D Euclidean distances to calculate the ρo (Eq. 4), which in
most cases is a negligible cost with respect to object-pivot distance calculations.
The P-Perms and the PP-Perms also require min(m,n(n − 1)/2) pivot-pivot
distances, that can be computed and stored once at indexing time and then
reused for calculating all the objects/query permutations. The search cost (SC),
calculated as the number of bits accessed per query, is given by

SC =

(
N∑
i=1

δiti

)
C(pEntry) (7)

where ti is the number of objects stored in the i-th posting list, δi is the fraction
of samples in the database having the permutant i in their permutation prefixes
(i.e. δi = ti/|X|), and C(pEntry) = dlog2 |X|e + dlog2 λe is the size in bits of a
single entry of a posting list. In facts, given a query q, we access the i-th posting
list only if the index i is in the permutation prefix associated to the query,
which is true with probability δi as query and database objects share the same
distribution. Therefore, the number of elements accessed per query is

∑N
i=1 δiti

since the i-th posting list contains ti entries, and we access it with δi probability.
Note that for a fixed N , the larger the prefix λ, the greater ti, thus the higher
the search cost. Moreover, for the filter-and-refine approach, the bytes accessed
per query are those needed to select the k′ candidate results (given by Eq 7)
plus those needed to re-rank the candidate results using the actual distance, i.e.
k′ ∗ C(Obj), where C(Obj) is the size in bits of one original data object.

4.1 Experiments on Synthetic Data

The first question that may arise when considering the P-Perms representation
as an alternative to the traditional permutation (Perms) is whether using the dis-
tances to the synthetic midpoint pivots instead of the actual pivots still helps in
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distinguishing similar data points from dissimilar ones in an approximate search
scenario. Moreover, since the P-Perms and the PP-Perms allows producing per-
mutations that are longer than the number of the employed pivots, it would
be also interesting to analyze the performance of these permutations when the
number m of pairs is increased while fixing the number n of pivots (i.e. fixing the
number of actual distance computation needed to generate the permutations).
To this scope, we performed experiments on two representative typologies of
synthetic data, clustered and not clustered Euclidean vectors, because it was
already proved in the literature [3] that the traditional permutations have dif-
ferent behaviors on these data when varying the number n of pivots and the
prefix length λ. Specifically, we considered two datasets, each containing 100K
vectors in a 30-dimensional Euclidean space. The first dataset, named Gaussian
Euclid30, contains vectors whose coordinates are generated using a Gaussian
distribution centered in the origin and with a standard deviation σ = 0.1. The
second dataset, named Clustered Euclid30, contains vectors arranged in 20 clus-
ters. The cluster centers were randomly selected in the hypercube [0, 1]30. For
each cluster we generated 5K vectors using a Gaussian distribution with a small
standard deviation (σ = 0.01).

Figures 2a and 2b show, for the two datasets, the recall@10 achieved by the
traditional permutation when varying the number n of pivots and the prefix
length λ. Please note the different behaviors of the permutations on these two
kind of data. On Gaussian Euclid30, the recall increases when increasing both
n and λ, but for a fixed λ the recall is almost unchanged when increasing only
n (Fig. 2a). For the clustered data, instead, the performance of the full-length
permutations (i.e. the cases λ = n) is not improved when increasing the number
of pivots more than n = 500. However, for a fixed n there exists an optimal
prefix length λ < n for which the recall achieves a maximum. Amato el al. [3]
noted that this maximum is systematically achieved around the prefix length
λ = n/cl, where cl is the number of clusters. Note that n/cl represents the aver-
age number of pivots taken from each cluster since we use n random pivots. This
suggests that an object of a cluster is well represented by the pivots that belong
to its same cluster, but when we increase the length of the permutation prefixes
we also include pivots taken from other clusters which seems to introduce noisy
information. In facts, when we fix n the recall begins to decrease sharply for
λ > n/cl (Fig. 2b).

Regarding our initial question, that is, whether P-Perms represent a valid
alternative to classical permutations in distinguishing objects, for a preliminary
analysis we selected a number m of random pivot pairs equal to n, so that the
full permutations have the same length (i.e. N = n = m). For this settings, we
discovered that on Gaussian Euclid30 the P-Perms had similar behaviour and
slightly lower effectiveness than the classical Perms when varying n and λ (Fig.
2c), thus confirming us that the synthetic pivots computed from the pivot pairs
could be used as alternative pivots for generating permutations. However, on the
clustered data, the P-Perms seems to be completely useless (Fig. 2d) with the ex-
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Fig. 2: Synthetic Datasets: Recall@10 for the traditional permutations (graphs
(a) and (b)) and the P-Perms (graphs (c) and (d)) varying the number of
pivots and the prefix lengths. Graphs (e) and (f) show the recall for increas-
ing prefix lengths as function of the Search Cost for Perms and PP-Perms.
For each method, the points in the graphs correspond to the prefix lengths
λ = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500

ception of the case λ = n for which the full-length P-Perms slightly outperforms
the traditional full-length Perms (nevertheless both the approaches achieved very
low recall when using their full-length representations). One possible reason for
the low performance of the P-Perms on clustered data is that we are using as
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reference objects the synthetic midpoints of just m = n random pivot pairs out
of n(n−1)/2 possible pairs. In facts, since the data is uniformly distributed over
the cl clusters, the synthetic midpoint of a pair (pi1 , pi2) is representative of a
cluster C if both pi1 and pi2 belong to the same cluster C, which happen with
probability (n− cl)/cl(n− 1). Conversely, with probability n(cl − 1)/cl(n− 1)
the two pivots belong to different clusters. For example, if cl = 20 and n = 5K
the probability of picking a pair of pivots of different clusters is about 95%, so
when we use only m = n = 5K random pairs we have on average 4, 750 pairs of
pivots form different clusters and just about 12-13 pairs representative of each
cluster. To mitigate this inconvenience we may try to use use m � n or, as
proposed in the following, use the PP-Perms representation that employs both
traditional and synthetic pivots. The latter approach guarantees to have a per-
centage of pivots that are still representative of the original data distribution
which seems to be fundamental for clustered data. Note that for n pivots and m
pairs the PP-Perms produces permutations of length N = m+n. For some prefix
lengths the effectiveness of the PP-Perms may decrease when considering m� n
as the percentage of synthetic pivots will be a way larger than the percentage
of actual pivots, which may be a issue for clustered data. Anyway the loss in
effectiveness is compensated by the more efficiency at searching time since the
Search Cost (number of bits accessed per query) typically increases proportion-
ally to λ2/N . Therefore, since PP-Perms and Perms have different lengths N , in
the rest of this paper, we report the recall values as function of the Search Cost.

In Figures 2e and 2f we compared the performance of the traditional Perms
using n = 500 pivots (N = 500), the PP-Perms using n = 500 pivots and
m = 4, 500 pairs (N = 5, 000), the P-Perms using m = 5, 000 pairs selected
from n = 500 pivots (N = 5, 000), and the traditional Perms using n = 5, 000
pivots (N = 5, 000). The latter approach is plotted for reference as it has the
same length of the tested PP-Perms and P-Perms, but note that it requires
5, 000 actual object pivot distance computations, while the other approaches
uses a order of magnitude less object-pivot distances computations. For all the
approaches we plot the recall versus the search cost when increasing the prefix
length λ form 10 to 500. As expected, the P-Perms, which rely only on synthetic
pivots, has poor performance on the clustered data. However, on the clustered
dataset, the PP-Perms approach, which uses both actual and synthetic pivots,
not only outperforms the Perms techniques that use the same set of actual pivots
(n = 500) but also reaches the performance of the traditional permutations built
upon the larger set of pivots (n = 5, 000). Thus we observed a great advantage
in combining synthetic and real pivots to represent clustered data. In facts, the
PP-Perms shows the best trade-off between recall, search cost and the cost for
computing the permutations (i.e. the actual object-pivot distance computations).
On Gaussian data, both the P-Perms and the PP-Perms still outperforms the
traditional permutation built on the same pivot set (we are not interested in
the recalls when the search costs is greater than the sequential scan). Moreover,
for small search cost values, it achieves recalls in line with the more expensive
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Fig. 3: Recall@10 as function of the Search Cost (with and without re-rank
based on the actual distance), for increasing permutation prefix lengths. For
each method, the points plotted in the graphs correspond to the prefix lengths
λ = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

traditional permutation built upon the larger pivot set. Given these outcomes, in
the following we focus our attention only on the PP-Perms and Perms approaches.

4.2 Experiments on Real-World Data

For the experiments on real-world data we used two sets of 1M objects from the
CoPhIR [7] and ANN-SIFT [16] datasets, for which we used different kinds of
image features compared with distinct metrics. On the CoPhIR data we used
as metric the linear combination of the five distance functions (Manhattan, Eu-
clidean, and other special metrics) for the five MPEG-7 descriptors that have
been extracted from each image. We adopted the weights proposed in [6, Ta-
ble 1]. The ANN-SIFT contains SIFT local features (128-dimensional vectors)
compared with the Euclidean distance. Note that the SIFT data contains some
clusters as the distance distribution is a mixture of Gaussians (see [22, Fig. 1]).
On both the datasets, we tested the traditional Perms using n = 1, 000 piv-
ots (N = 1, 000), the PP-Perms using n = 1, 000 pivots and m = 9, 000 pairs
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(N = 10, 000), and the traditional Perms using n = 10, 000 pivots (N = 10, 000).
For each approach we varied the prefix length λ from 10 to 1, 000. The results
are depicted in Figures 3a and 3b for CoPhIR and SIFT data, respectively. For
reference we also reported the cost of the sequential scan for searching the orig-
inal data descriptors using the actual distance. Moreover, we also include the
results when the actual distance is used to refine (re-rank) the candidate results
selected in the permutation space. We observed that on both the datasets the
PP-Perms performs better than the traditional permutation build upon the same
set of pivots. Moreover, for λ > 100 it achieves recall values in line with that
of the more expensive permutation built upon the 10 times larger set of pivots.
Therefore, the PP-Perms can be profitably used as alternative to the traditional
permutation to generate long permutations while limiting the number of actual
distance computations. For example, to search 1M SIFT data with a query cost
of about 8 MB, the PP-Perms achieves a recall@10 of 0.29 (0.69 when using the
re-ranking) while the Perms that uses the same set of pivots has a recall of 0.24
(0.56 with the re-ranking). On the CoPhIR data the improvement is even more
evident: for a search cost of about 4 MB the PP-Perms reaches a recall of 0.24
(0.61 when using the re-ranking) while the traditional permutations has a recall
of 0.16 (0.47 when using the re-ranking).

5 Conclusions

In this paper, we generalized the definition of permutations associated to metric
objects by introducing the concept of permutations induced by a metric trans-
formation f . As a practical example, we defined permutations induced by a com-
bination of pivots and the tensor product of several planar projections related to
some pivot pairs. In our experiments, this novel representation, called PP-Perms,
achieved the best trade-off between effectiveness (recall) and efficiency (search
cost and data distance computations) with respect to the traditional permuta-
tions. In facts, for the same set of object-pivot distance calculations, PP-Perms
allows producing longer permutations, which can be more efficiently searched
using inverted files. As future work, on one hand, we would like to investigate
theoretical properties that the function f should meet in order to induce effective
permutation-based representations; on the other hand, we would like to exploit
artificial intelligence techniques to automatically learn suitable functions f .
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10. Chávez, E., Figueroa, K., Navarro, G.: Proximity searching in high dimensional
spaces with a proximity preserving order. In: MICAI 2005: Advances in Artificial
Intelligence. pp. 405–414. Springer (2005)

11. Connor, R., Vadicamo, L., Cardillo, F.A., Rabitti, F.: Supermetric search. Inf. Syst.
80, 108–123 (2019)

12. Connor, R., Vadicamo, L., Rabitti, F.: High-dimensional simplexes for supermetric
search. In: Similarity Search and Applications. pp. 96–109. Springer International
Publishing (2017)

13. Esuli, A.: Use of permutation prefixes for efficient and scalable approximate simi-
larity search. Inf. Process. Manage. 48(5), 889–902 (2012)

14. Figueroa, K., Chavez, E., Navarro, G., Paredes, R.: Speeding up spatial approxi-
mation search in metric spaces. ACM J. Exp. Algorithmics 14 (Jan 2010)
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