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Abstract

Electroencephalography (EEG) and Magnetoencephalograhy (MEG) data are mostly mixed with activity stemming from the
eyes and muscles. Neuroscientific researchers decrease the effect of these non-brain sources on the recorded data using artefact
cleaning methods operating in sensor space (e.g. filtering, subtracting signals from additional eye or neck electrodes) or by
removal of automatically or manually identified independent or principal components (ICs/PCs). The subsequent source local-
ization techniques are commonly applied to data that was cleaned from such physiological sources and other non-physiological
artefacts. However, this chronological procedure leads to distorted EEG time series due to imperfect artefact reduction routines,
introduces a bias into the subsequent source localization and excludes potentially interesting additional information.
Therefore, we propose adding sources that are usually considered artefactual to the head model in a similar way as it is done
for cortical sources. Treating muscles and eyes as proper contributors to EEG potentials allows for a more precise identification
of these sources that can then be ignored or excluded automatically for further data analyses.

We developed a head artefact model using tripoles (HArtMuT) - a volume conduction head model with cortical dipole sources
enhanced by symmetric dipoles for the eyes and tripoles for face and neck muscles. HArtMuT can be used for modeling eye
and muscle contributors to the EEG signal, cortical and artefactual source reconstruction and for evaluating or constructing
algorithms.

We compared different artefact modelling approaches using physiologically motivated dipolar and tripolar source models. Their
performance was evaluated with respect to source localization accuracy using as ground truth both simulated HD-FEM data
and ICA patterns from EEG recordings of 19 subjects completing different body rotation tasks.

The best model for neural sources were found to be the standard equivalent dipole, while the eyes were better approximated
by symmetric dipolar models. The muscular contributors were also well in accordance with a dipolar model but a better
approximation of source location was achieved with tripoles. Preliminary results show a possible usage as classifiers of the
resulting source locations for identifying neural and artefactual sources. Compared to using standard EEGLAB 3-shell models
on real ICA-decomposed data, the residual variance was reduced from median 0.25 to 0.11 for muscle sources and 0.18 to 0.09
for eye sources. 68% of the ICA patterns were detected as muscle sources based on source location in the 4-shell HArtMuT,
while 30% were brain and around 2% symmetric eye sources.

Introduction

Magenetoencephalography (MEG) and Electroencephalography (EEG) are methods to non-invasively mea-
sure the electrical activity of neurons in humans and other species. EEG provides high temporal but only
limited spatial resolution, because of the sensors being placed on the scalp outside the low-conductive skull.
Due to volume conduction, only a spatially smeared linear mixture of all cortical sources, that are active in
parallel, arrives at the sensor level [Haufe et al., 2014]. MEG has better spatial resolution than EEG, since
the magnetic fields are less distorted by the mixture of different conductive tissues (brain, cerebro-spinal fluid
(CSF), skull, skin), but suffers from low signal-to-noise ratio in particular for deeper sources. In addition,
MEG is sensitive primarily to tangential oriented sources and is more demanding in its recording procedure.
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Both MEG and EEG, referred to as M/EEG in the following, record volume conducted signals composed of
cortical sources active in parallel and mixing in a linear fashion. Dissociating the different sources can be
solved based on source separation techniques [Pearson, 1901, Makeig et al., 1996a, Blankertz et al., 2011],
introducing a number of assumption to solve the ill-posed inverse problem [Sarvas, 1987]. Mathematically
dissociating cortical sources in the M/EEG signal is further complicated by other sources contributing to the
recorded signal, like physiological non-brain sources (eye movement, muscle activity) and mechanical (cable
sway in EEG) or electrical sources (noise stemming from stimulation monitors and other devices).

While mechanical sources often show invariant patterns, that can be easily dissociated, eye movement and
muscle activity of facial and neck muscles are often less easy to identify. Importantly, these classes of non-
brain sources contribute significantly to the signal as they are located outside the skull and show higher
energy compared to the minuscule EEG signal. Signals from eye movements and blinks can be orders of
magnitude larger than brain-generated electrical potential and activity stemming from eye movements, the
closure of the lid and its necessary muscular activity and neck and face muscle activity are the most common
types of artefacts in EEG recordings .

This kind of non-brain activity is traditionally considered to be artefactual, even though eye movement and
facial mimicry significantly contribute to or are a result of cognitive and affective processes (REF). As a
consequence, a number of artefact rejection methods has evolved to identify and remove such kind of activity
from the recorded signal. Rejecting contaminated trials, however, causes substantial data loss, and restricting
eye movements/blinks might limit the experimental design and could impact the cognitive processes under
investigation. Thus, newer algorithms attempt to remove artefact specific features from the signal without
deleting contaminated time periods to preserve as much data as possible .

Among these algorithms are blind source separation (BSS) techniques [Urigüen and Zapirain, 2015] that
decompose the signal mostly based on its spatio-temporal statistics into different sources after which neu-
ral sources are identified and separated. The most commonly used approach is Independent Component
Analysis (ICA) which separates the sources based on the principle of maximal statistical independence. The
assumption that neural and artefactual sources are independent implies the possibility of sorting them into
sources of different origin. This can be done manually by an expert or automatic routines can be applied
[Winkler et al., 2011, Pion-Tonachini et al., 2019].

Eventually, the sources that have been identified as originating in the brain, are further localized using
source localization approaches . Locating the sources in general requires a forward solution which contains
the location generating the activity. The same approaches could be used to localize other physiological
sources, however, to our knowledge no head model actually provides leadfields that incorporate the eyes and
facial as well as neck muscles in the forward solution.

On the other hand, the simulation of different signal sources including those of eyes and muscles is useful for
educational and validational purposes, like it has been done for neural origins [Krol et al., 2018]. This also
involves the modeling of a biophysical forward model, that mimics the field propagation within the head and
is so far done almost exclusively for neural sources in existing models.

In order to improve the source localization accuracy, to provide a better guide for users to distinguish
brain from non-brain sources and to provide a model, which is suitable for eye and muscle simulations, we
propose our Head Artefact Model using Tripoles (HArtMuT). Calculated with Boundary and Finite Element
Methods (BEM/FEM) for different commonly used standard head anatomies, the model incorporates eyes,
facial muscles and muscles in the dorsal neck region into EEG leadfields and is ready to be implemented into
standard approaches of all kind.

The aim of this study was to use an artefact source model as extension to the existing cortical source
model for solving the inverse problem and improving localization of non-brain sources that contribute to
M/EEG recordings. Therefore, we developed the so called HArtMuT, a 4-shell Boundary Element Method
(BEM) head model [Gramfort et al., 2010] of the anatomy of Colin [Holmes et al., 1998], consisting of a
cortex (gray + white matter), cerebrospinal fluid (CSF), skull and neck extended scalp mesh. The model
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was segmented using an automatic segmentation pipeline with final surface mesh sizes of 1922 vertices and
3990 triangles each. This has proven to be a reasonable compromise between model size, hence accuracy,
and computational speed during inverse fit methods with inverse nonlinear fit requiring frequent leadfield
recalculation [Miklody et al., 2016, Miklody, 2020].

Source modelling
While EEG artefacts of instrumental original can be diminished by thorough experimental setup designs,
artefacts of physiologic origin cannot be avoided a priori and are part of the measurement. Commonly,
only neuronal sources are simulated in head models, leading to erroneous localization of muscular or ocular
sources within the brain. The motivation of this study was therefore to represent all EEG signal contributors
of biological origin adequately in the modeling process. This allows to better model non-brain physiological
activity and to use such activity for later analyses as it might be significantly linked to the cognitive processes
of interest. This approach further enables a better classification of brain and non-brain sources as the latter
are not incorrectly localized into the brain anymore. We investigated cortical, ocular, and muscular artefacts
by using electric field models derived from their activity. In the lower frequencies (< 1 kHz), the basis of
common electrical models of volume conduction in the human head is the quasi-electrostatic assumption
[Häamäläinen et al., 1993] which leads to a Poisson equation that has to be solved in order to model the
field distributions (see e.g. Sarvas [1987]):

∇ · (σ∇Φ)) = ∇ · ~JP (1)

~JP are the sources of primary currents, that lead to the volume conduction ~J = σ∇Φ. ~JP are usually
modeled as a superposition of point sources like single dipoles called the equivalent current dipole (ECD).
The sources produce a local current flow which leads to a return current in all connected conductive tissue.
The infinite homogeneous solutions of eqn. 1 for a given geometry with the ECD as JP are commonly used
to simulate the electrical potential of a firing population of neurons. These solutions are unique and can be
numerically determined. The most common numerical methods nowadays are Boundary Element Method
(BEM), Finite Element Method (FEM) and Finite Differences Method (FDM). In general, FEM/FDMs can
incorporate more detail in anatomy and conductivity, such as anistropy or certain local inhomogeneities, but
are computationally much more expensive.

We will now look into the physiology of the different source types, the resulting fields and models.

Cortical sources
The main neuronal activity is believed to be based on membrane potentials and electrical currents through
ions. Whether being Action Potentials (AP) along the Axons or Postsynaptic Potentials (PSP), they
produce a current flow through the membrane, that leads to a secondary return current flow through
the neuron’s surrounding, which can be measured outside the head [Buzsáki et al., 2012]. In particular
scalp EEG is assumed to be primarily elicited by the mean field produced by PSPs of neocortex layer
pyramidal cells in the cerebrum. The ECD is a widely accepted approximation for the electric field of a
population of parallel aligned and synchronously firing neurons. For a detailed derivation of the ECD from
the contribution of principal neocortical neurons to the EEG, please refer to Murakami and Okada [2006].

The far-field of an ECD is described by an analytic expression, which is then used in combination with the
headmodel to describe the resulting volume conduction within the whole head. In Cartesian coordinates,
this electrical far-field potential of a dipolar current source in an infinite homogeneous conductive medium
is

φd(~r, ~rq) =
1

4πσ

~Q · (~r − ~rq)

|~r − ~rq|3
. (2)
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And the current density is calculated as

~Jd(~r, ~rq) =
1

4π

(
3

(~r − ~rq) · ~Q
|~r − ~rq|5

· (~r − ~rq)−
~Q

|~r − ~rq|3

)
, (3)

where σ is the specific conductivity of the material and ~Q is the local current density produced by the source.
~r is the observed point and the position of the source is ~rq. We will later use the fact, that the far-field can

be seen as an approximation based on two monopoles with distance ~d and ~Q = q ∗ ~d, where terms of order

O
[(|~d|/|~r|)2] are omitted, because it is assumed that |~r| �

∣∣∣~d∣∣∣.
Ocular sources
Ocular artefacts in the EEG are caused by eye movements or blinks and are associated with higher
amplitudes and lower frequencies than those of cortical EEG signals. The underlying sources are mainly
charge distributions in the eyeball, but additionally include the eye muscles, that produce an electrical
field when active and the closure of the eyelids, that modifies the volume conduction. The eyes are mostly
the components of strongest amplitude and can be easily identified by their specific frontal patterns. Eye
movements of both eyes are generally linked in healthy humans leading to a common resulting field produced
by both eyes equally. Since the potentials are correlated among both eyes, single eye sources cannot be
separated by ICA/PCA. This symmetry therefore has to be incorporated into the model, which is tested by
investigating single and symmetric eye models.

Physiology
The eyes are electrically charged at different structures
as depicted in fig. 1. Firstly, the photoreceptors in
the retina maintain a standing negative resting poten-
tial in order to turn incoming light into an excitation.
In the pigment epithelium this results in an electrical
signal, which then propagates through the optic nerve
to the visual cortex. Contrary to this strong nega-
tive charge distribution, fewer positive potassium and
sodium ions are located in the outer segment of the
photoreceptor cells, forming the overall membrane po-
tential of around −40 mV. When stimulated, the pho-
toreceptors become even more hyperpolarized. Op-
posing the retinas negativity is the overall positivity
of the cornea. In its function to protect the frontal
eye from physical and chemical agents, it transports
positively charged sodium ions inward and negatively
charged chloride ions outward, such that its surface,
the corneal epithelium, is again negatively charged.
During eye movements or blinks, the described charge
distributions move and their electrical field changes.
Since it is these changes, that are recorded as EOG,
an equivalent ocular model is expected to describe
the charge distribution difference pre and post move-
ment rather than the static charge distributions. Ad-
ditionally, the eyeball rotation is driven by small mus-
cles around the eyes, that produce an electrical field
when active, which should be included into the muscle

Figure 1: Anatomy and charge distribution of the
eye and eyelid. In the right, the negatively charged
(−) retina and its opposing smaller positive charges
(+), and in the left, the inside positivity of the
cornea and its surface negativity. An eyeball rota-
tion results in charge distribution differences, that
are visible in the EEG. The eyelid itself consists of
the Orbicularis oculi muscle and its sliding is func-
tioned by Muller’s muscle. The eyeball rotation
muscles are omitted in this schematic depiction for
the sake of simplicity. Reprinted from Iwasaki et al.
[2005], Copyright 2004, with permission from Else-
vier.

model. The closure of the eyelid is thought to additionally change the local field by altering the geometry
of the volume conductor [Plöchl et al., 2012]. A model for this is out of scope of this paper.
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Literature overview
Some studies already investigated modeling the contribution of eye activity to EEG signals, where the
strong corneo-retinal potential was mostly approximated by one equivalent ocular dipole with its negative
pole posteriorly (directed towards the retina) and its positive pole anteriorly (directed towards the cornea).
Using EOG recorded signals during vertical and horizontal eye movements and eye blinks, Berg and Scherg
[1991] observed, that ’a reasonable fit was only obtained if the equivalent dipoles were allowed to take up
different locations and orientations depending on the type of eye activity’. A single dipole was determined
for each movement across subjects. However, the difference dipole of a single eye movement was assumed
to be approximately stationary due to asking the subjects to move their eyes always by the same fixed
angle. Therefore, one might conjecture, that even more equivalent dipoles for the same movement direction
but different angles are needed. One specific dipole per eye was also determined to approximate the EOG
signal during eye blinks. This dipole bears analogy to that of vertical eye movements, which reflects Bell’s
phenomenon: ’Spontaneous blinks produced small eye movements directed down and inward, whereas slow
or forced blinks were associated with delayed upward eye rotations’, as stated by [Iwasaki et al., 2005].
They undertook a detailed EOG analysis of eye and lid movements, reasoning that ’EOG signals during
vertical eye- and lid-movements are greatly influenced by the eyelids’, since a closed eye lid conducts the
ocular dipole field to the fronto-polar scalp region within the scalp tissue.

Summary
Most studies investigated the approximation of the large corneoretinal potential by an equivalent dipole.
However, in order to mirror the actual biological charge distribution differences correctly, monopolar sources
could be placed into the retina and the cornea, respectively, which is technically demanding. In order to
approximate the actual charge distributions, the monopoles can be replaced by dipoles. Corresponding to
eyeball rotations, activity of the extraocular muscles is expected, as well as muller’s muscle activity due to
eye lid closures during blinks.
Additionally, we hypothesize, that both eyes move simultaneously and synchronously during regular usage
in healthy subjects, which leads to an electric field and therefor patterns stemming from two sources - one in
each eye. To this extent, we included symmetric dipolar fields into HArtMuT, that consist of a summation of
left and right eye positions with identical orientation vector. The performance of the different ocular models
(single and eye-symmetric dipoles together with tripolar sources in the eye muscles) were investigated. The
same dipolar model as used for the brain (eq. 2 and 3) and the same tripolar model as used for the muscles
(eq. 6 and 7) are obeyed for dipolar and tripolar sources, respectively.

Musclular sources
Muscular activity is usually measured using bipolar electromyography (EMG) recordings. Several muscles
are located in the face and on the human skull as well as in the posterior and anterior neck regions. Due
to their strong activity patterns because of their location outside the skull, EMG activity is often observed
in EEG recordings. In traditional M/EEG protocols participants are restrained in their movements and
supracranial and facial muscles contribute to the EEG signal mainly in the higher frequency range starting at
around 20 Hz. However, newer mobile EEG and Mobile Brain/Body Imaging studies demonstrated a strong
contribution of neck muscles in moving participants with a contribution of lower frequencies in addition to
the known higher frequency range from other muscles. Thus, it is even more important to dissociate this
non-brain activity from the activity of interest, also in lower frequencies. Most of these muscle artefacts are
larger in amplitude than the neuro-electric activity measured at the scalp. Their spatial scalp patterns differ
from those of neural origin, since their sources are located directly in the scalp in close proximity to the
EEG cap, and their field is thus more local and on the boundaries. Additionally, due to their physiological
properties, they have a rather tripolar field distribution, which has certain impacts on the patterns as well.

Physiology
Skeletal muscles are composed of bundles of muscle fibers, that are long cylindrical cells containing many
myofibrils composed of contractile units called sarcomeres. The muscle fibers and the corresponding motor
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neuron of the nervous system are connected via nerve fibers that divide into many terminal branches. Each
chemical synapse of these axon terminals builds a so-called neuromuscular junction, ending on a specific
region of the muscle fiber, called the motor end plate. When the nerve impulse for muscle contraction
in form of an action potential reaches this neuromuscular junction, synaptic transmission to the muscle
fiber begins. The action potential triggers a chemical process which leads to a depolarization of the resting
membrane potential of approximately -70 mV. If the threshold potential (often between around −55 and
−50 mV) is exceeded, the electrical impuls of the end plate’s potential travels down the traverse tubules (T
tubules) into the interior of the muscle fiber and finally triggers the contraction of all sarcomeres.
This depolarization and the subsequent re-polarization phase, called hyperpolarization, is followed by the
afterhyperpolarization (AHP), in which the membrane potential falls below the resting potential until it
returns to its normal resting voltage.
The muscle fibers innervated by a single axon are known as the muscle unit. Those muscle units innervated
by the same motor neuron form together with its motor neuron a single motor unit (MU), such that a motor
unit action potential (MUAP) is produced by the summation of the accompanying muscle unit’s end plate
potentials. Upon muscle contraction, the generated MUAPs and their propagation from the muscle end plate
to the tendons are recorded during electromyography (EMG) and as unwanted artefacts during EEG. This
propagation in several muscle fibers leads to an EMG signal, originating from multiple distributed source
locations, and is thus rather a mean field signal.
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Literature overview
While modeling ocular contributors to the
EEG have already been discussed among re-
searchers, muscular sources - to our knowl-
edge - have not been added to any head model
so far.
However, approaches in modelling EMG
sources exist in particular for sources in the
extremities. Some researchers used a sim-
ple dipole to approximate the MUAP’s curve
[Boyd et al., 1978] [Winter et al., 1994], while
others used (two) balanced tripoles pointing
opposingly into the direction of the muscle
fiber ends [Farina and Rainoldi, 1999], [Griep
et al., 1982], [Merletti et al., 1999], [Roeleveld
et al., 1997]. The potential curve appears
more tripolar with a skewness related to the
tripolar asymmetry in propagation direction,
when taking into account also the AHP, thus
the negative sink after the action potential
peak (fig. 2). As shown by Merletti and Fa-
rina [2016], the field of an equivalent tripolar
source model has a similar curvature to the
more realistic analytic waveform, that were
originally developed by Rosenfalck [1969] and
later modified by Nandedkar and St̊alberg
[1983].
Thoughts on MUAPs in human head
In the human head, these muscular sources
are found within what is usually modeled
as scalp: a thinner sheet of conductive tis-
sue bordering the non-conductive air and the
much less conductive skull (estimated con-

Figure 2: Simulated transmembrane current per unit length
(based on Nandedkar and St̊alberg [1983]) and the equiva-
lent tripole source model as approximated by Merletti and
Farina [2016]. The electric field of the first positive (300 nA)
and the negative (420 nA) sources corresponds to the depo-
larization and the subsequent re-polarization phase. This
would be covered by an equivalent dipolar current source
model. Adding the second positive charge (120 nA) a bit
apart, additionally incorporates the following small AHP
bump. This constitutes the equivalent tripolar current
source model solution. Fig. reprinted with permission from
Merletti and Farina [2016]. Copyright 2016 by The Institute
of Electrical and Electronics Engineers, Inc.

ductivity ratio 1:40 to 1:80 [Goncalves et al., 2003, Clerc et al., 2005]). These rather sudden changes of con-
ductivity also have an effect on the inner distributions of electrical potential and current flow. In figure 3 we
can observe that depending on the orientation of the tripole relative to the measured surface potential, it can
have one, two or three focal patterns on the surface. MUAP models vary in charge distribution and locations
of the three monopoles, that form the tripole. Furthermore, the line, on which the three monopoles are places,
is not necessarily straight but can also be curved. All this has effects on the appearance as surface potentials.
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Figure 3: Head model simulations of three different equivalent current tripole orientations (tangential, radial,
45°) at the same source position. Different orientations lead to different surface potentials patterns: A tripole
can look similar to a dipole or a monopole depending on its orientation, however certain characteristics like
the fall-off with distance differ. The dipole (upper row) consists of a double negative sink and a double
positive source. The symmetric tripole (middle row) consists of two negative sinks the same distance in
opposite direction apart from a double positive source. Tripole B additionally has different distances leading
to a rather dipolar potential distribution. The surface at x = 0 is to a non-conductive domain for x > 0,
which simulates the scalp surface touching air. The lines depict different voltage levels (iso-voltage lines),
while the flow lines represent the current flow (the density of the lines is arbitrary).

The central (in our case positive) peaks of tripoles decay faster in amplitude than dipolar peaks, but compared
to brain sources, the missing spatial smearing effect of the CSF and skull additionally leads to more focal
patterns for scalp sources. If tripoles are modeled similar as in Merletti and Farina [2016] (see fig. 2),
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the resulting field is in transition between dipole and tripole as the closer and stronger pair of sources
(300nA/420nA) dominates the field, as we can see in figure 3.

Summary
Due to existing evidence for both approaches, dipolar and tripolar, we decided to test both, as they can also
be physiologically motivated.
Moreover, little is known about EMG signals fall-off in current flow power within the muscle fibers [Kuiken
et al., 2001], that, strictly speaking, one would additionally need to take into account. Since the potential
form of EMG signals at different fiber positions is not simply a delayed versions of each other [Merletti
and Farina, 2016], we place several myogenic sources along the signal’s two propagation directions from the
neuromuscular junction (NMJ) to the tendons in the model. For source reconstruction, no restrictions will be
set to positions within the scalp in order to avoid systematic modeling errors due to incorrect segmentation
or generic head models. Sources are then assigned the label of the closest muscle for identification.
Because the distance between the sources is in a similar range as the distance to the surface, a far field
approximation, such as that used for equivalent current dipoles for neurons inside the brain, does not hold
for sources outside the skull. Instead, the optimal model would be directly modeling the current flow out of
the muscle along its fibers using analytic solutions comparable to Nandedkar and St̊alberg [1983]. Such an
implementation in existing head model software would not allow the usage of most existing inverse fitting
approaches, that optimize location and orientation of point sources. We therefore model the tripolar structure
as three single monopolar sources, as described by Merletti and Farina [2016]. In Cartesian coordinates, the
electrical field potential of a single (monpolar) current source φm in an infinite homogeneous conductive
medium is calcalted as

φm(~r, ~rq)) =
I

4πσ

1

|~r − ~rq|
. (4)

The corresponding current density ~Jmis given by

~Jm(~r, ~rq) =
I

4π

(~r − ~rq)

|~r − ~rq|3
, (5)

where σ is the specific conductivity of the material and I is the total current of the source. ~r is the observed
point and the position of the source is ~rq. The field is radial symmetric.
In order to model the field of a tripole, three monopolar sources with different parameters (location, ampli-
tude) are used and their fields are summed to receive the field of the according tripole:

φt(~r, ~rq1, ~rq2, ~rq3,~a) = a1φm(~r, ~rq1) + a2φm(~r, ~rq2) + a3φm(~r, ~rq3) (6)

and
~Jt(~r, ~rq1, ~rq2, ~rq3,~a) = a1 ~Jm(~r, ~rq1) + a2 ~Jm(~r, ~rq2) + a3 ~Jm(~r, ~rq3) , (7)

where rqi is the location and ai the amplitude of pole i . In order to fulfill the necessity of closed current
loops, the amplitudes ai have to sum to one. In general, this could be added as a constraint but our results
reveal that this is implicitly taken care off.

The tripolar model approaches tested within this paper were taken from three different sources:

• Tripole A: A negative sink with amplitude −300 nA was placed at −1 mm and a −120 nA charge 2.8 mm
away from a central 420 nA source [Merletti and Farina, 2016].

• Tripole B : Two negative sinks (−210 nA) were set −1.6 mm and 3.2 mm away from a central double
positive source (420 nA) [Roeleveld et al., 1997].

• Tripole C: two negative charges were set -2.1mm and 4.8mm from a central double positive source
[Kuiken et al., 2001]

For source modeling, the source orientations are commonly oriented in the physiologically motivated direc-
tion, which is along the muscle fiber in EMG. In source reconstruction on the other hand, a regular grid is
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spread over the scalp to avoid implicit geometric errors by the head models. This is a common approach
also in neural source reconstruction in particular with generic head models.
In order to make common dipolar fitting routines work with the tripolar approach, we use the following
approximation: Three tripoles are modeled around a central location in each direction of a Euclidean ACPC
coordinate system. Their moments are determined during fitting in the same way as for a dipole. Secondly,
the linear combination of the three tripoles, that minimizes the error, is determined..

Fig. 3 shows, that a tripole’s scalp potential is not necessarily consisting of three patterns, even in proximity
to the source. When using a tripole model with non-equal distance between the monopoles, in particular
one of sources’s surface patterns is weakened. The used muscular tripole models are actually very similar to
dipoles except that the potential and current distributions are dominated by the stronger source-sink pair. A
stronger source-sink pair can either be reached by a larger distance between the sources or by bigger source
charges.

Building artefact models from MRI segmentation
For a realistic artefact source model, detailed muscle and eye positions within the head are essential. How-
ever, common MRI scans lack the necessary resolution and segmentation techniques to deduce the relevant
anatomical details of muscles and eyes. Therefore, the open source Multimodal Imaging-Based Detailed
Anatomical (MIDA) model of the human head and neck [Iacono et al., 2015], an open source, high-resolution
MRI scan, segmented manually by experts, has been employed. The segmented tissue surface meshes were
subject to post-processing, source model construction and warping to MNI space.

MIDA Open Source Atlas
MIDA has been obtained by segmenting high-resolution T1- and T2-weighted MRI scans, magnetic
resonance angiography (MRA) and diffusion tensor imaging (DTI) data of one healthy 29-year old female
volunteer. It was acquired at the Institute for Biomedical Engineering of the ETH Zurich (Switzerland) and
contains 153 structures, segmented at 500µm isotropic resolution.

Figure 4: Face muscle positions and directions (left) [Schünke et al., 2007], muscular surface meshes mapped
onto the skull mesh of the corresponding BEM head model (middle) and artefact source grid of size 3,5k
(right).
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Surface mesh corrections
The segmented face and neck muscle meshes as shown in the center of fig. 4 were corrected for self-
intersections, unconnected nodes and duplicated elements. Unconnected mesh parts were detected and
removed. The triangulated surfaces were simplified, coarsened to an appropriate number of mesh vertices
and qualitatively enhanced (uniformity), while preserving the manifold.

Sourcemodel grid creation
Evenly spaced grids of 1 mm size were constructed within every muscle surface, building the artefact model’s
source positions. For the source reconstruction, however, regularly spaced grids were used as described
above. According to the propagation direction of the MUAPs, the source’s pole orientations should follow
the muscle’s fiber directions for simulation (see sec. ). The fiber directions were approximated by using a
Principial Component Analysis (PCA) on close neighboring grid points of a muscles grid point cloud, where
the closeness criteria has been varied depending on the underlying muscle shape.
For eye activity, source grids were built for in total six tissues. Firstly, the retina of the left and right eye
was modelled with orientations pointing in the positive y-axis of the ACPC coordinate system (i.e. forward).
Secondly two source grids each were placed into the Cornea of the left and right eye, where one of them is
oriented horizontally and the other vertically.

Warping to MNI coordinates
A warping procedure for transferring the artefact sourcemodel from MIDA into MNI space was developed,
which interpolates every point within the scalp mesh of one person into the scalp mesh of another person.
It is noteworthy, that the MIDA scalp, skull and cortex surface meshes could not be segmented from MRI,
since the original MRI scan was not publicly available.

Inverse Fitting Routines
We used three different inverse fitting routines: dipfit gridsearch and dipfit nonlinear based on fieldtrip’s
ft dipolefitting [Oostendorp and Van Oosterom, 1989, Oostenveld et al., 2011] and nonlinear monopole im-
plementing a non-linear optimization for single monopolar positions. Location and orientation of the dipoles
were adjusted in an iterative procedure in an attempt to maximize the amount of variance in the data
explained by the model. One criterion for evaluation and comparison of models therefore was the ’relative
residual variance’ (RV), the relative amount of variance in the data, which is unexplained by the model
[Scherg and Berg, 1991].
The RV is a sum-of-squares type error function, that focuses on relative deviations from the target pattern.
The formula we employed is based on the scalp potentials measured (x) and estimated by the head model
(x̂):

RV =

∑
(x− x̂)

2∑
x2

(8)

The RV has the advantage of being insensitive to the actual amplitude of the measured signal.
dipfit gridsearch compares the RV of the potentials at the electrodes with the computed HArtMuT leadfields
for every source point in the full sourcemodel (cortical + artefactual). The sources were placed at a regular
grid within the scalp and brain. The source position combined with an orientation, that produced the lowest
RV with the scalp pattern, then comprises the linear result to the inverse problem.
Subsequently, the nonlinear result for dipfit nonlinear was achieved by allowing a minimization algorithm to
vary orientation and source position using the dipfit gridsearch results as starting points.
The tripolar moment of these fieldtrip based optimizations for tripoles was estimated in a similar fashion.
It is the linear combination of three fields in each direction of Euclidean space using the fields of three
monopoles each, as described in sec. .
For some of the results a further optimization routine, nonlinear monopole was performed in order to see, if
the source model was optimal. Single monopoles with individual amplitudes were therefore placed around the
central position, that was found using dipfit nonlinear. The positions and amplitudes were optimized for all
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three monopoles at once, while iterating until convergence or the onset of a stopping criterion. A Levenberg-
Marquardt [Moré, 1978] based non-linear optimization routine was employed and the error measure was
again given by the RV.

Validation
HArtMuT’s application to the inverse problem was validated against simulated EEG scalp patterns and
subsequently on a real experimental EEG data set.

In the first validation step (simulated data), an FEM was used as ’ground-truth’ head model to validate the
model and the inverse fitting routines and the results were compared to those of a standard 3-shell BEM
model from EEGLAB [Delorme and Makeig, 2004a]. Therefore, scalp patterns of dipolar sources were first
simulated at all muscle positions from MIDA using the FEM and then the inverse fits were performed using
a regular grid (resolution 10mm) within the head (only brain and scalp sources considered) as described
above. The second (experimental data) validation was performed using data from an EEG experiment (see
Gramann et al. [2021] for a description of the data). From the experimental data, different components and
their scalp patterns were extracted using Independent Component Analysis (ICA; [Makeig et al., 1996b])
within EEGLAB [Delorme and Makeig, 2004b]. For each independent component (IC), the source point from
a regular grid (resolution 10mm) within the head (only brain and scalp sources considered) was estimated
based on the criterion that its BEM modeled scalp potential has the smallest distance to the scalp potential
of the respective IC (measured in RV).

Simulated Data

NYhead
The simulated scalp patterns were calculated by use of the anatomy of the NYhead [Huang et al., 2016].
The NYhead is a high resolution Finite Element Model (FEM), that includes the neck. Its mesh and 75k
cortical leadfields are publicly available. Since the published leadfields were calculated using the proprietary
Abaqus FEA software suite, the cortical leadfields were recalculated using the open source software package
SimBio. Comparing both the original Abaqus Software and the SimBio leadfields simulation, an average
correlation of 0.66 for single source location leadfields was found. The discrepancy may be explained by
the use of different solvers and an additional linear source point and electrode transformation, applied
beforehand. The transformation was needed to bring FEM mesh and source and electrode positions into
the same coordinate system.

Using the NYhead, leadfields of an 3,5k big artefact source model were calculated at the same 129 aligned
electrodes from the dataset of the experimental data validation. Each leadfield was used as single scalp
pattern, to which the corresponding source position was localized using HArtMuT and the inverse fitting
routines described in sec. .

Results
The results of the source localization on simulated dipolar cortical and artefactual source points are plotted
in fig. 5. The source localization error for brain and artefact sources using the HArtMuT 4-shell model was
estimated to be around 10mm with an RV mainly around 0.01. This deviation from the simulated sources
was to be expected for approximating a FEM with a BEM using different head geometries and thus also non
perfectly matching electrode and source model positions in coarser grids (10mm) (compare Miklody et al.
[2016]). It has to be pointed out, that the RVs are far below 0.1 (even the upper quartiles) and the resulting
patterns were highly similar, which points towards a good fit but difference in geometry.
In comparison, the commonly used EEGLAB 3-shell model performed much worse for all sources. The
median source localization error was above 20mm for the brain and close to 30mm for artefacts. This is
of course also an effect of the head model missing the lower head region including the neck, where a lot of
artefact sources lie, but is especially an effect of general model error for the brain sources.
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Figure 5: The relative residual variance (RV) and the geometrical error in source localization using dipfit -
gridsearch for FEM-simulated scalp potentials reconstructed using the HArtMuT 4-shell BEM head model
remained reasonably low (RV median 0.025 and source reconstruction error around 10mm)). The geometries
of the two models (NYhead vs. Colin27) were not exactly the same, such that the electrode and source
positions needed to be transformed, mimicking a realistic scenario. The standard 3-shell model lead to
significantly higher RV for brain than for artefact sources than the 4-shell for all subjects. These findings
are even stronger in the source reconstruction error.

Summary/Remarks
The performed validation against simulated data from a HD-FEM model was successful. This validates in
particular HArtMuTs BEM model as a whole, the used inverse fitting routine, the neck extension procedure
developed and applied to Colin27, and furthermore the translation procedure between the different head
shapes (MIDA, NYhead, Colin27). Another result is, that the RV does not necessarily reflect the source
localization error, which can be seen by looking at some of the 3-shell lower RVs of the brain being in a
similar range as for the 4-shell while the source localization errors are all much higher.
Moreover, the artefact position warping routine introduced further uncertainty, since the MRI scan was
based on a nonlinear warping routine of cortex positions.

Experimental data
In a second validation, ICA components extracted from real experimental EEG data were used as ground
truth. We reconstructed and localized the source patterns using different models involving the commonly
used 3-shell BEM dipole and a variety of dipolar and tripolar models based on a 4-shell BEM head model.
First the different source models were used with the inverse fitting routines and the resulting relative residual
variances (RVs) were then compared to see, which model best described the experimental data patterns, and
thus, which model overall demonstrated the best fit for the different types of sources.

Data and processing
The data of 19 healthy subjects (11 female, 8 male, aged 20-46 years, M = 30.25 years) was recorded
in another study [Gramann et al., 2021], focusing on heading computation in a stationary and a mobile
experimental condition. The virtual environment consisted of a simple floor rendering without external
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landmarks. Each trial started with a pole (indicating zero heading) which was then replaced by a sphere
moving around the participant at a constant distance but with different velocity profiles. Participants
were instructed to follow the movement of the sphere and to rotate back after the sphere stopped moving
unpredictably at eccentricities between 30 and 150 degrees to the left or right. In the stationary condition,
participants followed the sphere using a joystick while standing in front of a 2D monitor. In the mobile
condition, they physically rotated wearing a virtual reality head-mounted display. Rotation eccentricity,
speed, and direction were varied across 140 trials per movement condition (stationary vs. mobile). For the
present study and modelling approaches, only the full-body rotation condition was taken into account, as
we were interested in the contributions of neck muscles and eye movements to the sensor signal.
EEG data was recorded with 1 kHz sampling rate from 157 active electrodes (BrainProducts, Gilching,
Germany) with 129 channels in a cap with equidistant layout (with two vertical EOG channels, both eyes)
and 28 channels in a custom neckband. Individual electrode locations were recorded (Polaris Vicra, NDI,
Waterloo, ON, Canada). Additional motion data was recorded but is not considered for the modelling
approach in this study.
The data was processed in MATLAB (R2016b version 9.1; The MathWorks Inc., Natick, Massachusetts,
USA) using custom scripts based on the EEGLAB toolbox [Delorme and Makeig, 2004a, version 14.1.0].
The 28 channels located in the neckband did not increase the decomposition quality of the ICA [Klug and
Gramann, 2021] and were thus removed. Subsequently, the data was re-sampled to 250 Hz, line noise was
removed with Zapline [de Cheveigné, 2020] using default settings, and breaks and pre-/post-experiment
segments were removed from the data. We then used the ”clean rawdata” function of EEGLAB to detect
and interpolate bad channels (disregarding EOG channels) using an 0.8 correlation threshold and no other
measures. Subsequently the data was re-referenced to the average of all channels except the EOG channels.
We then applied a 1 Hz high-pass filter as suggested by Klug and Gramann [2021] and computed an ICA
using the AMICA algorithm [Palmer et al., 2011] with 2000 iterations and automatic rejection of samples
(3 times with 3 SD threshold). Subsequently, for each independent component, an equivalent dipole model
was computed using the dipfit routines from EEGLAB. Finally, components were labeled using the ICLabel
”lite” classifier [Pion-Tonachini et al., 2019].

Results
The results are shown in fig. 6. Following ICA decomposition, the 19 subjects had on average 112
components depending on the number of valid channels after the preceding artefact channel rejection and
rank of the data. Compared to using standard EEGLAB 3-shell models, the residual variance was reduced
from median 0.25 to 0.11 for muscle sources and 0.18 to 0.09 for eye sources.
Of the total 2132 extracted components of all subjects, 68% were detected as muscle sources based on
source location in the 4-shell HArtMuT, while 30% were brain and around 2% symmetric eye sources. The
amplitudes of eye sources was overall strongest (median 8.8µV , maximum 419.0µV ) followed by muscle
sources (median 0.4µV , maximum 181.1µV ) and brain sources (median 0.2µV , maximum 36.0µV ).
Using the simple dipfit gridsearch, tripoles reduced the RV compared to dipoles for 3/19 subjects (α ≤ .05).
When we further optimized the source positions using dipfit nonlinear, the difference in error between
dipoles and tripoles were not siginificant any more except for one subject (α ≤ .05). Using dipfit nonlinear
significantly (α ≤ .05) reduced the errors within any source model in every subject.
For the eyes, using dipolar models symmetrically aligned around the x-axis (ACPC coordinate system)
with equal amplitudes lead to the lowest error using dipfit gridsearch compared to any other combination.
dipfit non-linear was not implemented in this case.
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Figure 6: The residual variance of the source reconstruction results for different source models using dipfit -
nonlinear over 19 subjects: Tripoles lead to significantly lower errors for muscles than dipoles in 2/19
subjects (α < 0.5) while additionally 2 are touching significance (α = 0.5). Symmetric dipoles (symmD)
led to the lowest errors for eye sources. For cortical sources, dipoles led to significantly lower errors than
tripoles while the traditional 3shell produces lowest errors. A mix of dipoles for the brain, tripoles for muscle
and symmetric dipoles for eye sources lead to the lowest errors overall. The commonly used 3-shell model
produced significantly the highest RVs in all subjects except for brain sources. Note, that the symmetric
dipoles (symmD) were only fitted using dipfit gridsearch and could be potentially improved by the nonlinear
fit.

Comparing different approaches for modeling the muscles in fig.7, Tripole B lead to the lowest median and
lower quartile errors, which is why it was also used as the main model of HArtMuT, altough the differences
were not significant.
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Figure 7: The residual variance of the source reconstruction results for different muscular models using
different source localization algorithms: Tripole B leads to lowest, C to second lowest and Tripole A to
highest errors. The differences were not significant.

Looking at the exemplary reconstructed patterns in figure 8 on the right, dipolar and tripolar patterns
remained similar with comparable RV values. Compared to the original ICA patterns, the approach of
using 3 monopoles leads to the best-matching (lowest RV) results. The magnified source locations and
moments for the different models showed a general similarity in moments between the dipole and Tripole
B, while the locations slightly differed. The 3 monopoles leading to the best results on average, were placed
in proximity to the other solutions, while their individual positions and distances differed from that of the
standard dipole. They were not arranged in one line and not uni-distant while the amplitudes additionally
varied slightly.
Most of the muscular IC patterns were localized close to the Muscle temporalis or temporoparietalis (27.5%),
followed by a MIDA’s unspecific M. generalis class (20.6%), which is a collection of muscular tissue in the
very bottom. Then it follows the M. splenius capitis (10.6%), M. occipitiofrontalis (9.6%) and M. trapezius
(5.4%). All other muscles (27 in total) were below 4% in their occurrences.
We also investigated the resulting classification based on source location with automatic IC classification by
dipfit using IClabel, an EEGLAB plugin, that automatically classifies IC components into different classes
based on a classifier, which was built with a crowd labeling approach [Pion-Tonachini et al., 2019].
Correspondence between IC classification based on IClabel and localization in the mixed 4-shell HArtMuT
source model with dipolar sources for the brain, tripolar for muscle and symmetric dipolar for brain:

IClabel

brain muscle eye heart line noise channel noise other
brain 12.9% 2.3% 0.1% 0.0% 0.8% 0.4% 13.6%

HArtMuT muscle 2.7% 39.6% 1.7% 0.3% 0.6% 6.8% 16.0%
eye 0.0% 0.5% 1.2% 0.0% 0.0% 0.0% 0.4%
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Figure 8: Three exemplary source models and their solution in source localization for muscle artefacts: on
the left you can find the independent component extracted from the data, in the center is the location in the
head while on the right you find a detailed relative positioning of the three models and their corresponding
patterns. Black is the dipolar model and moment, red tripolar with Tripole B and blue after non-linear
optimization of three monopoles. Here, the numbers represent the amplitude of each monopole.
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Figure 9: Two exemplary source models and their solution in source localization for eye artefacts. On the
left you can find the independent component extracted from the data, in the center is the fitted location in
the head while on the right you find a detailed relative positioning of the two models and their corresponding
patterns. Black is the dipolar model and moment and red the symmetric dipole.

This simple approach, in which only the comparison of the scalp patterns of the forward model with IC
patterns is incorporated, already leads to a high correspondence between the IC classification labels and
the resulting source location based classification. Of the ICs classified as brain by IClabel, there were
83% equally classified as brain by HArtMuT and for the muscles 93% as muscles. The median RV of IC
classification as ”other” was 0.22 opposing all remaining classes 0.096. The components classified as ’eye’ by
IClabel are 57% classified as muscles and 40% as eyes using symmetric dipoles. It is of course not assured,
that IClabel classified correctly but this large correspondence is notable.

In figure 9 the clear difference between symmetric and non-symmetric dipolar eye models can be investigated.
As we expected, the best eye models concerning the pattern reconstruction error are linked symmetrically.
Here, the simple dipfit gridsearch outperforms all other models, that use non-symmetric tripoles and dipoles.
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In the source locations we see, that for these models, the source was mostly located somewhere between the
eyes, which is not realistic.

Most ocular sources were found to lie in or close to the Retina (84%), while the rest lie in or close to the Cornea
(16%). Interestingly, the commonly found pattern on the bottom in 9 corresponds to the straight forward
looking eye position. The approach only catches static eye positions in single independent components and
eye movements will be spread over linear combinations of static patterns such as the upper for upwards
movements away from the lower straight forward position. A dipfit nonlinear routine for linked symmetric
positions had not been implemented within this work, but is expected to further improve the results.

Discussion
We investigated new approaches of modeling muscle and eye contributions to EEG and used the models in
a source reconstruction on simulated and experimental data.
In sum, we propose our new head model HArtMuT, which includes the neck and corresponding brain, muscle
and eye tissue source positions and labels. It is avialable for different head anatomies and BEM/FEM models.
We tested the effect of modelling sources as dipoles, tripoles, three monopoles, and symmetric dipoles and
measured the performance on simulated and experimental data in residual variance and localization error.
The best option is a combination of the three models depending on the tissue type, while a dipolar model is
sufficient for most use cases. This best combination consists of dipoles for the brain, tripoles for the muscles
and symmetric dipoles for the eyes.
Compared with the standard EEGLAB 3-shell BEM, our proposed head model appears to be a general
improvement. We showed that the localization error and RV values using simulated ground truth data
(based on an FEM head model) were lowest with our new head model. We also validated the model on real
experimental EEG data of moving subjects and found that RV values of our model were lower, especially
considering muscle and eye sources. The latter were about the same level as the brain sources in our model,
which is not the case in the standard model. A comparison with IClabel indicates, that HArtMuT may be
a promising tool not only for source localization but also for classification of ICs.

In a validation of the method on simulated and experimental data, it was found that our headmodel improved
over the commonly used EEGLAB 3-shell model in particular for muscle and eye sources. Furthermore,
muscle and eye artefacts could clearly be differentiated from brain sources by their patterns using inverse
fitting routines together with an appropriate model.

While a single dipole model is most likely sufficient for a reasonably good source localization of all components
except the eyes, a tripolar model is appropriate for muscle sources and a symmetric dipolar model for the
eyes. A tripolar model for muscular sources, which is commonly used in EMG recordings of other body parts
and is justified by the triphasic muscular action potential, did improve the estimation of source potentials
for muscles for some of the subjects and interestingly also for the brain. For the eyes, a symmetric dipolar
model led to the lowest approximation errors as was expected from the synchronous movements of the eyes.

The fact, that three single monopoles placed through non-linear optimization, were the best approximations
to exemplary muscle sources has two consequences: first, the field of muscles does not have a clear unifying
model such as commonly assumed in the dipole of the brain sources, and second, the local field is more
important for muscles. A far-field approximation such as the dipole is reasonable in a first approximation
as the tripolar muscle source is close to a dipole on first approximation. For a better model it is probably
necessary to use three single monopoles with individual parameters as the distances between sources and
sensors is much smaller for sources in the scalp and both are in the same tissue. The scalp is a mixture of
tissues with approximately similarly conductive properties leading to less spatial smearing. The signals from
the brain in contrast still have to propagate through the more conductive CSF and the low-conductive skull,
which strongly distorts the signals.

As we can additionally draw from the internal validation using a BEM to approximate an FEM head model,
we find, that localization errors can easily be much larger as systematic differences in geometries, source and
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sensor locations contribute to the error.

For a very good approximation of muscular scalp potentials it seems essential to know the individual geometry
and to use the best possible head model with an appropriate source model. The present study indicates that
this would be a FEM head model with a distributed source model. However, a reasonable approximation
to this combination would be a model of single monopoles. If this is not at hand, a dipolar model, which
is commonly implemented in simulations suits, is sufficient for source localization and muscle identification.
It can also be used to differentiate brain from muscle sources as the differences are already visible in the
patterns of dipoles. This is also supported by the correspondence with the IClabel classification based labels.

It remains an open question whether the case of dipfit nonlinear optimized 3-shell RV of brain ICs being
significantly below the other for all subjects means that our model is not optimal here, or that the 3-shell
just produces lower RVs. In general, the RV only tells about fitting quality from a numeric perspective,
not plausibility. Also, the 3-shell model was only built down to the level of the nose. All electrodes below
are projected onto this surface. It might just be possible to reach lower RVs because of this model error.
Another factor might be non-optimal tissue conductivities in the 4-shell headmodel. A post-hoc analysis
reveled that HArtMuTs RVs can be improved for the brain to a similar level by matching conductivities.
Another reason could be missing anatomical correspondence for the high detailed model because a generic
anatomy was used. It could be that the 3-shell is delivering lower errors because it is more generic with its
constant skull thickness. We will investigate this further in another study.

Concerning the use of the source localization results of the IC patterns in a classifier, HArtMuT delivers very
promising results: the correspondence with EEGLAB IClabels is high and clear. However, the EEGLAB
IClabel classifications are highly debated as the classifier was trained on EEG data from stationary partici-
pants only and can thus not be seen as the ’ground truth’ in all studies. In this study, they were introduced
to serve a basic intuition for the quality of results. A further study to investigate the usage of HArtMuT for
artefact labels in detail is planned.
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