Category	Themes (14)	Codes (49)	Study quotes the definition	Count	Subtotals
			mentioning the code		
	Expansion to	expansion to DevOps	S1_IEEE_01, 08, S1_SC_02, 04,	5	7
alture	DevOps		21		
		extension to DevOps	\$1_\$C_01,02	2	
	Dev, Sec & Ops	development, operations and security teams	S1_IEEE_01, 05, 08, 12,	9	11
			S1_SC_02, 04, 10, 21,		
			S1_ACM_68		
alture		developers and operators by involving security experts	S1_SC_02	1	
& CI		dev/sec/ops	S1_IEEE_26	1	
ople,	Culture	culture	S1_ACM_45	1	4
n, Pe		cultural approach	S1_IEEE_26	1	
zation		cultural shifts	S1_ACM_50	1	
rgani		shift the mindset	S1_IEEE_10	1	
Ô	Collaboration	collaboration/collaborate	S1_IEEE_01, 08, 12, 26,	11	11
			S1_SC_02 (2 times), 04, 10, 21,		
			S1_ACM_45, 68		
	Breaking silos of	breaking silos of security	S1_IEEE_08, 24, 26	3	4
	security	break down the barrier	S1_IEEE_22	1	
	Sharing	sharing that knowledge	S1_IEEE_08	1	3
	knowledge	giving that knowledge to the different teams	S1_IEEE_ 24, 26	2	
	Integration of	incorporating security practices in the DevOps	S1_IEEE_01, 08, S1_SC_21	3	22
	security into	processes			
	DevOps	incorporation of security practices in a DevOps	\$1_\$C_10, 11	2	
		environment			
		integrate security controls and processes into DevOps	S1_SC_02,04	2	
		integration of security practices into DevOps	\$1_\$C_03, \$1_ACM_53	2	
		IT processes with security approach	S1_ACM_04, S1_IEEE_21	2	
		integration of security with development and	S1_SC_09	1	
llities		operation			
apabi		integrating security principles	S1_IEEE_12	1	
ess C		integration of security processes and practices	S1_IEEE_10	1	
Proce		introduction of more security-oriented processes	S1_SC_22	1	
		integrates continuous security into the original	S1_IEEE_03	1	
		DevOps process			
		inclusion of security into DevOps	S1_SC_01	1	
		including security mechanisms into all phases	S1_SC_01	1	
		DevOps workflow			
		injection of security principles and controls into the	\$1_ACM_50	1	
		DevOps			
		including modern security practices that can be	\$1_\$C_02	1	

Thematic synthesis of DevSecOps definitions from WL

		incorporated in the fast and agile world of DevOps			
		integrating secure development best practices and	S1_IEEE_44	1	
		methodologies into development and deployment			
		processes			
		integrating the software development and operation	\$1_\$C_11	1	
		processes considering security and compliance			
		requirements			
	Agile	agile	S1_SC_02, S1_ACM_45,	3	4
			S1_IEEE_03		
		smart and light weight approach	\$1_\$C_31	1	
	Security is the	security is the main emphasis	S1_SC_14	1	7
	main concern	security is given high priority throughout the SDLC	S1_ACM_07	1	
	throughout the	a key concern throughout all phases of the	\$1_\$C_31	1	
	SDLC	development lifecycle and even post deployment			
		security practices are implemented at each stage of	S1_ACM_07	1	
		the cycle			
		security is implemented at the right level and at right	S1_IEEE_24	3	
		time			
	Shifting security	puts security at the forefront of requirements	S1_IEEE_24	1	2
	to the start	shifting security to the early stages	S1_IEEE_06	1	
	Time reduction	time reduction	S1_ACM_04, S1_IEEE_21	2	4
	& Efficiency	increase deployment rates	S1_IEEE_22	1	
	improvement	increase the rate of testing feedback	S1_IEEE_22	1	
	Security	maintaining a secure operational atmosphere	S1_IEEE_22	1	4
	assurance	safeguard application from any potential threats	\$1_\$C_01	1	
		identifying security vulnerabilities	\$1_\$C_31	1	
		responsible for application security	S1_IEEE_05	1	
Sy	Reliance on	reliance on operational tools	S1_ACM_45	1	1
golon	operationaltools				
Tech					
	Quality	without lost quality	S1 ACM 04 S1 IEEE 21	2	3
sines	Quinty				5
Bu		quality affirmation	S1_SC_14	1	
	Authors of	Mohan & Othmane	S1_IEEE_01, 08, 26, S1_SC_02,	12	25
	common		04, 09, 10, 11, 21, 22,		
	definitions		S1_ACM_45, 68		
		Rahman & Williams	S1_IEEE_08, 12, 44, S1_SC_22	4	
		Myrbakken & Colomo-Palacios	S1_SC_02, 03, S1_IEEE_10,	4	
			S1_ACM_53		
		Carter	S1_IEEE_24, 26	2	
		Carturan & Goya	S1_ACM_04, S1_IEEE_21	2	
		Mohan, Othmane, & Kres	\$1_\$C_11	1	

Category	Themes (20)	Codes (35)	Study quotes the definition	Count	Subtotals
			mentioning the code		
	Culture	culture	S1_GL_10, 13, 26	3	4
		cultural shift	S1_GL_11	1	
	Philosophy	philosophy	S1_GL_02, 19 (2 times), 26	4	4
	Extension of the DevOps	extension of the DevOps	S1_GL_33	1	1
ture	Combination of DevOps	combination of DevOps and SecOps	S1_GL_13	1	1
People, & Cult	and SecOps				
	Dev, Sec & Ops	development, operations, and security	S1_GL_15, 19, 27	3	3
	Collaboration	collaboration	S1_GL_26	1	2
ttion,		team work	S1_GL_02	1	
aniz	Communication	communication	S1_GL_19	1	1
Org	Shared responsibility	shared responsibility	S1_GL_10, 33	2	6
		everyone's responsibility	S1_GL_10	1	
		security is a part of everyone's job	S1_GL_12	1	
		make everyone accountable for security	\$1_GL_27	1	
		at the top of every developer's mind	S1_GL_12	1	
	Integration of security into	integrating security methods into a	S1_GL_02	1	6
	DevOps	DevOps process			
		integrating security practices within the	S1_GL_26	1	
		DevOps process			
		integration of security practices into a	S1_GL_10	1	
		DevOps			
		adding security components to each step	S1_GL_23	1	
		of the DevOps			
		bake security into the rapid-release cycles	S1_GL_11	1	
		integrating security into a continuous	S1_GL_16	1	
ies		integration, continuous delivery, and			
abilit		continuous deployment pipeline			
: Cap	Agile	agile	S1_GL_05	1	1
ocess	Emphasis on security	emphasizes the importance of sound	S1_GL_01	1	1
Pr		information security practices			
	Shifting security to the start	security from the start	S1_GL_04, 15	2	6
		from the beginning	S1_GL_33	1	
		integrate security objectives as early as	S1_GL_10	1	
		possible			
		avoids any risk of security being an	S1_GL_01	1	
		afterthought			
		placing security practices early during the	S1_GL_05	1	
		SDLC			
	Adoption of security	adoption of security through the entire	S1_GL_19	1	1
	through the entire SDLC	SDLC			

Thematic synthesis of DevSecOps definitions from GL

	Built-in security	built-in security	S1_GL_04	1	1
	Scalability	scalability	S1_GL_19	1	1
	Shorten the SDLC	shorten the SDLC	S1_GL_23	1	1
gy	Tooling	tooling	S1_GL_10	1	1
olond	Security-as-Code	security as code	S1_GL_26	1	1
Tech	Automation	automation/automating	S1_GL_04, 19	2	2
Jusiness	High software quality	high software quality	S1_GL_23	1	1
щ					

		5 1	5		
Category	Themes (36)	Codes (74)	Study mentions the	Count	Subtotals
			code		
	Resistance to change	resistance to change in the organization's	S1_SC_02	1	4
		culture and people mindset			
		developer resistance to integrate security	S1_IEEE_08, S1_ACM_05	2	
		protocol			
		developers lose autonomy	S1_IEEE_06	1	
	Challenges of collaboration,	teams working in isolation	S1_SC_02	1	12
	communication &	no communication, collaboration and sharing	\$1_\$C_02	1	
	coordination	synchronization and transparency issues	\$1_\$C_02	1	
		teams working towards conflicting objectives	S1_SC_08	1	
		insufficient monitoring of collaboration	S1_ACM_01	1	
		challenge of unrestricted collaboration	S1_IEEE_08, S1_ACM_05	2	
		coordination of security team and DevOps	S1_IEEE_08, S1_ACM_05	2	
		team			
		un-trusted inputs causing isolation	S1_IEEE_08, S1_ACM_05	2	
		conflict between security and development	S1_IEEE_06	1	
ure	Challenges in decision level	lack of clarity and transparency in strategy	S1_SC_02	1	2
Cult		lack of commitment of leadership and senior	S1_SC_02	1	
le, &		management for DevSecOps adoption			
Peopl	Lacking confidence	low or no confidence in DevSecOps	S1_SC_02	1	2
tion,		lack of trust and skepticism	S1_SC_02	1	
miza	Neglecting security	management does not prioritize security	S1_IEEE_06	1	2
Org		security is often not a business priority	S1_SC_49	1	
	Lack of security awareness	lack of understanding and awareness of	S1_SC_02	1	5
	and responsibility	DevSecOps			
		improving security awareness	S1_IEEE_06	1	
		nobody is responsible for security	S1_IEEE_06	1	
		security in the team and to the left	S1_IEEE_06	1	
		security push-pull	S1_IEEE_06	1	
	Lack of security knowledge	lacking security education	S1_IEEE_06	1	4
	and skills, need for training	lacking knowledge and training	S1_IEEE_06	1	
		lack of skills	S1_SC_02	1	
		lack of knowledge	S1_IEEE_08,	1	
	Boundary between	the boundary between a specialist and	S1_IEEE_06	1	1
	specialist & generalist	generalist			
	Insufficient level of	insufficient level of governance on DevSecOps	S1_SC_08	1	1
	governance on DevSecOps	adoption			
	adoption				
s tie	Neglecting change control	neglecting change control in security	S1_IEEE_08	1	1
roces abili	in security				
P	Lacking security standards	need for new standards for security prevention,	S1_SC_02	1	2

Thematic synthesis of DevSecOps challenges from WL

		detection and response			
	-	lack of secure coding standards	S1_IEEE_08	1	
D	Difficulties in integrating	difficulties in integrating security practices into	S1_SC_08	1	1
se	ecurity into DevOps	a fast moving DevOps pipeline without			
w	vithout losing speed	slowing down the process			
D	Difficulties in transforming	difficulties in running current product and	S1_SC_08	1	1
to	o DevSecOps without	services in parallel to its transformation to			
ai	ffecting current process	DevSecOps			
Ig	gnoring processes and	ignoring processes and security essentials	S1_SC_08	1	1
se	ecurity essentials leading	leading to technical debt and security debt			
to	o technical and security				
de	lebt				
L	acking process and	lack of common process and platform for	S1_SC_08	1	1
p	platform for	communication, collaboration, and sharing			
c	communication,	information and feedback			
c	collaboration, and sharing				
ir	nformation and feedback				
0	Out-of-sync domains and	out-of-sync and conflicting domain specific	S1_SC_08	1	2
с	cross team dependencies	bureaucratic processes for development,			
c	ausing issues in adopting	operation and security activities causing issues			
D	DevSecOps	cross team dependencies and some domains	S1_SC_02	1	
		don't allow or cause difficulties in adopting			
		DevSecOps			
U	Jsing unsuitable metrics	using unsuitable performance metrics for	S1_IEEE_08	1	3
		security evaluation			
	-	use of unsuitable metrics	S1_ACM_01	1	
	-	using unsuitable metrics	S1_ACM_05	1	
Ir	nconsistent security polices	inconsistent security polices design	S1_ACM_05	1	2
de	lesign	lacks with consistence security polices design	S1_IEEE_08	1	
С	Compliance requirements	compliance requirements	S1_IEEE_07,S1_IEEE_08,	4	4
			S1_IEEE_11,S1_ACM_05		
Т	Tradeoff between security	the tradeoff between increased security	S1_ACM_95	1	1
m	neasures and CI system	measures, and the ability to access and modify			
p	performance	the CI system as needed			
D	DevSecOps is mistaken for	misleading understanding about DevSecOps	S1_SC_02	1	1
a	set of tools	transformation as implementation of set of			
		tools			
L L	ack of tool standards	no standard set of recommended tools or	S1_SC_02	1	2
olog		mechanism for selection of fit-for-purpose and			
l'echr		fit-for-use tools			
		lack of tool standards	S1_IEEE_06	1	
L	Lack of mature tools for	incomplete tool set for automation	S1_SC_02	1	13
a	utomation and security	lack of automated testing tools	S1_IEEE_06,S1_IEEE_08,	3	

		lack of integrated testing tools to secure	S1_IEEE_08,S1_ACM_05	2	
		DevOps			
		wrong automated deployment tools	S1_ACM_01,S1_IEEE_01,	3	
			S1_IEEE_12		
		use of immature automated deployment tools	S1_ACM_01,S1_ACM_05,	4	
			S1_IEEE_08,S1_IEEE_12		
	Complexity in managing	complexity in managing different tools	S1_SC_02	1	1
	different tools				
	Difficulty in simulating	difficulty in simulating production	S1_SC_02	1	1
	production				
	Availability and reliability	availability and reliability of infrastructure	S1_SC_02	1	1
	of infrastructure resources,	resources, tools, automation, and network			
	tools, automation, and	bandwidth for shorter and frequent deployment			
	network bandwidth for fast	cycle			
	deployment cycle				
	Challenges of legacy system	refactoring or maintaining monolithic (legacy)	S1_SC_02	1	2
	refactoring	system			
		challenging to automate legacy system	S1_IEEE_06	1	
	Threat modeling scalability	threat modeling scalability issue	S1_IEEE_08,S1_ACM_05	2	2
	issue				
	Remaining manual security	security manual testing	S1_IEEE_08,S1_ACM_05	2	4
	testing and need for	lack of automated testing performance	S1_IEEE_08,S1_ACM_05	2	
	automated testing	measures for security			
	performance measures				
	Use of cloud and serverless	move security to the cloud	S1_IEEE_06	1	18
	computing brings security	cloud security complications	S1_SC_05,25,28,44,	11	
	complications		S1_IEEE_16,25,39,		
			S1_ACM_19,52,59.66		
		attacks due to miss-configured cloud	S1_IEEE_33,S1_IEEE_42	2	
		environments			
		security smells in Infrastructure as Code (IaC)	S1_ACM_06,S1_IEEE_28,	3	
			S1_SC_26		
		invading VMs or containers	S1_ACM_52	1	
	Restructuring due to high	restructuring organization and implementing	S1_IEEE_04	1	2
	cost and considering ROI	DevSecOps practices can lead to high cost			
	(return on investment)	such as salaries for security experts, costs on			
ess		new tools			
		risk and cost battle	S1_IEEE_06	1	
3 usin	Customer readiness for	customer readiness for applying frequent	S1_SC_02	1	1
	frequent releases	releases to production setup			
	Difficulty in training users	users need to be properly trained when using	S1_SC_02	1	1
	for using advanced tools	advanced tools			
	Insufficient resource is not	insufficient number of resources	\$1_\$C_02	1	3

able to cope with abundance	abundance of information	S1_ACM_05, S1_IEEE_08	2	
of information				
Dilemma in selection of	dilemma in selection of business processes in	S1_SC_08	1	1
business processes for	product and service delivery for transformation			
DevSecOps transformation	to DevSecOps			
Conflicting approaches to	security and business objectives are	S1_ACM_64	1	1
security and business	implemented using conflicting approaches			
requirements				

Thematic synthesis of DevSecOps challenges from GL

Category	Themes (16)	Codes (49)	Study mentions the	Count	Subtotals
			code		
	Cultural resistance and	resistance to change	S1_GL_15	1	4
	organizational opposition	challenge of the shifting role of security	S1_GL_37	1	
		organizational opposition	S1_GL_24	1	
		cultural resistance	S1_GL_20	1	
	Challenges of collaboration,	collaboration challenges	S1_GL_28,29	2	8
	communication &	failing to collaborate with the InfoSec team	S1_GL_18	1	
	coordination	lack of coordination between InfoSec team and	S1_GL_19	1	
		developers			
		gaps bet ween DevOps and Security teams	S1_GL_20	1	
lture		disconnect between security and development	S1_GL_39	1	
le, & Cul		friction between development and security teams	S1_GL_13	1	
Peop		communication requirements	S1_GL_15	1	
tion,	Urging velocity but	developers are focused on velocity, not security	\$1_GL_17	1	4
aniza	neglecting security	DevOps teams neglect security	S1_GL_30	1	
Org		conflicting aims	S1_GL_38,40	2	
	Lack of security knowledge	developers are not security specialists	S1_GL_15	1	6
	and skills, need for training	being unfamiliar with common security risks	S1_GL_18	1	
		the skills gap	S1_GL_37	1	
		not enough company stakeholders are security	S1_GL_39	1	
		savvy			
		lack of security knowledge	S1_GL_38,40	2	
	Recruiting challenges	recruiting challenges	S1_GL_24	1	3
		understaffing InfoSec teams	S1_GL_18	1	
		engaging too late with the InfoSec team	S1_GL_18	1	
	Fast changes and DevOps	rapid pace of change	S1_GL_29	1	6
ıpabilities	process conflict with slow	faster development process	S1_GL_28	1	
	security testing	security teams struggle to keep up with the	S1_GL_30	1	
ess C		pace of DevOps			
Proc		DevOps velocity	S1_GL_37	1	
		Slow security testing	S1_GL_38,40	2	

	Interconnectedness of the DevOps process	interconnectedness of the DevOps process	S1_GL_28	1	1
	Implementing security in CI/CD	implementing security in CI/CD	S1_GL_28	1	1
	Continuous deployment	continuous deployment chaos	S1_GL_19	1	1
	Poor visibility of security track record	poor visibility of security track record	S1_GL_19	1	1
	Compliance at risks	compliance at risks	S1_GL_39	1	1
	Inadequate privileged credentials and access	inadequate controls provide an opening for attack	S1_GL_30	1	2
	controls causing cyber	privileged credentials used in DevOps are	S1_GL_17	1	
	attacks	targeted by cyber attackers			
	Lack of mature tools for	mismatched tools	S1_GL_15	1	4
	automation and security	tool-centric approaches to secrets management	S1_GL_17	1	
		create security gaps			
		inefficient Static AST tools (SAST)	S1_GL_19	1	
		manual pen-testing becomes a bottleneck	S1_GL_19	1	
	Legacy systems need for	lack of cloud support	S1_GL_19	1	3
	cloud support for scalability	systems are not scalable	S1_GL_19	1	
		legacy infrastructure	S1_GL_24	1	
~	Containers and other tools	container and other tools can often be the	S1_GL_20	1	3
ology	come with their own risks.	reason for security concerns			
lechn		workload containerization	S1_GL_29	1	
F		tools come with their own risks	S1_GL_30	1	
	Use of cloud and serverless	security vulnerabilities in the Cloud	S1_GL_24	1	6
	computing brings security	server less computing	S1_GL_28	1	
	complications	cloud security	S1_GL_29	1	
		cloud security complications	S1_GL_38,40	2	
		cloud and open source environments lead to	S1_GL_20	1	
		compromise of critical information,			
		configuration errors, compliance issues and			
		security breaches			

Category	Themes (41)	Codes (86)	Study mentions the	Count	Subtotals
			code		
	Collaboration	continuous collaboration	S1_SC_04	1	16
		enhanced collaboration	S1_ACM_02	1	
		work collaboratively	S1_ACM_02	1	
		cross-departmental collaboration	S1_IEEE_04	1	
		collaborating development, operation and	S1_IEEE_04	1	
		security			
		increased collaboration between development,	S1_IEEE_12	1	
		operations and security teams			
		close collaboration	S1_IEEE_12	1	
		collaboration within and between different	S1_IEEE_12	1	
		teams			
		collaboration amongst different departments	S1_IEEE_12	1	
		collaboration between Dev&Ops	S1_IEEE_12	1	
		collaboration between Dev&Sec	S1_IEEE_12	1	
		collaboration between Sec&Ops	S1_IEEE_12	1	
		team collaboration	S1_IEEE_15	1	
0		close collaboration of the teams	S1_IEEE_15	1	
alture		strong collaboration	S1_IEEE_15	1	
& Cı		collaboration between the security team and	S1_IEEE_15	1	
ople,		the development and operations teams			
n, Pe	Communication	communication occurs at the right time and the	S1_SC_04	1	9
zatio		delivery ability is continuous			
rgani		close communication	S1_ACM_02, S1_IEEE_09	2	
Õ		good communication	S1_ACM_02	1	
		communication of security requirements	S1_ACM_02	1	
		virtual communication	S1_ACM_02	1	
		face-to-face communication	S1_ACM_02	1	
		physical communication	S1_ACM_02	1	
		strong communication	S1_IEEE_15	1	
	Trust	trust	S1_ACM_02, S1_SC_04,	3	9
			S1_IEEE_29		
		trustworthy	S1_ACM_02	1	
		trusted relationships	S1_ACM_02	1	
		mutual trust	S1_ACM_02	1	
		implicit trust	S1_ACM_02	1	
		fully trusting each other	S1_SC_04	1	
		trust within the teams	S1_IEEE_29	1	
	Security champions	security champions	S1_SC_04, S1_ACM_02	2	2
	Knowledge sharing	knowledge sharing	S1_ACM_02, S1_SC_04	2	2
	Shared responsibility for	shared responsibility for security	S1_ACM_02, S1_SC_04	2	2

Thematic synthesis of DevSecOps practices from WL

	security				
	Shameless retrospectives	shameless retrospectives	S1_SC_04, S1_IEEE_09	2	2
	Continuous improvement	continuous improvement mindset	S1_SC_04	1	1
	mindset				
	Leadership	leadership	S1_SC_04	1	1
	Commitment & Agreement	commitment	S1_IEEE_29	1	2
		commitment and agreement	S1_SC_04	1	
	Hiring new personnel	hiring new personnel	S1_SC_04	1	1
	Enhance transparency	transparency	S1_SC_04, S1_IEEE_29	2	3
		clear transparency	S1_SC_09	1	
	Feedback loop	feedback (continuous and immediate)	S1_SC_04	1	3
		feedback loop between developers, security	S1_SC_04	1	
		professionals, and operations team members			
		feedback loops	\$1_ACM_15	1	
	Shifting security to the left	shifting security to the left	S1_IEEE_04, 24, 26,	9	9
			S1_SC_02, 03, 08, 11,		
			S1_ACM_50, 81		
	Security-by-Design	security by design	S1_SC_07, 08, 18, 20, 22,	11	11
			S1_IEEE_16, 29, 30, 36,		
			S1_ACM_45, 69		
	Risk management	risk management (including risk assessment,	S1_SC_03, 05, 11, 18, 20,	11	11
		risk treatment and risk control)	22, 26, 40, 41,		
			S1_ACM_03, S1_IEEE_34		
	Compliance control	compliance control	S1_IEEE_11, S1_SC_27	2	2
	Continuous certification for	continuous certification for DevOps	S1_ACM_08	1	1
lities	DevOps				
apabi	Increase the visibility	increase the visibility	S1_SC_09	1	1
ess C	Good documentation and	good document at ion and logging	S1_IEEE_15	1	1
Proc	logging				
	Least privilege controls	least privilege controls	S1_IEEE_33	1	1
	Soft ware process maturity	software process maturity - maturity models	S1_SC_32	1	2
		have emerged that let you link the degree of			
		software security to the quality of the process			
		Building Security In Maturity Model (BSIMM)	S1_ACM_01	1	
		model and The ISO/IEC 27035 Incident			
		Management Cycle			
	MUSA security DevOps	MUSA DevOps framework for security	S1_IEEE_16, S1_IEEE_40	2	3
	framework for multi-cloud	assurance in multi-cloud applications			
	applications	MUSA Security DevOps (SecDevOps)	S1_ACM_52	1	
		framework			

	Automation	Automation	S1_ACM_01, 09, 30, 49,	37	104
			71, 72, 81, 95,		
			S1_IEEE_01, 06, 07, 09,		
			10, 12, 13, 15, 20, 21, 26,		
			38, 41, 54, 57, S1_SC_02,		
			03, 08, 09, 11, 17, 18, 20,		
			22, 26, 27, 28, 32, 40		
		Automated/automating test/testing	S1_ACM_01, 09, 30, 49,	30	
			81,95,S1_IEEE_01,06,		
			07, 09, 10, 12, 15, 21, 26,		
			38, 41, 54, 57, S1_SC_02,		
			03, 08, 09, 11, 17, 18, 22,		
			26, 27, 28		
		Automated monitoring	S1_ACM_01, 71, 72, 81,	19	
			S1_IEEE_01, 07, 12, 13,		
			15, 21, 26, 38, S1_SC_03,		
			08, 09, 18, 20, 26, 40		
		automated/automating/automatic deployment	S1_ACM_01, 09, 30. 95,	12	
			S1_IEEE_01, 12, 15, 26,		
			S1_SC_02, 03, 08, 28		
		automated/automating scans	S1_IEEE_01, 07,	3	
logy			S1_SC_32		
echna		automated/automating code review	S1_IEEE_01, 07, 12	3	
Ic	Fault injection (chaos	Fault injection (chaos engineering)	S1_IEEE_13	1	1
	engineering)				
	Security-as-Code	Security-as-Code	S1_SC_03, 08, 09, 18,	5	5
			S1_IEEE_06,		
	Continuous monitoring	misleading understanding about DevSecOps	S1_IEEE_01, 07, 12, 13,	20	20
		transformation as implementation of set of	15, 21, 26, 38, S1_SC_03,		
		tools	08, 09, 18, 20, 26, 40,		
			S1_ACM_01, 15, 71, 72, 81		
	Threat modeling	threat modeling/analysis	S1_IEEE_02, 04, 07, 11,	11	11
			30, 36, 39, 61, 71,		
			S1_SC_03, 26		
	Red team security drills	red team security drills	S1_IEEE_04, S1_SC_03	2	2
	Detect existing security	detect existing security flaws	S1_SC_09	1	1
	flaws				
	Make sure the basics of host	make sure the basics of host and net work	S1_SC_09	1	1
	and net work security are in	security are in place			
	place				
	Container security	Container/Containerization security	S1_ACM_52, S1_IEEE_01,	3	10
			55		
		run container as non-root users	S1_SC_09, 34,	3	
			S1_IEEE_55		

	use the latest version of image	S1_SC_42	1	
	conduct deep scanning of container image	S1_IEEE_04	1	
	enhance security of Docker	S1_IEEE_31	1	
	security practices in Kubernetes to manage	S1_IEEE_18	1	
	containers safely			
DAST	Dynamic Application Security Testing (DAST)	S1_IEEE_10	1	1
	techniques integrated into a CI/CD pipeline.			
RASP	Runtime Application Self-Protection (RASP)	S1_SC_32.	1	1
	controls			
Combination of static and	A combination of static and dynamic analytical	S1_IEEE_15	1	1
dynamic analytical methods	methods.			
Immutable-as-Code	Immutable-as-code can be used to ensure the	S1_IEEE_33	1	1
	immutability of infrastructure and avoid			
	accidental configuration drifts			
Policy-as-Code	Policy-as-Code is an attempt to code the policy	S1_IEEE_33.	1	1
	itself			
Design-as-Code	Design-as-code: CAIRIS (Computer Aided	S1_IEEE_36	1	1
	Integration of Requirements and Information			
	Security) model.			
Micro-segment at ion	Micro-segmentation.	S1_SC_38.	1	1
Advanced malware	Advanced malware detection - employs	S1_SC_32	1	1
detection	machine learning & deep learning			
Adopting DevSecOps in	Adopting DevSecOps in microservices-based	S1_IEEE_17, 43, 52, 57,	9	9
microservices-based	applications	84, 86, S1_SC_15, 33, 36		
applications				

Thematic synthesis of DevSecOps practices from GL

Category	Themes (54)	Codes (106)	Study mentions the	Count	Subtotals
			code		
	Cultural shift to security	cultural shift	S1_GL_41	1	2
		change the security mindset	\$1_GL_32	1	
	Improving collaboration,	cross-functional collaboration	S1_GL_30	1	7
ى	communication &	foster collaboration between security and	\$1_GL_25	1	
ultur	cooperation	development			
ت ي		open contribution and collaboration	S1_GL_24	1	
ople,		collaboration and integration	S1_GL_02	1	
n, Pe		communicate and collaborate	S1_GL_32	1	
izatic		improving empathy and cooperation	S1_GL_10	1	
rgan		reducing friction	S1_GL_10	1	
0	Collective responsibility for	collective responsibility	S1_GL_02	1	2
	security	assign security responsibility to one person	S1_GL_28	1	
		from your DevOps team			
	Shared knowledge	learn from each other	S1_GL_32	1	2

		shared threat intelligence	S1_GL_24	1	
	Training, learning and	provide training	\$1_GL_06	1	6
	education for security	get training	\$1_GL_10	1	
		enabling through training	\$1_GL_32	1	
		cross-training	\$1_GL_35	1	
		educate developers	S1_GL_25	1	
		security learning	S1_GL_14	1	
	Recruiting success	recruiting success	\$1_GL_10	1	2
		invite InfoSec to demos	S1_GL_18	1	
	Security champions	security champions	\$1_GL_10	1	1
	Pragmatic implementation	pragmatic implement at ion	S1_GL_02	1	1
	Be reactive and responsive	be reactive and responsive	\$1_GL_32	1	1
	Make security a priority	get buy-in from stakeholders	\$1_GL_32	1	2
		make security a priority	S1_GL_32	1	
	Continuous feedback loop	continuous feedback loop	S1_GL_09, 13, 15, 22, 35	5	5
	Integrate security early	integrate security during the planning phase	S1_GL_35	1	3
		take a proactive approach to security	S1_GL_17	1	
		include security early in the life cycle	S1_GL_28	1	
	Secure-by-Design	secure by design	S1_GL_31	1	3
		embed security into each release	S1_GL_31	1	
		embedded security	S1_GL_19	1	
	Moving security to the left	moving security to the left	S1_GL_08, 09, 13, 15, 18,	8	8
			31, 35, 36		
	Define security	define security requirements	define security requirements S1_GL_06		2
	requirements	security requirements and design S1_GL_14		1	
	Security reviews	conduct security reviews	S1_GL_18	1	2
		integrate security review into every phase	S1_GL_18	1	
lities	Security evaluation	security evaluation	S1_GL_14	1	2
idaqı		proactive security assessments	S1_GL_10	1	
ss C	Enhance visibility	enhance visibility	S1_GL_41	1	1
Proce	Better reporting	report	S1_GL_02	1	2
		better reporting	S1_GL_19	1	
	Measurement	define metrics	S1_GL_06, 19	2	3
		measurement	S1_GL_02	1	
	Policies	impose policy and governance	S1_GL_41	1	2
		implement security policies	S1_GL_30	1	
	Compliance	compliance	S1_GL_10	1	4
		compliance operations	S1_GL_24	1	
		identify compliance requirements beforehand	S1_GL_28	1	
		bridging the divide between compliance and	S1_GL_02	1	
		development			
	Vulnerability and incident	vulnerability and incident management	S1_GL_14	1	5
	management	Incident management	S1_GL_08, 10	2	

		vulnerability management	S1_GL_23, 30	2	
	Privileged access	privileged access management	S1_GL_30	1	2
	management	secure access via secrets management	S1_GL_41	1	
	Version control, metadata,	version control, metadata, and orchestration	S1_GL_10	1	1
	and orchestration				
	Common weaknesses	common weaknesses enumeration (CWE)	S1_GL_08	1	1
	enumeration (CWE)				
	Operational controls	operational controls validation and	S1_GL_14	1	1
	validation and improvement	improvement			
	Keep credentials safe	keep credentials safe	S1_GL_06	1	1
	Software Composition	software composition analysis and governance	S1_GL_06	1	2
	Analysis	software composition analysis	S1_GL_23	1	
	Automation	automation	S1_GL_02, 04	2	15
		use tools and automation	S1_GL_06	1	
		automate protection of business logic flaws	S1_GL_19	1	
		automated code review	S1_GL_23	1	
		automate as much as possible	S1_GL_25, 28	2	
		automate tools and security processes	S1_GL_30	1	
		use automated security tools	S1_GL_41	1	
		automate security processes	S1_GL_17	1	
		automated security testing	S1_GL_08,11,13,15, 35	5	
	Threat modeling	threat modeling	S1_GL_06, 10, 14, 25, 28	5	5
	Continuous monitoring	continuous monitoring	S1_GL_06	1	5
		monitoring	S1_GL_02	1	
		24 <i>A</i> proactive monitoring	S1_GL_24	1	
0 <u>g</u> y		monitor and scale	S1_GL_25	1	
hnol		security monitoring	S1_GL_31	1	
Tec	Secure coding	source code repository and scanning	S1_GL_10	1	6
		Secure coding	S1_GL_14	1	
		secure coding practice	S1_GL_10, 28	2	
		build preapproved code	S1_GL_18	1	
		conduct code dependency checks regularly	S1_GL_25	1	
	Sensitive information scan	sensitive information scan	S1_GL_23	1	1
	SA ST	Static Application Security Testing (SAST)	S1_GL_02, 08, 23, 25	4	4
	DAST	Dynamic Application Security Testing (DAST)	S1_GL_02, 08, 23, 25	4	4
	IAST	Interactive Application Security Testing	S1_GL_02, 08, 19, 25	4	4
		(IAST)			
	RASP	Runtime Application Self-Protection (RASP)	S1_GL_02, 08, 25	3	3
	Security-as-Code	Security-as-Code	S1_GL_32	1	1
	Compliance-as-Code	Compliance-as-Code	S1_GL_23	1	1
	Policy-as-Code	Policy-as-Code	S1_GL_17	1	1
	Consumable security	Consumable security services with APIs	S1_GL_24	1	1
	services with APIs				

	Red and blue team exploit	red and blue team exploit testing	S1_GL_24	1	1
	testing				
	Integrate security issues	Integrate security issues within your general	S1_GL_19	1	1
	within your general bug	bug tracker			
	tracker				
	Configuration management	configuration management	S1_GL_10	1	1
	Host hardening	host hardening	S1_GL_10	1	1
	Application-level	application-level assessment	S1_GL_10	1	1
	assessment				
	CI/CD for patching	CI/CD for patching	S1_GL_10	1	1
	Container security	Docker security	S1_GL_10	1	4
		Kubernetes security	S1_GL_10	1	
		Leverage containerization	S1_GL_28	1	
		Harden the container	S1_GL_41	1	
	Verify cloud infrastructure	verify cloud infrastructure	S1_GL_28	1	1
	Separation of duties	separation of duties	S1_GL_14, 17	2	2
	Business-driven security	business-driven security	S1_GL_24	1	1
ness	Availability and business	availability and business continuity	S1_GL_14	1	1
Bus	continuity management	management			
	Linear scalability and	linear scalability and affordable cost	S1_GL_19	1	1
	affordable cost				

Category	Themes (15)	Codes (41)	Study	Count	Subtotals
			mentions		
			the code		
OPC	Security-trained rate	number of developers that have gone through security-training	S1_IEEE_06	1	1
ss	Business metrics	business metrics	S1_SC_02	1	3
usine		revenue	S1_SC_02	1	
B		key performance indicators	S1_SC_02	1	
	Top vulnerability	number of mistakes in different security categories	S1_IEEE_06	1	5
		OWASP top 10	S1_IEEE_06	1	
		top vulnerability types	S1_SC_03	1	
lities		the most recurring	S1_SC_03	1	
apabi		helps planning training	S1_SC_03	1	
ocess C	Time spent correcting	time spent correcting mistakes in each category	S1_IEEE_06	1	1
P	Number of continuous	number of continuous delivery cycles per month	S1 SC 03	1	3
	delivery cycles per	Number of successful deploys to production per month	S1_SC_03	1	
	month	how quickly changes can be deployed to production	S1 SC 03	1	
	Penetration test pass rate	systems that are affected by internal and external penetration	S1_IEEE_06	1	1
	ľ	testing			
	Security test pass rate	security test pass rate	S1_IEEE_57	1	3
		identify security vulnerabilities	S1_IEEE_57	1	
		ratio of failed-versus-pass static security source code scans	S1_IEEE_57	1	
	Code scanning detection	code scanning detection rate	S1_IEEE_57	1	3
	rate	number of security scans identifies a problem in each	S1_IEEE_57	1	
		timeframe or given process phase			
		also include the number of problems	S1_IEEE_57	1	
	Defect density	defect density	S1_SC_03	1	3
		number of confirmed defects detected in software component	S1_SC_03	1	
ology		during a defined period of development/operation divided by			
echn		the size of the software/component			
L		negotiate reasonable goals to reduce defect density over time	S1_SC_03	1	
	Defect burn rate	defect burn rate	S1_SC_03	1	3
		how quickly the team is addressing defects	S1_SC_03	1	
		Measuring development team productivity solving defects	S1_SC_03	1	
	Critical risk profiling	critical risk profiling	S1_SC_03	1	3
		the relation between issue criticality and the value of that	S1_SC_03	1	
		vulnerability to possible attackers			
		prioritize the order development teams should address issues	S1_SC_03	1	
	Number of adversaries	how many adversaries an application might have	S1_SC_03	1	3
	per application	associated with the practice of Threat Modeling & Risk	S1_SC_03	1	
		Analysis			

Thematic synthesis of DevSecOps metrics from WL

	identify the applications are more exposed to possible attacks	S1_SC_03	1	
	and prepare accordingly			
Adversary return rate	adversary return rate	S1_SC_03	1	3
	how often an adversary will use the same strategy and	S1_SC_03	1	
	procedures			
	helps define appropriate training	S1_SC_03	1	
Point of risk per device point of risk per device S		S1_SC_03	1	3
	number of vulnerabilities per server	S1_SC_03	1	
	helps prioritize these vulnerabilities	S1_SC_03	1	
Number of issues during	number of issues during red teaming drills	S1_SC_03	1	3
red teaming drills	number of found issues and fixed by Red Team	S1_SC_03	1	
	red team effectiveness	S1_SC_03	1	

Thematic synthesis of DevSecOps metrics from GL

Category	Themes (6)	Codes (16)	Study	Count	Subtotals
			mentions		
			the code		
	Whether features	whether features undergo a security review	S1_GL_18	1	3
	undergo a security	the percentage of features that undergo security review early in	S1_GL_18	1	
	review	the design process, percentage should go up over time			
		know the current state and progress of security reviews	S1_GL_18	1	
	Whether security review	Whether security review slows down the development cycle	S1_GL_18	1	3
ies	slows down the	how much time the reviews add to the development process,	S1_GL_18	1	
abilit	development cycle	the time should go down until it reaches an agreed-to minimum			
Cap		the efficiency of security reviews	S1_GL_18	1	
ocess	How well security is	how well security is integrated into the delivery lifecycle	S1_GL_18	1	3
Pr	integrated into the	number of security reviews captured at stages of the SDLC	S1_GL_18	1	
	delivery lifecycle	(design, develop, test, and release), this number should go up			
		until it reaches a value that suggests that InfoSec is fully			
		integrated			
		Know the degree of InfoSec team's involvement in each step of	S1_GL_18	1	
		the SDLC			
	Whether automated	whether automated testing covers security requirements	S1_GL_18	1	3
	testing covers security	the number or percentage of security requirements that are	S1_GL_18	1	
~	requirement s	included in the automated testing process, this percentage			
ology		should go up over time			
echnc		Knowthe degree of InfoSec team's involvement in writing	S1_GL_18	1	
-		automated tests			
	The use of preapproved	use of preapproved libraries, packages, tool chains, and	S1_GL_18	1	3
	libraries, packages, tool	processes			

chains, and processes	Initially, measure whether InfoSec is engaged in tools	S1_GL_18	1	
	development. As work progresses, the number of			
	InfoSec-approved libraries, packages, and tool chains that are			
	available, or the number of these resources that are used by the			
	development and operations teams. Engagement should			
	increase over time until the organization agrees that InfoSec			
	oversight of tools is at the correct level. Similarly, the			
	percentage or number of preapproved tools in use should			
	increase until the team uses all the tools that InfoSec has			
	created or approved.			
	Know the degree of InfoSec team's engagement in tools	S1_GL_18	1	
	development and the usage of preapproved libraries, packages,			
	tool chains			
Using SAFe DevOps	SAFe DevOps Health Radar measures DevOps performance,	S1_GL_01	1	1
Health Radar	by assessing the maturity of four aspects and 16 activities of the			
	CI/CD pipeline			

Category	Themes (11)	Codes/Tools (33)	Study mentions the code	Count	Subtotals
	Automation tools	Chef	S1_IEEE_07, S1_SC_12, 20, 26	4	11
		Jenkins	\$1_\$C_12	1	
		Ansible	\$1_\$C_20	1	
		Puppet	\$1_\$C_20	1	
		Gauntlt	S1_IEEE_01,06	2	
		SaltStack	S1_SC_01,20	2	
	Automated code review tools	Veracode Greenlight	S1_SC_01	1	1
	Threat modeling tools	IriusRisk	\$1_\$C_01	1	2
		Microsoft threat modeling tool	S1_IEEE_39	1	
	Containerization tools	Docker	S1_SC_09, 18, 20, 29, 34, 42, 45, 48,	12	18
			S1_ACM_95, 99, S1_IEEE_31, 55		
		Kubernetes	S1_ACM_52, 76, 89, S1_SC_20, 29,	6	
			S1_IEEE_18		
	Cloud security tools	Terraform	S1_SC_12, 20, S1_IEEE_33	3	4
		Snorby threat stack	S1_IEEE_01	1	
gy	Cyber security tools	Tripwire	S1_IEEE_01	1	2
		Snort	S1_IEEE_01	1	
hnolo	Monitoring and alerting tools	New Relic	S1_IEEE_01	1	9
Tec		Nagios Icinga	S1_IEEE_01	1	
		Graphite	S1_IEEE_01	1	
		Ganglia	S1_IEEE_01	1	
		Cacti	S1_IEEE_01	1	
		Pager Duty	S1_IEEE_01	1	
		Sensu	S1_IEEE_01	1	
		Boundry	S1_IEEE_01	1	
		Pingdom	S1_IEEE_01	1	
	Logging tools	PaperTrail	S1_IEEE_01	1	5
		Logstash	S1_IEEE_01	1	
		Loggly	S1_IEEE_01	1	
		Splunk	S1_IEEE_01	1	
		SumoLogic	S1_IEEE_01	1	
	SAST tools	Kiuwan	\$1_\$C_01	1	1
	DAST tools	OWASP ZAP	S1_IEEE_01	1	2
		Arachini	S1_IEEE_01	1	
-	Advanced malware detection tool	CodeAI	S1_SC_01	1	1

Thematic	synthesis	of DevSecO	ps tools	from	WL

Thematic synthesis of DevSecOps tools from GL

Category	Themes (14)	Codes/Tools (45)	Study mentions the code	Count	Subtotals
Technology	Automation tools	Ansible	S1_GL_04	1	1
	Containerization tools	Docker	S1_GL_03, 10	2	4
		Kubernetes	S1_GL_03, 10	2	

Container security tools	Twistlock	S1_GL_42	1	3
	Notary	\$1_GL_42	1	
	Aqua Security	S1_GL_42	1	
Cloud security tools	AppScan on Cloud	S1_GL_42	1	4
	AWS Security service	S1_GL_42	1	
	Threat Modeler Cloud Edition	S1_GL_42	1	
	Trend Micro Cloud One	S1_GL_42	1	
Automated code review tools	PMD	S1_GL_23	1	3
	DevSkim	\$1_GL_23	1	
	FindSecBugs	S1_GL_23	1	
Sensitive information scanning tools	TruffleHog	S1_GL_23	1	3
	GitSecrets	\$1_GL_23	1	
	Talisman	S1_GL_23	1	
SAST tools	Flawfinder	S1_GL_23	1	6
	Graudit	S1_GL_23	1	
	Bandit	S1_GL_23	1	
	Spotbugs	S1_GL_23	1	
	SonarQube	S1_GL_23, 42	2	
DAST tools	OWASP ZAP	S1_GL_23	1	7
	BDD Security	S1_GL_23	1	
	Arachini	S1_GL_23	1	
	Nikto	S1_GL_23	1	
	Radamsa	S1_GL_23	1	
	FuzzDB	S1_GL_23	1	
	Fortify Webinspect	S1_GL_42	1	
RAST tools	Fortify Application Defender	S1_GL_42	1	1
Software composition analysis tools	Retire.js	S1_GL_23	1	3
	OSSAudit	S1_GL_23	1	
	OWASP Dependency-Check	S1_GL_23	1	
Compliance-as-code tools	nspec	S1_GL_23	1	3
	ServerSpec	S1_GL_23	1	
	OpenSCAP	S1_GL_23	1	
Vulnerability management tools	Defect Dojo	S1_GL_23	1	8
	ArcherySec	S1_GL_23	1	
	Snyk	S1_GL_10, 21	2	
	HackerOne,	S1_GL_21	1	
	Claire	S1_GL_21	1	
	Stethoscope	S1_GL_21	1	
	Rapid7 Nexpose	S1_GL_21	1	
Monitoring and alerting tools	Suricata	S1_GL_21	1	2
	NewRelic	S1_GL_42	1	
DevOps performance measuring tool	SAFe DevOps Health Radar	S1_GL_01	1	1