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 Scope 
The scope of this document is to introduce Deliverable D3.1 (type "OTHER" in the Grant Agreement), 

which consists of a code (collection of Fortran90 modules) developed in Task 3.1, and more specifically 

in the subtask dedicated to the upgrade of probabilistic evaluation tools such as rank histograms and 

CRPS. Other activities undertaken in Task 3.1, such as the development and application of probabilistic 

coupled models considered in SEAMLESS to generate ensembles, will be reported later in the project 

as part of Deliverable 3.4. 

D3.1 is a code publicly available at https://github.com/brankart/ensdam , supplemented by a user’s 

guide shown in annex of this document. This preface provides a description of the background and 

definition of the 4 main scores currently included in D 3.1. 

 Introduction 
One of the main objectives of SEAMLESS is to develop innovative open‐source based generation and 

assimilation methods to accelerate the transition of the physical and biological components of CMEMS 

MFCs  to  probabilistic  systems,  with  a  better  ability  to  provide  products  with  faithful  associated 

uncertainties. 

In line with this objective, a toolbox has been developed to assess the quality and relevance of model‐

generated  ensembles  and  to  provide  probabilistic  evaluation  scores  of  ensemble  assimilation 

methods. The package has been conceived in order to be easily plugged into existing software (such 

as the SEAMLESS prototype in WP2) used by all SEAMLESS partners in the frame of the present project, 

or applicable  to ensemble‐based CMEMS assimilation systems as well as other external prediction 

systems  (e.g.  the  OceanPredict  community).  The  user’s  guide  was  written  with  the  objective  of 

presenting the tools in a consistent and “demystified” way in order to facilitate their learning, while 

avoiding  the  more  complex  mathematical  formulations  and  technical  details  that  are  otherwise 

available in the referenced publications (see end of annex). 

 Ensemble evaluation scores and applications 
The  tools  can  be  used  to  compute  a  variety  of  probabilistic  scores  that  allow  the  evaluation  of 

ensembles  against  verification  data  (when  available),  or  their  inter‐comparison.  The  considered   

scores are: 

 CRPS, including its decomposition into Reliability and Resolution components. This score has been 

introduced  in  the NWP community  in  the early 2000 and  is  routinely used  today  in ensemble 

forecasting systems. It has also been used and implemented in oceanographic applications, e.g. in 

the  framework  of  the  FP7  SANGOMA  project.  The  EnsDAM  code  has  been  optimized  and 

parallelized  following  its  application  to  large‐size  coupled  physical‐biogeochemical  ensemble 

ocean  simulations and assimilation problems, e.g. by Garnier et  al.  (2016) and Santana‐Falcon 
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(2020).  In addition to CRPS scores, rank histograms can be drawn using verification data to assess 

the reliability of ensembles.  

One of its main interests for SEAMLESS applications will be to verify whether a model‐generated 

ensemble  based  on  particular  assumptions  about modelling  uncertainty  sources  (e.g.  in WP3) 

produces a distribution of surface chlorophyll fields compatible with independent ocean colour 

data. A low reliability score will  indicate the rationale of the adopted uncertainty assumptions, 

while a high reliability score will suggest rejection of these assumptions. 

 

 RCRV : A compact score to evaluate the reliability of ensemble simulations, in terms of spread and 

systematic deviation with respect to data. 

 

 Entropy score. This score, based on information theory, was adapted from a NWP case (Roulston 

and Smith 2002) at ECMWF by Germineaud et al. (2019) to explore the impact of different BGC 

Argo deployment scenarii in probabilistic OSSEs. A key asset of the entropy score is to focus on 

particular outcomes of probabilistic events, such as “being above or below the median chlorophyll 

of the prior ensemble” in Germineaud et al. (2019). In the context of SEAMLESS, this score will be 

useful  to  consider  events  such  as  the  maximum  value  and  location  of  a  given  indicator,  the 

occurrence of deep chlorophyll maximum, the start and end dates of blooms, the risk of HABs etc, 

and evaluate the capacity of assimilation systems to deliver useful information about such events 

in realistic situations (as in WP4 and WP5).  

 

 Optimality  score.  This  new  score was  proposed  in  a  recent  publication  by  Brankart  (2019)  to 

explore the efficiency of MCMC sampling methods to cope with non local‐data constraints in large‐

size inverse problems. The entropy score can basically inform us about the optimal use of available 

data for generating posterior ensembles, comparing for instance the impact of observations when 

using different parameters (e.g. localization parameters in Brankart, 2019) of a given assimilation 

scheme. In the SEAMLESS context, this score could be appropriate to assess the effectiveness of 

different  variants  of  a  given  assimilation  scheme  tested  in  WP3,  or  to  compare  original  vs. 

improved parameterizations of BGC models in WP6.  

In addition to the developments and experiments already planned in the SEAMLESS core WPs and the 

transfer  of  the  tools  and  prototype  to  CMEMS  systems,  the  ENSDAM  toolkit  including  its 

documentation  and  examples  offers  relevant material  directly  useful  for  educational  and  training 

purposes,  in  the  frame  of WP7  activities  or  externally  (e.g.  future  training workshops  or  summer 

schools). 

 User’s feedback 
The toolbox is delivered during the first year of SEAMLESS, so as to be available for the project's needs 

in the different work packages. Feedback will be useful to enrich the tool during the project (e.g. by 

adding new scores), or to improve the computation of the scores later on. Users are invited to send 
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their comments and suggestions to Jean‐Michel.Brankart@univ‐grenoble‐alpes.fr, in the prospect of 

future releases. 

Annex: Ensemble Scores User’s Guide 
 



EnsScores

Ensemble Scores

User’s guide

Jean-Michel Brankart

https://github.com/brankart/ensdam

Institut des Géosciences de l’Environnement

Université Grenoble Alpes, CNRS, France

The purpose of EnsScores is to provide tools to compute probabilistic scores for ensemble
simulations. The scores evaluate the reliability and/or the resolution of an ensemble simulation
by comparison to verification data. For posterior ensembles (conditioned to observations),
there is also a score to evaluate the optimality of the result, by testing its compatibility with
observation uncertainty.

The tools are provided as a library of modules, which can be easily plugged in an existing
software. This library includes:

• the computation of the Continuous Rank Probability Score (CRPS);

• the computation of the Reduced Centered Random Variable (RCRV) score;

• the computation of scores based on the relative entropy of user-defined events;

• the computation of an optimality score for posterior ensembles.



1 Description of the methods

The standard protocol to evaluate the performance of ensemble simulations is to measure the
reliability and the resolution of the ensemble using verification data (Toth et al., 2003; Candille
and Talagrand, 2005; Candille et al., 2007). These scores can be used to compare ensemble
forecasting systems, ensemble analyses, or to evaluate the impact of observations in these sys-
tems (using observation system simulation experiments). In the case of a posterior ensemble
(conditioned on observations), it is also possible to check that the observations have been used
optimally. A necessary condition of optimality is indeed that the distance between the observa-
tions and the ensemble members is compatible with the probability distribution of observation
errors.

1.1 Reliability

Reliability is a measure of the consistency between the ensemble and the verification data. The
idea is to check the hypothesis that the verification data are drawn from the same probability
distribution as the ensemble members. For instance, a necessary condition of reliability is that
verification data have the same probability to fall in every interval defined by the ensemble
members. This can be checked by drawing a rank histogram of the verification data (Anderson,
1996), as used and described for instance in Candille et al. (2015) or Garnier et al. (2016), and
as can be computed by the score ranks module of this package.

To obtain a more compact score, we can center/reduce the verification data with the ensem-
ble mean and ensemble standard deviation. A necessary condition of reliability (less stringent
than the rank histogram) is then that this Reduced Centered Random Variable (RCRV) has
zero mean and unit standard deviation. This is what is checked by the RCRV score (Candille
et al., 2007), as computed by the score rcrv module of this package.

The Continuous Rank Probability Score (CRPS), as computed by the score crps module
of this package, also provides an evaluation of reliability using the decomposition of the score
into reliability and resolution, as described in Hersbach (2000): CRPS = Reli + Resol. In this
case, it is important to check that the reliability component of the CRPS is much smaller than
the resolution component.

Reliability is indeed the most important feature of an ensemble simulation. There is no
point having good resolution or optimality scores if the ensemble is not reliable.

1.2 Resolution

Resolution is a measure of the accuracy of the ensemble, or the amount of information that it
provides about the system. For instance, if the ensemble is perfectly reliable, a small ensemble
spread will provide a better resolution than a large ensemble spread.

The Continuous Rank Probability Score (CRPS), as computed by the score crps module of
this package, provides an evaluation of resolution that complements the reliability component
to explain the total CRPS score. The total CRPS score is a measure of the misfit between
the Cumulative Distribution Functions (cdf) described by the ensemble (stepwise cdf) and the
verification data (Heavside cdf). The score is thus expressed in the unit of the input variable,
and the smaller the score, the better. For a perfectly reliable ensemble (Reli=0), this misfit (i.e.
the total CRPS score) is only due to the ensemble spread. For an ensemble without spread,
this misfit is only due to a shift between the zero-spread ensemble and the verification data (a
very bad reliability, unless this shift if zero).

Providing that reliability has been verified, information theory can also provide means of
evaluating the resolution of an ensemble simulation in terms of the amount of information that
it provides about specific events (Roulston and Smith, 2002). From the probability distribu-
tion of an event described by the ensemble, it is for instance possible to evaluate how much
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information has been gained as compared to a climatological distribution or as compared to a
prior distribution. This is the purpose of the score entropy module of this package, which
implements the method described in Germineaud et al. (2019). In this paper, the method was
used in the context of an Observation System Simulation Experiment, to evaluate how much
information was gained about specific events for different quality of observation systems (in
terms of coverage and accuracy).

1.3 Optimality

When a prior ensemble is conditioned to observations to produce a posterior ensemble, what is
expected from the observational update is that the resolution can be improved (by the informa-
tion brought by the observations), without degrading reliability. These scores tell us how much
the updated ensemble has improved as compared to the prior ensemble. However, they do not
tell us if we made the best possible use of the available observations. Is the updated ensemble
close enough to observations to be consistent with the probability distribution of observation
errors?

To evaluate this, we can use the optimality score proposed in Brankart (2019), as imple-
mented in the score optimality module of this package. In short, this score is obtained by
computing the rank roij of every observation yoj , j = 1, . . . , p in the probability distribution for
observation errors p(yoj |xi), conditioned on every member xi, i = 1, . . . ,m of the ensemble. If
optimality is achieved, this rank is uniformly distributed between 0 and 1. To obtain a single
score, we transform this uniform number into a N (0, 1) number, and take the mean square.
This defines the optimality score, which is expected to be equal to 1 (for p→∞ and m→∞).

This score does not make any assumption on the probability distribution described by the
ensemble or on observation error probability distribution. However, in the particular case of
Gaussian distributions, the score is equivalent to computing the mean square misfit between
the observations and all individual ensemble members, and check that the result is equal to the
observation error variance. In the Gaussian case, this mean square misfit can be decomposed as
the sum of the variance of the residual error (ensemble spread) and the mean square observation
misfit with the ensemble mean (Talagrand, 1999). The more observational information, the
smaller the ensemble spread, and the larger the observation misfit to the ensemble mean. It is
indeed the sum of these two components that must be equal to the observation error variance.
By looking at the misfit between observations and individual ensemble members (rather than the
ensemble mean), we can directly compare to the observation error distribution and generalize
the optimality check to non-Gaussian distributions.

1.4 About verification data

In the above discussion about reliability and resolution, it was assumed that the verification
data are error free, as can be the case in twin assimilation experiments or in observation system
simulation experiments. In this case, the reliability of the ensemble can be evaluated directly
using the modules provided in this package.

However, if the verification data are observations, the observation equivalent of the ensemble
members must be perturbed with a random observation error before checking reliability (with
a rank histogram or the RCRV score). This can be very important if observation errors are not
negligible as compared to the spread of the ensemble.
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2 Description of the modules

In this section, the modules are described one by one, giving for each of them: the method that
has been implemented, the list of public variables and public routines (with a description of
input and output data), the MPI parallelization, and an estimation of the computational cost
as a function of the size of the problem.

2.1 Module: score ranks

The purpose of this module is to compute the rank of the verification data in the ensemble
simulation and to produce a rank histogram.

Method

The algorithm loops on the verification data, sort the ensemble members for each of them, and
compute the rank of each element of the verification data within the sorted ensemble values.
From the vector of ranks, a rank histogram is produced.

Public variables

mpi comm score ranks: MPI communicator to use (default=mpi comm world).

Public routines

compute ranks: compute CRPS score (with an option to partition the data and compute the
score for each subset of data):

ens (input) : ensemble to evaluate (model equivalent to verification data);

verif (input) : verification data;

ranks (output) : ranks of the verification data within the ensemble;

rank histogram (output, optional) : rank histogram.

MPI parallelization

Parallelization is obtained by making each processor call the routine for a different chunk of
the verification data. The routine combines the contributions from all processors to compute a
global rank histogram.

Computational cost

The cost mainly results from the sorting of the ensemble members for each variable in the
verification data. It is thus proportional to nm log2m, if m is the size of the ensemble and n,
the size of the verification dataset.

2.2 Module: score crps

The purpose of this module is to compute the CRPS of an ensemble simulation by comparison
to verification data.
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Method

The total CRPS score corresponds to the misfit between two probability distributions of a
one-dimensional random variable x is the area between their respective cumulative distribution
functions (cdf) F (x) and Fref(x):

∆ =

∫ ∞
−∞

∣∣F (x)− Fref(x)
∣∣ dx (1)

In our case, the reference cdf Fref(x) is a Heaviside function increasing by 1 at the true value
of the variable, and the ensemble cdf F (x) is a stepwise function increasing by 1/m at each of
the ensemble values (where m is the size of the ensemble). This is illustrated in Fig. 1, where
∆ is the blue area between the two cdfs. The further the ensemble values from the reference,
the larger ∆, and the unit of ∆ is the same as the unit of x.
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Figure 1: Illustration of the CRPS score. The reference cdf is in red; The ensemble cdf (6 mem-
bers) is in dark blue; and the CRPS score is the blue area between the two cdfs.

The algorithm in the routines loops on the verification data, to accumulate the contribution
of each of them (in the intermediate arrays aa and bb), and then compute the overal CRPS
score, together with the reliability and resolution components.

Public variables

mpi comm score crps: MPI communicator to use (default=mpi comm world).

crps missing value: missing value to use where no data is available (default=-9999.).

Public routines

crps score: compute CRPS score (with an option to partition the data and compute the score
for each subset of data):

crps (output) : CRPS score for each subset of data;

reliability (output) : reliability part of CRPS;

resolution (output) : resolution part of CRPS;

ens (input) : ensemble to evaluate (model equivalent to verification data);

verif (input) : verification data;

partition (input, optional) : partition of verification data (giving the index of the
subset for each element of the data).

5



crps cumul: accumulate data to prepare the final computation of the score (for advanced use,
if the full ensemble is only made progressively available).

crps final: compute final score from accumulated data (for advanced use, if the full ensemble
is only made progressively available).

MPI parallelization

Parallelization is obtained by making each processor call the routine for a different chunk of
the verification data. The routine combines the contributions from all processors to compute a
global score.

Computational cost

The cost mainly results from the sorting of the ensemble members for each variable in the
verification data. It is thus proportional to nm log2m, if m is the size of the ensemble and n,
the size of the verification dataset.

2.3 Module: score rcrv

The purpose of this module is to compute the RCRV of an ensemble simulation by comparison
to verification data.

Method

The Reduced Centered Random Variable (RCRV) is defined from

y =
v −m
σ

(2)

where v is one of the verification data and m and σ are the corresponding mean and the
standard deviation of the ensemble. The system is reliable, if the mean of y over all realisations
is equal to zero and its standard deviation is equal to 1. Thus, the reliability is decomposed
into (normalized) bias b = E[y] and dispersion d2 = E[y2] − b2, which are the two quantities
provided by this module.

To compute the score, the algorithm in the routine loops on the verification data, to accumu-
late the contribution of each of them (to the reduced bias and reduce spread), and then compute
the overal RCRV score (bias component and spread component). If the anamorphosis option
is activated (see below), the reduced variable (zero mean, unit standard deviation, Gaussian
distribution) is obtained by anamorphosis (using quantiles of the input ensemble) rather than
center/reduction (using the ensemble mean and standard deviation).

Public variables

mpi comm score rcrv: MPI communicator to use (default=mpi comm world).

rcrv missing value: missing value to use where no data is available (default=-9999.).

rcrv with anamorphosis: use anamorphosis to compute reduced variable (default=.FALSE.).

rcrv number of quantiles: number of quantiles to perform anamorphosis (default=11).
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Public routines

rcrv score: compute RCRV score (with an option to partition the data and compute the score
for each subset of data):

ens bias (output) : bias component of RCRV (should be 0);

ens spread (output) : spread component of RCRV (should be 1);

ens (input) : ensemble to evaluate (model equivalent to verification data);

verif (input) : verification data.

partition (input, optional) : partition of verification data (giving the index of the
subset for each element of the data).

rcrv cumul: accumulate data to prepare the final computation of the score (for advanced use,
if the full ensemble is only made progressively available).

MPI parallelization

Parallelization is obtained by making each processor call the routine for a different chunk of
the verification data. The routine combines the contributions from all processors to compute a
global score.

Computational cost

Without anamorphosis, the cost grows linearly with the ensemble size (m) and the size of the
verification dataset (n). It is thus proportional to nm.
With anamorphosis, the cost mainly results from the sorting of the ensemble members for each
variable in the verification data (to compute the quantiles). It is thus proportional to nm log2m.

2.4 Module: score entropy

The purpose of this module is to compute scores based on the relative entropy of user-defined
events.

Method

To use this module, the user must provide a routine computing the outcome of one or several
events from a given ensemble member. It is provided as the callback routine events outcome

(see below). The events must be discrete, with a finite number of possible outcomes (jpo, which
should be much smaller than the ensemble size). The callback routine must provide the index
of the outcome (between 1 and jpo) for each event. From this routine, the module can then
compute:

• the probability distribution of the events in a given ensemble (routine events probability):
this is just computed as the number of members with a given outcome, divided by the
size of the ensemble;

• the entropy associated to each event in a given ensemble (routine events entropy), which
can be directly computed from the probability distribution;

• the cross entropy between the ensemble distribution and a reference distribution provided
by the user (routine events cross entropy);

• the relative entropy between the ensemble distribution and a reference distribution pro-
vided by the user (routine events relative entropy);
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• a score (between 0 and 1) describing the gain obtained for each event, as compared to the
reference distribution (routine events scores), which is computed as the ratio between
entropy and cross entropy.

For example, the reference distribution can be a climatological distribution or a prior distribu-
tion. The score describes the gain in resolution provided by the ensemble as compared to this
distribution.

Public variables

score entropy base: base to use in the computation of logarithms (default=2.).

Public routines

events score: compute entropy based score:

score (output) : ensemble score for each event;

ens (input) : ensemble to evaluate;

pref (input) : reference probability distribution for each event;

events outcome (input) : callback routine providing the outcome of the events for a
given member.

events relative entropy: compute relative entropy:

relative entropy (output) : relative entropy (with respect to reference distribution);

ens (input) : ensemble to evaluate;

pref (input) : reference probability distribution for each event;

events outcome (input) : callback routine providing the outcome of the events for a
given member.

events cross entropy: compute cross entropy:

cross entropy (output) : cross entropy (with reference distribution);

ens (input) : ensemble to evaluate;

pref (input) : reference probability distribution for each event;

events outcome (input) : callback routine providing the outcome of the events for a
given member.

events entropy: compute ensemble entropy:

entropy (output) : ensemble entropy;

number outcome (input) : number of possible outcomes for the events;

ens (input) : ensemble to evaluate;

events outcome (input) : callback routine providing the outcome of the events for a
given member.

events probability: compute events marginal probability distributions from the ensemble:

pens (output) : ensemble probability distribution for each event;

ens (input) : ensemble to evaluate;

events outcome (input) : callback routine providing the outcome of the events for a
given member.
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MPI parallelization

No parallelization is implemented.

Computational cost

The cost mainly depends on the evaluation of the outcome of an event in the callback routine
provided by the user. This routine is called for each ensemble member.

2.5 Module: score optimality

The purpose of this module is to compute a score evaluating the optimality of a posterior
ensemble by comparison to observations.

Method

The algorithm loops on the observation data to accumulate the contribution of each of them (a
‘normalized distance’ between each observation and each ensemble member) and then compute
the overal optimality score, whose expected value must be equal to 1 for an optimal system.

The computation of this ‘normalized distance’ requires an evaluation of the observation error
cdf (to compute the rank of the observation) and the inverse Gaussian cdf (to tranform this
rank into a Gaussian number). In the case of Gaussian observation errors, this computation is
simplified by computing the difference between each observation and each ensemble member,
divided by the observation error standard deviation.

It must be noted that this score is only a necessary condition of optimality, focusing on the
testing of the marginal probability distributions. It can thus be computed whether observation
errors are correlated or not. However, the convergence to the expected value of the score will
depend on the number of degrees of freedom in the observations.

Public variables

mpi comm score optimality: MPI communicator to use (default=mpi comm world).

optimality missing value: missing value to use where no data is available (default=-9999.).

Public routines

optimality score: compute optimality score (with an option to partition the data and compute
the score for each subset of data):

ens optimality (output) : optimality score (should be 1);

ens (input) : ensemble to evaluate (model equivalent to observations);

obs (input) : observation data;

partition (input, optional) : partition of observation data (giving the index of the
subset for each element of the data);

std obs or obs cdf (input) : standard deviation of observation errors (in the case of
Gaussian observation errors) or callback routine providing the cdf of observation
errors (in the case of non-Gaussian observation errors).

optimality cumul: accumulate data to prepare the final computation of the score (for ad-
vanced use, if the full ensemble is only made progressively available).
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MPI parallelization

Parallelization is obtained by making each processor call the routine for a different chunk of
the verification data. The routine combines the contributions from all processors to compute a
global score.

Computational cost

The cost mainly depends on the evaluation of the observation error cdf (callback routine provided
by the user) and the inverse Gaussian cdf. The number of calls of these two routines is nm,
where n is the number of observations and m, the ensemble size.
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3 Examples

Two examples are provided to illustrate these modules: (i) a very simple idealized example
illustrating how to call the routines, and how the results can depend on the number of verification
data or the size of the ensemble, and (ii) a more sophisticated example, which corresponds to
the use of these modules to evaluate the MCMC sampler in Brankart (2019).

3.1 A simple idealized test case

The code for this example is score idealized example. It illustrates all score modules:
scor crps, scor rcrv, scor entropy and scor optimality.

In this example, a synthetic ensemble is generated by sampling independent Gaussian
random numbers with zero mean and unit standard deviation. The size of the state vector
is n = 1000 and the ensemble size is m = 100. The use of independent variables is overly sim-
plistic, but it is sufficient to illustrate the computation of the scores, since all methods proceed
in the same way whether the variables are independent or not.

One additional ensemble member is drawn from the same distribution to be used as the
reference truth. This reference truth is used to generate one pseudo-observation for each of
the variables, with an error standard deviation equal to σ = 0.3. A posterior ensemble is then
computed by conditioning the prior ensemble to these pseudo-observations.

All modules are then used to evaluate the reliability, resolution and optimality of the prior
and posterior ensemble, using the reference truth as verification data for reliability and res-
olution. It is then easy to see how the statistics of the scores can change with n, m and σ
in the case of independent variables. One can also check how the score deteriorates when the
reference truth is sampled from a distribution that is different from the prior ensemble, or when
the observational update is made non-optimal (for instance using a wrong parameterization of
observation errors).

Two events that can occur in the ensemble members will be used to illustrate the behaviour
of the entropy score:

1. The first event is defined from the mean square of the ensemble member: above or below 1.
In a real system, this could be the energy in the system above or below a user-requested
level.

2. The second event is defined from the maximum absolute value of the ensemble member:
above or below 3.3. In a real system, this could be the occurence of an extreme event
above or below a user-requested level.

These are two binary events which have two outcomes with a similar probability (close to 0.5)
in the prior ensemble. There is thus no much prior information about them, and we can check
how much information can be gained by the observations.

• With the default setting of the example code (m = 100, n = 1000 and σ = 0.3) and with
an optimal observational update, the output of the example is the following:

Prior CRPS reliability and resolution: 0.00104 0.56067

Posterior CRPS reliability and resolution: 0.00030 0.16223

Prior RCRV bias and spread: 0.02900 0.99723

Posterior RCRV bias and spread: -0.03375 1.00673

Prior probability distribution (event 1): 0.480 0.520

Prior probability distribution (event 2): 0.450 0.550

Posterior probability distribution (event 1): 0.810 0.190

Posterior probability distribution (event 2): 0.900 0.100
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Entropy score (posterior vs prior, event 1): 0.676

Entropy score (posterior vs prior, event 2): 0.418

Prior optimality score: 4.81227

Posterior optimality score: 1.00351

We see that the reliability score is good in the prior ensemble (by construction), and that
it does not get worse after the observational update (posterior ensemble). The resolution
of the ensemble has been improved by the observations: the CRPS resolution is smaller in
the posterior ensemble, and the entropy score also shows an improvement (score well below
1). The probability concentrates on the first outcome of the two events. The optimality
score decreases to 1, which means that the ensemble members are moved to the right
typical ’distance’ from the observations.

• If we decrease the observation error standard deviation with respect to the default setting
to σ = 0.05, the output of the example is the following:

Prior CRPS reliability and resolution: 0.00104 0.56067

Posterior CRPS reliability and resolution: 0.00006 0.02847

Prior RCRV bias and spread: 0.02900 0.99723

Posterior RCRV bias and spread: -0.04206 1.01476

Prior probability distribution (event 1): 0.480 0.520

Prior probability distribution (event 2): 0.450 0.550

Posterior probability distribution (event 1): 1.000 0.000

Posterior probability distribution (event 2): 1.000 0.000

Entropy score (posterior vs prior, event 1): 0.000

Entropy score (posterior vs prior, event 2): 0.000

Prior optimality score: 28.12474

Posterior optimality score: 1.00250

Reliability and optimality are still good. Resolution has strongly improved by the much
better information provided by the observations. Entropy has decreased to zero for the
two events: all posterior members have the same outcome for each of them. Uncertainty
about them has been removed by the observations (or, more precisely, the remaining
uncertainty is too small to be resolved by a 100-member ensemble).

• Starting again from the default setting, we now modify the ensemble observational update
algorithm by omitting the perturbations applied to the observations to perform the update
of each ensemble member.

Prior CRPS reliability and resolution: 0.00104 0.56067

Posterior CRPS reliability and resolution: 0.03838 0.15373

Prior RCRV bias and spread: 0.02900 0.99723

Posterior RCRV bias and spread: -0.12757 3.46117

Prior probability distribution (event 1): 0.480 0.520

Prior probability distribution (event 2): 0.450 0.550

Posterior probability distribution (event 1): 1.000 0.000

Posterior probability distribution (event 2): 1.000 0.000

Entropy score (posterior vs prior, event 1): 0.000

Entropy score (posterior vs prior, event 2): 0.000

Prior optimality score: 4.81227

Posterior optimality score: 0.40346
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In this case, the scheme is wrong, and we can see this in the scores. Reliability and
optimality of the posterior ensemble have been lost. The posterior ensemble is no more
compatible with the reference truth (e.g. RCRV spread = 3.46 � 1), and it is too close
to the observations (optimality score = 0.4 � 1). Resolution is apparently improved (in
the CRPS and entropy scores), but it does not serve any purpose since reliability is lost.

3.2 Evaluation of the MCMC sampler

The code for this example is mcmc ensemble update. It uses the score modules: scor crps
and scor optimality.

This code is an implementation of the work done in Brankart (2019). Refer to this paper to
understand what is done in the code.

The score modules are used to evaluate the ensemble that results from the application of
the MCMC sampler. Calls to the routines to evaluate reliability, resolution and optimality of
the ensemble can be found in the code and the results are displayed in the figures of the paper.
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