
The EuroHPC Summit Week conference series receives funding from the European Union's Horizon 2020 research 

and innovation programme under grant agreements 823767 (PRACE-6IP) and 824151 (HPC-GIG). #EHPCSW

Performance Improvement of LIBRSB-1.3 Sparse BLAS on EuroHPC-class Systems
Michele MARTONE∗ (michele.martone@lrz.de)
Leibniz Supercomputing Centre, Garching bei München, Germany

Context: Project LyNcs
 project “LyNcs”: “Linear Algebra, Krylov-subspace methods, and

multi-grid solvers for the discovery of New Physics”

 subproject of PRACE-6IP Grant agreement ID: 823767, Work Pack-
age 8 (“Forward-looking software solutions towards Exascale”)

 synergy of expertises and codes spanning the entire software stack:

• LQCD, The Cyprus Institute: DDalphaAMG, LyNcs-API

• numerical linear algebra, Inria Bordeaux (France): Fabulous

• portable performance kernels, LRZ: LIBRSB

 this poster: main LIBRSB achievements during the project

Numerical Techniques of Interest to LyNcs

• iterative methods: block Krylov

• require efficient Sparse Matrix-Matrix multiplication aka SpMM

SpMM in matrix form (m aka NRHS aka number of right hand sides):
updated dense C︷ ︸︸ ︷c11 . . . c1m... . . . ...
cn1 . . . cnm

← β

dense C︷ ︸︸ ︷c11 . . . c1m... . . . ...
cn1 . . . cnm

+α

sparse A︷ ︸︸ ︷a11 . . . a1n... . . . ...
an1 . . . ann


dense B︷ ︸︸ ︷b11 . . . b1m... . . . ...

bn1 . . . bnm


More on the methods of our interest:
R. B. Morgan. Restarted block GMRES with deflation of eigenvalues, Appl. Numer. Math., 54(2):222–
236, 2005. •M. Robbe and M. Sadkane. Exact and inexact breakdowns in the block GMRES method,
Linear Algebra Appl., 419:265–285, 2006. •E. Agullo, L. Giraud, and Y.-F. Jing. Block GMRES
method with inexact breakdowns and deflated restarting, SIAM J. Matrix Anal. Appl., 35(4):1625–
1651, 2014.

LIBRSB
 project page: http://librsb.sf.net

• >100KLOC of C99, OpenMP, and modern templated C++

• node-level shared-memory-parallel operations, for:
– Sparse BLAS: matrix assembly/destroy, SpMM, triangular solve
– interactive applications (update, sparse-sparse ops, conversions)
– distributed-memory applications (block extract, update, etc.)

• – with own interface in C/C++ and Fortran
– with Sparse BLAS interface (BLAS Technical Forum Standard)
– with interfaces for GNU Octave and Python interpreters

• LGPLv3-licensed free software, available via Spack, Guix-
HPC, EasyBuild, and on Debian, Ubuntu, OpenSUSE, Windows,...

New in LIBRSB-1.3: Modern C++ interface
1 #include <rsb.hpp>
2 #include <vector >
3 #include <array >
4 using namespace ::rsb;
5
6 int main() {
7 RsbLib rsblib;
8 const int nnzA { 7 }, nrhs { 2 };
9 const int nrA { 6 }, ncA { 6 };

10 const std::vector <int> IA {0,1,2,3,4,5,1};
11 const int JA [] = {0,1,2,3,4,5,0};
12 const std::vector <double > VA {1,1,1,1,1,1,2}, B(nrhs * ncA ,1);
13 std::array <double ,nrhs * nrA> C;
14 const double alpha {2}, beta {1};
15
16 RsbMatrix <double > mtx(IA,JA,VA,nnzA);// Notice above declarations of IA,JA,VA
17
18 mtx.spmm(RSB_TRANSPOSITION_N , alpha , nrhs , RSB_FLAG_WANT_ROW_MAJOR_ORDER , B,

beta , C); // ditto for B and C
19 }

Figure 1: Program using the new modern C++ interface to create a
matrix and multiply it by a vector. Usage of C++20’s std::span in
the declaration of RsbMatrix() and spmm() ensures type safety while
not prescribing usage of any specific array type.

GNU Octave + liboctave + LIBRSB = SparseRSB

• GNU Octave: a MATLAB-like interactive numerical language
• liboctave: access Octave via C++

1 octave:1> A = sparsersb ( sparse (rand (3) > .6) )
2 A =
3
4 Recursive Sparse Blocks (rows = 3, cols = 3, nnz = 2 [22%])
5
6 (3, 1) -> 1
7 (3, 3) -> 1

Figure 2: The sparsersb keyword allows transparent usage of LI-
BRSB in the same way as the sparse built-in. Part of Octave Forge.

Python + Cython + LIBRSB = PyRSB

• SciPy: popular Python scientific computing API
• Cython: optimising static compiler for C extensions to Python

1 import numpy
2 import scipy
3 from rsb import rsb_matrix
4 V=[ 11.,12.,22.]
5 I=[ 0, 0, 1]
6 J=[ 0, 1, 1]
7 a = rsb_matrix((V, (I, J)), [3,3])
8 ...
9 y = y + a * x;

Figure 3: PyRSB’s usage is styled after SciPy’s csr_matrix.

Recursive Sparse Blocks (RSB) Layout
• for large matrices (uses cache locality, coarse thread parallelism)
• supports autotuning (layout adjusted to maximize performance)

 1/9 HCOO 2.0e+03

 2/9 HCSR 1.5e+04

 3/9 HCSR 1.3e+04  4/9 HCOO 2.0e+03

 5/9 HCOO 9.8e+02  6/9 HCSR 1.0e+04

 7/9 HCSR 8.5e+03  8/9 HCSR 7.0e+03

 9/9 HCOO 5.0e+03

Figure 4: Instance of classical test matrix bayer02 (14k × 14k, 64k
nonzeroes). Black-bordered boxes are sparse blocks, and are Z-ordered.
Greener have fewer nnz than average , redder have more. Either in “Co-
ordinate” format (COO) or “Compressed Sparse Rows” (CSR). Blocks
rows (LHS) and columns (RHS) ranges evidenced (left and top side).

Improved in LIBRSB-1.3: SpMM + Fortran Layout

+= *

Figure 5: A matrix and its two SpMM operands stored in column-
major (also known as Fortran) order. The matrix consists of
four sparse blocks, of which one is highlighted . Each operand
is stored one column after the other, with memory following the
blue line. Consequently, each operand’s two column portions per-
taining a given sparse block are not contiguous. LIBRSB-
1.2 would multiply each sparse block by each contiguous subvector.
LIBRSB-1.3 can now perform this in one pass only.

Improved in LIBRSB-1.3: SpMM + C Layout

+= *

Figure 6: A matrix and its two SpMM operands stored in row-major
(also known as C) order. The matrix consists of four sparse blocks, of
which one is highlighted . Each operand stores one row after the other,
with memory following the blue line. Consequently, the two column
portions operands pertaining a given sparse blocks are contiguous.
Here too LIBRSB-1.2 kernels would multiply each sparse block re-
peatedly. LIBRSB-1.3 can perform this in one pass only. Note that
for NRHS=1, by-rows and by-columns are equivalent.

Setup of SpMM Performance Experiment

• Five machines with different architectures

– amd64: smng (Intel Skylake), rome (AMD Rome), coop (Intel
Cooper Lake)

– arm64: thx (Marvell ThunderX2), a64fx (Fujitsu A64FX)

• Same input data and parameter ranges

– 24 threads, autotuning on

– 1,2,4 NRHS (right hand sides operands to SpMM)

– Operands layouts: by-rows and by-columns

– The four BLAS numerical types

– A selection of 44 matrices (symmetric and unsymmetric)

• Compilation flags

– smng,rome: icc -ipo -O3 -no-prec-div -fp-model fast=2 -xHost

– gcc -Ofast -march=native -mtune=native elsewhere

Speedup of by-rows Layout over by-columns Layout

m
ed

ia
n 

sp
ee

du
p 

%
 b

y 
N

R
H

S

LIBRSB−1.3 SpMM operands layout: by−rows vs by−columns

1 2 4

sm
ng

rom
e

coop
thx

a64fx

0

5

10

15

20

25

30

35

Figure 7: For each combination of matrix and numerical type, by-rows-
layout SpMM performance is divided by by-columns-layout performance,
and here grouped by machine and NRHS. For SpMM (NRHS>1),
by-rows layout is now the recommended layout (in LIBRSB-1.2, by-
columns was the optimal one). With NRHS=2 it improves up to 16%;
with NRHS=4, by 9–38%, depending on the architecture.

Speedup of version 1.3 over version 1.2

m
ed

ia
n 

sp
ee

du
p 

%
 b

y 
N

R
H

S

LIBRSB−1.3 vs LIBRSB−1.2 with optimal SpMM layouts

1 2 4

sm
ng

rom
e

coop
thx

a64fx

0

20

40

60

Figure 8: With the exception of SpMV on thx, 1.3-to-1.2 ratios median
values indicate an SpMM improvement across all architectures. The
SpMV (NRHS=1) speedup median improvement amounts to a few per-
centage points (for improvements obviously unrelated to the operands
layout). If using the per-version recommended operands’ layout, SpMM
with NRHS=2 improves by 8–59%, SpMM with NRHS=4 by 25–73%,
depending on the architecture.

Conclusions
The LyNcs project allowed improving LIBRSB in:
 Performance of SpMM (by-rows is optimal operands layout now)
 Usability via C++, GNU Octave , Python
 Many aspects of robustness and overall quality (e.g. tests, coverage,

continuous integration — details out of the scope of this poster)

Acknowledgements

The Implementation Phase of PRACE receives
funding from the EU’s Horizon 2020 Research
and Innovation Programme (2014–2020) un-
der grant agreement 823767.

The author gratefully acknowledges the Gauss Centre for Super-
computing e.V. (https://www.gauss-centre.eu) for fund-
ing this project by providing computing time on the GCS Su-
percomputer SuperMUC-NG at the Leibniz Supercomputing
Centre (https://www.lrz.de). Part of the performance re-
sults have been obtained on systems in the test environment
BEAST (Bavarian Energy Architecture & Soft-
ware Testbed) also at LRZ.

https://michelemartone.github.io
https://www.lrz.de
https://prace-ri.eu/
https://www.cyi.ac.cy/
https://github.com/sy3394/DDalphaAMG
https://github.com/Lyncs-API
https://www.inria.fr
https://gitlab.inria.fr/solverstack/fabulous
https://www.lrz.de
http://librsb.sf.net
http://librsb.sf.net
http://librsb.sf.net
http://librsb.sourceforge.net/#a_documentation
http://www.netlib.org/blas/blast-forum/
https://www.gnu.org/licenses/gpl-faq.html
https://fsf.org
https://spack.io
https://hpc.guix.info
https://hpc.guix.info
https://easybuild.io/
http://www.debian.org/
http://www.ubuntu.com/
https://www.opensuse.org/
https://cygwin.com/cgi-bin2/package-grep.cgi?grep=librsb&arch=x86_64
https://www.gnu.org/software/octave/
http://www.matlab.com/
http://octave.sf.net/sparsersb/
https://sourceforge.net/projects/octave/
https://scipy.org/
https://cython.org
https://github.com/michelemartone/pyrsb
https://www.gauss-centre.eu
https://www.lrz.de

