Context: Project LyNcs

86 project “LyNcs”: “Linear Algebra, Krylov-subspace methods, and
multi-grid solvers for the discovery of New Physics”

€ subproject of PRACE-6/P Grant agreement ID: 823767, Work Pack-

age 8 (“Forward-looking software solutions towards Exascale”)

& synergy of expertises and codes spanning the entire software stack:

= LQCD, The Cyprus Institute: DDALPHAAMG, LYNcs-API

= numerical linear algebra, Inria Bordeaux (France): FABULOUS

= portable performance kernels, LRZ: LIBRSB

R this poster: main LIBRSB achievements during the project

EuroHPC

Joint Undertaking

EuroHPC Summit Week 2022

Performance Improvement of LIBRSB-1.3 Sparse BLAS on EuroHPC-class Systems
Michele MARTONE* (michele.martone@lrz.de)

Numerical Techniques of Interest to LyNcs

= jterative methods: block Krylov

= require efficient Sparse Matrix-Matrix multiplication aka SpMM

SpMM in matrix form (m aka N RH S aka number of right hand sides):

updated dense C dense C sparse A dense B
Ci11 --- Cim C11 -.- Cim ail ... Ain b11 ce blnz
Cnl --- Com Cnl - -- Com| K ol I S R v

More on the methods of our interest:
R. B. Morgan. Restarted block GMRES with deflation of eigenvalues, Appl. Numer. Math., 54(2):222-
236, 2005. = M. Robbe and M. Sadkane. Exact and inexact breakdowns in the block GMRES method,
Linear Algebra Appl., 419:265-285, 2006. =E. Agullo, L. Giraud, and Y.-F. Jing. Block GMRES
method with inexact breakdowns and deflated restarting, SIAM J. Matrix Anal. Appl., 35(4):1625-
1651, 2014,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19

Leibniz Supercomputing Centre, Garching bei Minchen, Germany

LIBRSB

O project page: http://librsb.sf.net
= >100KLOC of C99, OPENMP, and modern templated C++
= node-level shared-memory-parallel operations, for:

— Sparse BLAS: matrix assembly/destroy, SpMM, triangular solve
— interactive applications (update, sparse-sparse ops, conversions)

— distributed-memory applications (block extract, update, etc.)

= —with own interface in C/C++ and FORTRAN
—with Sparse BLAS interface (BLAS Technical Forum Standard)
—with interfaces for GNU OCTAVE and PYTHON interpreters

» LGPLv3-licensed free software, available via SPACK, GUIX-
HPC, EasyBuild, and on Debian, Ubuntu, OpenSUSE, Windows, ...

New in LIBRSB-1.3: Modern C++4 interface

#include <rsb.hpp>

#include <vector>
#include <array>
using namespace ::rsb;

int main() {
RsbLib rsblib;
const int nnzA { 7 }, nrhs { 2 };
const int nrA { 6 }, ncA { 6 };
IA {0,1,2,3,4,5,1};
const int JA [1 = {0,1,2,3,4,5,0%};
const std::vector<double> VA {1,1,1,1,1,1,2}, B(nrhs * ncA,1);
std::array<double,nrhs * nrA> C;
const double alpha {2}, beta {1};

const std::vector<int>

RsbMatrix<double> mtx(IA,JA,VA,nnzA);// Notice above declarations of IA,JA,VA

mtx.spmm (RSB_TRANSPOSITION N, alpha, nrhs, RSB _FLAG _WANT ROW_MAJOR_ORDER, B,
beta, C); // ditto for B and C
}

Figure 1: Program using the new modern C++ interface to create a
matrix and multiply it by a vector. Usage of C++20's std: :span in
the declaration of RsbMatrix () and spmm() ensures type safety while
not prescribing usage of any specific array type.

#PRACEdays

GNU Octave + liboctave + LIBRSB = SparseRSB
O

= GNU OctAVE: a MATLAB-like interactive numerical language
= liboctave: access OCTAVE via C++

1l octave:1> A = sparsersb (sparse (rand (3) > .6))
2A =

3

4 Recursive Sparse Blocks
5

6 (3, 1) -> 1

(@3, 3) > 1

(rows = 3, cols = 3, nnz = 2 [22%])

Figure 2: The sparsersb keyword allows transparent usage of LI-
BRSB in the same way as the sparse built-in. Part of Octave Forge.

Python + Cython + LIBRSB = PyRSB

@ ython

= SCIPY: popular PYTHON scientific computing API
= CYTHON: optimising static compiler for C extensions to PYTHON

Il import numpy

2 import scipy

3 from rsb

4v=[11.,12.,22.]
5I=[0, 0, 1]
6J=[o, 1, 1]
/7a = rsb matrix((V, (I, J)),
3 ...

9y =y + a * x;

import rsb_matrix

[3,31)

Figure 3: PYRSB's usage is styled after SCIPY's csr_matrix.

Recursive Sparse Blocks (RSB) Layout

= for large matrices (uses cache locality, coarse thread parallelism)

= supports autotuning (layout adjusted to maximize performance)

2% 5e+04
1/9 HOOO 2.0e+03 |

319 by 00000

9/9 HCOO 5. 0e+03

Figure 4: Instance of classical test matrix bayer02 (14k x 14k, 64k
nonzeroes). Black-bordered boxes are sparse blocks, and are Z-ordered.
Greener have fewer nnz than javerage, redder have more. Eitherin “Co-
ordinate” format (COQ) or “Compressed Sparse Rows” (CSR). Blocks
rows (LHS) and columns (RHS) ranges evidenced (left and side).

Improved in LIBRSB-1.3: SpMM + Fortran Layout

Figure 5: A matrix and its two SpMM operands stored in column-
major (also known as FORTRAN) order. The matrix consists of
four sparse blocks, of which one is highlighted. Each operand
is stored one column after the other, with memory following the
blue line. Consequently, each operand’'s two column portions per-
taining a given sparse block are not contiguous. LIBRSB-
1.2 would multiply each sparse block by each contiguous subvector.
LIBRSB-1.3 can now perform this in one pass only.

Improved in LIBRSB-1.3: SpMM + C Layout

Figure 6: A matrix and its two SpMM operands stored in row-major
(also known as C) order. The matrix consists of four sparse blocks, of
which one is highlighted. Each operand stores one row after the other,
with memory following the blue line. Consequently, the two column
portions operands pertaining a given sparse blocks are contiguous.
Here too LIBRSB-1.2 kernels would multiply each sparse block re-
peatedly. LIBRSB-1.3 can perform this in one pass only. Note that
for NRHS=1, by-rows and by-columns are equivalent.

Setup of SpMM Performance Experiment
= Five machines with different architectures

—amd64: smng (Intel Skylake), rome (AMD Rome), coop (Intel
Cooper Lake)

—arm64: thx (Marvell ThunderX2), a64fx (Fujitsu A64FX)

= Same input data and parameter ranges

— 24 threads, autotuning on

—1,2,4 NRHS (right hand sides operands to SpMM)
— Operands layouts: by-rows and by-columns

— The four BLAS numerical types

— A selection of 44 matrices (symmetric and unsymmetric)

= Compilation flags

—smng,rome: icc —-ipo -03 -no-prec-div -fp-model fast=2 -xHost

—gcc —-0fast -march=native -mtune=native elsewhere

Speedup of by-rows Layout over by-columns Layout

LIBRSB-1.3 SpMM operands layout: by-rows vs by—columns

B 13 2 W4

median speedup % by NRHS
N
o
I

A

P o
) (o)
% %

.

/((?
‘éﬁ 6}
2

S
»
©

Figure 7: For each combination of matrix and numerical type, by-rows-
layout SpMM performance is divided by by-columns-layout performance,
and here grouped by machine and NRHS. For SpMM (NRHS>1),
by-rows layout is now the recommended layout (in LIBRSB-1.2, by-
columns was the optimal one). With NRHS=2 it improves up to 16%;
with NRHS=4, by 9-38%, depending on the architecture.

Speedup of version 1.3 over version 1.2

LIBRSB-1.3 vs LIBRSB-1.2 with optimal SpMM layouts

m 13 2 W4

60

20 —

median speedup % by NRHS

O_
||

% %
9, +

23

Figure 8: With the exception of SpMV on thx, 1.3-to-1.2 ratios median
values indicate an SpMM improvement across all architectures. The
SpMV (NRHS=1) speedup median improvement amounts to a few per-
centage points (for improvements obviously unrelated to the operands
layout). If using the per-version recommended operands’ layout, SpMM
with NRHS=2 improves by 8-59%, SpMM with NRHS=4 by 25-73%,

depending on the architecture.

Conclusions

The LyNcs project allowed improving LIBRSB in:

b Performance of SpMM (by-rows is optimal operands layout now)
P Usability via C++, GNU OcTAVE, PYTHON

@ Many aspects of robustness and overall quality (e.g. tests, coverage,
continuous integration — details out of the scope of this poster)

Acknowledgements

The Implementation Phase of PRACE receives
funding from the EU’s Horizon 2020 Research

and Innovation Programme (2014-2020) un-
der grant agreement 823767.

The EuroHPC Summit Week conference series receives funding from the European Union's Horizon 2020 research

and innovation programme under grant agreements 823767 (PRACE-61P) and 824151 (HPC-GIG).

The author gratefully acknowledges the Gauss Centre for Super-
computing e.V. (https://wuw.gauss-centre.eu) for fund-
ing this project by providing computing time on the GCS Su-
percomputer SuperMUC-NG at the Leibniz Supercomputing
Centre (https://www.lrz.de). Part of the performance re-
sults have been obtained on systems in the test environment
BEAST (BAVARIAN ENERGY ARCHITECTURE & SOFT-
WARE TESTBED) also at LRZ.

HEHPCSW

https://michelemartone.github.io
https://www.lrz.de
https://prace-ri.eu/
https://www.cyi.ac.cy/
https://github.com/sy3394/DDalphaAMG
https://github.com/Lyncs-API
https://www.inria.fr
https://gitlab.inria.fr/solverstack/fabulous
https://www.lrz.de
http://librsb.sf.net
http://librsb.sf.net
http://librsb.sf.net
http://librsb.sourceforge.net/#a_documentation
http://www.netlib.org/blas/blast-forum/
https://www.gnu.org/licenses/gpl-faq.html
https://fsf.org
https://spack.io
https://hpc.guix.info
https://hpc.guix.info
https://easybuild.io/
http://www.debian.org/
http://www.ubuntu.com/
https://www.opensuse.org/
https://cygwin.com/cgi-bin2/package-grep.cgi?grep=librsb&arch=x86_64
https://www.gnu.org/software/octave/
http://www.matlab.com/
http://octave.sf.net/sparsersb/
https://sourceforge.net/projects/octave/
https://scipy.org/
https://cython.org
https://github.com/michelemartone/pyrsb
https://www.gauss-centre.eu
https://www.lrz.de

