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Abstract - 250 words  33 
Context - 36 34 
With greater accessibility and processing power from online platforms, summaries of remotely sensed 35 
data are increasingly used in species distribution models (SDMs). Comparisons of the predictive power of 36 
these environmental variables could inform SDMs moving forward.  37 
 38 
Objectives - 85 39 
We evaluated the performance of freely available Landsat data as predictor sets for SDMs. Our objectives 40 
were to 1) compare the performance of single season SDMs built on mean values of raw spectral bands, 41 
Tasseled Cap transformations, and eight different indices, including NDVI, 2) evaluate the performance 42 
gain with the addition of standard deviation, textural metrics, and additional seasons, and 3) compare the 43 
performance of SDMs built on these continuous spectral predictor sets to SDMs built on classified land 44 
cover data (e.g., percent forest cover).   45 
 46 
Methods - 31 47 
We used statewide point counts to build multi-scale SDMs for 13 avian species across Oregon, USA. We 48 
compared the performance of SDMs built on each predictor set based on our objectives.  49 
 50 
Results - 60 51 
Of the Landsat-derived predictor sets, SDMs built on raw spectral bands had the highest overall 52 
performance with nearly equivalent performance in Tasseled-Cap models. While performance gains from 53 
standard deviations, textural metrics, and additional seasons were minimal in raw-band and Tasseled-Cap 54 
models, gains were appreciable in single-index models. Classified land cover models performed 55 
equivalently to raw band models.  56 
 57 
Conclusions - 36 58 
When predictive performance is paramount, means of raw Landsat bands are strong predictors for avian 59 
SDMs. When parsimonious variables are essential, SDMs of single indices (e.g., NDVI) greatly benefit 60 
from additional information, such as standard deviation.  61 
 62 
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Introduction 74 
     Remotely sensed data have been essential to characterizing the environment for species distribution 75 
models (SDMs) for decades (Kerr et al. 2001; Gottschalk et al. 2005; Cord et al. 2013; Randin et al. 76 
2020). Increased accessibility and processing power through free platforms like Google Earth Engine 77 
(Gorelick et al. 2017) have catalyzed a proliferation in the use of summaries of satellite imagery. A 78 
myriad of remotely sensed datasets and summary methods have been used in SDMs (e.g., Kerr et al. 79 
2001; Buermann et al. 2008; Shirley et al. 2013) which has led to an immense number of satellite-derived 80 
environmental predictor variables available to researchers. As few comparative studies exist (e.g., Cord et 81 
al. 2014), there is a need to compare and document the relative value of each to SDMs. For the purposes 82 
of comparison, we categorize remotely sensed data into two main groups, both of which are commonly 83 
used to inform SDMs (Kerr and Ostrovsky 2003, He et al. 2015): raw satellite images, herein 84 
“unclassified data”, which retain the continuous nature of the images (e.g., means of the image bands, 85 
texture metrics) and classified data, which are derived from satellite images and map image pixels into 86 
discrete categories (e.g., land cover classes). This paper compares the predictive performance of 87 
unclassified Landsat-derived environmental predictor variables in SDMs and also evaluates how these 88 
predictor variables compare to those developed from classified land cover datasets. 89 
 90 
Landsat, a multispectral satellite dataset commonly used in SDMs (Kerr and Ostrovsky 2003; Gottschalk 91 
et al. 2005), has acquired Earth observations continuously since 1972. It has an update cycle of 16-days 92 
and a 30 m spatial resolution. While categorized as moderate resolution multispectral imagery, for use in 93 
predicting distributions of most wildlife, this is considered a high-resolution dataset. The temporal and 94 
spatial resolution of Landsat data and the extensive historical archive of radiometrically and geometrically 95 
calibrated imagery make Landsat data appealing for modeling ecosystem processes (Kennedy et al. 2014; 96 
Wulder et al. 2019). Indeed, Landsat observations have been used extensively to characterize ecosystem 97 
structure and processes (e.g., Foody et al. 1996, Pflugmacher et al. 2012, Baumann et al. 2017, Meigs et 98 
al. 2020).  99 
 100 
Raw spectral bands from Landsat can inform SDMs through either direct summarization (Gottschalk et al. 101 
2005; Shirley et al. 2013) or the computation of indices and transformations (Osborne et al. 2001; Seto et 102 
al. 2004; Buermann et al. 2008; Parviainen et al. 2013). When working with modeling methods that 103 
benefit from fewer predictor variables, it may be advantageous to use indices, which are single values 104 
computed from the raw bands that characterize physical attributes of the landscape. For example, the 105 
normalized difference vegetation index (NDVI), which describes the spectral relationship between red 106 
reflectance and near-infrared reflectance and is a proxy for photosynthetic activity, is commonly used in 107 
SDMs (Krishnaswamy et al. 2009; Bradley and Fleishman 2008; Osborne et al. 2001; Seto et al. 2004). 108 
Though not as frequently as NDVI, other indices such as the normalized difference snow index (NDSI) 109 
and enhanced vegetation index (EVI) have also been used in SDMs (Cord et al. 2014; Niittynen et al. 110 
2018). The Tasseled Cap transformation is a common dimensionality reduction technique for spectral 111 
imagery that has also been used to inform SDMs (Zimmermann et al. 2007; Oeser et al 2020). The 112 
Tasseled Cap transformation is a reprojection of the raw bands into three dimensions representing 113 
brightness, greenness, and wetness (Crist and Cicone 1984). It is also possible to characterize temporal 114 
variation by summarizing remotely sensed imagery over seasons or to describe spatial variation in 115 
vegetation with textural metrics. Deriving the reflectance values for multiple seasons (e.g., spring, 116 
summer, fall) may allow SDMs to further differentiate available habitats compared to SDM inputs 117 
derived from a single season (i.e., an image obtained during the peak of vegetation phenology or during a 118 
pre-defined breeding season). Recently, texture metrics have been shown to be strong predictors of bird 119 
distributions (Farwell et al. 2020).  120 
 121 
An alternative to unclassified data are classified land cover datasets. Classified land cover datasets are 122 
produced by mapping the raw spectral values at each pixel into discrete land cover classes (e.g., urban, 123 
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grassland, deciduous forest). For example, the National Land Cover Dataset (NLCD) (Dewitz 2019), 124 
which is derived from Landsat, consists of 20 classes which span categories such as human-developed, 125 
forests, and wetlands. A limitation to classified datasets is that they are generally released annually or 126 
every few years whereas unclassified datasets are updated at intervals measured in days. The finer 127 
temporal resolution of the unclassified datasets allows for faster detection of environmental changes. 128 
Further, environmental information is lost due to the coarse aggregation of continuous spectral bands into 129 
discrete classes (Foody 2002; Gottschalk et al. 2005; Gillespie et al. 2008; Krishnaswamy et al. 2009), 130 
which may limit the predictive performance of SDMs (Bradley and Fleishman 2008). Conversely, 131 
compositional information (i.e., proportions of land cover classes) may be gained with summaries of 132 
classified data. While summaries of raw spectral values may imply which types of land cover are more 133 
prevalent (e.g., a very green landscape is more likely covered in trees rather than water or barren land), 134 
they do not explicitly identify land cover classes. For species that prefer specific habitat types, knowing 135 
what proportion of an environment is composed of specific habitats may be more informative than 136 
summaries of raw spectral values. Due to ease of interpretation, ecologists frequently use classified data 137 
to inform SDMs. For example, Johnston et al. (2021) suggests the use of classified land cover for 138 
developing environmental variables when modeling citizen science species records, such as eBird. 139 
 140 
This paper compares the performance of SDMs trained on sets of habitat variables derived from Landsat 141 
imagery for several bird species in the state of Oregon, USA. Our primary objectives were to 1) identify 142 
the indices or transformations of raw bands that consistently informed the highest performing SDMs 143 
across species, 2) examine whether data from additional seasons improved SDM performance, and 3) 144 
explore whether standard deviations or textural metrics improved SDM performance. Our secondary 145 
objective was to compare the performance of SDMs built on unclassified Landsat data to the performance 146 
of SDMs built on commonly used classified landcover datasets (NLCD and MODIS). Finally, we offer 147 
suggestions for applying remotely sensed data to SDMs with the goal of helping guide researchers 148 
through the many options faced when selecting remotely sensed data for SDMs. 149 
 150 
Methods 151 
Study area 152 
We used the state of Oregon, in the Pacific Northwest of the United States of America as our study area.  153 
Oregon’s 255,026 km2 area includes nine distinct ecoregions, 12 Köppen climate types, an elevational 154 
range from sea level to more than 3500 m, and habitats from densely populated cities to remote 155 
wilderness.  156 
 157 
Bird surveys and sampling design 158 
We used bird surveys conducted through the Oregon 2020 project (Robinson et al. 2020). Count locations 159 
in Oregon 2020 were distributed across Oregon in a stratified random manner (Robinson et al. 2020). The 160 
strata were defined by the Public Land Survey System, which divides the state into 6 × 6-mile townships, 161 
generating a total of 36 square-mile sections within each of the more than 2800 townships. Robinson et al. 162 
(2020) selected at random a one square-mile section from each township. They kept that section if it had 163 
some form of public access such as a road or trail. If there was no access, they shifted the section to the 164 
next nearest section that had access and similar habitat type and elevation as determined from inspection 165 
of Google Earth imagery. Within each section, they conducted point counts approximately every 200 m 166 
along publicly accessible roads or trails. The modal number of locations sampled within each square was 167 
four and ranged from one to 12. Robinson et al. (2020) supplemented this statewide sampling design with 168 
additional surveys conducted at 0.8-km intervals along nearly every accessible road in Benton and Polk 169 
Counties. They also included surveys conducted in a 200-m grid established across the William L. Finley 170 
National Wildlife Refuge in Benton County. Robinson et al. (2020) showed that the proportional 171 
coverage of habitats available in Oregon were extremely similar to those covered by their point sampling 172 
scheme. 173 
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 174 
Three trained observers conducted 10,844 5-minute stationary surveys during the breeding seasons (May 175 
15th to July 10th), 2011-2019 (Robinson et al. 2020). All surveys were performed between dawn and 176 
noon, unless bird activity noticeably declined earlier. At each survey, all birds detected were identified to 177 
species. All sites were visited once. Distance sampling and time of detection methods were implemented 178 
in counts to allow for direct estimation of imperfect detection, but to simplify analyses and findings, and 179 
to better mirror commonly available eBird data, which contain no such ancillary methods, we removed 180 
these data and did not account for imperfect detection in our models. As our interest primarily lies in the 181 
comparative performance of environmental predictor sets, and imperfect detection derived from standard 182 
variables such as time of day and day of year should bias all models equivalently (e.g., all built on the 183 
same data), comparisons should remain unaffected. Additionally, we reduced species counts to detections 184 
and non-detections. Robinson et al. (2020) provide further details.  185 
 186 
Species selection 187 
To represent a range of habitat types and levels of species’ habitat specializations, we selected thirteen 188 
species occurring in six common habitat types in Oregon (Table 1). All of these species were detected 189 
effectively by the sampling method in Robinson et al. (2020) since they vocalize frequently during the 190 
breeding season. For each habitat, we included two or three species; One species was considered to be a 191 
generalist and one or two were considered specialists based on our own experiences and qualitative data 192 
(Marshall et al. 2003). Generalists often occupy a primary habitat and also other structurally similar 193 
habitats, so we anticipated relationships between remotely sensed habitat data and species occurrence 194 
would be weaker than for specialist species and their habitats.  195 
 196 

197 
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Table 1 Study species, the primary habitat(s) they occupy, whether we considered them to be generalists 198 
or specialists on the primary habitat type, and their sample prevalence in our Oregon 2020 data. Our 199 
usage of generalist and specialist are relative to the species in the study. 200 
 201 
 202 

Species Primary habitat Specialist or Generalist Prevalence 
Western Tanager  
Piranga ludoviciana 

Forest Generalist 0.2478 

Hermit Warbler  
Setophaga occidentalis 

Coniferous forest 
canopy 

Specialist 0.2020 

Pacific Wren  
Troglodytes pacificus 

Coniferous forest 
understory 

Specialist 0.1350 

    
Sage Thrasher  
Oreoscoptes montanus 

Sagebrush Generalist 0.0432 

Sagebrush Sparrow 
Artemesiospiza nevadensis 

Mature sagebrush Specialist 0.0247 

    
Swainson’s Thrush  
Catharus ustulatus 

Moist woodlands Generalist 0.2850 

Hermit Thrush  
Catharus guttatus 

Higher elevation 
woods 

Specialist 0.0601 

    
Western Meadowlark 
Sturnella neglecta 

Grassland/sagebrus
h 

Generalist 0.1621 

Savannah Sparrow 
Passerculus sandwichensis 

Grassland Specialist 0.0775 

    
Yellow Warbler 
Setophaga petechia 

Riparian woods Generalist 0.0538 

Yellow-breasted Chat  
Icteria virens 

Riparian/shrubs Specialist 0.0350 

    
Ash-throated Flycatcher 
Myiarchus cinerascens 

Juniper/oaks Generalist 0.0213 

Gray Flycatcher  
Empidonax wrightii 

Juniper Specialist 0.0468 

 203 
 204 
Remotely sensed data and spectral predictor sets 205 
The basis for our analysis was three time-series of gap-free, radiometrically-consistent composited 206 
satellite imagery from which we computed spectral predictor sets. An overview of the image processing 207 
workflow is shown in Figure 1. First, we developed three time-series of composited imagery, one each for 208 
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the spring, summer, and fall seasons, using Landsat satellite imagery. Then, using the LandTrendr 209 
algorithm, we processed the annual composites into a time-series of gap-free, radiometrically consistent 210 
images (Kennedy et al. 2010). Using these stabilized time-series, we computed ten spectral datasets: raw 211 
bands, Tasseled Cap transformations, and eight single indices across the study region. Finally, we 212 
calculated summaries (e.g., means) of the spectral datasets over buffers with multiple radii centered at the 213 
bird count locations for all three seasons. See Online Resource 1 for a more detailed description of the 214 
image processing workflow.   215 
 216 
The spectral datasets we selected build off of those from past species distribution models (Gottschalk et 217 
al. 2005; Buermann et al. 2008; Shirley et al. 2013; Oeser et al 2020). Specifically, we summarized raw 218 
spectral bands, their associated Tasseled Cap transformations, and eight single-valued indices derived 219 
from the raw bands: NDMI, NDVI, NBR, NBR2, EVI, SAVI, MSAVI, NDSI (Table 2). The Tasseled 220 
Cap transformation is computed by projecting the spectral bands into three dimensions, or spectral 221 
indicators, that describe brightness, greenness, and wetness (Crist and Cicone 1984). We also included the 222 
Tasseled Cap Angle (TCA), as a fourth variable in the Tasseled Cap predictor set (Table 2). We selected 223 
the single-valued indices as they are frequently used in ecological remote sensing and are readily 224 
available to researchers as part of the Landsat Collection 1 Surface Reflectance data produced from the 225 
USGS.  In this analysis, we specifically examined single-date remote sensing metrics (i.e., they were 226 
computed using a single image) to constrain the number of predictors being investigated (Seto et al. 2004; 227 
Meddens et al. 2013). 228 
 229 
For every count location and each of the ten spectral datasets, we constructed spectral predictor sets by 230 
calculating summaries over the buffered regions for all three seasons. Specifically, we calculated the 231 
mean and standard deviation of each of the bands in the spectral datasets with 75, 600, and 2400 m radii 232 
buffers centered at the count location for spring, summer, and fall imagery (Table 3).  Species respond to 233 
their environments at different scales (Wiens and Milne 1989). The use of multiple buffers to characterize 234 
environmental covariates can ensure that a species-specific appropriate environmental scale is included 235 
(Hallman and Robinson 2020a). We selected a range of buffers that have previously been shown to 236 
predict songbirds (Hallman and Robinson 2020a; Hallman and Robinson 2020b; Hallman et al. 2021). 237 
We matched the year of the species observation to the year in which the Landsat imagery was collected. 238 
In addition to the means and standard deviations of each of the bands, we calculated seven GLCM texture 239 
metrics (Table 4) for all three seasons at all three buffer radii. Like standard deviations of bands, GLCM 240 
texture metrics characterize textural information (i.e., spatial arrangement) and have been shown to be 241 
informative of bird richness (Farwell et al. 2020).       242 
 243 
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 244 
Fig. 1 Flowchart of Landsat image processing using LandTrendr algorithm 245 

 246 
 247 
 248 
 249 

 250 
 251 

Table 2 A description of the spectral bands and indices that were used in the analysis. Each of the 18 252 
metrics were computed for each of the fitted seasonal satellite image time series. The Landsat TM/ETM+ 253 
band naming conventions are used when describing how each metric was calculated.   254 

 255 
Name (abv.) Description Calculation Source 

Visible Blue  
(B1) 

Blue reflectance. Landsat TM/ETM+ band 1 
(0.45-0.52 μm); Landsat OLI band 2 (0.45 - 
0.51 μm) 

- - 

Visible Green  
(B2) 

Green reflectance. Landsat TM/ETM+ band 
2 (0.52-0.60 μm); Landsat OLI band 3 (0.53 
- 0.59 μm) 

- - 

Visible Red  
(B3) 

Red reflectance. Landsat TM/ETM+ band 3 
(0.63-0.69); Landsat OLI band 4 (0.64 - 0.67 
μm) 

- - 

Near-infrared  
(B4) 

Near-infrared reflectance. Landsat 
TM/ETM+ band 4 (0.76 - 0.90 μm); Landsat 
OLI band 5 (0.85 - 0.88 μm) 

- - 

Short Wavelength 
Infrared 1  
(B5) 

Shortwave-infrared reflectance. Landsat 
TM/ETM+ band 5 (1.55 - 1.75 μm); Landsat 
OLI band 6 (1.57 - 1.65 μm) 

- - 
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Short Wavelength 
Infrared 2  
(B7) 

Shortwave-infrared reflectance 2. Landsat 
TM/ETM+ band 7 (2.08 - 2.35 μm); Landsat 
OLI band 7 (2.11 - 2.29 μm) 

- - 

Tasseled Cap 
Brightness  
(TCB) 

TCB captures the total reflectance exhibited 
by a location. Changes in soil condition 
produce large changes in TCB. 

0.2043 * B1 + 0.4158 * B2 + 0.5524 * 
B3 + 0.5741 * B4 + 0.3124 * B5 + 
0.2303 * B7 

Crist and Cicone 
1984 

Tasseled Cap 
Greenness  
(TCG) 

TCG is sensitive to changes in red and near-
infrared reflectance associated with green 
vegetation. 

 -0.1603 * B1 + -0.2819 *B2 + -0.4934 * 
B3 + 0.794 * B4 + -0.0002 * B5 + -
0.1446 * B7 

Crist and Cicone 
1984 

Tasseled Cap 
Wetness  
(TCW) 

TCW is responsive changes in soil and 
canopy moisture content, particularly 
changes that are expressed the shortwave 
infrared bands. 

0.0315 * B1 + 0.2021 * B2 + 0.3102 * 
B3 + 0.1594 * B4 + -0.6806 * B5 + -
0.6109 * B7 

Crist and Cicone 
1984 

Tasseled Cap Angle  
(TCA) 

Characterizes the proportion of vegetated to 
non-vegetated area within a pixel (White et 
al. 2011).  

Arctan(TCG / TCB) Powell et al. 2010 

Normalized 
Difference 
Vegetation Index  
(NDVI) 

NDVI is used as a proxy for vigor. The 
spectral index exploits the “red-edge” effect 
exhibited by green vegetation caused by the 
absorption of photosynthetically active 
radiation.   

(B4 – B3) / (B4 + B3) Rouse et al. 1974 

Normalized 
Difference Moisture 
Index  
(NDMI) 

The NDMI captures changes in moisture 
conditions on the ground and in the 
vegetation canopy. 

(B4 – B5) / (B4 + B5) Hardisky et al. 
1983; Wilson and 
Sader 2002  

Normalized Burn 
Ratio  
(NBR) 

High NBR values indicate a strong soil 
signal and a lack of vegetation. Greater 
biomass densities decrease the soil signal and 
produces lower NBR values. 

(B4 - B7) / (B4 + B7) Key and Benson 
1999 

Normalized Burn 
Ratio 2  
(NBR2) 

NBR2 is a modification of the NBR which 
replaces B4 with B5. NBR2 is designed to 
capture variations in canopy moisture 
content during post-fire recovery.  

(B5 - B7) / (B5 + B7) Key and Benson 
2006 

Enhanced 
Vegetation index  
(EVI) 

An optimization of the NDVI which attempts 
to decouple the background canopy signal 
from the soil signal and to account for 
changes in atmospheric conditions.   

2.5 * ((B4 – B3) / (B4 + 6 * B3 – 7.5 * 
B1 + 1)) 

Huete et al. 1999 

Soil Adjusted 
Vegetation Index  
(SAVI) 

The SAVI corrects the NDVI for the 
influence of soil brightness in low vegetation 
cover areas. 

((B4 – B3) / (B4 + B3 + 0.5)) * (1.5) Huete 1988  

Modified Soil 
Adjusted Vegetation 
Index  
(MSAVI) 

The MSAVI is an optimization of the SAVI 
designed to further reduce influence of the 
background soil signal. 

(2 * B4 + 1 – sqrt ((2 * B3 + 1)^2 – 8 * 
(B4 – B3))) / 2 

Qi et al. 1994 

Normalized 
Difference Snow 
Index  
(NDSI) 

The NDSI exploits the difference between 
green and shortwave infrared reflectance 
exhibited by snow and ice. 

(B2 – B5) / (B3 + B5) Hall et al. 1995 

 256 
Table 3. Example of spectral predictor sets for mean summer values. As an additional example, the raw 257 
bands Sp/Su/Fa means and standard deviations spectral predictor set contains 108 variables (18 means 258 
and 18 standard deviations for each of the three seasons).  259 
 260 
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Spectral dataset Image bands Buffer radii Season Summary 
method 

Total # of variables in 
spectral predictor set 

Raw bands B1, B2, B3, B4, 
B5, B7 

75, 600, 2400 m Summer Mean 18 

Tasseled Cap TCB, TCG, 
TCW, TCA 

75, 600, 2400 m Summer Mean 12 

Normalized 
Difference 
Vegetation Index  
(NDVI) 

NDVI 75, 600, 2400 m Summer Mean 3 

Normalized 
Difference 
Moisture Index  
(NDMI) 

NDMI 75, 600, 2400 m Summer Mean 3 

Normalized Burn 
Ratio  
(NBR) 

NBR 75, 600, 2400 m Summer Mean 3 

Normalized Burn 
Ratio 2  
(NBR2) 

NBR2 75, 600, 2400 m Summer Mean 3 

Enhanced 
Vegetation index  
(EVI) 

EVI 75, 600, 2400 m Summer Mean 3 

Soil Adjusted 
Vegetation Index  
(SAVI) 

SAVI 75, 600, 2400 m Summer Mean 3 

Modified Soil 
Adjusted 
Vegetation Index  
(MSAVI) 

MSAVI 75, 600, 2400 m Summer Mean 3 

Normalized 
Difference Snow 
Index  
(NDSI) 

NDSI 75, 600, 2400 m Summer Mean 3 

 261 

 262 

Table 4 A description of the textural metrics calculated for this analysis. The notation is adopted from 263 
Haralick and Shanmugam (1974): p(i,j) is the gray-tone spatial dependence matrix calculated for a given 264 
angular offset. The terms μx, μy, σx, and σy describe the mean and standard deviation of the marginal 265 
probability distributions Px(i) and Py(j) (see Welch et al. (1988) for details). 266 

Name (abv.) Description Calculation Source 

Contrast A measure of the average amount of 
local variation (Haralick and 
Shanmugam 1974). 
 

 

 

Haralick et al. 
1973 
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Correlation Characterizes linear gray-tone 
dependencies (Haralick and 
Shanmugam 1974). 

 

 
 

Haralick et al. 
1973 

Variance Measures the dispersion of the of 
values in the GLCM matrix (Welch et 
al. 1988). 

 

 

Haralick et al. 
1973 

Entropy Describes the randomness of values in 
the image (Welch et al. 1988). 

 

 

Haralick et al. 
1973 

Inertia Measures the spread of values in the 
GLCM matrix (Welch et al. 1988). 

 

 

Conners et al. 
1984 

Shade Quantifies the skewness of the 
distribution of values in the GLCM 
matrix (Welch et al. 1988). 

 

 

Conners et al. 
1984 

Prominence Quantifies the tailedness of the GLCM 
matrix (Welch et al. 1988). 

 

 

Conners et al. 
1984 

 267 
 268 
In addition to the unclassified imagery, we summarized two classified datasets to evaluate how the 269 
unclassified spectral predictor sets compare to those developed from classified imagery. Johnston et al. 270 
(2021) recommend creating environmental variables by summarizing MCD12Q1 v006 (Friedl and Sulla-271 
Menashe 2015), a classified MODIS dataset, by calculating the proportion of each class present in 2.5 × 272 
2.5 km kernels centered at species records. Because this type of use of habitat composition data is so 273 
common, we focus on the compositional aspects of remote sensed data but acknowledge that 274 
configuration variables also may contribute to accurate prediction of species distributions (Mazerolle and 275 
Villard 1999). The spatial resolution of MCD12Q1 is 500 × 500 m which is much larger than the 30 × 30 276 
m resolution of Landsat imagery and the resulting spectral predictors. To maintain the same spatial 277 
resolution across unclassified and classified data, we computed summaries from NLCD2016, a classified 278 
dataset derived from Landsat which has the same 30 × 30 m resolution. A limitation to NLCD is that it 279 
only contains data for the United States compared to MCD12Q1’s global coverage. We calculated the 280 
proportion of land cover classes present for the three buffer radii, as is commonly done when 281 
summarizing classified data (Thuiller et al. 2004; Johnston et al. 2021). We also computed summaries of 282 
the much coarser resolution MCD12Q1 to compare to the best practices of Johnston et al. (2021), 283 
however, we fully expect the MCD12Q1 predictor set to have degraded performance compared to the 284 
NLCD predictor set due to the differences in resolution. We included the MCD12Q1 predictor set to 285 
highlight the importance of selecting datasets with appropriate resolution for the given modeling task. For 286 
large scale studies, it may be impractical to use datasets with such high resolution (e.g., NLCD), but for 287 
more localized studies, such as ours, the higher resolution data may lead to improved model performance.  288 
 289 
Proportional summaries of classified land cover data are composed of the proportions of all land cover 290 
classes present in the given region. To help determine if any changes in model performance across the 291 
classified and unclassified predictor sets are due to the compositional information intrinsic to proportional 292 
summaries, we discretized the NLCD summaries with binary indicators to represent all present classes in 293 
the buffered regions. The discretized NLCD summaries only indicate the presence of land cover classes in 294 
place of proportion. While the discretized NLCD summaries do not contain proportional information, 295 
they still inform which land cover classes are present and, therefore, still arguably contain more 296 
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information about the compositional makeup of the region than mean and standard deviation of 297 
unclassified imagery. 298 
  299 
Experimental Design 300 
Predictor variables 301 
In total, we built 80 models, one for each of the 80 spectral predictor sets (ten spectral datasets with eight 302 
season and summary method combinations), for each of the 13 species. For all models we included 303 
summaries from the three buffer radii (75, 600, 2400 m) since multi-scale SDMs have been shown to 304 
outperform single-scale models (Hallman and Robinson 2020). With the mean values of the raw bands 305 
taken over the buffered regions from the summer imagery as our baseline model (i.e., raw bands summer 306 
means), we evaluated the effects of adding means from additional seasons, standard deviation of the 307 
buffered regions, GLCM texture metrics, and combinations of these summary methods.  308 
 309 
In addition to evaluating the unclassified spectral predictor sets, we also included classified imagery in 310 
our comparison. We compared models fit using unclassified spectral  predictor sets to those fit with a 311 
classified spectral predictor set computed according to the best practices of Johnston et al. (2021) (i.e., 312 
proportion of land cover classes present in a region surrounding the species record). Johnston et al. (2021) 313 
recommends summarizing MCD12Q1 which has 500 × 500 m resolution, which is much larger than the 314 
30 × 30 m resolution of our spectral predictor sets. For a more even comparison of classified to 315 
unclassified predictor sets, we included a predictor set derived from 30 × 30 m NLCD data which 316 
matches the resolution of our unclassified spectral predictor sets. To investigate if the predictive 317 
performance of the classified predictor set had an advantage due to the proportional nature of the 318 
summaries, we also included discretized NLCD summaries in our comparison.  319 
 320 
We did not perform variable selection as it was unnecessary in this study. Generally, analyses include 321 
variable selection for a variety of reasons, including computational considerations, dimensionality 322 
reduction, and ease of interpretation, but these motivations did not pertain to our approach. There were no 323 
computational considerations, because random forests can accommodate many predictor variables of 324 
different types and correlation among input variables does not inhibit the model fitting algorithm. 325 
Dimensionality reduction can be a motivation separately from computational issues, for example when it 326 
is necessary for all models being compared to have the same number of inputs. This need could arise 327 
when fitting and evaluating models on the same training dataset. In such a case, models with more 328 
predictor variables have an advantage since they may use additional variables to fit the data more closely, 329 
even if the correlations they exploit are spurious (i.e., models with more variables can overfit training 330 
data). However, we used spatially distinct training and test sets (described further below) to avoid 331 
overfitting; if the models with greater numbers of variables in their predictor sets fit the training data 332 
better by exploiting spurious correlations, those correlations would disappear in the test data, resulting in 333 
lower predictive performance. In our study design, if models with larger predictor sets perform better on 334 
the test data, then they reflect additional information about the species-environment relationship that 335 
generalizes to the test data. Note that this is true not just for random forests but also for other modeling 336 
approaches. Additionally, variable selection may be used to aid model interpretation by reducing 337 
correlation among input variables, which is a major hurdle for determining variable importance. Indeed, 338 
remotely sensed inputs are generally highly correlated (Zimmermann et al. 2007), but this is not an issue 339 
for conclusions drawn from the predictive power of random forests, as long as the correlation structure 340 
remains constant across training and test sets (Dormann et al. 2012).  341 
 342 
 343 
Species distribution models 344 
We compared the performance of the spectral predictor sets by predicting species occurrences with 345 
random forest models. For each species analyzed, we fit the random forest models to predict detection 346 
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versus non-detection at every count location. Random forests can fit nonlinear relationships between 347 
predictors and the response variables automatically (Cutler et al. 2007). This flexibility allowed us to 348 
compare the overall performance of the different predictor sets without committing to particular 349 
functional forms (e.g., linear) of their effects on the response. Random forests have only two tuning 350 
parameters and since our preliminary analyses indicated that our models were not sensitive to these 351 
parameters, as is the common case (Breiman 2001; Genuer et al. 2008), we set the number of variables to 352 
consider at each split to the default of the square root of the number of predictor variables and the number 353 
of trees to fit to be 5000. All of the species we analyzed had more non-detections than detections, and 354 
some had very few detections, resulting in substantial class imbalance (Table 1). To address this issue, we 355 
used balanced random forests (Chen et al. 2004), which select an equal number of detections and non-356 
detections in the bootstrap sample drawn for each tree by down-sampling the majority class. Balanced 357 
random forests is a method suggested by Johnston et al. (2021) for handling class imbalance. We fit all 358 
random forest models in R version 3.6.0 (R Core Team 2019) with package ‘randomForest’ (Liaw and 359 
Wiener 2002) and set parameter sampsize to create balanced trees.  360 
 361 
Performance estimates computed on spatial data may be biased by spatial autocorrelation when training 362 
and test points are close to one another (Roberts et al. 2017). To address this, we split the data into ten 363 
spatially distinct folds using the R package ‘blockCV’ (Valavi et al. 2019). We  imposed a 10 × 10 km 364 
grid over the study region, numbered the grid cells, and let blockCV randomly assign each cell to one of 365 
the ten folds. This process was repeated 100 times and the best assignment of grid cells to folds was kept, 366 
as determined by blockCV (evaluated by the most uniform spread of presences and absences per fold) 367 
(Valavi et al. 2019). The 10 folds were fixed across all models for a species to ensure that models for each 368 
variable set were built and tested on the same data. We then evaluated models with 10-fold cross 369 
validation. With this method, one spatial fold is withheld from the training data and all model evaluation 370 
is conduction on the withheld fold. The process is repeated ten times to obtain an evaluation of model 371 
performance based on all data. Since models are never evaluated with the same data on which they are 372 
trained, test data retain a degree of independence.  373 
 374 
With our 10-fold cross validation scheme, we evaluated model performance with the area under the 375 
receiver operating characteristic curve (AUC) and computed 95% DeLong confidence intervals using the 376 
R package ‘pROC’ (Robin et al. 2011). We chose AUC to avoid the subjective, potentially model- and 377 
species-specific process of selecting a classification threshold. While issues with the AUC's ability to 378 
assess absolute model performance have been noted in the literature (Lobo et al. 2008), AUC is 379 
appropriate for our model comparison task. To assess whether the AUCs were overly optimistic, as can be 380 
the case with highly imbalanced data (Davis and Goadrich 2006), we randomly down-sampled non-381 
detections in the independent test set to obtain an equal number of detections and non-detections. Having 382 
an equal number of detections and non-detections did not have a substantial impact on the AUCs, so we 383 
did not perform any down-sampling when calculating AUCs in the presented results.   384 
 385 
Statistical testing 386 
In order to identify which spectral predictor sets performed best across the entire set of species, we 387 
compared the performance of the different predictor sets across the group of species with the Friedman 388 
analysis of variance test (R’s base version) for repeated measures and non-normally distributed data. We 389 
controlled for species by calculating the percent difference in AUC from the mean AUC of the predictor 390 
sets for each species and subsequently performed all tests on the percent difference in AUC from the 391 
species mean AUC. To identify which spectral predictor sets were statistically different, we performed 392 
post-hoc analysis with Nemenyi-Tests, R package ‘PMCMRplus’ (Pohlert 2020) which evaluates 393 
pairwise multiple comparisons of mean ranks. 394 
 395 
 396 
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Results 397 
Overall, our models performed well. While Sagebrush Sparrow, a habitat specialist, was the species with 398 
the highest performing models with a mean AUC of 0.9666, Western Tanager, a habitat generalist, had 399 
the lowest performing models with a mean AUC of 0.6904 across all unclassified spectral predictor sets 400 
(Figure 2). Across all species, the raw bands spectral predictor sets were the top performing. Adding 401 
seasonal and textural information to the summer means had little impact on the raw-bands and Tasseled-402 
Cap models, but did improved the single-index models (Figure 3, Figure 4). These patterns were 403 
consistent across all habitat types and species specialization (Table 5, Figure 2). NLCD, the classified 404 
land cover data with the same spatial resolution of Landsat, had equivalent performance to the raw-bands 405 
models, whereas MCD12Q1 with its much larger spatial resolution, did not perform nearly as well 406 
(Figure 5).    407 

 408 
Which index or transformation of the raw bands best predicts species?  409 
Across species, the raw-bands models had the highest AUCs among the summer means spectral predictor 410 
sets, with a mean AUC of 0.8990 (Table 5, Figure 3: Summer means). Within individual species, the raw-411 
bands models had the highest AUC for 11 of the 13 species analyzed (Figure 2). Sagebrush Sparrow and 412 
Yellow Warbler were better modeled by other spectral predictor sets, but only narrowly, and with the 413 
raw-bands models as second best.  414 
 415 
Models built with the next highest performing spectral predictor set, the Tasseled Cap transformations, 416 
did not statistically differ in performance from the raw-bands models (p-value = 0.9989, Nemenyi post-417 
hoc Friedman). Across species, the Tasseled-Cap models had a mean decrease in AUC from the raw-418 
bands models of only 0.0034.  419 
 420 
Across all species, the single-index models had an average 0.0784 decrease in AUC from the raw-bands 421 
models. For all but one of the species (and only narrowly), the single-index models were outperformed by 422 
the raw-bands models. The highest performing single-index model was the NDVI model which exhibited 423 
moderate evidence of being statistically different from the raw-bands models (p-value = 0.0709, Nemenyi 424 
post-hoc Friedman) with a mean decrease in AUC from the raw-bands models of 0.0505. The remaining 425 
single-index models were all statistically different from the raw-bands models (p-values < 0.0169, 426 
Nemenyi post-hoc Friedman). Apart from the NDVI models having the highest average performance 427 
across the single-index models, there were no clear patterns as to which indices best predicted species, 428 
with different indices producing higher AUCs for different species (Figure 2).   429 
 430 

Table 5 Mean rank and standard deviation for the spectral predictor sets calculated across species.  431 
Spectral Predictor Average Rank Standard 

Deviation 
Raw bands 1.15 0.38 

Tasseled Cap 2.23 0.73 
NDVI 4.69 2.02 
NBR 5.31 1.75 
SAVI 5.92 1.32 

NDMI 5.92 2.43 
NBR2 6.08 2.75 

MSAVI 6.54 1.61 
EVI 7.08 2.14 
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NDSI 10.00 0.00 
 432 
 433 
 434 
 435 
 436 
 437 

 438 
Fig. 2 Performance of the spectral predictor sets when summarized by their summer means 439 

 440 
 441 
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How does adding additional seasons to the summer means impact predictive performance? 442 
Adding summaries from spring and fall to the summer spectral predictor sets had a small positive impact 443 
on model performance, with an overall average increase in AUC across all models of 0.0445 (Figure 3). 444 
The top two performing summer means spectral predictor sets (raw bands and Tasseled Cap) saw a much 445 
smaller increase in AUC of 0.0083 compared to the single indices which had an increase in AUC of 446 
0.0536.  447 
 448 

 449 
How does adding standard deviations and texture metrics to the summer means impact predictive 450 
performance? 451 
Across species, inclusion of standard deviations had a small positive impact on model performance with 452 
an overall average increase in AUC across all spectral predictor sets of 0.0359 (Figure 3). The top two 453 
performing summer means spectral predictor sets (raw bands and Tasseled Cap) saw an increase of 454 
0.0097 in AUC while the single-index predictor sets saw a 0.0424 increase in AUC.  455 

Adding the GLCM texture metrics to the summer means spectral predictor sets also had a small positive 456 
impact on model performance, with a mean increase in AUC across all spectral predictor sets of 0.0674 457 
(Figure 3). There was a 0.0127 increase in AUC from the top two summer means spectral predictor sets 458 
(raw bands and Tasseled Cap) and a 0.0811 increase in AUC for the single-index predictor sets. 459 

Adding combinations of the additional seasons, standard deviations and texture metrics to the summer 460 
means did not have a significant impact on the raw-bands model (Figure 4). For comparison, we present 461 
the same analysis for NDVI, a top performing single-index model (Figure 4).  462 
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 463 
 464 

 465 
Fig. 3 Mean AUCs of the spectral predictor sets for each of the summary methods averaged across all 13 466 
species. Black dots indicate outliers that fall outside the whiskers of the box plots.  467 
 468 
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 469 

 470 

 471 
 472 

Fig. 4 A comparison of the AUCs for all summary methods for NVDI and raw-bands models averaged 473 
across all 13 species 474 

      475 
How do the unclassified summer means compare to classified remotely sensed predictor sets? 476 
The proportional NLCD summaries had very good performance, with a negligible difference from the raw 477 
bands summer means (p-value = 0.9900 Nemenyi post-hoc Friedman; Figure 5). The discretized NLCD 478 
summaries did not perform as well as the proportional NLCD summaries, with a mean decrease in AUC 479 
of 0.0122 from the raw bands summer means models. Unlike the proportional NLCD summaries, the 480 
discretized NLCD summaries were found to be statistically different from the summer means of the raw 481 
bands (p-value = 0.0320 Nemenyi post-hoc Friedman; Figure 5). As expected, there was significant 482 
evidence that the coarse resolution MCD12Q1 proportional summaries were statistically different from 483 
the summer means of the raw bands (p-value = 3.1e-05 Nemenyi post-hoc Friedman; Figure 5) with a 484 
0.0693 decrease in AUC from the raw bands summer means. 485 
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 486 
 487 

Fig. 5 Comparison of mean AUCs for classified summaries and the unclassified raw bands summer 488 
means. The AUCs are averaged across all 13 species 489 

 490 
 491 
Discussion 492 
Our results yielded three important insights regarding models built on unclassified remotely sensed data: 493 
1) raw bands perform better than their summaries, 2) including additional seasons helps single-index 494 
models but has little effect on raw-bands or Tasseled-Cap models, and 3) including standard deviations or 495 
textural metrics helps single-index models but has little effect on raw-bands or Tasseled-Cap models. Our 496 
experimental design protected against overfitting by judging performance on spatially distinct test sets. 497 
This strategy is sound for comparing models even with differing numbers of variables, so we can 498 
conclude that the performance drop from the raw-bands models (with more variables) to the various 499 
reflectance summarizations (with fewer variables) is due to the reduced ability of the latter to characterize 500 
the environment. The magnitude of the performance drop speaks to the amount of environmental signal 501 
lost. For example, AUCs were greatly reduced from the raw-bands to the NDSI models, because NDSI, 502 
an index for characterizing snow, is a substantially inadequate summary for the species in our analysis. In 503 
contrast, differences between the raw-bands and the Tasseled-Cap models were negligible, indicating that 504 
they are nearly equivalent in their ability to represent relevant signal for predicting species.  505 
 506 
1. Raw bands perform better than their summaries 507 
When using mean values alone, models built on raw bands performed consistently better than all other 508 
methods of summarization. We saw an insignificant decline in performance following the dimensionality 509 
reduction from six raw bands to the four Tasseled Cap transformations and an even larger, and 510 
statistically significant, decline in performance with the reduction in dimensions from the raw bands to 511 
single indices. It is not surprising that the single indices had degraded performed given that they are 512 
computed from a small subset of the raw bands, whereas the Tasseled Cap transformations essentially 513 
maintain the principle components of the raw bands. In other words, the single-summary transformations 514 
starve the models of environmental information critical for SDMs. Shirley et al. (2013) compared 515 
summaries of raw Landsat bands to NDVI and similarly found that raw bands outperformed NDVI in 516 
predicting bird distributions. These models do have differing numbers of input variables: six bands and 517 
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three radii for 18 variables in the raw-bands models, four bands and three radii for 12 variables in the 518 
Tasseled-Cap models, and one band and three radii for three variables in the single-index models. If, as in 519 
our study, predictive performance is the goal and ML methods that handle many predictor variables are 520 
used, we suggest the use of raw bands summarized at multiple radii. Interpreting the effects of specific 521 
variables, however, can be difficult with sets of correlated input variables, like variables summarized at 522 
multiple radii. Classic approaches such as generalized linear models (GLMs) usually require strict 523 
variable selection, but interpretation of the effects of variables is straight forward (e.g., effect sizes and p-524 
values). When the interpretation of variables is the primary objective or other modeling methods are 525 
employed, dimensionality reductions may be beneficial. In these cases, we suggest the Tasseled 526 
Cap transformations or a single index like NDVI, our highest performing single-index model. If using a 527 
single index, however, we recommend including additional summaries, such as standard deviation (Figure 528 
3). Apart from NDVI models having the highest average performance and NDSI models performing 529 
consistently poorly across species, nearly all other single-index models performed similarly with a 530 
reduction in AUC from the raw band models of about 0.08. Given that NDSI is meant to capture areas of 531 
snow well and none of our study species specialize in snowy habitats, it makes sense that it performs the 532 
worst of our single-index models. We cannot rule out that NDSI may perform well with species that do 533 
specialize in snowy habitats (e.g., Rosy-Finches Leucosticte spp.). Methods such as pseudo-scale 534 
optimization may be employed to further reduce the number of variables associated with multi-scale 535 
models while ensuring that appropriate scales are included (McGarigal et al. 2016).  536 
 537 
2. Including additional seasons helps single-index models but has little effect on raw-bands or 538 
Tasseled-Cap models 539 
Although the inclusion of additional seasons hardly increased performance in the raw-bands and 540 
Tasseled-Cap transformation models, their inclusion did increase the performance of single-index models. 541 
Researchers tend to default to spring or “breeding season” environmental data to match the timing of 542 
observational data, and perhaps more importantly, because many species are migratory. Twelve of our 13 543 
species are migratory and depart Oregon after their breeding season. Remotely sensed data from winter 544 
might therefore be expected to contribute little to explaining distributions. However, the addition of 545 
information from other seasons may help to differentiate between habitats whose spectral qualities are 546 
similar during a single season (Bino et al. 2008; Senf et al. 2015). For example, deciduous and coniferous 547 
forests may have similar spectral qualities during the breeding season, but different spectral qualities 548 
following autumnal leaf loss. The seasonal contrast could improve model predictions. Indeed, our 549 
findings supported this idea, but increases in model performance were primarily restricted to single-index 550 
models (Figure 3). Future studies could consider more complex summaries for quantifying seasonality 551 
such as multi-temporal metrics, which could potentially yield greater gains in model performance 552 
(Potapov et al. 2019). Habitats and their suitability may be sufficiently described by their unique sets of 553 
raw band and Tasseled Cap values, making the inclusion of additional seasons unnecessary.   554 
 555 
3. Including standard deviations or textural metrics helps single-index models but has little effect 556 
on raw-bands or Tasseled-Cap models 557 
As with additional seasons, although there was little improvement in model performance associated with 558 
the inclusion of standard deviations or textural metrics in the raw-bands or Tasseled-Cap models, their 559 
inclusion did increase performance in single-index models. Farwell et al. (2020) extracted texture metrics, 560 
some identical to those in our study, from two remotely sensed datasets and found the metrics captured 561 
several aspects of vegetation heterogeneity that were informative of species richness. Standard deviations 562 
or textural metrics add information on the heterogeneity of spectral qualities within a location. This may 563 
correspond to the heterogeneity of habitats or the categorization of single habitats with heterogenous 564 
spectral qualities (e.g., sparse juniper woodlands). Either way, we might expect an increase in 565 
performance. Though our data support this, increases in performance were primarily in single-index 566 
models (Figure 3). As with seasons, it may be that the unique combinations of spectral values contained 567 
within raw bands and the Tasseled Cap transformations may adequately describe fragmentation and 568 
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heterogeneity within an area, making the inclusion of standard deviations and textural metrics 569 
unnecessary. Based on these findings, we suggest that when using a single index (e.g., NDVI), additional 570 
summaries, such as seasonal or textural, should be included.  571 
 572 
 573 
Classified v. Unclassified data 574 
While several studies have found SDMs built with unclassified data outperform those trained on classified 575 
data, our NLCD model had essentially equal performance to our highest performing unclassified model 576 
(Figure 5). Cord et al. (2014) compared classified land cover to continuous remotely sensed variables for 577 
30 tree species and found that continuous unclassified data far outperformed classified land cover for 578 
predicting distribution patterns. Oeser et al. (2020) found that habitat metrics derived from Landsat 579 
Tasseled Cap components and binary snow masks outperformed land cover-based metrics. Given the 580 
expected reduction in information associated with transforming continuous raw bands into discrete land 581 
cover classes, we were surprised at the high performance of the NLCD models. It is likely, however, the 582 
high performance of the NLCD models could be region-specific (i.e., NLCD models may not be 583 
comparable to Landsat-based models at a continental scale in which the land cover classes contain more 584 
variation in habitat types). Additionally, we suspect that summarizing land cover data by percent cover 585 
adds information about land cover composition that is not captured by summaries of unclassified imagery. 586 
Though we summarize the central tendency and variance of raw bands with means and standard 587 
deviations, these summaries do not necessarily correspond to the quantity of any particular type of 588 
habitat. While unclassified data might better characterize environmental differences within a single 589 
habitat type, classified data captures the proportions of each habitat type.  590 
 591 
The relatively minor loss of performance in our discretized NLCD models, however, indicates that the 592 
proportional information may be playing a minor role compared to the added information associated with 593 
grouping pixels into discrete land cover classes. By discretizing our NLCD data we removed the 594 
proportional information it contained which allowed us to directly examine the importance of 595 
proportional information compared to the categorization and occurrence of each class. When we classify 596 
habitats from spectral imagery, we inherently add some implicit information on similarities between 597 
pixels (e.g., vegetation structure or species composition). This additional information may explain the 598 
relatively high performance of models informed by discretized land cover. Further, abundance models are 599 
likely more sensitive to information on amount or proportion of habitat than distribution models. When 600 
modeling species occurrence, even small areas of suitable habitat can be occupied. 601 
 602 
As expected, we found a relatively large loss of performance (0.07 AUC) in models using MCD12Q1 603 
data (Figure 5). While NLCD has the same 30 m resolution as the spectral data, MCD12Q1 is 604 
characterized at a 500 m resolution. We anticipated MCD12Q1 would have decreased performance 605 
compared to NLCD due to their differences in resolution. As per Johnston et al. (2021), we summarized 606 
MCD12Q1 data within a 2500 × 2500 m kernel, which corresponds loosely to a radius of 1250 m. In 607 
contrast, we characterized our unclassified remotely sensed data and the NLCD data at three scales: 75, 608 
600, and 2400 m (radii from count location). By including only a single scale, and lower resolution data 609 
to begin with, MCD12Q1 data contained less information than NLCD data in this study and may be 610 
characterized at a scale too broad to maximize accuracy of predicting local avian occurrences. The 611 
differences in model performance between the NLCD and MCD12Q1 predictor sets suggests that when 612 
performing localized studies in regions that do not contain high resolution classified data, unclassified 613 
data should be considered. 614 
 615 
Summaries of classified and unclassified remotely sensed data within buffers differ. Where a mean NDVI 616 
value corresponds to some level of vegetation or biomass, it is difficult to translate such a value into real-617 
world management. For example, picturing 55 percent temperate forest within a region is easier to 618 
visualize than a mean NDVI value of 0.4957. There are always tradeoffs. One issue with using 619 
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proportions of land cover is that the number of variables greatly increases (e.g., 16 land cover classes as 620 
opposed to a single NDVI value) and this issue is only amplified if researchers are interested in datasets 621 
with a greater number of land cover classes. If interested in a small set of specific species, the use of 622 
select land cover classes paired with an interpretable modeling method such as GLMs, may be most 623 
appropriate. Though we found no decrease in model performance with classified NLCD data, we did not 624 
incorporate models with only a subset of pre-determined land cover classes, nor did we test GLM. These 625 
methods should be studied in future research. 626 
 627 
A main caveat in our study is that our results are based on 13 bird species over the state of Oregon. 628 
Although we chose the species to represent a wide diversity of habitats and degrees of specialization, our 629 
findings may not apply to organisms that utilize geographic space differently from this set of songbirds or 630 
experience different varieties and arrangements of habitats in other geographies. That said, our approach 631 
to discern differences in performance could easily be adapted for other species and locations. It is also 632 
possible that our results are specific to modelling occurrences and that abundance modeling may reveal 633 
different patterns of performance in the environmental predictor sets.      634 
 635 
Conclusions 636 
To our knowledge, this is the most extensive study to directly compare the effects of remotely sensed 637 
summary methods on SDMs. We analyzed the relative performance of different summary methods for 638 
continuous unclassified Landsat data and two classified land cover datasets to help inform which sets of 639 
variables are most predictive of bird distributions. Overall, we recommend the use of summer means of 640 
the raw bands because they consistently outperformed all other spectral predictor sets and did not require 641 
additional seasonal or textural information to achieve their highest performance. However, if fewer 642 
variables is imperative, we recommend using the summer mean and standard deviation of NDVI as 643 
additional seasons and textural information are important for improving the predictive performance of 644 
single indices. Another important, and surprising, finding was the essentially identical performance of the 645 
classified NLCD summaries and the raw bands. Contrary to other studies (Cord et al. 2014; Halstead et al. 646 
2019; Oeser et al. 2020), classified summaries did not exhibit a performance decrease compared to the 647 
continuous unclassified summaries. While the classified NLCD models achieved equal performance to 648 
the raw band models, future work should investigate the source of NLCD’s high performance and 649 
evaluate how NLCD-based variables perform in the more challenging task of predicting abundances. 650 
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