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1 Introduction

Cyber-Physical Production Systems (CPPSs) are highly configurable produc-
tion systems with real-time control and self-adaptive behaviour [26]. CPPSs are
often tailored to customer needs or environmental requirements [7], which cre-
ates a highly variable, multidisciplinary environment. A sound documentation
of their variability is required to foster component reuse [11]. For this purpose,
the Software Product Line (SPL) community proposed many different variability
modeling approaches [29], which are used to explicitly model common and vari-
able characteristics of a set of (software-intensive) systems [4,22]. Unfortunately,
industry is mostly unaware of the plethora of existing variability modeling ap-
proaches from academia and frequently develops their own custom solutions, e.g.,
spreadsheet-based representations or Domain-Specific Languages (DSLs) [4].

This document is the online appendix of the paper Evolution Support for Cus-
tom Variability Artifacts using Feature Models: A Study in the Cyber-Physical
Production Systems Domain6. The paper investigates the product line evolution
impact on PPR–DSL artifacts [25] compared to feature models. The aim is to
better understand the system evolution impact differences and work towards
enabling industrial practitioners to evolve their custom variability artifacts sup-
ported by a variability model. Therefore, the paper uses two case study systems,
i.e., the Water filter and the Rocker switch cases, from the CPPS domain [22,23].

6 https://doi.org/xx.yyyy/zzzzzzz
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2 Evolution Scenarios

Product lines manufactured on CPPSs are constantly evolving, e.g., due to new
technologies or market changes [7]. We start from a reasonable subset of product
variants for the case studies and change them based on the described product
lines’ context [23]. We specify 5 typical evolution scenarios [34] motivated by
three main product line evolution triggers [21,34]: (i) user requests, (ii) technol-
ogy changes/extensions, and (iii) changes in the product line environment.

S1 – Add new, optional feature: Customers frequently request new fea-
tures, and their impact depends heavily on the necessary changes. In S1, we
add a new, optional feature without additional constraints. In the Water filter,
we add an optional water flow sensor, which informs users to refill the waste
water tank. In the Rocker Switch, we introduce an optional light to indicate if
the switch is currently active.

S2 – Add new, dependent feature: In industry, future user requests are
often anticipated. Therefore, in S2, we restructure the product line and add new
features along with new constraints. In the Water filter, we add an abstract
Waste Water Tank feature and a new waste water tank (with a different size)
together with constraints. In the Rocker Switch, we extend the product line with
additional variants of the key components Rocker, Off and Pole with constraints
to model relationships between them.

S3 – Add multiple features and constraints within product line
scope: A product line is often extended by a set of features and constraints
to meet new technology or user requirements. In S3, we add multiple features
and constraints. In the Water filter, we extend the product line by a new fil-
ter type (Distillation) along with necessary components (sub-features) and
constraints. In the Rocker Switch, we extend the rocker switches to distinguish
between serial and crossover switches, together with necessary constraints.

S4 – Add multiple new features and constraints outside the scope:
Sometimes product lines undergo fundamental changes, where several features
are added, removed, or replaced, which also changes/extends the scope of the
product line. In S4, we extend the product line to support additional technolo-
gies. In the Water filter, we extend the product line by (five different) pumps,
an additional type of heater used during distillation, a new mount type, elec-
tricity support, and country-specific implementations. We also add necessary
constraints (e.g., pumps require electricity or electricity prohibits using the iron
frame as a mount). In the Rocker Switch, we extend the rocker switches with a
home automation interface supporting two protocols (Zigbee [15] and Zwave [27])
along with necessary (transformer) features and constraints.

S5 – Add constraints and remove features: Industrial products have to
adapt to new technology and regulations regularly. The necessary specializations
can be implemented by adding/removing features and/or adding constraints. In
S5, we remove features and add constraints. In the Water filter, we add new
constraints to the country codes for electricity to prohibit certain pump types in
some countries. We also constrain mounts and remove unused pump sizes and
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Table 1. Metrics we collect for PPR–DSL artifacts and feature models.

Type Metric Description
P
P
R
–
D
S
L
a
rt
if
a
ct

#P Number of products
#Pcomp Number of products specifying the attribute component
#Pabst Number of abstract products
#Pimpl Number of products, which implement at least one other product
#Pchild Number of products, which specify children
#Creq Number of products, which require at least one other product
#Cexcl Number of products, which exclude at least one other product
#Ccomplex Number of constraints including more than two products

F
ea
tu
re

M
o
d
el

#F Number of features
#Fabst Number of abstract features
#Fman Number of mandatory features
#Cxorgroup Number of Xor group constraints
#Ctotal Number of constraints
#Ccomplex Number of constraints, which involve more than two features
Tree height Feature model tree height
#Configs Number of valid configurations found using sampling

country codes. In the Rocker Switch, we add new constraints between the rocker
and changeover features and remove the light feature and its constraints.

3 Metrics to measure Evolution impact

Building on earlier work [13], we want to measure the evolution impact on the
PPR–DSL artifacts and feature models using using four general characteristics
of variability modeling approaches [13], namely (a) unit of variability, (b) com-
posites, (c) hierarchy, and (d) dependencies. We use existing metrics for feature
models [10] to assess these characteristics, their size and complexity. Building on
these metrics, we identified similar metrics to assess these aspects for PPR–DSL
artifacts. We assess the evolution impact on the PPR–DSL artifacts and feature
models using metric changes after each evolution step. Table 1 summarizes the
investigated metrics for PPR–DSL artifacts (upper part) and feature models
(lower part).

For the unit of variability, we count in the PPR–DSL the number of products
(#P) and the number of products specifying the attribute component (#Pcomp).
We further count how many of the specified products are abstract (#Pabstract).
For feature models, we count the number of features (#F) and the number of
abstract (#Fabstract) and mandatory (#Fman) features. The PPR–DSL and fea-
ture models have different types to capture composites. We count them for the
PPR–DSL (products specifying the attribute children – #Pchildren) and feature
models (number of XOR groups – #Cxorgroup). Hierarchy is differently defined
in PPR–DSL and feature models. While hierarchy in the PPR–DSL is specified
using inheritance (#Pimpl), in feature models, it is defined via the feature tree
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(quantifiable via the Tree height). Both artifact types allow to define dependen-
cies between their respective unit of variability. In the PPR–DSL we count the
number of products which specify requires (#Creq ) and excludes (#Cexcl) con-
straints. We also count the number of constraints (#Ccomplex) specified in the
PPR–DSL artifacts, which include more than two products. For feature models,
we count the total number of constraints (#Ctotal) and again complex con-
straints (#Ccomplex), as in the case studies most constraints are defined between
two features but complex constraints are particularly interesting. We also count
the number of valid configurations in a feature model (#Configs) to assess the
complexity of the feature model, i.e., underlying product line, and configuration
relevance [32]. This metric is particularly important in CPPS engineering, as the
products that can be manufactured contribute to the overall cost of the CPPS.

4 Analysis Results

4.1 Evolution Impact

In both case studies, in the scenarios S1–S4 the PPR–DSL artifacts and feature
models grow in size and complexity. Only in S5 products in the PPR–DSL and
features in the feature model are removed and constraints are added to both
artifacts. As a result, the number of valid configurations in the feature model
(#Configs) shrunk significantly.

The unit of variability for both artifact types (#P, #Pcomp and #Pabstract

for PPR-DSL artifacts and #F, #Fabstract and #Fman for feature models) in-
creased for the scenarios S1–S4. Only for S5 they decreased. This development
is a result of the scenarios, as in S1–S4 features are added to the product lines.
However, despite only adding one feature (#F) to the Water filter in S1 (re-
sulting in a new component product – #Pcomp), the number of overall products
increased by 8. This is a result of how the PPR–DSL enables engineers to design
products. Engineers must specifically define which products should be produced
with the (designed) production system. In S1, we specified that the originally
valid products are all extended by a new component, resulting in 8 new prod-
ucts. In a similar way, we extended the Rocker Switch, where the component
products and features evolve at a similar rate. In S2, we simulated restructuring
the product lines by adding newly features and constraints. Such restructuring
can influence the relationships between the products (an increase of abstract
products #Pabstract in both case studies) and the set of designed products. For
instance, in the Water filter it did not influence the set of designed products, as
we only performed the restructuring but did not create new designed products
(#P remains equal). In contrast, for the Rocker Switch we introduced additional
constraints also addressing existing components (as there were no constraints
specified in S0 ), resulting in the decrease of designed products (#P). Neverthe-
less, in the PPR–DSL artifacts and the feature models the number of component
products (#Pcomp) and features (#F) again increased equally. A trend that con-
tinues through all scenarios (including S5 where they similarly decreased).
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In both case studies, composites (#Pchild) were added during the evolution
scenarios. For the Water filter during S3, when a new filter type (Distillation)
was added, and in the Rocker Switch during S4, when the house automation ex-
tended the scope of the product line. In the respective feature models (#Cxorgroup),
the XOR groups were introduced earlier. This is because, although both metrics
cover the same concept, the attribute children captures groups of products be-
longing together, whereas in the XOR groups additionally constrain the feature
model. As a result, feature groups are more frequently used in feature modeling
than the attribute in the PPR–DSL. In S5, composites in both artifact types do
not change much.

In both artifact types, hierarchy (#Pimpl in the PPR–DSL and Tree height
in feature models) is captured differently. Whereas in the PPR–DSL hierarchy
is modeled via inheritance, in feature modeling, it is a key concept using the
visualization in a feature tree. This difference also showed in the evolution of
the artifacts. The PPR–DSL artifacts evolved similarly to the unit of variabil-
ity, because the implements is a product attribute. During the evolution of the
feature models, the Tree height hardly changed. The newly added features and
constraints only increased the tree height in S4 (Water filter and Rocker Switch
respectively), confirming findings by Lotufo et al. [20], that feature models in an
industrial context often evolve into a broader tree, instead of a deeper tree.

Dependencies (#Creq, #Cexcl and #Ccomplex in the PPR–DSL and #Ctotal

and #Ccomplex in feature modeling) are a key part of both artifact types. In both
case studies, the dependencies between the respective unit of variability increase
over time. Overall, the PPR–DSL artifacts appear more complex than their
respective feature model counterparts. This is because in the PPR–DSL artifact
the requries and excludes attributes capture direct relations between products,
which in feature modeling are captured in either composites (#Cxorgroup) or the
feature tree (Tree height). One has to add several excludes relationships between
the effected products to capture a XOR group from the feature model in the
PPR–DSL. Complex constraints (involving more than 3 products or features –
#Ccomplex in both artifacts) evolve similarly in both artifacts.

4.2 Differences to automatically derived artifacts

The automatically derived PPR–DSL artifacts are more different to the manually
created PPR–DSL artifacts than the automatically obtained feature models have
to their manually created counterparts.

In the automatically derived PPR–DSL artifacts from the manually created
feature models, hardly any difference can be found in the scenarios S0–S1. From
scenario S3 onward many differences across the characteristics, unit of variabil-
ity, hierarchy and dependencies can be found. This can mainly be explained by
the difference of how variability is modeled in the PPR–DSL and feature mod-
els, as explained when discussing the evolution impact on the unit of variability.
In the scenarios (S0–S1 ), we listed all possible products in the PPR–DSL. As
a result there is no difference between the two representations and the rela-
tionship #P +#Pcomp = #F +#Configs holds. From scenario S3 onward, we
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did not cover all possible products, which results in the expected increase of
possible products (#P) in the automatically derived PPR–DSL artifacts. This
increase also reflects in hierarchy (#Pimpl) and dependencies (#Creq, #Cexcl

and #Ccomplex) of the PPR–DSL artifacts.
Even though the structure of the automatically created artifact is the same

as the one from the manually created one, we lose the composites (#Pchild) in
the transformed PPR–DSL artifacts. Manual inspection of the derived PPR–
DSL artifacts showed that the children attribute of the products was not set. We
conclude that this is a result of the provided transformations by TRAVART,
rather than from the evolution steps.

In the automatically derived feature models from the manually created PPR–
DSL artifacts, all areas unit of variability, composites, hierarchy and dependen-
cies evolve similarly. The only difference in the Water filter is the total number
of constraints, which results from the way how composites (#Cxorgroup) are de-
fined in the PPR–DSL. For each XOR group, excludes relationships have to be
defined using the excludes attribute. These relationships are transformed into
excludes constraints, which are redundant with the XOR group. Not requiring
to model these excludes constraints explicitly, but modeling them via hierarchy
and feature group constraints is a clear benefit of the feature model compared
to the PPR-DSL. In the Rocker Switch case, the only difference is the total set
of valid configurations (#Configs). Again, a manual inspection of the manually
created feature models and automatically derived feature models showed no dif-
ference between the models. We concluded that the difference originates from
the sampler stability [33,35] of the provided sampler of TRAVART.

5 Related Work

Feature Extraction: Retrieving variability models from existing systems can
be a tedious task. Several feature extraction approaches have been proposed to
automatically reveal and analyze variability in various artifacts [3,8,18,24,36].
In a mapping study, [2] discuss further works on re-engineering of systems into
product lines with a focus on transforming various artifacts into reusable compo-
nents. Most approaches typically focus on specific types of artifacts (e.g., source
code) and can only generate one kind of variability model (e.g., a feature model).
This specialization makes it hard to apply these approaches in industry across
a heterogeneous set of variability artifacts (e.g., spreadsheets or DSLs). Also,
extraction approaches only focus on extracting the information from one version
(one snapshot) of the variability artifact at a single point in time, neglecting the
evolution of the artifacts. Our work aims to address the need for an evolution
process for custom variability artifacts in industry, using the advantages of a
variability model without constantly extracting features.

Variability Modeling in Industry: Several works investigate the use of
variability models in industry [4] or propose the use of a variability model in
industry [9,16,30,31]. Most works focus on a variability model as a first-class cit-
izen of the development process. Some have already tried to use transformations
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between custom representations [1,12] including Feichtinger et al. [14], whose
transformation approach TRAVART we use in our work. However, in our work,
we aim to still use custom representations from industry as the main artifact
and support their evolution using variability models.

Product Line Evolution: Product line evolution research mostly focuses
on one type of variability modeling approach [21,28,19] or on a certain aspect of
evolution (e.g., evolution planning) [17]. The evolution impact on feature models
has been investigated by Bezerra et al. [6]. They performed an exploratory study
on the evolution impact on feature models using a maintainability catalog [5].
While these results have influenced our work, this paper investigates the product
line evolution impact on custom variability artifacts in industry.

6 Conclusion

In this appendix, we described the evolution scenarios we performed on two case
study systems from the Cyber-Physical Production System (CPPS) domain to
investigate the evolution impact on Product-Process-Resource DSL (PPR–DSL)
artifacts feature models. We also described the results of our evolution analysis
in detail, which are the basis for our key takeaways described in the paper6.
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