## Studies on 5-Bromodehydroacetic Acid : Synthesis of 1,5-Diphenyl-3-(5-bromo-4-hydroxy-6-methyl-2H-pyran-2-one-3-yl)-2-pyrazolines

V. K. MAHESH\*, C. L. SHARMA, SUMAN VASHISTHA and RAKESH SHARMA

Department of Chemistry, University of Roorkee, Roorkee 247 672

Manuscript received 2 August 1978, revised 23 February 1979, accepted 27 April 1979

5-Bromodehydroacetic acid(I), on condensation with aromatic aldehydes in the presence of piperidine gave chalcone type compounds(II). Reaction of II with phenylhydrazines in ethanol-acetic acid afforded 1,5-diphenyl-3-(5-bromo-4-hydroxy-6-methyl-2H-pyran-2-one-3-yl)-2-pyrazolines(III).

N view of physiological importance of pyrones and pyrazolines it was considered worthwhile to synthesise certain compounds having mixed features. In the present study, the synthesis of pyrazoline derivatives having an  $\prec$ -pyrone ring system at position 3 has been carried out by the condensation of 5-bromodehydroacetic acid(I) with different aromatic aldehydes followed by treatment of the resulting chalcone derivatives(II) with phenylhydrazines.

5-Bromodehydroacetic acid (3-acetyl-5-bromo-4hydroxy-6-methyl-2H-pyran-2-one), (I), exists as a completely enolized species<sup>1</sup> in solution. The condensation of I with aromatic aldehydes in the presence of piperidine<sup>3</sup> gave 3-cinnamoyl-5-bromo-4-hydroxy-6-methyl-2H-pyran-2-ones(II) (Table 1). All of these compounds show characteristic absorption at 1700 (lactone); 1600(C=C) and 1000 $(\dot{C}-O-C)$  cm<sup>-1</sup>. In case of hydroxy cinnamoyl derivatives(II<sub>2</sub> and II<sub>8</sub>) absorption in the range of 3360-3300 cm<sup>-1</sup> is clearly indicative of the phenolic hydroxyl group. Synthesis of pyrazolines(III) has been effected by the action of phenylhydrazines on



Reagents : 1-ArCHO/Piperidine-Chloroform 2-RNHNH<sub>2</sub>/sthanol-acetic acid.

cinnamoyl derivatives(II) in ethanol-acetic acid<sup>a</sup> (10:1) at reflux temperature (Table 2). The NMR spectra of 1,5-diphenyl-3-(5-bromo-4-hydroxy-6-methyl-2H-pyran-2-one-3-yl)-2-pyrazoline(III<sub>1</sub>) in

| Compound<br>No. | Ar                        | Yield<br>% | MD  | Molecular                                        | Analysis       |              |
|-----------------|---------------------------|------------|-----|--------------------------------------------------|----------------|--------------|
|                 |                           |            | °C  | Formula                                          | Found /<br>C   | Calcd.<br>H  |
| 1               | Phenyl                    | 5 <b>5</b> | 130 | $O_{15}H_{11}BrO_4$                              | 53.64<br>53.73 | 3.15<br>8.28 |
| 2               | 4-Hydroxy-3-methoxyphenyl | 50         | 282 | C <sub>16</sub> H <sub>18</sub> BrO <sub>6</sub> | 50.46<br>50.39 | 3.44<br>3.41 |
| 3               | 2-Hydroxyphenyl           | 50         | 208 | $C_{15}H_{11}BrO_{5}$                            | 51.18<br>51.28 | 3,10<br>3,13 |

\* To whom all correspondence may be made.

| Compound<br>No. |                           | R                  | Yield<br>% | М.Р.<br>°С   | Molecular<br>Formula                                              | Analysis*         |                |
|-----------------|---------------------------|--------------------|------------|--------------|-------------------------------------------------------------------|-------------------|----------------|
|                 | Ar.                       |                    |            |              |                                                                   | Calcd. /<br>Nitro | Found<br>ogen  |
| 1.              | Phenyl                    | Phenyl             | 30         | 15 <b>0d</b> | C, H, BrN.O.                                                      | 6.58              | 6.48           |
| 2.              | Phenyl                    | 4-Nitrophenyl      | 32         | 138-9        | C, H, BrN, O                                                      | 8.93              | 8,84           |
| 3.              | Phenyl                    | 2,4-Dinitrophenyl  | 35         | 215          | C, H, BrN407                                                      | 10.87             | 10.88          |
| 4.              | Phenyl                    | Thiosemica rbazido | 30         | 168          | C <sub>16</sub> H <sub>14</sub> BrN,OS                            | 10.29             | 10.36          |
| 5.              | Phenyl                    | Somicarbazido      | 30         | 157          | C <sub>16</sub> H <sub>14</sub> BrN <sub>8</sub> O <sub>4</sub>   | 10.71             | 10.60          |
| 6.              | 4-Hydroxy-3-methoxyphenyl | Phenyl             | 25         | 120          | C, H, BrN, O,                                                     | 5.94              | 5.80           |
| 7.              | 4.Hydroxy-3-methoxyphenyl | 4-Nitrophenyl      | ·25        | 184          | C, H, BrN, O,                                                     | 8.13              | 8.22           |
| 8.              | 4-Hydroxy-3-methoxyphenyl | 2,4-Dinitrophenyl  | 30         | 177          | C, H <sub>1</sub> , BrN <sub>4</sub> O                            | 9.98              | 9.85           |
| 9.              | 4-Hydroxy-3-methoxyphenyl | Thiosemicarbazido  | 30         | 230          | C <sub>17</sub> H <sub>16</sub> BrN <sub>2</sub> O <sub>6</sub> S | 9.25              | 9.18           |
| 10.             | 4-Hydroxy-3-methoxyphenyl | Semicarbazido      | 25         | 195          | C <sub>17</sub> H <sub>16</sub> BrN <sub>2</sub> O <sub>6</sub>   | 9.58              | 9.52           |
| 11.             | 2-Hydroxyphenyl           | Phenyl             | 30         | 242          | C, H, BrN, O4                                                     | 6.35              | 6.22           |
| 12.             | 2-Hydroxyphenyl           | 4-Nitrophenyl      | 35         | 174          | C, H, BrN, O,                                                     | 8.64              | 8.58           |
| 13.             | 2-Hydroxyphenyl           | 2,4-Dinitrophenyl  | 35         | 220          | C <sub>11</sub> H <sub>14</sub> BrN <sub>4</sub> O <sub>6</sub>   | 10.54             | 10 40          |
| 14.             | 2-Hydroxyphenyl           | Thiosemicarbazido  | 25         | 182          | C, H, BrN, OAS                                                    | 9.90              | 9,98           |
| 15.             | 2-Hydroxyphenyl           | Semicarbazido      | 25         | 190          | C1. H14 BrN O5                                                    | 10.29             | 1 <b>0.1</b> 8 |

TABLE 2-1.5-DIARYL-3-(5-BROMO-4-HYDROXY-6-METHYL-2H-PYRAN-2-ONE-3-YL)-2-PYRAZOLINES(III)

DMSO-d<sub>6</sub> exhibited signals at  $\tau 2.70(s, 5, C_6$ -ArH), 3.14(m, 5, N<sub>1</sub>-ArH) and 7.36(s, 3, CH<sub>8</sub>). The most convincing proof of pyrazoline structure is the absorption due to one proton at C<sub>5</sub> (suppose H<sub>a</sub>) and two at C<sub>4</sub>(H<sub>b</sub> and H<sub>c</sub>). The peaks due to these protons appear as an ABX system as in styrene oxide<sup>4</sup> wherein each proton shows a quartet due to coupling with each other and signals due to them are centered at 4.70 (H<sub>a</sub>), J<sub>ab</sub>=7 cps, 6.75 (H<sub>b</sub>), J<sub>ac</sub>=12 cps and 5.90 (H<sub>c</sub>), J<sub>bc</sub>=19 cps. A broad signal at 1.60 can safely be assigned to hydroxyl proton of pyran ring.

## **Experimental**

All melting points reported are uncorrected. IR spectra were taken on a Beckman IR-20 instrument. The NMR were run on a Varian A-60 spectrometer using tetramethylsilane as the internal standard, chemical shifts are expressed in  $\tau$ .

5-Bromodehydroacetic acid was prepared by treating anhydrous dehydroacetic acid in chloroform with 2.5 equiv. of bromine containing 1 mole % iodine<sup>5</sup>.

3-Cinnamoyl-5-bromo-4-hydroxy-6-methyl-2H-pyran-2-one(II<sub>1</sub>):

A mixture of I (5.0g, 0.02 mole), benzaldehyde (2.2 g, 0.02 mole), chloroform (40 ml) and piperidine (2 ml) was refluxed for 4 hr, concentrated under *vacuuo* and the residue is crystallized from ethanol to give II<sub>1</sub>. (Yield : 2.6 g, 54%); m.p. 130°; IR (KBr) : 1700 (lactone), 1600(C=C) and 1000(C-O-C) cm<sup>-1</sup>; Anal. Found : C, 53.64; H, 3.15; C<sub>15</sub>H<sub>11</sub>BrO<sub>4</sub> requires C, 53.73; H, 3.23%. 1,5-Diphenyl-3-(5-hromo-4-hydroxy-6-methyl-2Hpyran-2-one-3-yl)-2-pyraz:/line(III\_):

II<sub>1</sub>, (4.70 g, 0.02 tools), phenylhydrazine (2.2 g, 0.02 mole) were reflixed in ethanol (40 ml) and acetic acid (4 ml) for 2 hr, cooled and the product which separated out was filtered and crystallised from ethanol. (Yield : 2.0 g, 30%); m.p.150°d; IR(KBr) : 1700 (lactone); 1600(C=C); and 1000 (C-O-C) cm<sup>-1</sup>. NMR(DMSO d<sub>6</sub>) : 2.70(s,5, C<sub>s</sub> - ArH); 3.14(m, 5,N<sub>1</sub> - ArH); 7.36(s, 3,CH<sub>8</sub>); 4.70(dd, 1,H<sub>a</sub>, J<sub>ab</sub>=7 cps); 6.75(dd, 7, H<sub>a</sub>, J<sub>ac</sub>=12 cps) 5.90 (dd, 1, H<sub>c</sub>, J<sub>bc</sub>=19 cps) and 1.60 (s, 1, OH). Anal. Found : N, 6.48; C<sub>21</sub>H<sub>17</sub>BrN<sub>2</sub>O<sub>8</sub> requires N, 6.58%.

## Acknowledgement

One of us (R.S.) is thankful to CSIR, New Delhi, for the award of a junior research fellowship.

## References

- 1. J. A. BERSON, J. Amer. Chem. Soc., 1952, 74, 5172.
- R. H. WILEY, C. H. JARBOF and H. G. ELLERT, J. Amer. Chem. Soc., 1955, 77, 5102.
- V. K. MAHESH and R. S. GUPTA, Indian J. Chem., 1974, 12, 956.
- R. M. SILVERSTEIN, C. G. BESSLER and T. C. MORRILL, Spectrometric Identification of Organic Compounds, John Wiley and Sons, New York, 1963, p. 81.
- 5. T. M. HARRIS, C. M. HARRIS and C. K. BRUSH, J. Org. Chem., 1970, 35, 1329.