Human-in-the-loop for a disconnection aware retrosynthesis

Andrea Byekwaso, <u>Alain Vaucher</u>, Philippe Schwaller, Alessandra Toniato, Teodoro Laino

IBM Research

ACS Spring March 23, 2022

IBM and the data science / chemistry ecosystem?

- Accelerated discovery IBM RXN
- Two sides in our relationship with the ecosystem:
 - User: existing data/tools to develop new AI models
 - Provider: make technology available & usable via platform
- Interesting interplay between research and platform development!

Example (today's talk): disconnection aware retrosynthesis

OUTLINE

- 1. IBM RXN research
- 2. IBM RXN platform
- 3. Data-driven retrosynthetic models in practice
- 4. Disconnection aware retrosynthesis

OUTLINE

- 1. IBM RXN research
- 2. IBM RXN platform
- 3. Data-driven retrosynthetic models in practice
- 4. Disconnection aware retrosynthesis

Reaction prediction

Textual representation (SMILES)

NCc1cccc(Cl)c1 O=C(Cl)c1ccc(CBr)cc1

O=C(NCc1cccc(Cl)c1)c1ccc(CBr)cc1

Schwaller, P.; Laino, T.; Gaudin, T.; Bolgar, P.; Hunter, C. A.; Bekas, C. & Lee, A. A., ACS Cent. Sci., 2019, 5, 1572-1583.

Retrosynthetic analysis

Schwaller, P.; Petraglia, R.; Zullo, V.; Nair, V. H.; Haeuselmann, R. A.; Pisoni, R.; Bekas, C.; Iuliano, A. & Laino, T., Chem. Sci., 2020, 11, 3316-3325.

Completing partial chemical equations

Background: 3/7

Classifying and mapping reactions

Schwaller, P.; Probst, D.; Vaucher, A. C.; Nair, V. H.; Kreutter, D.; Laino, T. & Reymond, J.-L., *Nat. Mach. Intell.*, **2021**, *3*, 144-152.

Prediction of chemical reaction yields

Background: 5/7

- [1] Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D. & Doyle, A. G. Predicting reaction performance in C–N cross-coupling using machine learning. *Science* **360**, 186–190 (2018).
- 2] Chuang, K. V. & Keiser, M. J. Comment on "Predicting reaction performance in C–N crosscoupling using machine learning". *Science* **362** (2018).

- [3] Sandfort, F., Strieth-Kalthoff, F., Kühnemund, M., Beecks, C. & Glorius, F. A structure-based platform for predicting chemical reactivity. *Chem* (2020).
- [4] Schwaller, P., Vaucher, A. C., Laino, T. & Reymond, J.-L. Prediction of chemical reaction yields using deep learning. *ChemRxiv preprint* doi:10.26434/chemrxiv.12758474 (2020).

Schwaller, P.; Vaucher, A. C.; Laino, T. & Reymond, J.-L., Mach. Learn.: Sci. Technol., 2021, 2, 015016.

Atom mapping: RXNMapper

Background: 6/7

Schwaller, P.; Hoover, B.; Reymond, J.-L.; Strobelt, H. & Laino, T., Sci. Adv., 2021, 7, eabe4166.

Synthesis actions & synthesis automation

Background: 7/7

C1=CC(C(=0)C)=CC=C1Cl>>C1=CC(C(=0)C)=CC([N+]([0-])=0)=C1Cl

Vaucher, A. C.; Schwaller, P.; Geluykens, J.; Nair, V. H.; Iuliano, A.; Laino, T., Nat. Commun., 2021, 12, 2573.

Alain Vaucher / IBM Research Europe / March 23, 2022

Synthesis actions & synthesis automation

Background: 7/7

OUTLINE

- 1. IBM RXN research
- 2. IBM RXN platform
- 3. Data-driven retrosynthetic models in practice
- 4. Disconnection aware retrosynthesis

← → C û (ctions list) 🎒 =	
Status: 0/2 processed Reaction 1	Ō		Score 1 F	Reaction class N/A \checkmark	Q. Q.	
Model tuner 🗉						ith
Name	Creation date	\checkmark	AI model	Statu	IS	
∧ data-retro	2022-02-18		Retrosynthetic route prediction	9 F	Ready to run	
Data reaction: File preview: 🔁	50k.txt ⊻					
Items per page: 10 \vee 1-1 of 1 item	n					
Reaction 3	Ē		Score 0.999	Reaction class N/A		
Reactions			Store 0.999	reaction class N/A		

Freely available platform: rxn.res.ibm.com

API wrapper on GitHub: github.com/rxn4chemistry/rxn4chemistry

ĽL	aunch	ner			×		🖪 rxn4	chemist	try_tour.i	pynb 🔵														
8	+	Ж		Ĉ	▶ ■		C 🍺	Mark	down ֊	,									Pytho	on 3 (i	pykerr	nel) 🔿	ĕ	
			Kunni	ng a	теасцо	пp	realcu	on is as	simple	as:														
	[5]	1: 1	<pre>predict_reaction_response = rxn4chemistry_wrapper.predict_reaction('BrBr.clccc2cc3cccc3cc2c1') NOTE: we have set limitations on the number of calls per second and per minute in the public version of RXN for Chemistry. These limits can be tweaked or removed in on-premise deployments. Those limitations are currently set to 5 calls per minute, in most cases this is not a problematic limitation.</pre>																					
		-											n											
	[6]	1: 1	<pre>predict_reaction_results = rxn4chemistry_wrapper.get_predict_reaction_results(predict_reaction_response['prediction_id'])</pre>																					
	[7]	1: 9	get_r	eact	tion_fr	rom	ı_smile	es(pre	dict_re	action_	results	s [' re	espon	nse']	['payl	load']['att	empt	<mark>s'</mark>][0]['sm	niles'])		
	[7]]:	Br-	—В	· +	ſ	J		\bigcirc			. (Ĭ	Br	\sim								
			lt is po highth	ossib rroug)le to ru 3hput fa	ın r əsh	reactior lion:	ı predic	tion in b	atches (not stori	ring th	the info	format	ion in a	any p	roject)	to us	e the s	ervice	e in a			

[8]: predict_rection_batch_response = rxn4chemistry_wrapper.predict_reaction_batch(

OUTLINE

- 1. IBM RXN research
- 2. IBM RXN platform
- 3. Data-driven retrosynthetic models in practice
- 4. Disconnection aware retrosynthesis

Retrosynthesis: numerous data-driven models!

TABLE 1 Di	fferent retrosynthetic prediction approache	s							
Input (product)	Output	Single-step approach	Multi-step algorithm						
Sequence-based									
SMILES	Reactants SMILES	Seq-2-seq LSTM	None: 56						
SMILES	Largest reactant SMILES	Transformer	None: 83						
SMILES	Reactants SMILES	Transformer	None: 83,95–99, MCTS: 112						
SMILES	1: Synthons prediction, 2: Synthons completion	Transformer	None: 105						
MACCS keys	Reactants MACCS keys	Transformer	None: 100						
SMILES	Precursors SMILES	Transformer	Beam search: 28						
Fingerprint-base	Fingerprint-based								
Fingerprint	Reaction template	Similarity	None: 93						
Fingerprint	Reaction template	Feed-forward NN	None: 78,106,107, MCTS: 23,29,109,110, RL: 114, A*: 115,116						
Fingerprint	Reaction template	Modern Hopfield network	None: 91						
Graph-based									
Molecular graph	Reaction template	Graph neural network	None: 52,101, SMC: 117						
Molecular graph	1: Synthons prediction, 2: Synthons completion	Graph neural network	None: 102,103,118						
Molecular graph	Sequence of graph-edits	Graph neural network	None: 30						

Only a selection!

Schwaller, P. et al., Machine intelligence for chemical reaction space, *WIREs Comput. Mol. Sci.*, **2022**, e1604.

Retrosynthesis: recent models

Retrosynthesis: metrics?

Retrosynthesis: metrics?

PAPER • OPEN ACCESS

"On direct synthesis and retrosynthesis prediction benchmark datasets we publish state-of-the-art results for top-1 accuracy."

Ross Irwin¹, Spyridon Dimitriadis^{1,2}, Jiazhen He¹ and Esben Jannik Bjerrum^{3,1} D

Al-Driven Synthetic Route Design Incorporated with Retrosynthesis **Knowledge** "We adopt the conventional top-k accuracy of Shoichi Ishida, Kei Terayama, the full reactants to evaluate the **Convertional Compared Active Pretrosynthesis performance.**"

Research article Open Access Published: 15 March 2022

"Typically, these data-driven methods are f models for one-step evaluated in terms of top-N accuracy"

> Min Htoo Lin, Zhengkai Tu & Conn"We acknowledge that top-*N* accuracy alone Journal of Cheminformatics 14, A does not paint a complete picture of a one-269 Accesses 9 Altmetric Mstep model's performance, as others have also argued."

Retrosynthesis: metrics?

- top-N accuracy is not fully satisfactory a necessary evil
- Multi-step: hard to assess as well!
 - Top-N
 - Turing test
 - Percentage of solved molecules

What do the chemists need?

Our experience with IBM RXN

DEMO: CN(C/C=C/c1ccc(Br)cc1)C(=0)CC1

Our experience with IBM RXN

- Many chemists prefer "interactive" mode
- DEMO: CN(C/C=C/c1ccc(Br)cc1)C(=0)CC1

Even more interactive control?

Let the chemists decide where to break the compound?

OUTLINE

- 1. IBM RXN research
- 2. IBM RXN platform
- 3. Data-driven retrosynthetic models in practice
- 4. Disconnection aware retrosynthesis

Disconnection-aware retrosynthesis

Goal:

Input (target compound)

Machine learning model

Inspired by the Molecular Transformer

Schwaller, P.; Laino, T.; Gaudin, T.; Bolgar, P.; Hunter, C. A.; Bekas, C. & Lee, A. A., ACS Cent. Sci., 2019, 5, 1572-1583.

Cn1c2c(Br)cccc2[nH]c1=0

CNc1c(N)cccc1Br.CC#N.0=C(n1ccnc1)n1ccnc1

C[**n:1**]1c2c(Br)cccc2[**nH:1**][**c:1**]1=0

*Not shown here for readability: the Model uses tokenized SMILES strings: " $C[n:1]1c2c(Br)..." \rightarrow "C [n:1] 1 c 2 c (Br) ..."$ Alain Vaucher / IBM Research Europe / March 23, 2022

Dataset generation

Start from atom-mapped reaction:

Data and model

- >2M patent reactions from Pistachio [1]
- Atom-mapped with RXNMapper [2]
- Training, validation, and test sets of sizes 2.27M, 10.0k, and 126k.
- Transformer-based seq-2-seq model implemented with OpenNMT [3]

Nextmove Software Pistachio, http://www.nextmovesoftware.com/pistachio (Accessed Sep 23, 2021).
 Schwaller, P.; Hoover, B.; Reymond, J.-L.; Strobelt, H. & Laino, T., *Sci. Adv.*, **2021**, *7*, eabe4166..
 Klein, G. et al, OpenNMT: Open-Source Toolkit for Neural Machine Translation. ACL 2017.

Results: examples

Results

Number of tagged atoms	Dataset fraction (%)	Disconnection accuracy (%)	Round-trip accuracy (%)	Identical to ground truth (%)		
0	1.29	98.3	7.3	9.0		
1	12.65	99.1	84.2	13.9		
2	51.22	98.5	88.4	15.6		
3	10.99	92.2	59.3	15.4		
4	5.64	77.2	45.9	10.6		
5	5.34	78.5	53.0	13.4		
6-10	8.96	56.3	38.2	9.5		
>10	3.91	22.4	20.7	9.7		
Overall	100.0	88.9	76.0	14.1		

Results

Thank you for your attention!

Questions or comments

E-mail: ava@zurich.ibm.com

Twitter: @acvaucher

Preprint with initial results: <u>ibm.biz/disconnection-aware-retro</u>

