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Chapter 1

Introduction

The main goal of the SWAN model is to solve the spectral action balance equation without
any a priori restrictions on the spectrum for the evolution of wave growth. This equation
represents the effects of spatial propagation, refraction, shoaling, generation, dissipation
and nonlinear wave-wave interactions. The basic scientific philosophy of SWAN is identical
to that of WAM cycle 3. SWAN is a third-generation wave model and it uses the same
formulations for the source terms.

Whereas the WAM model considers problems on oceanic scales, with SWAN wave propa-
gation is calculated from deep water to the surf zone. Since, WAM makes use of explicit
propagation schemes in geographical and spectral spaces, it requires very small grid sizes
in shallow water and is thus unsuitable for applications to coastal regions. For that reason,
SWAN employs implicit schemes, which are more robust and economic in shallow water
than the explicit ones. Note that SWAN may be less efficient on oceanic scales than WAM.

1.1 Historical background

Over the past two decades, a number of advanced spectral wind-wave models, known as
third-generation models, has been developed such as WAM (WAMDI Group, 1988), WAVE-
WATCH III (Tolman, 1991), TOMAWAC (Benoit et al., 1996) and SWAN (Booij et al.,
1999). These models solve the spectral action balance equation without any a priori re-
strictions on the spectrum for the evolution of wave growth.

Based on the wave action balance equation with sources and sinks, the shallow water wave
model SWAN (acronym for Simulating WAves Nearshore) is an extension of the deep water
third-generation wave models. It incorporates the state-of-the-art formulations for the deep
water processes of wave generation, dissipation and the quadruplet wave-wave interactions
from the WAM model (Komen et al., 1994). In shallow water, these processes have been
supplemented with the state-of-the-art formulations for dissipation due to bottom friction,
triad wave-wave interactions and depth-induced breaking. SWAN is fully spectral (in all
directions and frequencies) and computes the evolution of wind waves in coastal regions
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2 Chapter 1

with shallow water and ambient current.

SWAN is developed at Delft University of Technology and is freely available from
http://www.fluidmechanics.tudelft.nl/swan/index.htm. It is used by many goverment au-
thorities, research institutes and consultants worldwide. The feedback has widely indicated
the reliability of SWAN in different experiment and field cases.

Initially, the SWAN cycle 1 was formulated to be able to handle only stationary condi-
tions on a rectangular grid. Later on, SWAN cycle 2 model has been developed. This is
considered as the second step in the development of SWAN models. Cycle 2 of SWAN is
stationary and optionally non-stationary. It can compute the wave propagation not only
on a regular rectangular grid, but also on a curvilinear grid. Previous official versions
30.62, 30.75, 40.01 and 32.10 belong to the cycle 2 of SWAN.

This section is under preparation.

1.2 Purpose and motivation

The purpose of this document is to provide relevant information on the mathematical
models and numerical techniques for the simulation of spectra of random short-crested,
wind-generated waves in coastal regions. Furthermore, this document explains the essential
steps involved in the implementation of various numerical methods, and thus provides an
adequate reference with respect to the structure of the SWAN program.

1.3 Readership

This document is, in the first place, addressed to those, who wish to modify and to extend
mathematical and numerical models for shallow wind-wave problems. However, this mate-
rial is also useful for those who are interested in the application of the techniques discussed
here. The text assumes the reader has basic knowledge of analysis, partial differential
equations and numerical mathematics and provides what is needed both in the main text
and in the appendices.

1.4 Scope of this document

SWAN is a third-generation wave model for obtaining realistic estimates of wave parameters
in coastal areas, lakes and estuaries from given wind, bottom and current conditions.
However, SWAN can be used on any scale relevant for wind-generated surface gravity
waves. The model is based on the wave action balance equation (or energy balance in the
absence of currents) with sources and sinks. Good introductory texts on the background
of SWAN are Young (1999) and Booij et al. (1999).
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The following wave propagation processes are represented in SWAN:

• propagation through geographic space,

• refraction due to spatial variations in bottom and current,

• diffraction,

• shoaling due to spatial variations in bottom and current,

• blocking and reflections by opposing currents and

• transmission through, blockage by or reflection against obstacles.

The following wave generation and dissipation processes are represented in SWAN:

• generation by wind,

• dissipation by whitecapping,

• dissipation by depth-induced wave breaking,

• dissipation by bottom friction and

• wave-wave interactions in both deep and shallow water.

In addition, the wave-induced set-up of the mean sea surface can be computed in SWAN.
However, wave-induced currents are not computed by SWAN. In 1D cases, computation of
wave-induced set-up is based on exact shallow water equations, whereas in 2D cases they
need to be approximated since the effects of wave-induced currents are ignored.

Diffraction is modelled in a restrict sense, so the model should be used in areas where
variations in wave height are large within a horizontal scale of a few wave lengths. However,
the computation of diffraction in arbitrary geophysical conditions is rather complicated
and requires considerable computing effort. To avoid this, a phase-decoupled approach, as
described in (Holthuijsen et al., 2003), is employed so that same qualitative behaviour of
spatial redistribution and changes in wave direction is obtained.

SWAN is stationary and optionally non-stationary and can be applied in Cartesian or
curvi-linear (recommended only for small scales) or spherical (small scales and large scales)
co-ordinates. The stationary mode should be used only for waves with a relatively short
residence time in the computational area under consideration, i.e. the travel time of the
waves through the region should be small compared to the time scale of the geophysical
conditions (wave boundary conditions, wind, tides and storm surge).
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1.5 Overview

The remainder of this document is subdivided as follows: In Chapter 2 the action balance
equations used in SWAN are presented. Next, each source term of the governing equations
is in depth described. In Chapter 3 the main characteristics of the finite difference method
for the discretization of the governing equations in irregular horizontal planes are outlined.
Various differencing schemes for spatial propagation are reported. Chapter 4 is concerned
with discussing several boundary conditions and their implementation. Chapter 5 is de-
voted to the design of the two-dimensional wave set-up of sea surface. Chapter 6 is devoted
to the linear solvers for the solution of the resulted linear systems of equations. Chapter 7
deals with some consideration on parallelization of SWAN on distributed memory architec-
tures. Chapter 8 concludes this document by summarizing the overall solution algorithm
of SWAN.

This document, however, is not intended as being complete. Although, this document
describes the essential steps involved in the simulation of wind-generated waves, so that
the user can see which can be modified or extended to solve a particular problem properly,
some issues involved in SWAN are not included. Below, a list of these issues is given, of
which the information maybe available elsewhere:

• RIAM,

• reflections, and

• diffraction.

1.6 Acknowledgements

The present SWAN team are grateful to the contributors from the very first days of SWAN
which took place at the Delft University of Technology in Delft, The Netherlands in 1993:
Nico Booij and Leo Holthuijsen.

We further want to acknowledge all contributors who helped us to improve SWAN, reported
bugs, and tested SWAN thoroughly: Tim Campbell, John Cazes, IJsbrand Haagsma,
Annette Kieftenburg, Ekaterini Kriezi, Roberto Padilla-Hernandez, Roeland Ris, Erick
Rogers, Andre van der Westhuijsen and Marcel Zijlema.

Many thanks are due to Gerbrant van Vledder and Noriaki Hashimoto who provided the
source code for exact computation of four wave-wave interations, XNL and RIAM, respec-
tively.

It was also the important role which SWAN played in several projects, mostly funded by
the Office of Naval Research (USA), which helped a lot to develop and maintain SWAN.
The present version of SWAN is supported by Rijkswaterstaat (as part of the Ministry of
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Transport, Public Works and Water Management, The Netherlands).

We are finally grateful to all those other people working on the Public Domain Software
without which a project like SWAN would be unthinkable: Linux, Intel, GNU F95, LATEX,
MPICH and many others.
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Chapter 2

Governing equations

2.1 Spectral description of wind waves

Wind generated waves have irregular wave heights and periods, caused by the irregular
nature of wind. Due to this irregular nature, the sea surface is continually varying, which
means that a deterministic approach to describe the sea surface is not feasible. On the
other hand, statistical properties of the surface, like average wave height, wave periods
and directions, appear to vary slowly in time and space, compared to typical wave periods
and wave lengths. The surface elevation of waves in the ocean, at any location and any
time, can be seen as the sum of a large number of harmonic waves, each of which has been
generated by turbulent wind in different places and times. They are therefore statistically
independent in their origin. According to linear wave theory, they remain independent
during their journey across the ocean. Under these conditions, the sea surface elevation on
a time scale of one hundred characterstic wave periods is sufficiently well described as a
stationary, Gaussian process. The sea surface elevation in one point as a function of time
can be described as

η(t) =
∑

i

ai cos(σit + αi) (2.1)

with η the sea surface elevation, ai the amplitude of the ith wave component, σi the relative
radian or circular frequency of the ith wave component in the presence of the ambient
current (equals the absolute radian frequency ω when no ambient current is present) and
αi the random phase of the ith wave component. This is called the random-phase model.

In the presene of the ambient current, it is assumed that it is uniform with respect to the
vertical co-ordinate and the changes in the mean flow within a wave length are so small
that they affect only negligibly the dispersion relation. The absolute radian frequency ω
then equals the sum of the relative radian frequency σ and the multiplication of the wave
number and ambient current velocity vectors:

ω = σ + ~k · ~u (2.2)

7
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which is the usual Doppler shift. For linear waves, the relative frequency is given by

σ2 = gk tanh(kd) (2.3)

where g is the acceleration of gravity and d is the water depth.

Ocean waves are chaotic and a description in the time domain is rather limited. Alterna-
tively, many manipulations are more readily described and understood with the variance
density spectrum, which is the Fourier transform of the auto-covariance function of the sea
surface elevation:

E ′(f) =
∫ +∞

−∞
C(τ)e−2πifτdτ (2.4)

with
C(τ) =< η(t)η(t + τ) > (2.5)

where C(τ) is auto-covariance function, <> represents mathematical expectation of ran-
dom variable and η(t), η(t + τ) represent two random processes of sea surface elevation, τ
represents the time lag.

In the field of ocean wave theory it is conventional to degfine a spectrum E(f) slightly
different from the above one:

E(f) = 2E ′(f) for f ≥ 0 and E(f) = 0 for f < 0 (2.6)

The description of water waves through the defined variance density spectrum E(f) is
called spectral description of water waves. It can be proved that the variance of the sea
surface elevation is given by

< η2 >= C(0) =
∫ +∞

0
E(f)df (2.7)

which indicates that the spectrum distributes the variance over frequencies. E(f) should
therefore be interpreted as a variance density. The dimensions of E(f) are m2/Hz if the
elevation is given in m and the frequencies in Hz.

The variance < η2 > is equal to the total energy Etot of the waves per unit surface area if
multiplied with a properly chosen coefficient:

Etot =
1

2
ρwg < η2 > (2.8)

The terms variance density spectrum and energy density spectrum will therefore be used
indiscriminately in this document.

In many wave problems it is not sufficient to define the energy density as a function of
frequency alone. It is mostly required to distribute the wave energy over directions as well.
This spectrum, which distributes the wave energy over frequencies and directions, will be
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denoted with E(f, θ). As the total energy density at a frequency f is dstributed over the
directions θ in E(f, θ), it follows that:

E(f) =
∫ 2π

0
E(f, θ)dθ (2.9)

The energy density spectrum E(f) and E(f, θ) are depicted in Figure 2.1. Based on the
energy density spectrum, the integral wave parameters can be obtained. These parameters

Figure 2.1: Illustrations of 1D and 2D wave spectra. (Reproduced from Holthuijsen (2005)
with permission of Cambridge University Press.)

can be expressed in terms of the so-called n−th moment of the energy density spectrum:

mn =
∫ ∞

0
fnE(f)df (2.10)

So, the variance of the sea surface elevation is given by m0 =< η2 >. Well-known param-
eters are the significant wave height:

Hs = 4
√

m0 (2.11)

and some wave periods:

Tm01 =
m0

m1

, Tm02 =

√

m0

m2

, Tm−10 =
m−1

m0

(2.12)
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In SWAN, the energy density spectrum E(σ, θ) is generally used. On a larger scale the
spectral energy density function E(σ, θ) becomes a function of space and time and wave
dynamics should be considered to determine the evolution of the spectrum in space and
time. For brevity, the notation E(σ, θ) will still be used.

2.2 Propagation of wave energy

2.2.1 Wave kinematics

Using the linear wave theory and the conversion of wave crests, the wave propagation
velocities in spatial space and spectral space can be obtained from the kinematics of a
wave train (Whitham, 1974; Mei, 1983):

d~x

dt
= (cx, cy) = ~cg + ~u =

1

2

(

1 +
2kd

sinh(2kd)

)

σ~k

k2
+ ~u (2.13)

dσ

dt
= cσ =

∂σ

∂d

(

∂d

∂t
+ ~u · ∇~xd

)

− cg
~k · ∂~u

∂s

dθ

dt
= cθ = −1

k

(

∂σ

∂d

∂d

∂m
+ ~k · ∂~u

∂m

)

where cx, cy are the propagation velocities of wave energy in spatial x−, y−space, cσ

and cθ are the propagation velocities in spectral space σ−, θ−space, d is water depth,
s is the space co-ordinate in the wave propagation direction of θ and m is a co-ordinate
perpendicular to s. Furthermore,

~k = (kx, ky) , ~u = (ux, uy) (2.14)

In addition, the operator d/dt denotes the total derivative along a spatial path of energy
propagation, and is defined as

d

dt
=

∂

∂t
+ (~cg + ~u) · ∇~x (2.15)

2.2.2 Spectral action balance equation

All information about the sea surface is contained in the wave variance spectrum or energy
density E(σ, θ), distributing wave energy over (radian) frequencies σ (as observed in a
frame of reference moving with current velocity) and propagation directions θ (the direction
normal to the wave crest of each spectral component). Usually, wave models determine
the evolution of the action density N(~x, t; σ, θ) in space ~x and time t. The action density
is defined as N = E/σ and is conserved during propagation in the presence of ambient
current, whereas energy density E is not (Whitman, 1974). It is assumed that the ambient
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current is uniform with respect to the vertical co-ordinate and is denoted as ~U .

The evolution of the action density N is governed by the action balance equation, which
reads (e.g., Mei, 1983; Komen et al., 1994):

∂N

∂t
+ ∇~x · [(~cg + ~U)N ] +

∂cσN

∂σ
+

∂cθN

∂θ
=

Stot

σ
(2.16)

The left-hand side is the kinematic part of this equation. The second term denotes the
propagation of wave energy in two-dimensional geographical ~x-space, with the group ve-
locity ~cg = ∂σ/∂~k following from the dispersion relation σ2 = g|~k| tanh(|~k|d) where ~k is the
wave number vector and d the water depth. The third term represents the effect of shifting
of the radian frequency due to variations in depth and mean currents. The fourth term
represents depth-induced and current-induced refraction. The quantities cσ and cθ are the
propagation velocities in spectral space (σ, θ). The right-hand side contains Stot, which is
the source/sink term that represents all physical processes which generate, dissipate, or
redistribute wave energy. They are defined for energy density E(σ, θ). Details are given in
Section 2.3.

The second term in Eq. 2.16 can be recasted in Cartesian, spherical or curvilinear co-
ordinates. For small scale applications the spectral action balance equation may be ex-
pressed in Cartesian co-ordinates as given by

∂N

∂t
+

∂cxN

∂x
+

∂cyN

∂y
+

∂cσN

∂σ
+

∂cθN

∂θ
=

Stot

σ
(2.17)

with
cx = cg,x + Ux , cy = cg,y + Uy (2.18)

With respect to applications at shelf sea or oceanic scales the action balance equation may
be recasted in spherical co-ordinates as follows:

∂N

∂t
+

∂cλN

∂λ
+ cos−1 ϕ

∂cϕ cos ϕN

∂ϕ
+

∂cσN

∂σ
+

∂cθN

∂θ
=

Stot

σ
(2.19)

with longitude, λ and latitude ϕ.

2.3 Sources and sinks

First, in Section 2.3.1 general concepts of the physical processes of generation, dissipation
and non-linear wave-wave interactions that are implemented in SWAN are outlined. Next,
complete expressions for these physical processes are given in subsequent sections.

2.3.1 General concepts

In shallow water, six processes contribute to Stot:

Stot = Sin + Snl3 + Snl4 + Sds,w + Sds,b + Sds,br . (2.20)
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These terms denote, respectively, wave growth by the wind, nonlinear transfer of wave en-
ergy through three-wave and four-wave interactions and wave decay due to whitecapping,
bottom friction and depth-induced wave breaking. First, a brief summary of the formula-
tions is given below. Next, for each term complete expressions are outlined.

Wind input

Transfer of wind energy to the waves is described with a resonance mechanism (Phillips,
1957) and a feed-back mechanism (Miles, 1957).

Resonance with wind-induced pressure fluctations

The pressure distribution induced by wind at the sea surface is random. It propagates more
or less a frozen pattern over the surface with wind speed. This can be Fourier transformed
to produce harmonic pressure waves that propagate with wind speed. If this harmonic
pressure wave remains in phase with a free harmonic surface wave, then the wind energy
is transferred from the pressure wave to the surface wave. The energy input by this mech-
anism, which contributes to the initial stages of wave growth, varies linearly with time.

Feedback of wave-induced pressure fluctations

When a wave has been generated by the resonance mechanism as explained above, it will
distort the wind profile just above the water surface. This distortion results in an ’over
pressure’ on the wind ward side of the crest of the wave and an ’under pressure’ at the lee
side of the crest. It means that when the sea surface moves up and down, the pressure also
follows the same movements, therefore transfer energy to the wave. This energy transfer
is proportional to the energy in the wave itself, so the wave grows more as it gets larger.
This effect is found to be exponential in time.

Based on the two wave growth mechanisms, wave growth due to wind commonly described
as the sum of linear and exponential growth term of a wave component:

Sin(σ, θ) = A + BE(σ, θ) (2.21)

in which A and B depend on wave frequency and direction, and wind speed and direction.
The effects of currents are accounted for by using the apparent local wind speed and
direction. The expression for the term A is due to Cavaleri and Malanotte-Rizzoli (1981)
with a filter to avoid growth at frequencies lower than the Pierson-Moskowitz frequency
(Tolman, 1992a). Two optional expressions for the coefficient B are used in the SWAN
model. The first is taken from an early version of the WAM Cycle 3 model (the WAMDI
group, 1988). It is due to Snyder et al. (1981), rescaled in terms of friction velocity U∗

by Komen et al. (1984). The drag coefficient to relate U∗ to the driving wind speed at 10
m elevation U10 is taken from Wu (1982). The second expression for B in SWAN is taken
from the WAM Cycle 4 model (Komen et al., 1994). It is due to Janssen (1991a) and
it accounts explicitly for the interaction between the wind and the waves by considering
atmospheric boundary layer effects and the roughness length of the sea surface. The
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corresponding set of equations is solved (as in the WAM model) with the iterative procedure
of Mastenbroek et al. (1993).

Dissipation

The dissipation term of wave energy is represented by the summation of three different
contributions: whitecapping Sds,w, bottom friction Sds,b and depth-induced breaking Sds,br.

Whitecapping is primarily controlled by the steepness of the waves. In presently operating
third-generation wave models, the whitecapping formulations are based on a pulse-based
model (Hasselmann, 1974), as adapted by the WAMDI group (1988):

Sds,w(σ, θ) = −Γσ̃
k

k̃
E(σ, θ) (2.22)

where Γ is a steepness dependent coefficient, k is wave number and σ̃ and k̃ denote a
mean frequency and a mean wave number, respectively (cf. the WAMDI group, 1988).
Komen et al. (1984) estimated the value of Γ by closing the energy balance of the waves
in fully developed conditions. This implies that this value depends on the wind input
formulation that is used. Since two expressions are used for the wind input in SWAN, also
two values for Γ are used. The first is due to Komen et al. (1984), as in WAM Cycle 3.
The second expression is an adaptation of this expression based on Janssen (1991a), as in
WAM Cycle 4 (see Janssen, 1991b; Günther et al., 1992). Young and Banner (1992) and
Banner and Young (1994) have shown that the results of closing the energy balance in this
manner depend critically on the choice of a high-frequency cut-off frequency above which
a diagnostic spectral tail is used. In SWAN, this cut-off frequency is different from the one
used in the WAM model. Differences in the growth rates between the WAM model and
SWAN are therefore to be expected.

A number of alternative whitecapping expressions have been proposed to improve the ac-
curacy of SWAN. These range from alternative calibrations of the Komen et al (1984)
expression, e.g. Rogers et al (2003), to alternative ways of calculating mean spectral steep-
ness, e.g. Van Vledder and Hurdle (2002). In SWAN, two alternatives are presented.

An alternative formulation for whitecapping is based on the Cumulative Steepness Method
as described in Hurdle and Van Vledder (2004). With this method dissipation due to white-
capping depends on the steepness of the wave spectrum at and below a particular frequency.

A second alternative of the whitecapping expression is based on Alves and Banner (2003).
This expression is based on experimental findings that whitecapping dissipation appears to
be related to the nonlinear hydrodynamics within wave groups. This yields a dissipation
term that primarily depends on quantities that are local in the frequency spectrum, as op-
posed to ones that are distributed over the spectrum, as in the expression of Komen et al
(1984). However, the final whitecapping expression proposed by Alves and Banner (2003)
features additional dependencies on the spectral mean wavenumber and steepness, which
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is problematic in situations of mixed sea and swell often encountered in the nearshore.
Therefore, their whitecapping expression is applied here without these mean spectral de-
pendencies. This adapted whitecapping expression is used together with a wind input term
that is based on that of Yan (1987). Further information and details can be found in Van
der Westhuysen et al (2006).

In shallow water the orbital motions of the water particles, induced by surface waves, ex-
tend down to the sea floor. This gives rise to an interaction between te surface waves and
the bottom. An overview of different wave-bottom interaction mechanisms and of their
relative strengths is given by Shemdin et al. (1978). They are: scattering on bottom ir-
regularities, motion of a soft bottom, percolation into a porous bottom and friction in the
turbulent bottom boundary layer. The first process results in a local redistribution of wave
energy by scattering of wave components. The last three are dissipative. Their strength
depends on the bottom conditions. For continental shelf seas with sandy bottoms, the
dominant mechanism appears to be bottom friction (Bertotti and Cavaleri, 1994) which
can generally be expressed as:

Sds,b = −Cb
σ2

g2 sinh2 kd
E(σ, θ) (2.23)

in which Cb is a bottom friction coefficient. A large number of models has been proposed
since the pioneering paper of Putnam and Johnson (1949). Hasselmann et al. (1973)
suggested to use an empirically obtained constant. It seems to perform well in many dif-
ferent conditions as long as a suitable value is chosen (typically different for swell and
wind sea). A nonlinear formulation based on drag has been proposed by Hasselmann and
Collins (1968) which was later simplified by Collins (1972). More complicated, eddy vis-
cosity models have been developed by Madsen et al. (1988) and by Weber (1989, 1991a,
1991b). Considering the large variations in bottom conditions in coastal areas (bottom
material, bottom roughness length, ripple height, etc.), there is no field data evidence to
give preference to a particular friction model (Luo and Monbaliu, 1994). For this reason,
the simplest of each of these types of friction models has been implemented in SWAN: the
empirical JONSWAP model of Hasselmann et al. (1973), the drag law model of Collins
(1972) and the eddy-viscosity model of Madsen et al. (1988). The effect of a mean current
on the wave energy dissipation due to bottom friction is not taken into account in SWAN.
The reasons for this are given by Tolman (1992b) who argues that state-of-the-art expres-
sions vary too widely in their effects to be acceptable. He found that the error in finding
a correct estimate of the bottom roughness length scale has a much larger impact on the
energy dissipation rate than the effect of a mean current.

When waves propagate towards shore, shoaling leads to an increase in wave height. When
the ratio of wave height over water depth exceeds a certain limit, waves start to break,
thereby dissipating energy rapidly. In extreme shallow water (surf zone), this process be-
comes dominant over all other processes. The process of depth-induced wave breaking is
still poorly understood and little is known about its spectral modelling. In contrast to
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this, the total dissipation (i.e. integrated over the spectral space) due to this type of wave
breaking can be well modelled with the dissipation of a bore applied to the breaking waves
in a random field (Battjes and Janssen, 1978; Thornton and Guza, 1983). Laboratory
observations (e.g., Battjes and Beji, 1992; Vincent et al. 1994; Arcilla et al., 1994 and El-
deberky and Battjes, 1996) show that the shape of initially uni-modal spectra propagating
across simple (barred) beach profiles, is fairly insensitive to depth-induced breaking. This
has led Eldeberky and Battjes (1995) to formulate a spectral version of the bore model of
Battjes and Janssen (1978) that conserves the spectral shape. Expanding their expression
to include directions, the expression reads:

Sds,br(σ, θ) =
Dtot

Etot

E(σ, θ) (2.24)

in which Etot is the total wave energy and Dtot < 0 is the rate of dissipation of the
total energy due to wave breaking according to Battjes and Janssen (1978). Adding a
quadratic dependency on frequency as suggested by Mase and Kirby (1992) and supported
by Elgar et al. (1997) seems to have no noticeable effect on the SWAN results. Chen and
Guza (1997) inferred from observations and simulations with a Boussinesq model that the
high-frequency levels are insensitive to such frequency dependency because an increased
dissipation at high frequencies is compensated approximately by increased nonlinear en-
ergy transfer (but they did find the frequency dependency to be relevant in time domain).
The value of Dtot depends critically on the breaking parameter γ = Hmax/d (in which Hmax

is the maximum possible individual wave height in the local water depth d). In SWAN,
both a constant value and a variable value are available. The constant value is γ = 0.73
found as the mean value of the data set of Battjes and Stive (1985).

Nonlinear wave-wave interactions

The basic properties of wave-wave interactions were discovered during the fundamental
research of Phillips (1960) and Hasselmann (1960, 1962, 1963a,b). The physical meaning
of the interactions is that resonant sets of wave components exchange energy, redistribut-
ing energy over the spectrum. In deep and intermediate water, four-wave interactions
(so-called quadruplets) are important, whereas in shallow water three-wave interactions
(so-called triads) become important.

In deep water, quadruplet wave-wave interactions dominate the evolution of the spectrum.
They transfer wave energy from the spectral peak to lower frequencies (thus moving the
peak frequency to lower values) and to higher frequencies (where the energy is dissipated
by whitecapping). In very shallow water, triad wave-wave interactions transfer energy
from lower frequencies to higher frequencies often resulting in higher harmonics (Beji and
Battjes, 1993). Low-frequency energy generation by triad wave-wave interactions is not
considered here.

A full computation of the quadruplet wave-wave interactions is extremely time consuming
and not convenient in an operational wave model. Nevertheless, SWAN has two options to
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compute the Boltzmann integral in an exact manner. The first approach is the so-called
FD-RIAM technique as proposed by Hashimoto et al. (1998). This approach enables to
capture the frequency shift and the spectral shape changes as water depth decreases. The
second approach is the exact method developed by Webb, Tracy and Resio (WRT) (Re-
sio et al., 2001). This algorithm was reprogrammed by Van Vledder, bearing the name
XNL (Van Vledder and Bottema, 2003). This method is also enable to capture the fre-
quency shift and the spectral shape changes as water depth decreases.

A number of techniques, based on parametric methods and approximations have been
proposed to improve computational speed of computing quadruplets (see Young and Van
Vledder (1993) for a review). In SWAN, the computations are carried out with the Discrete
Interaction Approximation (DIA) of Hasselmann et al. (1985). This DIA has been found
to be quite successful in describing the essential features of a developing wave spectrum;
see Komen et al. (1994). For uni-directional waves, this approximation is not valid. In
fact, the quadruplet interaction coefficient for these waves is nearly zero. For finite-depth
applications, Hasselmann and Hasselmann (1981) have shown that for a JONSWAP-type
spectrum the quadruplet wave-wave interactions can be scaled with a simple expression. In
some cases, the DIA technique may not be accurate enough. In Hashimoto et al. (2003),
it was demonstrated that the accuracy of the DIA may be improved by increasing the
number of quadruplet configurations. They proposed a Multiple DIA with up to 6 wave
number configurations.

In very shallow water, triad wave interactions become important for steep waves. It trans-
fers energy to higher frequencies, resulting in higher harmonics (Beji and Battjes, 1993).
The energy transfer in this process can take place over relatively short distance and can
dramatically change single peaked spectra into multiple peaked spectra, which has fre-
quently been observed in the field (Arcilla et al., 1994) and in a number of laboratory
experiments with a bar-trough profile (Beji and Battjes, 1993) and a plane beach profile
(Nwogu, 1994).

A first attempt to describe triad wave-wave interactions in terms of a spectral energy
source term was made by Abreu et al. (1992). However, their expression is restricted
to non-dispersive shallow water waves and is therefore not suitable in many practical ap-
plications of wind waves. The breakthrough in the development came with the work of
Eldeberky and Battjes (1995) who transformed the amplitude part of the Boussinesq model
of Madsen and Sørensen (1993) into an energy density formulation and who parameterized
the bi-phase of the waves on the basis of laboratory observations (Battjes and Beji, 1992;
Arcilla et al., 1994). A discrete triad approximation (DTA) for co-linear waves was sub-
sequently obtained by considering only the dominant self-self interactions. Their model
has been verified with flume observations of long-crested, random waves breaking over a
submerged bar (Beji and Battjes, 1993) and over a barred beach (Arcilla et al., 1994).
The model appeared to be fairly successful in describing the essential features of the en-
ergy transfer from the primary peak of the spectrum to the super harmonics. A slightly
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different version, the so-called Lumped Triad Approximation (LTA) was later derived by
Eldeberky (1996). This LTA technique is employed in SWAN.

2.3.2 Input by wind (Sin)

Wave growth by wind is described by:

Sin(σ, θ) = A + BE(σ, θ) (2.25)

in which A describes linear growth and BE exponential growth. It should be noted that
the SWAN model is driven by the wind speed at 10m elevation U10 whereas it uses the
friction velocity U∗. For the WAM Cycle 3 formulation the transformation from U10 to U∗

is obtained with
U2
∗ = CDU2

10 (2.26)

in which CD is the drag coefficient from Wu (1982):

CD(U10) =

{

1.2875 × 10−3 , for U10 < 7.5m/s
(0.8 + 0.065s/m × U10) × 10−3 , for U10 ≥ 7.5m/s

(2.27)

For the WAM Cycle 4 formulations, the computation of U∗ is an integral part of the source
term.

Linear growth by wind

For the linear growth term A, the expression due to Cavaleri and Malanotte-Rizzoli (1981)
is used with a filter to eliminate wave growth at frequencies lower than the Pierson-
Moskowitz frequency (Tolman, 1992a)1:

A =
1.5 × 10−3

2πg2
(U∗ max[0, cos(θ − θw)])4H , H = exp

{

−(
σ

σ∗
PM

)−4

}

, σ∗
PM =

0.13g

28U∗

2π

(2.28)
in which θw is the wind direction, H is the filter and σ∗

PM is the peak frequency of the fully
developed sea state according to Pierson and Moskowitz (1964) as reformulated in terms
of friction velocity.

Exponential growth by wind

Two expressions for exponential growth by wind are optionally available in the SWAN
model. The first expression is due to Komen et al. (1984). Their expression is a function
of U∗/cph:

B = max[0, 0.25
ρa

ρw

(28
U∗

cph

cos(θ − θw) − 1)]σ (2.29)

1In Eq. (10) of Tolman (1992a) the power of 10−5 should be 10−3; H. Tolman, personal communication,
1995.
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in which cph is the phase speed and ρa and ρw are the density of air and water, respectively.
This expression is also used in WAM Cycle 3 (the WAMDI group, 1988). The second
expression is due to Janssen (1989,1991a). It is based on a quasi-linear wind-wave theory
and is given by:

B = β
ρa

ρw

(

U∗

cph

)2

max[0, cos(θ − θw)]2σ (2.30)

where β is the Miles constant. In the theory of Janssen (1991a), this constant is estimated
from the non-dimensional critical height λ:















β = 1.2
κ2 λ ln4 λ , λ ≤ 1

λ = gze

c2
ph

er , r = κc/|U∗ cos(θ − θw)|
(2.31)

where κ = 0.41 is the Von Karman constant and ze is the effective surface roughness. If
the non-dimensional critical height λ > 1, the Miles constant β is set equal 0. Janssen
(1991a) assumes that the wind profile is given by:

U(z) =
U∗

κ
ln[

z + ze − z0

ze

] (2.32)

in which U(z) is the wind speed at height z (10m in the SWAN model) above the mean
water level, z0 is the roughness length. The effective roughness length ze depends on the
roughness length z0 and the sea state through the wave-induced stress ~τw and the total
surface stress ~τ = ρa| ~U∗| ~U∗:

ze =
z0

√

1 − | ~τw|
|~τ |

, z0 = α̂
U2
∗

g
(2.33)

The second of these two equations is a Charnock-like relation in which α̂ is a constant
equal to 0.01. The wave stress ~τw is given by:

~τw = ρw

∫ 2π

0

∫ ∞

0
σBE(σ, θ)

~k

k
dσdθ (2.34)

The value of U∗ can be determined for a given wind speed U10 and a given wave spectrum
E(σ, θ) from the above set of equations. In the SWAN model, the iterative procedure of
Mastenbroek et al. (1993) is used. This set of expressions (2.30) through (2.34) is also
used in WAM Cycle 4 (Komen et al., 1994).

2.3.3 Dissipation of wave energy (Sds)

Whitecapping: Komen et al (1984) formulation

The processes of whitecapping in the SWAN model is represented by the pulse-based model
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of Hasselmann (1974). Reformulated in terms of wave number (rather than frequency) so
as to be applicable in finite water depth (cf. the WAMDI group, 1988), this expression is:

Sds,w(σ, θ) = −Γσ̃
k

k̃
E(σ, θ) (2.35)

where σ̃ and k̃ denote the mean frequency and the mean wave number, respectively, and the
coefficient Γ depends on the overall wave steepness. This steepness dependent coefficient,
as given by the WAMDI group (1988), has been adapted by Günther et al. (1992) based
on Janssen (1991a) (see also (Janssen, 1991b)):

Γ = ΓKJ = Cds((1 − δ) + δ
k

k̃
)
(

s̃

s̃PM

)p

(2.36)

For δ = 0 the expression of Γ reduces to the expression as used by the WAMDI group (1988).
The coefficients Cds, δ and p are tunable coefficients, s̃ is the overall wave steepness, s̃PM

is the value of s̃ for the Pierson-Moskowitz spectrum (1964): s̃PM =
√

3.02 × 10−3. The
overall wave steepness s̃ is defined as:

s̃ = k̃
√

Etot (2.37)

The mean frequency σ̃, the mean wave number k̃ and the total wave energy Etot are defined
as (cf. the WAMDI group, 1988):

σ̃ =
(

E−1
tot

∫ 2π

0

∫ ∞

0

1

σ
E(σ, θ)dσdθ

)−1

(2.38)

k̃ =

(

E−1
tot

∫ 2π

0

∫ ∞

0

1√
k
E(σ, θ)dσdθ

)−2

(2.39)

Etot =
∫ 2π

0

∫ ∞

0
E(σ, θ)dσdθ (2.40)

The values of the tunable coefficients Cds and δ and exponent p in this model have been
obtained by Komen et al. (1984) and Janssen (1992) by closing the energy balance of
the waves in idealized wave growth conditions (both for growing and fully developed wind
seas) for deep water. This implies that coefficients in the steepness dependent coefficient
Γ depend on the wind input formulation that is used. Since two different wind input
formulations are used in the SWAN model, two sets of coefficients are used. For the wind
input of Komen et al. (1984; corresponding to WAM Cycle 3; the WAMDI group, 1988):
Cds = 2.36×10−5, δ = 0 and p = 4. Janssen (1992) and also Günther et al (1992) obtained
(assuming p = 4) Cds = 4.10×10−5 and δ = 0.5 (as used in the WAM Cycle 4; Komen et al.,
1994).

Whitecapping: CSM formulation

An alternative formulation for whitecapping is based on the Cumulative Steepness Method
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as described in Hurdle and Van Vledder (2004). With this method dissipation due to
whitecapping depends on the steepness of the wave spectrum at and below a particular
frequency. It is defined as (directionally dependent):

Sst(σ, θ) = Am

∫ σ

0

∫ 2π

0
k2| cos(θ − θ′)|mE(σ, θ)dσdθ (2.41)

with Am the normalisation coefficient as determined by

∫ 2π

0
Am cosm(θ)dθ = 1 (2.42)

In expression (2.41) the coefficient m controls the directional dependence. It is expected
that this coefficient will be order 1 if the straining mechanism is dominant, m is more than
10 if other mechanism play a role (e.g. instability that occurs when vertical acceleration
in the waves becomes greater than gravity). Default in SWAN is m = 2. The alternative
whitecapping source term is given by

Sst
wc = −Cst

wc (Sst(σ, θ))p E(σ, θ) (2.43)

with Cst
wc a tuneable coefficient and p a parameter controlling the proportionality of the

dissipation rate on the steepness. In SWAN, p = 1 is assumed.

Whitecapping: saturation-based model

The whitecapping formulation used in SWAN is an adapted form of the expression of Alves
and Banner (2003), which is based on the apparent relationship between wave groups and
whitecapping dissipation. This adaption is due to the fact that it can also be applied to
mixed sea-swell conditions and in shallow water. This was done by removing the depen-
dencies on mean spectral steepness and wavenumber in the original expression, and by
applying source term scaling arguments for its calibration (see below). This led to the
following expression for whitecapping dissipation

Sds,w(σ, θ) = −Cds

(

B(k)

Br

)p/2

(tanh(kh))(2−p0)/4
√

gkE(σ, θ) (2.44)

in which the density function B(k) is the azimuthal-integrated spectral saturation, which is
positively correlated with the probability of wave group-induced breaking. It is calculated
from frequency space variables as follows

B(k) =
∫ 2π

0
cgk

3E(σ, θ)dθ (2.45)

and Br is a threshold saturation level. When B(k) > Br, waves break and the exponent
p is set equal to a calibration parameter p0. For B(k) ≤ Br there is no breaking, but
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some residual dissipation proved necessary. This is obtained by setting p = 0. A smooth
transition between these two situations is achieved by (Alves and Banner, 2003);

p =
p0

2
+

p0

2
tanh



10





√

B(k)

Br

− 1







 (2.46)

The wind input expression used in saturation-based model is based on that by Yan (1987).
This expression embodies experimental findings that for strong wind forcing, u∗/c > 0.1
say, the wind-induced growth rate of waves depends quadratically on u∗/c (e.g. Plant
1982), whereas for weaker forcing, u∗/c < 0.1 say, the growth rate depends linearly on u∗/c
(Snyder et al, 1981). Yan (1987) proposes an analytical fit through these two ranges of the
form:

βfit = D
(

u∗

c

)2

cos(θ − α) + E
(

u∗

c

)

cos(θ − α) + F cos(θ − α) + H (2.47)

where D,E,F and H are coefficients of the fit. Yan imposed two constraints:

βfit ≈ βSnyder for
U5

c
≈ 1 (or

u∗

c
≈ 0.036) (2.48)

and
lim

u∗/c→∞
βfit = βPlant (2.49)

in which βSnyder and βPlant are the growth rates proposed by Snyder et al (1981) and Plant
(1982), respectively. Application of Eqs. (2.48) and (2.49) led us to parameter values of
D = 4.0×10−2,E = 5.52×10−3,F = 5.2×10−5 and H = −3.02×10−4, which are somewhat
different from those proposed by Yan (1987). We found that our parameter values produce
better fetch-limited simulation results in the Pierson and Moskowitz (1964) fetch range
thant the original values of Yan (1987).

Finally, the choice of the exponent p0 in Eqs. (2.44) and (2.46) is made by requiring that
the source terms of whitecapping (Eq. 2.44) and wind input (Eq. 2.47) have equal scaling
in frequency, after Resio et al (2004). This leads to a value of p0 = 4 for strong wind forcing
(u∗/c > 0.1) and p0 = 2 for weaker forcing (u∗/c < 0.1). A smooth transition between
these two limits, centred around u∗/c = 0.1, is achieved by the expression

p0(σ) = 3 + tanh
[

w
(

u∗

c
− 0.1

)]

(2.50)

where w is a scaling parameter for which a value of w = 26 is used in SWAN. In shallow
water, under strong wind forcing (p0 = 4), this scaling condition requires the additional

dimensionless factor tanh(kh)−1/2 in Eq. (2.44), where h is the water depth.

Bottom friction

The bottom friction models that have been selected for SWAN are the empirical model
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of JONSWAP (Hasselmann et al., 1973), the drag law model of Collins (1972) and the
eddy-viscosity model of Madsen et al. (1988). The formulations for these bottom friction
models can all be expressed in the following form:

Sds,b = −Cb
σ2

g2 sinh2 kd
E(σ, θ) (2.51)

in which Cb is a bottom friction coefficient that generally depends on the bottom orbital
motion represented by Urms:

U2
rms =

∫ 2π

0

∫ ∞

0

σ2

g2 sinh2 kd
E(σ, θ)dσdθ (2.52)

Hasselmann et al. (1973) found from the results of the JONSWAP experiment Cb = CJON = 0.038m2s−3

for swell conditions. Bouws and Komen (1983) selected a bottom friction coefficient of
CJON = 0.067m2s−3 for fully developed wave conditions in shallow water. Both values are
available in SWAN.

The expression of Collins (1972) is based on a conventional formulation for periodic waves
with the appropriate parameters adapted to suit a random wave field. The dissipation rate
is calculated with the conventional bottom friction formulation of Eq. (2.26) in which the
bottom friction coefficient is Cb = CfgUrms with Cf = 0.015 (Collins, 1972)2.

Madsen et al. (1988) derived a formulation similar to that of Hasselmann and Collins
(1968) but in their model the bottom friction factor is a function of the bottom roughness
height and the actual wave conditions. Their bottom friction coefficient is given by:

Cb = fw
g√
2
Urms (2.53)

in which fw is a non-dimensional friction factor estimated by using the formulation of
Jonsson (1966) cf. Madsen et al. (1988):

1

4
√

fw

+ log10(
1

4
√

fw

) = mf + log10(
ab

KN

) (2.54)

in which mf = −0.08 (Jonsson and Carlsen, 1976) and ab is a representative near-bottom
excursion amplitude:

a2
b = 2

∫ 2π

0

∫ ∞

0

1

sinh2 kd
E(σ, θ)dσdθ (2.55)

and KN is the bottom roughness length scale. For values of ab/KN smaller than 1.57 the
friction factor fw is 0.30 (Jonsson, 1980).

Depth-induced wave breaking

2Collins (1972) contains an error in the expression due to an erroneous Jacobian transformation. See
page A-16 of Tolman (1990).
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To model the energy dissipation in random waves due to depth-induced breaking, the bore-
based model of Battjes and Janssen (1978) is used in SWAN. The mean rate of energy
dissipation per unit horizontal area due to wave breaking Dtot is expressed as:

Dtot = −1

4
αBJQb(

σ̃

2π
)H2

max = αBJQbσ̃
H2

max

8π
(2.56)

in which αBJ = 1 in SWAN, Qb is the fraction of breaking waves determined by:

1 − Qb

ln Qb

= −8
Etot

H2
max

(2.57)

in which Hmax is the maximum wave height that can exist at the given depth and σ̃ is a
mean frequency defined as:

σ̃ = E−1
tot

∫ 2π

0

∫ ∞

0
σE(σ, θ)dσdθ (2.58)

The fraction of depth-induced breakers (Qb) is determined in SWAN with

Qb =































0 , for β ≤ 0.2

Q0 − β2 Q0−exp (Q0−1)/β2

β2−exp (Q0−1)/β2 , for 0.2 < β < 1

1 , for β ≥ 1

(2.59)

where β = Hrms/Hmax. Furthermore, for β ≤ 0.5, Q0 = 0 and for 0.5 < β ≤ 1, Q0 =
(2β − 1)2.

Extending the expression of Eldeberky and Battjes (1995) to include the spectral directions,
the dissipation for a spectral component per unit time is calculated in SWAN with:

Sds,br(σ, θ) =
Dtot

Etot

E(σ, θ) = −αBJQbσ̃

β2π
E(σ, θ) (2.60)

The maximum wave height Hmax is determined in SWAN with Hm = γd, in which γ is
the breaker parameter and d is the total water depth (including the wave-induced set-up if
computed by SWAN). In the literature, this breaker parameter γ is often a constant or it is
expressed as a function of bottom slope or incident wave steepness (see e.g., Galvin, 1972;
Battjes and Janssen, 1978; Battjes and Stive, 1985; Arcilla and Lemos, 1990; Kaminsky
and Kraus, 1993; Nelson, 1987, 1994). In the publication of Battjes and Janssen (1978) in
which the dissipation model is described, a constant breaker parameter, based on Miche’s
criterion, of γ = 0.8 was used. Battjes and Stive (1985) re-analyzed wave data of a number
of laboratory and field experiments and found values for the breaker parameter varying
between 0.6 and 0.83 for different types of bathymetry (plane, bar-trough and bar) with
an average of 0.73. From a compilation of a large number of experiments Kaminsky and
Kraus (1993) have found breaker parameters in the range of 0.6 to 1.59 with an average of
0.79.
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2.3.4 Nonlinear wave-wave interactions (Snl)

Quadruplets

In this section two methods are described for the computation of non-linear interactions
at deep water. The first method is called the DIA method and is relatively crude in the
approximation of the Boltzmann integral. The second one is called the XNL approach and
is implemented in SWAN by G. Ph. van Vledder.

DIA

The quadruplet wave-wave interactions are computed with the Discrete Interaction Ap-
proximation (DIA) as proposed by Hasselmann et al. (1985). Their source code (slightly
adapted by Tolman, personal communication, 1993) has been used in the SWAN model.
In the DIA two quadruplets of wave numbers are considered, both with frequencies:

σ1 = σ2 = σ , σ3 = σ(1 + λ) = σ+ , σ4 = σ(1 − λ) = σ− (2.61)

where λ is a constant coefficient set equal to 0.25. To satisfy the resonance conditions for
the first quadruplet, the wave number vectors with frequency σ3 and σ4 lie at an angle of
θ1 = −11.5o and θ2 = 33.6o to the two identical wave number vectors with frequencies σ1

and σ2. The second quadruplet is the mirror of this first quadruplet (the wave number
vectors with frequency σ3 and σ4 lie at mirror angles of θ3 = 11.5o and θ4 = −33.6o.

Within this discrete interaction approximation, the source term Snl4(σ, θ) is given by:

Snl4(σ, θ) = S∗
nl4(σ, θ) + S∗∗

nl4(σ, θ) (2.62)

where S∗
nl4 refers to the first quadruplet and S∗∗

nl4 to the second quadruplet (the expressions
for S∗∗

nl4 are identical to those for S∗
nl4 for the mirror directions) and:

S∗
nl4 = 2δSnl4(α1σ, θ) − δSnl4(α2σ, θ) − δSnl4(α3σ, θ) (2.63)

in which α1 = 1, α2 = (1 + λ) and α3 = (1 − λ). Each of the contributions (i = 1, 2, 3) is:

δSnl4(αiσ, θ) = Cnl4(2π)2g−4
(

σ

2π

)11
[

E2(αiσ, θ)

{

E(αiσ
+, θ)

(1 + λ)4
+

E(αiσ
−, θ)

(1 − λ)4

}

−2
E(αiσ, θ)E(αiσ

+, θ)E(αiσ
−, θ)

(1 − λ2)4

]

(2.64)

with constant Cnl4 = 3× 107. Following Hasselmann and Hasselmann (1981), the quadru-
plet interaction in finite water depth is taken identical to the quadruplet transfer in deep
water multiplied with a scaling factor:

Sfinite depth
nl4 = R(kpd)Sdeep water

nl4 (2.65)
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where R is given by:

R(kpd) = 1 +
Csh1

kpd
(1 − Csh2kpd)eCsh3kpd (2.66)

in which kp is the peak wave number of the JONSWAP spectrum for which the original
computations were carried out. The values of the coefficients are: Csh1 = 5.5, Csh2 = 6/7
and Csh3 = −1.25. In the shallow water limit, i.e., kp → 0 the nonlinear transfer tends to
infinity. Therefore, a lower limit of kp = 0.5 is applied (cf. WAM Cycle 4; Komen et al.,
1994), resulting in a maximum value of R(kpd) = 4.43. To increase the model robustness
in case of arbitrarily shaped spectra, the peak wave number kp is replaced by kp = 0.75k̃
(cf. Komen et al., 1994).

XNL (G. Ph. van Vledder)

The second method for calculating the nonlinear interactions in SWAN is the so-called
Webb-Resio-Tracy method (WRT), which is based on the original six-dimensional Boltz-
mann integral formulation of Hasselmann (1962, 1963a,b), and additional considerations by
Webb (1978), Tracy and Resio (1982) and Resio and Perrie (1991). A detailed description
of the WRT method and its implementation in discrete spectral wave models like SWAN
is given in Van Vledder (2006). An overview of computational methods for computing the
exact non-linear transfer rate is given in Benoit (2005).

The Boltzmann integral describes the rate of change of action density of a particular wave
number due to resonant interactions between pairs of four wave numbers. To interact these
wave numbers must satisfy the following resonance conditions

~k1 + ~k2 = ~k3 + ~k4

σ1 + σ2 = σ3 + σ4

}

. (2.67)

The rate of change of action density N1 at wave number ~k1 due to all quadruplet interactions
involving ~k1 is given by

∂N1

∂t
=

∫ ∫ ∫

G
(

~k1, ~k2, ~k3, ~k4

)

δ
(

~k1 + ~k2 − ~k3 − ~k4

)

δ (σ1 + σ2 − σ3 − σ4)

× [N1N3 (N4 − N2) + N2N4 (N3 − N1)] d~k2 d~k3 d~k4 , (2.68)

where the action density N is defined in terms of the wave number vector ~k, N = N(~k). The
term G is a complicated coupling coefficient for which an explicit expression has been given
by Herterich and Hasselmann (1980). In the WRT method a number of transformations
are made to remove the delta functions. A key element in the WRT method is to consider
the integration space for each (~k1, ~k3) combination

∂N1

∂t
= 2

∫

T
(

~k1, ~k3

)

d~k3 , (2.69)
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in which the function T is given by

T
(

~k1, ~k3

)

=
∫ ∫

G
(

~k1, ~k2, ~k3, ~k4

)

δ
(

~k1 + ~k2 − ~k3 − ~k4

)

× δ (σ1 + σ2 − σ3 − σ4) θ
(

~k1, ~k3, ~k4

)

× [N1N3 (N4 − N2) + N2N4 (N3 − N1)] d~k2 d~k4 , (2.70)

in which

θ
(

~k1, ~k3, ~k4

)

=







1 when
∣

∣

∣

~k1 − ~k3

∣

∣

∣ ≤
∣

∣

∣

~k1 − ~k4

∣

∣

∣

0 when
∣

∣

∣

~k1 − ~k3

∣

∣

∣ >
∣

∣

∣

~k1 − ~k4

∣

∣

∣

(2.71)

The delta functions in Eq. (2.70) determine a region in wave number space along which the
integration should be carried out. The function θ determines a section of the integral which
is not defined due to the assumption that ~k1 is closer to ~k3 than ~k2. The crux of the Webb
method consists of using a local coordinate system along a so-named locus, that is, the
path in ~k space that satisfies the resonance conditions for a given combination of ~k1 and ~k3.
To that end the (kx, ky) coordinate system is replaced by a (s, n) coordinate system, where
s (n) is the tangential (normal) direction along the locus. After some transformations the
transfer integral can then be written as a closed line integral along the closed locus

T
(

~k1, ~k3

)

=
∮

G J θ(~k1, ~k3, ~k4)

× [N1N3 (N4 − N2) + N2N4 (N3 − N1)] ds , (2.72)

in which G is the coupling coefficient and J is the Jacobian term of a function represent-
ing the resonance conditions. The Jacobian term is a function of the group velocities of
interacting wave numbers

J = |~cg,2 − ~cg,4|−1 (2.73)

Numerically, the Boltzmann integral is computed as the finite sum of many line integrals
T for all discrete combinations of ~k1 and ~k3. The line integral (2.72) is solved by dividing
the locus in typically 40 pieces, such that it’s discretized version is given as:

T
(

~k1, ~k3

)

≈
ns
∑

i=1

G(si)J(si)P (si) ∆si , (2.74)

in which P (si) is the product term for a given point on the locus, ns is the number of
segments, si is the discrete coordinate along the locus, and ∆si is the stepsize. Finally, the
rate of change for a given wave number ~k1 is given by

∂N(~k1)

∂t
≈

nk
∑

ik3=1

nθ
∑

iθ3=1

T (~k1, ~k3) ∆kik3
∆θiθ3

(2.75)

where nk and nθ are the discrete number of wave numbers and directions in the computa-
tional spectral grid, respectively. Note that although the spectrum is defined in terms of
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the vector wave number ~k, the computational grid in a wave model is more conveniently
defined in terms of the absolute wave number and wave direction (k, θ) to assure direc-

tional isotropy of the calculations. Taking all wave numbers ~k1 into account produces the
complete source term due to nonlinear quadruplet wave-wave interactions. Details of the
computation of a locus for a given combination of the wave numbers ~k1 and ~k3 can be
found in Van Vledder (2006).

It is noted that these exact interaction calculations are extremely expensive, typically
requiring 103 to 104 times more computational effort than the DIA. Presently, these calcu-
lations can therefore only be made for highly idealized test cases involving a limited spatial
grid.

The nonlinear interactions according to the WRT method have been implemented in SWAN
using portable subroutines. In this implementation, the computational grid of the WRT
method is based to the discrete spectral grid of SWAN. The WRT method uses a (~k, θ)
grid which is based on the (σ, θ) grid of SWAN. In addition, the WRT routines inherit
the power of the parametric spectral tail as in the DIA. Choosing a higher resolution than
the computational grid of SWAN for computing the nonlinear interactions is possible in
theory, but this does not improve the results and is therefore not implemented.

Because nonlinear quadruplet wave-wave interactions at high frequencies are important, it
is recommended to choose the maximum frequency of the wave model about six times the
peak frequency of the spectra that are expected to occur in a wave model run. Note that
this is important as the spectral grid determines the range of integration in Eq. (2.75).
The recommended number of frequencies is about 40, with a frequency increment factor
1.07. The recommended directional resolution for computing the nonlinear interactions is
about 10◦. For specific purposes other resolutions may be used, and some testing with
other resolutions may be needed.

An important feature of most algorithms for the evaluation of the Boltzmann integral is
that the integration space can be pre-computed. In the initialization phase of the wave
model the integration space, consisting of the discretized paths of all loci, together with the
interaction coefficients and Jacobians, are computed and stored in a binary data file. For
each discrete water depth such a data file is generated and stored in the work directory.
The names of these data files consist of a keyword, ”xnl4v5”, followed by the keyword
”xxxxx”, with xxxxx the water depth in a certain unit (meters by default), or 99999 for
deep water. The extension of the binary data file is ”bqf” (of Binary Quadruplet File). If
a BQF file exists, the program checks if this BQF file has been generated with the proper
spectral grid. If this is not the case, a new BQF file is generated and the existing BQF file
is overwritten. During a wave model run with various depths, the optimal BQF is used,
by looking at the ’nearest’ water depth dN for which a valid BQF file has been generated.
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In addition, the result is rescaled using the DIA scaling (2.66) according to

Sd
nl4 = SdN

nl4

R(kpd)

R(kpdN)
. (2.76)

Triads

The Lumped Triad Approximation (LTA) of Eldeberky (1996), which is a slightly adapted
version of the Discrete Triad Approximation (DTA) of Eldeberky and Battjes (1995) is
used in SWAN in each spectral direction:

Snl3(σ, θ) = S−
nl3(σ, θ) + S+

nl3(σ, θ) (2.77)

with

S+
nl3(σ, θ) = max[0, αEB2πccgJ

2| sin β|
{

E2(σ/2, θ) − 2E(σ/2, θ)E(σ, θ)
}

] (2.78)

and
S−

nl3(σ, θ) = −2S+
nl3(2σ, θ) (2.79)

in which αEB is a tunable proportionality coefficient. The bi-phase β is approximated with

β = −π

2
+

π

2
tanh(

0.2

Ur
) (2.80)

with Ursell number Ur:

Ur =
g

8
√

2π2

HsTm01
2

d2
(2.81)

The triad wave-wave interactions are calculated only for 0 ≤ Ur ≤ 1. The interaction
coefficient J is taken from Madsen and Sørensen (1993):

J =
k2

σ/2(gd + 2c2
σ/2)

kσd(gd + 2
15

gd3k2
σ − 2

5
σ2d2)

(2.82)

2.4 The influence of ambient current on waves

Waves are subject to the influence of ambient current, when they propagate on it. The
ambient current can be tidal current, ocean current, local wind generated current, river
current and wave generated current. It has been observed that current affects the growth
and decay of waves (Yu, 1952; Hedges et al., 1985; Lia et al., 1989). The observations
have shown that in a strong opposite current the wave steepness and wave height increase
significantly. These changes take place rapidly where the waves are blocked by the current,
often accompanied with current-induced whitecapping and wave reflections. Moreover, at
the blocking frequency action is also partially transferred away from the blocking frequency
to higher and lower frequencies by nonlinear wave-wave interactions (Ris, 1997).
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It was Longuet-Higgins and Stewart (1960, 1961, 1962) who founded the theoretical de-
scription of wave-current interactions. Since then, many additional results of wave-current
interactions have been published. If waves propagate in the presence of ambient current,
action density is conserved whereas energy density is not. Therefore, in SWAN the action
balance equation has been adopted.

2.5 Modelling of obstacles

SWAN can estimate wave transmission through a (line-)structure such as a breakwater
(dam). Such an obstacle will affect the wave field in two ways, first it will reduce the wave
height locally all along its length, and second it will cause diffraction around its end(s). In
irregular, short-crested wave fields, however, it seems that the effect of diffraction is small,
except in a region less than one or two wavelengths away from the tip of the obstacle
(Booij et al., 1993). Therefore the model can reasonably account for waves around an
obstacle if the directional spectrum of incoming waves is not too narrow. Since obstacles
usually have a transversal area that is too small to be resolved by the bottom grid in
SWAN, an obstacle is modelled as a line. If the crest of the breakwater is at a level where
(at least part of the) waves can pass over, the transmission coefficient Kt (defined as the
ratio of the (significant) wave height at the downwave side of the dam over the (significant)
wave height at the upwave side) is a function of wave height and the difference in crest
level and water level. The expression is taken from Goda et al. (1967):

Kt = 0.5(1 − sin(
π

2α
(
F

Hi

+ β))) , −β − α <
F

Hi

< α − β (2.83)

where F = h−d is the freeboard of the dam and where Hi is the incident (significant) wave
height at the upwave side of the obstacle (dam), h is the crest level of the dam above the
reference level (same as reference level of the bottom), d the mean water level relative to
the reference level, and the coefficients α, β depend on the shape of the dam (Seelig, 1979)
as given in Table 2.1. Expression (2.83) is based on experiments in a wave flume, so strictly

Table 2.1: Parameters for transmission according to Goda et al. (1967).
case α β
vertical thin wall 1.8 0.1
caisson 2.2 0.4
dam with slope 1:3/2 2.6 0.15

speaking it is only valid for normal incidence waves. Since there are no data available on
oblique waves, it is assumed that the transmission coefficient does not depend on direction.
Another phenomenon that is to be expected is a change in wave frequency. Since often the
process above the dam is highly nonlinear. Again there is little information available, so
in SWAN it is assumed that the frequencies remain unchanged over an obstacle (only the
energy scale of the spectrum is affected and not the spectral shape).
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2.6 Wave-induced set-up

In a (geographic) 1D case the computation of the wave induced set-up is based on the
vertically integrated momentum balance equation which is a balance between the wave force
(gradient of the wave radiation stress normal to the coast) and the hydrostatic pressure
gradient (note that the component parallel to the coast causes wave-induced currents but
no set-up).

dSxx

dx
+ ρgH

dη

dx
= 0 (2.84)

where d is the total water depth (including the wave-induced set-up) and η is the mean
surface elevation (including the wave-induced set-up) and

Sxx = ρg
∫

[n cos2 θ + n − 1

2
]Edσdθ (2.85)

is the radiation stress tensor.

Observation and computations based on the vertically integrated momentum balance equa-
tion of Dingemans et al. (1987) show that the wave-induced currents are mainly driven
by the divergence-free part of the wave forces whereas the set-up is mainly due to the
rotation-free part of these forces. To compute the set-up in 2D, it would then be sufficient
to consider the divergence of the momentum balance equation. If the divergence of the
acceleration in the resulting equation is ignored, the result is:

∂Fx

∂x
+

∂Fy

∂y
− ∂

∂x
(ρgH

∂η

∂x
) − ∂

∂y
(ρgH

∂η

∂y
) = 0 (2.86)

2.7 Modelling of diffraction

To accommodate diffraction in SWAN simulations, a phase-decoupled refraction-diffraction
approximation is suggested (Holthuijsen et al., 2003). It is expressed in terms of the di-
rectional turning rate of the individual wave components in the 2D wave spectrum. The
approximation is based on the mild-slope equation for refraction and diffraction, omitting
phase information. It does therefore not permit coherent wave fields in the computational
domain.

In a simplest case, we assume there are no currents. This means that cσ = 0. Let de-
notes the propagation velocities in geographic and spectral spaces for the situation without
diffraction as: cx,0, cy,0 and cθ,0. These are given by:

cx,0 =
∂ω

∂k
cos θ , cy,0 =

∂ω

∂k
sin θ , cθ,0 = −1

k

∂ω

∂h

∂h

∂n
(2.87)

where k is the wave number and n is perpendicular to the wave ray. We consider the
following eikonal equation

K2 = k2(1 + δ) (2.88)
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with δ denoting the diffraction parameter as given by:

δ =
∇(ccg∇

√
E)

ccg

√
E

(2.89)

where E(x, y) is the total energy of the wave field (∼ H2
s ). Due to diffraction, the propa-

gation velocities are given by:

cx = cx,0δ , cy = cy,0δ , cθ = cθ,0δ −
∂δ

∂x
cy,0 +

∂δ

∂y
cx,0 (2.90)

where
δ =

√
1 + δ (2.91)

In early computations, the wave fields often showed slight wiggles in geographic space with
a wavelength of about 2∆x in x−direction. These unduly affected the estimations of the
gradients that were needed to compute the diffraction parameter δ. The wave field was
therefore smoothed with the following convolution filter:

En
i,j = En−1

i,j − 0.2[Ei−1,j + Ei,j−1 − 4Ei,j + Ei+1,j + Ei,j+1]
n−1 (2.92)

where i, j is a grid point and the superscript n indicates iteration number of the convolution
cycle. The width of this filter (standard deviation) in x−direction εx, when applied n times
is

εx ≈ 1

2

√
3n∆x (2.93)

By means of computations, n = 6 is found to be an optimum value (corresponding to spatial
resolution of 1/5 to 1/10 of the wavelength), so that εx ≈ 2∆x. For the y−direction, the
expressions are identical, with y replacing x. Note that this smoothing is only applied
to compute the diffraction parameter δ. For all other computations the wave field is not
smoothed.
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Chapter 3

Numerical approaches

3.1 Introduction

The accuracy with which physical processes for wave growth are approximated numeri-
cally is of crucial importance in assessing the predictive realism of spectral wave models.
There is a need to separate these numerical errors from errors due to physical modelling.
Third-generation wave models pose a numerical difficulty caused by the presence of mul-
tiple time scales. This is a reflection of the physical nature of wind waves, which consist
of a wide range of frequencies. The ratio of the largest to the smallest time scale of spec-
tral components is often substantially larger than one. When this is the case, the action
balance equation is called stiff (Press et al., 1993)1. Taking proper account of these time
scales is a necessary condition for numerical accuracy. This would require the use of a
very small time step in a numerical algorithm, which may be impractical. Moreover, the
action balance equation is usually so stiff that its numerical implementation combined with
economically large time steps often prevent a stable solution. In this respect, nonlinear
four-wave interaction usually poses the biggest problem, since this process is associated
with high sensitivity to spectral change.

In a number of papers concerning spectral wave computation, numerical measures are pro-
posed to achieve stable model results economically. WAMDI Group (1988) suggest to use a
semi-implicit time integration scheme with a time step that matches the time scale of low-
frequency waves. However, numerically stable solution of the resulting sytem of equations
can not be guaranteed (Hargreaves and Annan, 2001). The ratio of the largest eigenvalue
to the smallest eigenvalue of the stiff system of equations, called the condition number, can
be so large that even a fully-implicit method combined with large time steps precludes a
stable solution. For counterexamples, see Hargreaves and Annan (2001). The only remedy
is time step reduction or under-relaxation so that the modified system of equations has a
spectrum of eigenvalues with a more favourable condition number.

To guarantee numerical stability at relatively large time steps, the so-called action density

1The equivalent situation for such an equation is to have eigenvalues of very different magnitudes.

33
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limiter has been introduced in WAM in the early 1980’s (Hersbach and Janssen, 1999).
This limiter restricts the rate of change of the energy spectrum at each time step. Because
low-frequency waves carry the most energy, it is desirable to solve the balance equation in
this part of the spectrum accurately without intervention by the limiter, whereas for high-
frequency waves using an equilibrium level is sufficient. Although this approach lacks a
rigorous foundation and is not generally applicable or valid, it appears to guarantee numer-
ical stability at relatively large time steps even when these do not match the time scales of
wave growth. Moreover, it is believed that the limiter will not affect the stationary solution
when convergence is reached. This assumption is widely employed as a justification for the
use of limiters. For an overview, we refer to Hersbach and Janssen (1999) and Tolman
(2002) and the references quoted therein. Tolman (1992) proposes an alternative to the
action density limiter in which the time step is dynamically adjusted where necessary to
ensure accurate wave evolution. The calculation of this optimal time step is related to the
action density limiter. Further details can be found in Tolman (1992, 2002). .

The steady-state solution in the SWAN model is obtained in an iterative manner, which
can be regarded as a time marching method with a pseudo time step. This pseudo time
step generally does not match the relatively small time scale in frequency space and con-
sequently, divergence will occur. Therefore, SWAN makes use of the action density limiter
to stabilize the iteration process (Booij et al., 1999). However, experience with SWAN has
revealed that the limiter acts not only in the equilibrium space, but also in the energy-
containing part of the wave spectrum. This finding is also confirmed by Tolman (2002).
Furthermore, the limiter appears to be active over almost all spectra in the geographical
domain and during the entire iteration process. This activity has been associated with
poor convergence behaviour, such as small-amplitude oscillation in frequency space. Ris
(1999) demonstrated that stationary SWAN results are influenced by the settings of the
action limiter while De Waal (2001) suspects that the limiter acts as a hidden sink in the
source term balance under equilibrium conditions. The question to what extent this limiter
adversely affects the stationary solution of SWAN has not been addressed previously, and
is considered here.

An alternative way to restrict the high rate of change at higher frequencies is under-
relaxation, i.e. making smaller updates by means of a much smaller (pseudo) time step
(Ferziger and Perić, 1999). Consequently, a limiter may no longer be needed. Although
this approach may be suitable to SWAN, it slows down convergence significantly. In this
paper, we propose a new method that finds a compromise between fast convergence on
the one hand and minimizing the role of the limiter in the energetic part of the spectrum
on the other. The key idea to achieve this is to link the extent of updating to the wave
frequency—the larger the frequency, the smaller the update. This approach is therefore
called frequency-dependent under-relaxation.

The second objective of this paper concerns the formulation and the use of termination
criteria required by the iteration procedure in SWAN. In principle, the iterative process
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should be stopped if the convergence error defined as the difference between the current
iterate and the stationary solution is smaller than a prescribed tolerance. At present,
the stopping criteria in SWAN make use of the difference between successive iterates as a
measure of the error in the converged solution. Experiences in the application of SWAN
have shown that the iteration process is often more erratic and typically much slower than
reported by Booij et al. (1999). As a result, the current stopping criteria often lead to
premature termination of simulations. This is characterised by the fact that, due to the rel-
atively low rate of convergence, the convergence error is larger than the difference between
the successive iterates. A stopping criterion is proposed that uses the second derivative or
curvature of the series of successive iterates of the calculated wave height. The premise is
that this curvature approaches zero upon full convergence.

3.2 Discretization

Discretization of (2.17) is carried out using the finite difference method. The homogeneous
part of equation (2.17) is given by

∂N

∂t
+

∂cxN

∂x
+

∂cyN

∂y
+

∂cσN

∂σ
+

∂cθN

∂θ
. (3.1)

We choose a rectangular grid with constant mesh sizes ∆x and ∆y in x− and y−direction,
respectively. The spectral space is divided into elementary bins with a constant directional
resolution ∆θ and a constant relative frequency resolution ∆σ/σ (resulting in a logarithmic
frequency distribution). We denote the grid counters as 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny,
1 ≤ l ≤ Nσ and 1 ≤ m ≤ Nθ in x−, y−, σ− and θ−spaces, respectively. All variables
are located at points (i, j, l,m). Time discretization takes place with the implicit Euler
technique. We obtain the following approximation of (3.1):

Nn − Nn−1

∆t
|i,j,l,m +

[cxN ]i+1/2 − [cxN ]i−1/2

∆x
|nj,l,m +

[cyN ]j+1/2 − [cyN ]j−1/2

∆y
|ni,l,m +

[cσN ]l+1/2 − [cσN ]l−1/2

∆σ
|ni,j,m +

[cθN ]m+1/2 − [cθN ]m−1/2

∆θ
|ni,j,l , (3.2)

where n is a time-level with ∆t a time step. Note that locations in between consecutive
counters are reflected with the half-indices.

Since, the unknown N and the propagation velocities are only given in points (i, j, l,m),
further approximation is needed. In the present paper, we employ a first order upwind
scheme in geographical space, since it is sufficient accurate for nearshore applications and
fully monotone, i.e. it can not to give rise to spurious oscillations. It should be noted,
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however, that in applications at oceanic scales, a higher order upwind scheme should be
employed. In the current SWAN version, two alternatives to this scheme are implemented,
namely the second order SORDUP and the third order Stelling/Leendertse schemes. See
also Rogers et al. (2002) and Stelling and Leendertse (1992).

The fluxes cxN at (i + 1/2, j, l,m) and cyN at (i, j + 1/2, l,m) are approximated in the
following way:

cxN |i+1/2,j,l,m =

{

cxN |i,j,l,m , cx|i,j,l,m > 0
cxN |i+1,j,l,m , cx|i+1,j,l,m < 0

(3.3)

and

cyN |i,j+1/2,l,m =

{

cyN |i,j,l,m , cy|i,j,l,m > 0
cyN |i,j+1,l,m , cy|i,j+1,l,m < 0

. (3.4)

The fluxes at (i−1/2, j, l,m) and (i, j−1/2, l,m) are obtained from (3.3) and (3.4), respec-
tively, by decreasing the indices by 1 in appropriate manner. Note that the combination
of the time and geographic space discretizations in (3.2), (3.3) and (3.4) is also known as
the first order, backward space, backward time (BSBT) scheme.

SORDUP

For the SORDUP scheme which is the default scheme for stationary computations, the two
terms in Eqs. (3.3) and (3.4) representing x− and y−derivatives are replaced by

(

1.5(cxN)ix − 2(cxN)ix−1 + 0.5(cxN)ix−2

∆x

)it,n

iy ,iσ ,iθ

(3.5)

and
(

1.5(cyN)iy − 2(cyN)iy−1 + 0.5(cyN)iy−2

∆y

)it,n

ix,iσ ,iθ

(3.6)

In the neighboorhood of open boundaries, land boundaries and obstacles (i.e., the last
two grids adjoining such grid points for the SORDUP scheme), SWAN will revert to the
first order upwind BSBT scheme. This scheme has a larger numerical diffusion but that is
usually acceptable over the small distances involved.

Stelling and Leendertse scheme

For the Stelling and Leendertse scheme which is the default scheme for non-stationary computations,
the two terms in Eqs. (3.3) and (3.4) representing x− and y−derivatives are replaced by

(

5
6
(cxN)ix − 5

4
(cxN)ix−1 + 1

2
(cxN)ix−2

1
12

(cxN)ix−3

∆x

)it,n

iy ,iσ ,iθ

+

(

(cxN)ix+1 − (cxN)ix−1

4∆x

)it−1

iy ,iσ ,iθ

(3.7)
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and

(

5
6
(cyN)iy − 5

4
(cyN)iy−1 + 1

2
(cyN)iy−2

1
12

(cyN)iy−3

∆y

)it,n

ix,iσ ,iθ

+

(

(cyN)iy+1 − (cyN)iy−1

4∆y

)it−1

ix,iσ ,iθ

(3.8)
In the neighboorhood of open boundaries, land boundaries and obstacles (i.e., the last
three grids adjoining such grid points for the Stelling and Leendertse scheme), SWAN will
revert to the first order upwind BSBT scheme.

Usually, the numerical diffusion of the Stelling and Leendertse scheme is so small that the
so-called garden-sprinkler effect (GSE) may show up if propagation over very large distances
is considered. This effect is due to the spectral resolution (see Booij and Holthuijsen
(1987)). It can be counteracted by a diffusion term that has been explicitly added to the
numerical scheme. Its value depends on the spectral resolution and the propagation time
of the waves.

The diffusion applied in the propagation direction is

Dss =
∆c2T

12
(3.9)

where T is the wave age. The diffusion normal to the propagation direction is

Dnn =
c2∆θ2T

12
(3.10)

From these, diffusion coefficients are calculated as

Dxx = Dss cos2 θ+Dnn sin2 θ , Dyy = Dss sin2 θ+Dnn cos2 θ , Dxy = (Dss−Dnn) cos θ sin θ
(3.11)

The diffusion terms are computed at the time level it−1. The diffusion terms are computed
as follows

Dxx

(

(N)ix+1 − 2(N)ix + (N)ix−1

∆x2

)it−1

iy ,iσ ,iθ

(3.12)

Dyy

(

(N)iy+1 − 2(N)iy + (N)iy−1

∆y2

)it−1

ix,iσ ,iθ

(3.13)

Dxy

(

(N)ix,iy − (N)ix−1,iy − (N)ix−1,iy + (N)ix−1,iy−1

∆x∆y

)it−1

iσ ,iθ

(3.14)

This explicit scheme is fast (having little impact on computation time) but only condi-
tionally stable. Through mathematical analysis (not shown) it can be shown that a likely
stability condition for the one-dimensional Stelling and Leendertse scheme with this GSE
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correction is ∆t/∆x2 ≤ 0.5 which corresponds to the two-dimensional stability criterion of
Tolman (1995) based on Fletcher (1988), Part I, section 7.1.1.:

Q =
max(Dxx, Dyy, Dxy)∆t

min(∆x, ∆y)2
≤ 0.5 (3.15)

Thus, it is credible that Eq. (3.15) holds true for the two-dimensional Stelling and Leen-
dertse scheme with this GSE correction. In experiments, it was found that with Q ≤ 0.48,
no instability was observed. In short, by adding the GSE correction, the uncondition-
ally stable advection scheme of SWAN becomes a (likely) conditionally stable advection-
diffusion scheme. It is readily shown that for typical ocean applications Dnn dominates
the diffusion and Q can be written as

Q =
C

2
T∆t

12∆x2
(3.16)

The variable wave age T could be computed during the computations of SWAN but it
requires the same order of magnitude of computer memory as integrating the action balance
equation. Instead a constant wave age T can be used as an approximation, so that Eq.
(3.16) becomes

Q =
Lµ∆θ2

12∆x
(3.17)

where the characteristic travel distance of the waves is L = CT (e.g., the dimension of
the ocean basin). For oceanic applications, the Courant number is typically µ ≈ 1

2
so that

Q ≤ 0.25 for typical values of ∆θ and L/∆x (the number of grid point in one direction of
the grid). This implies that the Stelling and Leendertse scheme with the GSE correction is
stable for typical ocean cases. For shelf sea (regional) applications, the value of µ = O(1)
but the garden-sprinkler effect tends to be small on these scales and the diffusion can and
should not be used to avoid the stability problem. For small-scale (local) applications,
typically µ = O(10 − 100). But such cases are usually treated as stationary and the
SORDUP scheme should be used (no GSE correction is included in this scheme).

The fluxes in the spectral space (σ, θ), as given in (3.2), should not be approximated with
the first order upwind scheme since, it turns out to be very diffusive for frequencies near the
blocking frequency2. Central differences should be used because of second order accuracy.
However, such schemes tend to produce unphysical oscillations due to relatively large
gradients in action density near the blocking frequency. Instead, a hybrid central/upwind
scheme is employed:

cσN |i,j,l+1/2,m =











(1 − 0.5µ)cσN |i,j,l,m + 0.5µcσN |i,j,l+1,m , cσ|i,j,l,m > 0

(1 − 0.5µ)cσN |i,j,l+1,m + 0.5µcσN |i,j,l,m , cσ|i,j,l+1,m < 0
(3.18)

2Waves can be blocked by the current at a relative high frequency.
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and

cθN |i,j,l,m+1/2 =











(1 − 0.5ν)cθN |i,j,l,m + 0.5νcθN |i,j,l,m+1 , cθ|i,j,l,m > 0

(1 − 0.5ν)cθN |i,j,l,m+1 + 0.5νcθN |i,j,l,m , cθ|i,j,l,m+1 < 0
, (3.19)

where the parameters µ and ν are still to be chosen. For all values µ ∈ [0, 1] and ν ∈ [0, 1],
a blended form arises between first order upwind differencing (µ = ν = 0) and central
differencing (µ = ν = 1).

3.3 Solution algorithm

The discretization of the action balance equation (2.17) as described in Section 3.2 yields
a system of linear equations that need to be solved. The corresponding matrix structure
can take different forms, mainly depending on the propagation of wave energy in the
geographic space. For instance, suppose that cx > 0 and cy > 0, everywhere. Then, the
matrix structure has the following form:



















































. x . x x x . x . .

. . x . x x x . x .

. . . x . x x x . x













. . . . x . . . . . . .

. . . . . . x . . . . .

. . . . . . . . x . . .













. x . x x x . x . .

. . x . x x x . x .

. . . x . x x x . x













. . . . x . . . . . . .

. . . . . . x . . . . .

. . . . . . . . x . . .













. . . . x . . . . . . .

. . . . . . x . . . . .

. . . . . . . . x . . .













. x . x x x . x . .

. . x . x x x . x .

. . . x . x x x . x



















































. (3.20)

One recognizes that the subblocks on the main diagonal express coupling among the un-
knowns in the (σ, θ)−space for each geographic grid point, whereas the off-diagonal sub-
blocks represent coupling across geographical grid points. This system can be solved with
a Gauss-Seidel technique in one step (Wesseling, 1992). Generally, the velocities cx and
cy may have different signs in the geographical domain and hence, more steps are needed.
However, it is well known that adapting the ordering of updates of the unknowns N in
geographical space to the propagation direction can improve the rate of convergence of
the Gauss-Seidel iterative procedure (Wesseling, 1992). This is done as follows. For each
iteration, sweeping through grid rows and columns in geographical domain are carried out,
starting from each of the four corners of the computational grid. After four sweeps, wave
energy has been propagated over the entire geographical domain. During each sweep, only
a subset of the unknown values of N are updated depending on the sign of cx and cy. For
instance, the first sweep starts at the lower left-hand corner and all grid points with cx > 0
and cy > 0 are updated.
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After each propagation update at geographic grid point, an update in the spectral space
is made. Since, according to (3.3) and (3.4), the wave energy at a single spatial location
depends on the upwind grid points only, it is sufficient to carry out the update within a
90o-quadrant of the (σ, θ)-space, as illustrated in Figure 3.1. Because of the implicit nature
of the spectral propagation terms in (3.2), a system of equations must be formed. Further-

Figure 3.1: The solution procedure for wave energy propagation in geographical space with
the appropriate directional quadrant (indicated by shaded area) for each of four sweeps.

more, due to the fact that the source term Stot in (3.2) is nonlinear in N , linearization is
required in order to find a solution. Generally, the term Stot in each bin (l,m) is treated
by distinguishing between positive and negative contributions and arranging these in the
linear form (Ferziger and Perić, 1999):

Stot = Sp
tot + Sn

totN , (3.21)

where Sp
tot consists of positive contributions and Sn

tot of negative ones. Both contributions
are independent of the solution N at the corresponding bin (l,m). Any negative term
that does not contain N as a multiplier is first divided by N obtained from the previous
iteration level and then added to Sn

tot. This stabilizes the iteration process. Details on
the application of this principle to each source term in SWAN can be found in Booij et al.
(1999).

The strongly nonlinear source term of depth-induced wave breaking is linearized by means
of the Newton-Raphson iteration, as follows:

Sn ≈ φn−1En +

(

∂S

∂E

)n−1

(En − En−1) (3.22)

Since, this process of depth-induced wave breaking has been formulated such that S = aStot

and E = aEtot, the derivative ∂S/∂E is analytically determined as ∂Stot/∂Etot. Here, a



Numerical approaches 41

is identical in both expressions and the total energy Etot and total source Stot are the
integrals over all frequencies and directions of E(σ, θ) and Sds,br(σ, θ), respectively.

As such, each difference equation (3.2) using expressions (3.18), (3.19) and (3.21) provides
an algebraic relation between N at the corresponding bin and its nearest neighbours:

aPNP = aLNL + aRNR + aBNB + aTNT + bP , (3.23)

where P corresponds to central bin (l,m) and L(eft), R(ight), B(ottom) and T(op) corre-
spond to (l − 1,m), (l + 1,m), (l,m − 1) and (l,m + 1), respectively. Furthermore, the
coefficients ak, k ∈ {P, L, R, B, T} arise from the discretizations of the fluxes cσN and cθN
and bP contains the positive contributions of the source term Sp

tot in (3.21) and the updated
fluxes cxN (3.3) and cyN (3.4). Note that coefficient aP includes −Sn

tot.

The linear system of equations (3.23) for all bins within a directional quadrant at a par-
ticular geographical point is denoted by

A ~N = ~b , (3.24)

where A ∈ IRK×K contains the coefficients ak, k ∈ {P, L, R, B, T} (and corresponds to a

subblock on the main diagonal of (3.20)), ~b ∈ IRK contains the coefficient bP and boundary

values and ~N ∈ IRK denotes an algebraic vector containing the unknown action density
values. Matrix A is non-symmetric. The dimension K of a directional quadrant equals
Nσ×1/4Nθ. Note that linearization of the source term (3.21) enhances diagonal dominance

of A, thereby improving numerical stability. Also note that neither A nor ~b depends on
the unknowns. Each row in the matrix A corresponds to a bin (l,m). The main diagonal
contains the coefficients aP and directly to the left and right are the coefficients −aB and
−aT, respectively. The coefficients −aL and −aR are on the diagonals that are Nθ positions
to the left and right of the main diagonal, respectively.

The solution ~N is given by A−1~b. Since, the only non-zero matrix elements are situated in
five diagonals, iterative solution methods that utilize the sparsity of A optimally are very
attractive. In SWAN, the solution of (3.24) is found by means of an incomplete lower-
upper decomposition method followed by an iteration process called the Strongly Implicit
Procedure (SIP) (Ferziger and Perić, 1999). This procedure is specifically designed for
(non-symmetric) penta-diagonal systems and is relatively fast. Note that in the absence
of mean current there are no shifts in the frequency, and consequently the structure of A
reduces to a tri-diagonal one, i.e. aL = aR = 0, which can be inverted efficiently with the
Thomas algorithm (Press et al., 1993; Ferziger and Perić, 1999).

Due to refraction and nonlinear wave energy transfer, interactions occur between the di-
rectional quadrants. To properly take these interactions into account and the fact that we
employ the Gauss-Seidel technique and linearization of the source term (3.21), the quad-
rant sweeping and the solution of system (3.24) need to be repeated until some convergence
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criteria are met. At present, the iteration process runs from s = 1 to s = S and is ter-
minated if the maximum number of iterations S (usually 15) is reached or the following
criteria for the significant wave height Hm0 and mean relative wave period Tm01, as given
by

Hm0 = 4
√

m0 , Tm01 = 2π
m0

m1

, mj =
∫ ∞

0

∫ 2π

0
σjE(σ, θ)dσdθ , (3.25)

are both satisfied in at least 98% of all wet grid points (i, j):

|∆Hs
m0(i, j)|

Hs−1
m0 (i, j)

< εr
H or |∆Hs

m0(i, j)| < εa
H (3.26)

and
|∆T s

m01(i, j)|
T s−1

m01(i, j)
< εr

T or |∆T s
m01(i, j)| < εa

T . (3.27)

Here, ∆Qs ≡ Qs − Qs−1, with Q some quantity. In this study, we use the default values:
εr
H = εr

T = 0.02, εa
H = 0.02 m and εa

T = 0.2 s; see Holthuijsen et al. (2003). The rationale
behind the use of the integral wave parameters Hm0 and Tm01 in the stopping criteria is
that these are the output variables typically of interest. The iterative solution procedure
is accelerated by calculating a reasonable first guess of the wave field based on second-
generation source terms of Holthuijsen and De Boer (1988).

3.4 Convergence-enhancing measures

As explained in Section 3.1, many time scales are involved in the evolution of wind waves.
The high-frequency waves have much shorter time scales than the low-frequency waves,
rendering the system of equations (3.24) stiff. If no special measures are taken, the need
to resolve high-frequency waves at very short time scales would result in extreme compu-
tational time. For economy, it is desirable that a numerical technique can be used with
a large, fixed time step. Moreover, we are mainly interested in the evolution of slowly
changing low-frequency waves. For stationary problems, we are interested in obtaining
the steady-state solution. Unfortunately, the convergence to the steady state is dominated
by the smallest time scale and, in the absence of remedial measures, destabilizing over-
and undershoots will prevent solution from converging monotonically during the iteration
process. These oscillations arise because of the off-diagonal terms in matrix A, which can
be dominant over the main diagonal, particularly when the ratio σmax/σmin is substan-
tially larger than one. As a consequence, convergence is slowed down and divergence often
occurs. To accelerate the iteration process without generating instabilities, appropriately
small updates must be made to the level of action density.

With the development of the WAM model, a so-called action density limiter was intro-
duced as a remedy to the abovementioned problem. This action limiter restricts the net
growth or decay of action density to a maximum change at each geographic grid point
and spectral bin per time step. This maximum change corresponds to a fraction of the
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omni-directional Phillips equilibrium level (Hersbach and Janssen, 1999). In the context
of SWAN (Booij et al., 1999), this is

∆N ≡ γ
αPM

2σk3cg

, (3.28)

where γ ≥ 0 denotes the limitation factor, k is the wave number and αPM = 8.1 × 10−3

is the Phillips constant for a Pierson-Moskowitz spectrum (Komen et al., 1994). Usually,
γ = 0.1 (Tolman, 1992)3. Denoting the total change in Ni,j,l,m from one iteration to the
next after (3.2) by ∆Ni,j,l,m, the action density at the new iteration level is given by

N s
i,j,l,m = N s−1

i,j,l,m +
∆Ni,j,l,m

|∆Ni,j,l,m|
min{|∆Ni,j,l,m|, ∆N} . (3.29)

For wave components at relatively low frequencies, (3.29) yields the pre-limitation outcome
of (3.2), because, for these components, the pseudo time step matches the time scale of
their evolution. For high-frequency waves, however, (3.29) gives the upper limit for the
spectrum to change per iteration due to the limiter (3.28). For typical coastal engineering
applications, it is sufficient to compute the energy-containing part of the wave spectrum
accurately. In other words, action densities near and below the spectral peak should not be
imposed by the limiter (3.28). However, our experiences with SWAN have shown that the
limiter is active even close to the peak. Furthermore, during the entire iteration process,
the limiter is typically active at almost every geographic grid point.

The alternative measure to enhance the convergence of the stable iteration process con-
sidered here is so-called false time stepping (Ferziger and Perić, 1999). Under-relaxation
terms representing the rate of change are introduced to enhance the main diagonal of A
and thus stabilize the iteration process. The system of equations (3.24) is replaced by the
following, iteration-dependent system

~N s − ~N s−1

τ
+ A ~N s = ~b (3.30)

with τ a pseudo time step. The first term of (3.30) controls the rate of convergence of the
iteration process in the sense that smaller updates are made due to decreasing τ , usually at
the cost of increased computational time. To deal with decreasing time scales at increasing
wave frequency, the amount of under-relaxation is enlarged in proportion to frequency.
This allows a decrease in the computational cost of under-relaxation, because at lower
frequencies larger updates are made. This frequency-dependent under-relaxation can be
achieved by setting τ−1 = ασ, where α is a dimensionless parameter. The parameter α will
play an important role in determining the convergence rate and stability of the iteration
process. Substitution in (3.30) gives

(A + ασI) ~N s = ~b + ασ ~N s−1 . (3.31)

3It is noted here that the effective γ used in SWAN is not equivalent to that of WAM: the former is a
factor 2π larger.
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When the steady state is reached (i.e. s → ∞), system (3.31) solves A ~N∞ = ~b since, ~N∞

is a fixed point of (3.31).

Suitable values for α must be determined empirically and thus robustness is impaired. For
increasing values of α, the change in action density per iteration will decrease in the whole
spectrum. The consequence of this is twofold. Firstly, it allows a much broader frequency
range in which the action balance equation (3.2) is actually solved without distorting
convergence properties. Secondly, the use of the limiter will be reduced because more
density changes will not exceed the maximum change (3.28). Clearly, this effect may be
augmented by increasing the value of γ in (3.28).

To allow proper calculation of the second-generation first guess of the wave field (see Section
3.3), under-relaxation is temporarily disabled (α = 0) during the first iteration. Whereas
this measure is important in achieving fast convergence, it does not affect stability, since
the second-generation formulations do not require stabilization.

3.5 Stopping criteria

In general, the iterative method should be stopped if the approximate solution is accurate
enough. A good termination criterion is very important, because if the criterion is too weak
the solution obtained may be useless, whereas if the criterion is too severe the iteration
process may never stop or may cost too much work. Experiences with SWAN have shown
that the present criteria (3.26) and (3.27) are often not strict enough to obtain accurate
results after termination of the iterative procedure. Thus, criteria (3.26) and (3.27) are
necessary but not sufficient. It was found that the iteration process can converge so slowly
that at a certain iteration s the difference between the successive iterates, H s

m0−Hs−1
m0 , can

be small enough to meet the convergence criteria, causing the iteration process to stop,
even though the converged solution has not yet been found. In particular, this happens
when convergence is non-monotonic such that the process is terminated at local maxima
or minima that may not coincide with the converged solution.

Furthermore, it became apparent that, unlike Hm0, the quantity Tm01 is not an effective
measure of convergence. It was found that the relative error in Tm01, i.e. |T s

m01−T s−1
m01|/T s−1

m01,
does not monotonically decrease near convergence, but keeps oscillating during the iteration
process. This behaviour is due to small variations in the spectrum at high frequencies, to
which Tm01 is sensitive. This behaviour is problematic when any form of stricter stopping
criterion is developed based on Tm01. Therefore, in the improved termination criterion
proposed in this paper, Tm01 has been abandoned as a convergence measure and only Hm0,
which displays more monotonic behaviour near convergence, is retained.

Stiffness and nonlinearity of the action balance equation are found to yield less rapid and
less monotone convergence. Ferziger and Perić (1999) explain the slow convergence in
terms of the eigenvalue or spectral radius of the iteration process generating the sequence
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{φ0, φ1, φ2, ...}. They show that the actual solution error is given by

φ∞ − φs ≈ φs+1 − φs

1 − ρ
, (3.32)

where φ∞ denotes the steady-state solution and ρ is the spectral radius indicating the rate
of convergence. The smaller ρ, the faster convergence. This result shows that the solution
error is larger than the difference between successive iterates. Furthermore, the closer ρ
is to 1, the larger the ratio of solution error to the difference between successive iterates.
In other words, the lower the rate of convergence of the iteration process, the smaller this
difference from one iteration to the next must be to guarantee convergence. The stopping
criterion of SWAN could be improved by making the maximum allowable relative increment
in Hm0 a function of its spectral radius instead of imposing a fixed allowable increment. By
decreasing the allowable relative increment as convergence is neared, it would be possible
to delay run termination until a more advanced stage of convergence. Such a stopping
criterion was used by, e.g. Zijlema and Wesseling (1998). This criterion is adequate if the
iteration process converges in a well-behaved manner and ρ < 1 for all iterations. However,
due to nonlinearities SWAN typically does not display such smooth behaviour. Therefore,
this criterion may be less suited for SWAN.

An alternative way to evaluate the level of convergence is to consider the second derivative
or curvature of the curve traced by the series of iterates (iteration curve). Since the curva-
ture of the iteration curve must tend towards zero as convergence is reached, terminating
the iteration process when a certain minimum curvature has been reached would be a ro-
bust break-off procedure. The curvature of the iteration curve of Hm0 may be expressed
in the discrete sense as

∆(∆H̃s
m0)

s = H̃s
m0 − 2H̃s−1

m0 + H̃s−2
m0 , (3.33)

where H̃s
m0 is some measure of the significant wave height at iteration level s. To eliminate

the effect of small amplitude oscillations on the curvature measure, we define H̃s
m0 ≡

(Hs
m0 +Hs−1

m0 )/2. The resulting curvature-based termination criterion at grid point (i, j) is
then

|Hs
m0(i, j) − (Hs−1

m0 (i, j) + Hs−2
m0 (i, j)) + Hs−3

m0 (i, j)|
2Hs

m0(i, j)
< εC , s = 3, 4, ... , (3.34)

where εC is a given maximum allowable curvature. The curvature measure is made non-
dimensional through normalization with Hs

m0. Condition (3.34) must be satisfied in at least
98% of all wet grid points before the iterative process stops. This curvature requirement
is considered to be the primary criterion. However, the curvature passes through zero
between local maxima and minima and, at convergence, the solution may oscillate between
two constant levels due to the action limiter, whereas the average curvature is zero. As
safeguard against such a situation, the weaker criterion (3.26) is retained in addition to
the stricter criterion (3.34).
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Chapter 4

Wave boundary and initial conditions

To obtain the numerical solution of the action balance equation (2.16), the wave boundary
and initial conditions should be provided. The incoming wave components at the up-wave
boundaries in the SWAN model are specified by a two-dimensional spectrum. Several
options are available:

• A parametric one-dimensional spectrum with a certain imposed directional distribu-
tion. An example is a Jonswap spectrum.

• A discrete one-dimensional spectrum with a certain imposed directional distribution.
This is often obtained from measurements.

• A discret two-dimensional spectrum. This may be obtained from other SWAN runs
or other models, e.g. WAM and WAVEWATCH III.

For the parametric one-dimensional spectrum, the following optional forms have been rec-
ommended: a Pierson-Moskowitz spectrum (Pierson and Moskowitz, 1964), a Jonswap
spectrum (Hasselmann et al., 1973) and a Gaussian-shaped spectrum.

The boundaries in frequency space are fully absorbing at the lowest and the highest dis-
crete frequency. So, energy can freely propagate across these boundaries and thus total
energy might not be conserved in some cases. However, a diagnostic tail f−m (m = 4 or
m = 5) is added above the high frequency cut-off, which is used to compute nonlinear
wave-wave interactions at the high frequencies and to compute integral wave parameters.
When the directional space is a closed circular, no directional boundary conditions are
needed. However, for reasons of economy, SWAN has an option to compute only wave
components in a pre-defined directional sector. In this case, the boundaries of this sector
are fully absorbing (action density might be removed from the model by refraction).

To facilitate the integration process of the action balance equation, wave boundary con-
ditions in geographical space need to be provided. The boundaries of the computational
grid in SWAN are either land or water. In case of land there is no problem. The land does
not generate waves and in SWAN it absorbs all incoming wave energy. But in the case of

47
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a water boundary there is a problem. If observations are available, they can be used as
inputs at the boundary. In case no wave conditions are given along the boundary, SWAN
assumes that no waves enter the model and waves can leave the model freely along that
boundary. This assumption results in errors. Therefore, to get reliable results, especially
for such case, the model boundaries must be placed far away from the area of interest.

In case of non-stationary computation, the default initial spectra are computed from the
local wind velocities using the deep-water growth curve of Kahma and Calkoen (1992), cut
off at values of significant wave height and peak frequency from Pierson and Moskowitz
(1964). The average (over the model area) spatial step size is used as fetch with local
wind. The shape of the spectrum is default Jonswap with a cos2(θ) directional distribution
centred around the local wind direction.

The first guess conditions of a stationary run of SWAN are default determined with the
second generation mode of SWAN.

It is possible to obtain an initial state by carrying out a previous stationary or nonstation-
ary computation.
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Implementation of 2D wave set-up

5.1 Methods

For the present purpose flows in shallow water are sufficiently described by the so- called
shallow-water equation which consists of one continuity equation and two equations of
motion (one for the x− and one for the y−component). For the present project the
shallow water equation has to be simplified. The possibilities for such simplification are
investigated in the remainder of this section.

Wave setup is usually confined to narrow zones in the immediate vicinity of the shoreline.
The size of such areas is small enough that the setup process can be considered to be
quasi-stationary.

Wave-induced currents are usually weak compared with e.g. tidal currents. Therefore it
seems acceptable to neglect all terms in the equation of motion where the current velocity
appears.

Comparisons of SWAN results with results from a full 2-dimensional flow model have to
show under which conditions the simplified equation provides acceptable results. Such
investigations are outside the scope of the present project. This report presents a few cases
with low overall current velocities where apparently the computed setup is reasonably in
accordance with expectations.

Deleting from the equation of motion all terms involving current velocities we retain an
equilibrium between the wave-induced force and the gradient of the water table, i.e.

Fk + gd
∂ζ

∂xk

= 0 , (5.1)

where ζ is the setup, d the depth and Fk is the wave-induced force. In a one-dimensional
model (5.1) can be used directly to compute the setup. In two dimensions (5.1) is a set
of two equations with only one unknown, the setup ζ. In order to reduce the number of
equations to one, we use the observation by Dingemans(1997) that wave-driven currents
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are mainly due to the divergence-free part of the wave forces whereas the setup is mainly
due to the rotation-free part of the force field. We therefore take the divergence of eq.
(5.1) to obtain the following elliptic partial differential equation for ζ:

∂Fk

∂xk

+
∂

∂xk

(gd
∂ζ

∂xk

) = 0 (5.2)

This Poisson equation needs one boundary condition in each point of the boundary of the
computational domain. Two types of boundary conditions are foreseen; the first one is
used on the open boundaries and on the shoreline where the shoreline is defined as the line
where the depth is zero:

Fn + gd
∂ζ

∂n
= 0 (5.3)

It is not possible to use this boundary condition on all boundary points because then there
remains an unknown constant. So on on point, for which we take the boundary point with
the largest depth the setup is assumed to be 0: ζ = 0.

The second type of boundary condition with given value of ζ is also used in nested models.
The setup computed in the larger model is used as boundary condition in the nested model.
In the nested model the setup is given in all points of the outer boundary. On shorelines
inside the area again eq. (5.3) is used.

The Poisson equation (5.2) together with its boundary conditions will be solved numer-
ically on a curvilinear grid. The next section dsicusses the details of the method, and
presents some results of preliminary computations with the above model.

The actual design of the modifications of the SWAN commands is presented in Appendix
A, the design of the modifications of the code is presented in Appendix B. After each
iteration performed in SWAN new values of the setup are being calculated and added to
the depth, so that the SWAN model incorporates the effect of setup on the wave field. An
output quantity SETUP is added so that the user can be informed about the magnitude
and distribution of the wave setup.

5.2 Analysis and Results

5.2.1 Discretization of the 2D setup equation

Problem definition

The equation to be solved has the following form:

∂

∂xk

(Fk + gd
∂ζ

∂xk

) = 0 , (5.4)
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with ζ the setup, d the depth and Fk a golf-induced, time-averaged force.
In order to solve (5.4), the following types of boundary conditions may be applied

Fn + gd
∂ζ

∂n
= 0 at the boundary , (5.5)

with n the outward direct normal. This is a so-called Neumann condition. The setup is
fixed upon an additive constant.

ζ = given at the boundary . (5.6)

This is boundary condition of Dirichlet type.

At beaches always the Neumann condition (5.5) is applied.
In order to solve (5.4) with boundary conditions (5.5) and (5.6) a boundary fitted, vertex
centered finite volume method is applied. The discretization is based on the method
described in Van Beek et al. (1995). In the remainder of this Chapter we use k instead of
gd.

Discretization

The physical domain is mapped onto a rectangular domain in the (ξ1, ξ2) plane, which is
called the computational domain. All points of the domain are used, including the dry
ones.

Using the relation Zijlema (1996) (summation convection applied):

∂ϕ

∂xβ
=

1√
g

∂

∂ξγ
(
√

g a
(γ)
β ϕ) , (5.7)

with a
(γ)
β the components of the contravariant basevectors ~a(α) defined as (Segal et al, 1992):

~a(α) = ∇ξα , (5.8)

and
√

g the Jacobian of the transformation:

√
g = a1

(1)a
2
(2) − a2

(1)a
1
(2) . (5.9)

~a(α) are the covariant base vectors defined by

~a(α) =
∂~x

∂ξα
. (5.10)

The contravariant base vectors follow immediately from the covariant ones due to:

√
g~a(1) = (a2

(2), −a1
(2))

T , (5.11)
√

g~a(2) = (−a2
(1), a1

(1))
T . (5.12)
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Application of (5.7) to equation (5.5) results in

1√
g

∂

∂ξα
(
√

g~a(α) · (k∇ζ + ~F )) = 0 . (5.13)

Note that ∇ζ is a derivative in the Cartesian (~x) direction and not in the ~ξ direction.

In the remainder we shall use the local numbering as given in Figure 5.1. The points (0,

(2, 2)

(2, 0)

(0, 1)

(0, 0) (1, 0)

(0, 2)

Figure 5.1: Local numbering in computational domain

0), (2, 0), (0, 2) and so on are the vertices of the cells. The integration cell for the finite
volume method is defined by the cell Ω (-1, 0), (0, -1), (1, 0), (0, 1).

Integrating (5.13) over this cell gives

∫

Ωx

1√
g

∂

∂ξα
(
√

g~a(α) · (k∇ζ + ~F ))dΩx

∫

Ωξ

∂

∂ξα
(
√

g~a(α) · (k∇ζ + ~F ))dΩξ (5.14)

≈ √
g~a(1) · (k∇ζ + F )|(1,0)

(−1,0) +
√

g~a(2) · (k∇ζ + ~F )|(0,1)
(0,−1) ,

where Ωx is the cell in the physical space and Ωξ the cell in the computational domain.
The four points (1, 0), (0, 1), (-1,0) and (0, -1) will be cell integration points. The covariant
basis vectors ~a(α) are approximated by central differences.

~a(2)|(0,1) = ~x(0,2) − ~x(0,0) , (5.15)

~a(1)|(1,0) = ~x(2,0) − ~x(0,0) , (5.16)

and by linear interpolation in other points.
In these relations we have used that the step width in the computational domain is equal
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to 1.
The term ∇ζ needs special attention. Since it concerns derivatives in the ~x direction,
whereas all derivatives in the computational domain are in the ~ξ directions it is necessary
to make some approximation. We approximate this term by the integration path method
introduced in Van Beek et al. (1995).

To that end ∇ζ is integrated in two independent directions ξ1 and ξ2. This yields two
equations to express ∂ζ

∂x
and ∂ζ

∂y
in ζ values of neighbours.

(~x2,0 − ~x),0)∇ζ|(1,0) = ζ2,0 − ζ0,0 , (5.17)

1

2
((~x2,2 − ~x2,−2) + (~x0,2 − ~x0,−2))∇ζ|(1,0) =

1

2
((ζ2,2 − ζ2,−2) + (ζ0,2 − ζ0,−2)) .(5.18)

(5.17), (5.18) may be considered as two sets of equations to express ∇ζ into ζ values.
Solution of this linear system results in:

∇ζ|(1,0) = ζ|(2,0)
(0,0)~c

(1) + (ζ|(0,2)
(0,−2) + ζ|(2,2)

(2,−2))~c
(2) , (5.19)

with

~c1 =
1

C
(c2

(2), −c1
(2)) ; ~c2 =

1

C
(−c2

(1), c1
(1)) , (5.20)

C = c2
(2)c

1
(1) − c2

(1)c
1
(2) , (5.21)

~c(1) = a(1)|(1,0) ~c(2) = ~a(2)|(0,−1) + ~a(2)|(0,1) + ~a(2)|(2,−1) + ~a(2)|(2,1) . (5.22)

A similar formula is applied for point (0, 1). Equation (5.14) together with expression
(5.19) gives one row of the discretized equation.

Treatment of the boundary conditions

The boundary conditions at the outer boundary of the domain are relatively easy to im-
plement.

In case of Dirichlet boundary conditions the corresponding row of the matrix is made equal
to 0 and the diagonal element is set to 1. The value of the boundary condition is filled into
the right-hand side.

Neumann boundary conditions are treated integrating over a half cell as sketched in Fig-
ure 5.2. In this case we get:

∫

Ωξ

∂

∂ξα
(
√

g~a(α) · (k∇ζ + ~F )dΩξ

' 1

2

√
g~a(1) · (k∇ζ + ~F )|(1,0)

(−1,0) +
√

g~a(2) · (k∇ζ + ~F )|(0,1)
(0,0) . (5.23)

Due to the Neumann boundary conditions the term in the boundary point (0, 0) vanishes.
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(0, 0)

(0, 1)

(-1, 0) (1, 0)

Figure 5.2: Half cell at boundary

Mark that in this case we need to evaluate ∇ζ at the boundary. In order to do so we apply
a one-sided integration path approach i.e.

(~x(2,0) − ~x(1,0)) · ∇ζ|(1,0) = ζ(2,0) − ζ(0,0) ,

((x(2,2) − x(2,0)) + (~x(0,2) − ~x(0,0))) · ∇ζ|(1,0) = (ζ(0,2) − ζ(0,0)) + (ζ(2,2) − ζ(2,0)) .(5.24)

Furthermore we need the values of ~a(α) in virtual cells, because we need the c(α) at the
boundary. To that end we construct a row of virtual cells by extrapolating the coordinates
of the boundary cells.

The implementation of dry points

Dry points complicate the software considerably.

For the dry points itself there is no problem. In fact we make the corresponding row of the
matrix, as well as the right-hand side element completely equal to zero. This is allowed
since our linear solver is able to deal with zero rows.

Dry points in the neighbourhood of wet points, however, also influence the matrix for the
wet point. Consider for example the integration point (1,0) in Figure 5.3. If (0, 0) is a

(0, 0)
(2, 0)

(0, 1)

(1, 0)(-1, 0)

(0, -1)

Figure 5.3: Dry point (2, 0) and wet point (0, 0)

wet point and (2, 0) a dry point then we assume that at point (1,0) we have a Neumann
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boundary condition. This means in fact that the contribution of the integration point (1,0)
to the matrix and right-hand side is equal to zero. With respect to the evaluation of the
gradient of ζ with the integration path method one sided differences are applied for those
formulas involving ζ(2,0). This process is applied for all transitions from wet to dry points.
As a consequence, in the case of a situation like in Figure 5.4 we make ∇ζ for point 2 zero.
The reason is that in point 2 it is only possible to evaluate ∂ζ

∂ξ1 and not ∂ζ
∂ξ2 , and hence we

2
1

Figure 5.4: Wet points • enclosed by a row of dry points ×

have too few information to express ∇ζ in neighbour values.

Building of the matrix and right-hand side

With respect to the building of matrix and right-hand side we start by computing all
contributions in the integration points. This is done by looping over the various integration
points. Since the contribution of point (0,1) in cell (i, j) is equal to that of point (0, -1) in
cell (i − 1, j) it is sufficient to loop over two sets of integration points only.

Once we have computed the coefficients in a set of integration points we must add these
contributions, multiplied by some factor, to the matrix elements. This process is known
as distribution.

Hence the actual implementation is as follows:

1 Map indirect addressing to direct addressing. (subroutine swdct).

2 Compute and store ~a(α) for all integration points. First we use central differences
where possible and after that we apply linear interpolation for the remaining points.
(subroutine swcova2d).

3 Compute
√

g~a(α) in all integration points using ~a(α). (subroutine swjcta2d).

For 2 integration directions do

4 Compute factors ~c(α) taking into account boundary effects and dry points.
Compute contributions for matrix and right-hand side for integration points.
(subroutine swtrad2d).
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5 Distribute contribution to correct matrix elements.
(subroutine swdisdt2).

6 Fill essential boundary conditions.
(subroutine swessbc).

7 Solve system of linear equations.
(subroutine swsolve).
This part is explained in more detail in the next Chapter.

8 Map from direct to indirect addressing.
(subroutine swindct).

5.2.2 The iterative solver for the linear system

In this section we describe the mathematical methods, which are used to solve the system
of linear equations as derived in Chapter 1. In Section 5.2.2 we consider the data structure
used. Some properties of the matrix are given in Section 5.2.2. Due to the sparseness of
the matrix we prefer an iterative solution method of Krylov subspace type. The details are
described in Section 5.2.2. As is well known, Krylov subspace methods are only attractive
when they are combined with suitable preconditioners (see Section ??). Finally our choices
are summarised in Section ??.

Data structure

After the discretization of the Poisson equation in curvilinear coordinates, one has to solve
the following matrix vector system:

Ax = f, (5.25)

where A is the discrete Poisson operator, x is an approximation of the setup (of the water
level), and the right-hand-side vector f contains the effects of the boundary conditions and
the forces due to the surface waves. In the solver it is very efficient to calculate with direct
addressing, so dry points are included in the vector x. This implies that the dimension of x
and f are fixed and equal to MXC ×MY C. In the discretization a 9-point stencil is used.
That implies that only 9 matrix elements per row are non-zero. These elements are stored
in a diagonal-wise way. So for this part NWKARR = 9. The rows corresponding to dry
points are filled with zeroes except on the main diagonal where the value 1 is substituted.
The value of x and f are taken equal to 0 at these points.

Properties of the matrix

The discrete operator is symmetric in the inner region. This means that ai,j = aj,i. Due
to the boundary conditions the symmetry of the operator is lost. The reasons for this are:
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• When Dirichlet boundary conditions are used the known elements of x should be
eliminated in order to keep the matrix symmetric. However this leads to a different
dimension of A, x, and f , therefore the known elements are not eliminated.

• When dry points occur the derivation of the discrete boundary conditions is already
complicated at the interface between wet and dry points. At this moment it is not
clear how to discretize these conditions such that the resulting matrix is symmetric.

These difficulties motivate us to use a non-symmetric matrix. This is only a small drawback,
because recently good methods have been developed to solve non-symmetric matrix vector
systems.

When Neumann conditions are used on all boundaries the resulting matrix is singular.
The solution is determined up to a constant. We have to keep this in mind during the
construction of the solution procedure.

When Gauss elimination is used to solve equation (5.25), the zero elements in the bend
of A become non-zero. This means that the required memory is equal to 2 × MXC + 2
vectors. For MXC large, this leads to an unacceptable large amount of memory. Therefore
we use an iterative solution method, where the total amount of memory is less than the
memory used in the discretization procedure.

The iterative solver

In 1D cases, the wave-induced set-up is calculated in SWAN with a simple trapezoidal rule.

In 2D cases, the Poisson equation of the divergence-free force field is solved in SWAN with
a modified Successive Over Relaxation (SOR) technique (Botta and Ellenbroek, 1985).
The boundary conditions for this elliptical partial differential equation are:

• at open boundaries: equilibrium between wave force and hydrostatic pressure gradi-
ent normal to the model boundary,

• at last grid points before shoreline: equilibrium between wave force and hydrostatic
pressure gradient normal to the model boundary and

• at deepest boundary point: set-up is zero.

The shoreline in SWAN moves as dictated by the wave-induced set-up. The set-up com-
putations are available in both the recti-linear and curvi-linear grids.



58 Chapter 5



Chapter 6

Iterative solvers

This chapter is under preparation.
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Chapter 7

Parallel implementation aspects

Domain decomposition methods have been successfully used for solving large sparse systems
arising from finite difference or finite volume methods in computational fluid dynamics on
distributed memory platforms. They are based, in essence, upon a partition of the whole
computational domain in ~x-space into a number of contiguous, non-overlapping subdo-
mains with each of them being assigned to a different processor. In this case the same
algorithm performs on all available processors and on its own set of data (known as the
SPMD programming model). Each subdomain can have multiple neighbors on each of its
four sides. For this, a data structure is implemented to store all the information about the
relationship of the subdomain and its particular neighbors. Next, each subdomain, look in
isolation, is then surrounded by an auxiliary layer of one to three grid points originating
from neighbouring subdomains. This layer is used to store the so-called halo data from
neighbouring subdomains that are needed for the solution within the subdomain in ques-
tion. The choice of one, two or three grid points depends on the use of propagation scheme
in geographical space, i.e., respectively, BSBT, SORDUP or Stelling/Leendertse. Since,
each processor needs data that resides in other neighbouring subdomains, exchange of data
across boundaries of subdomains is necessary. Moreover, to evaluate the stopping crite-
rion (3.26), global communication is required. These message passings are implemented
by a high level communication library such as MPI standard. A popular distribution is
MPICH which is free software1 and is used in the present study. Only simple point-to-
point and collective communications have been employed. There are, however, some other
implementation and algorithmic issues that need to be addressed.

7.1 Load balancing

The mapping of subdomains on processors should be chosen so as to distribute the compu-
tational load as equally as possible and to minimize the communication cost. Intuitively, it
will be clear that we have to allocate contiguous blocks of equal numbers of grid points on
each processor. However, in the context of SWAN applications to coastal areas, some dif-

1Available from http://www-unix.mcs.anl.gov/mpi/mpich.
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ficulties arise. Firstly, wet and dry grid points may unevenly distributed over subdomains
while no computations have to be done in dry points. Secondly, an unbalanced partition
may arise during the simulation due to the tidal effect (dry points become wet and vice
versa). In such a case, one may decide to adapt the partition such that it is balanced again
(so-called dynamic load balancing). Finally, most end-users are not willing to determine
the partitioning themselves, thus automatic support for partitioning the grids is desirable.

In the present study, two well-established partition methods are applied. The first is
called stripwise partitioning in which the computational grid is cut along one direction,
resulting in horizontal or vertical strips. The choice of cutting direction depends on the
interface size of the strips which should be minimized. However, the communication vol-
ume, which is related to the total size of the interfaces, can be further reduced by means of
recursive application of alternately horizontal and vertical bisection. This is known as Re-
cursive Co-ordinate Bisection (RCB). Further details on these techniques and an overview
on grid partitioning can be found, e.g. in Fox (1988) and Chrisochoides et al. (1994). .

Within SWAN, the grid partitioning is carried out automatically on wet grid points
only. The size of the subdomain equals the total number of wet points divided by the total
number of subdomains. The implementation of a stripwise partitioning is as follows. First,
an empty strip is created. Next, assign point-by-point to the created part until the size of
that part has been reached. Thereafter, verify whether non-assigning wet points remain in
the current strip. If so, these points will be assign to the same part too, otherwise create
next empty strip. As a result, all strips have straight interfaces and include approximately
the same number of wet grid points. Moreover, experiences with SWAN simulation have
shown that the amount of computations in each wet grid point remains more or less constant
during the simulation and hence, there is no need for dynamic load balancing.

A final remark has to be made considering grid partitioning. The above described
methodology does not seem to have been implemented in spectral wave models before. In
Tolman (20020, another way of distributing data over the processors is discussed: each pth

wet grid point is assign to the same processor with p the total number of processors. The
requirement of equal numbers of wet grid points per processor is provided automatically.
However, it is impossible to compute the spatial wave propagation in an effective manner.
The only alternative is to gather data for all grid points in a single processor before the
calculation is performed. This will require a full data transpose, i.e. rearranging data
distribution over separate processors. It is believed that this technique requires much
more communication between processors than domain decomposition and therefore less
suitable for SWAN.

7.2 Parallelization of implicit propagation schemes

Contrary to explicit schemes, implicit ones are more difficult to parallelize, because of
the coupling introduced at subdomain interfaces. For example, concerning the four-sweep
technique, during the first sweep, an update of N(i, j, l,m) can be carried out as soon as
N(i − 1, j, l,m) and N(i, j − 1, l,m) have been updated and thus it can not be performed
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in parallel. Parallelization of this implicit scheme requires modifications. Ideally, the
parallel algorithm need no more computing operations than the sequential one for the
same accuracy.

The simplest strategy to circumvent this problem consists in treating the data on sub-
domain interfaces explicitly, which in mathematical terms amounts to using a block Jacobi
approximation of the implicit operator. In this context, we employ the RCB partition
method, since it gives the required balanced, low-communication partitioning. This strat-
egy possess a high degree of parallelism, but may lead to a certain degradation of con-
vergence properties. However, this numerical overhead can be reduced by colouring the
subdomains with four different colors and subsequently permuting the numbering of un-
knowns in four sweeps in accordance with the color of subdomains. Furthermore, each
subdomain is surrounded by subblocks of different colors. See Figure 7.1. As a result, each
coloured subdomain start with a different ordering of updates within the same sweep and

R R

R

Y

Y Y

Y

G

GG

B B

BB

R

G

Figure 7.1: Four types of subblocks (red, yellow, green and black) treated differently with
respect to the ordering of updates (indicated by arrows) per sweep.

thus reducing the number of synchronization points. This multicolor ordering technique
has been proposed earlier, e.g. in Meurant (1988) and Van der Vorst (1989).

Another strategy is based on the ideas proposed by Bastian and Horton (1991) and is
referred here to as the block wavefront approach. It is demonstrated with the following
example. First, we decompose the computational domain into a number of strips. In this
example, we assume that these strips are parallel to y−axis. Next, we start with the first
sweep. The processor belonging to the first strip updates the unknowns N(i, 1, l,m) along
the first row j = 1. Thereafter, communication takes place between this processor and
processor for strip 2. The unknowns N(i, 2, l,m) along j = 2 in strip 1 and N(i, 1, l,m)
along j = 1 in strip 2 can be updated in parallel, and so on. After some start-up time all
processors are busy. This is depicted in Figure 7.2. Finally, this process is repeated for the
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Figure 7.2: Application of block wavefront approach for the first 3 iterations during the first
sweep. Domain is divided into 3 vertical strips. Stars represent unknowns to be updated,
circles mean that unknowns are currently updated and the plus signs indicate unknowns
that have been updated.

other three sweeps. Details can be found in the source code of SWAN 40.20. The block
wavefront approach does not alter the order of computing operations of the sequential
algorithm and thus preserving the convergence properties, but reduces parallel efficiency
to a lesser extent because of the serial start-up and shut-down phases (Amdahl’s law).
This technique resembles much to the standard wavefront technique applied in a pointwise
manner (unknowns on a diagonal are mutually independent and thus can be updated in
parallel; for details, see Templates (1994), which has also been employed by Campbell et al.
(2002) for parallelizing SWAN using OpenMP.

The performance of the two discussed parallelization methods applied in the SWAN
model has been discussed in (Zijlema, 2005). Numerical experiments have been run on a
dedicated Beowulf cluster with a real-life application. They show that good speedups have
been achieved with the block wavefront approach, as long as the computational domain
is not divided into too thin slices. Moreover, it appears that this technique is sufficiently
scalable. Concerning the block Jacobi method, a considerable decline in performance has
been observed which is attributable to the numerical overhead arising from doubling the
number of iterations. Furthermore, it may result in a solution that is computed to an
accuracy that may not be realistic. In conclusion, parallelization with the block wavefront
technique has been favoured and has been implemented in the current operational version
of SWAN.

A survey of other alternatives to the parallelization of the implicit schemes is given in
Templates (1994).
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The overall solution algorithm
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