
CICE Documentation

CICE Consortium

Aug 15, 2019

Contents

1 Introduction - CICE 1
1.1 About CICE . 1
1.2 Quick Start . 2
1.3 Acknowledgements . 2
1.4 Citing the CICE code . 2
1.5 Copyright . 3

2 Science Guide 5
2.1 Coupling With Other Climate Model Components . 5
2.2 Fundamental Variables . 6
2.3 Tracers . 8
2.4 Horizontal Transport . 9
2.5 Dynamics . 17

3 User Guide 25
3.1 Implementation . 25
3.2 Running CICE . 38
3.3 Testing CICE . 44
3.4 Case Settings . 59
3.5 Troubleshooting . 68

4 Developer Guide 71
4.1 About Development . 71
4.2 Dynamics and Infrastructure . 71
4.3 Driver and Coupling . 74
4.4 Icepack . 75
4.5 Scripts . 75
4.6 Other things . 79

5 Index of primary variables and parameters 83

6 References 99

Bibliography 101

i

ii

CHAPTER 1

Introduction - CICE

1.1 About CICE

CICE is a computationally efficient model for simulating the growth, melting, and movement of polar sea ice. Designed
as one component of coupled atmosphere-ocean-land-ice global climate models, today’s CICE model is the outcome
of more than two decades of effort led by scientists at Los Alamos National Laboratory. The current version of the
model has been enhanced greatly through collaborations with members of the community.

CICE has several interacting components: a model of ice dynamics, which predicts the velocity field of the ice pack
based on a model of the material strength of the ice; a transport model that describes advection of the areal con-
centration, ice volumes and other state variables; and a vertical physics package, called “Icepack”, which includes
mechanical, thermodynamic, and biogeochemical models to compute thickness changes and the internal evolution of
the hydrological ice-brine ecosystem. When coupled with other earth system model components, routines external to
the CICE model prepare and execute data exchanges with an external “flux coupler”.

Icepack is implemented in CICE as a git submodule, and it is documented at https://cice-consortium-icepack.
readthedocs.io/en/master/index.html. Development and testing of CICE and Icepack may be done together, but the
repositories are independent. This document describes the remainder of the CICE model. The CICE code is available
from https://github.com/CICE-Consortium/CICE.

The standard standalone CICE test configuration uses a 3 degree grid with atmospheric data from 1997, available at
https://github.com/CICE-Consortium/CICE/wiki/CICE-Input-Data. A 1-degree configuration and data are also avail-
able, along with some idealized configurations. The data files are designed only for testing the code, not for use in
production runs or as observational data. Please do not publish results based on these data sets.

The CICE model can run serially or in parallel, and the CICE software package includes tests for various configura-
tions. MPI is used for message passing between processors, and OpenMP threading is available.

Major changes with each CICE release (https://github.com/CICE-Consortium/CICE/releases) will be detailed with the
included release notes. Enhancements and bug fixes made to CICE since the last numbered release can be found on
the CICE wiki (https://github.com/CICE-Consortium/CICE/wiki/CICE-Recent-changes). Please cite any use of the
CICE code. More information can be found at Citing the CICE code.

This document uses the following text conventions: Variable names used in the code are typewritten. Subroutine
names are given in italic. File and directory names are in boldface. A comprehensive Index of primary variables and

1

https://cice-consortium-icepack.readthedocs.io/en/master/index.html
https://cice-consortium-icepack.readthedocs.io/en/master/index.html
https://github.com/CICE-Consortium/CICE
https://github.com/CICE-Consortium/CICE/wiki/CICE-Input-Data
https://github.com/CICE-Consortium/CICE/releases
https://github.com/CICE-Consortium/CICE/wiki/CICE-Recent-changes

CICE Documentation

parameters, including glossary of symbols with many of their values, appears at the end of this guide.

1.2 Quick Start

Download the model from the CICE-Consortium repository, https://github.com/CICE-Consortium/CICE

Instructions for working in github with CICE (and Icepack) can be found in the CICE Git and Workflow Guide.

You will probably have to download some inputdata, see the CICE wiki or Forcing data.

Software requirements are noted in this Software Requirements section.

From your main CICE directory, execute:

./cice.setup -c ~/mycase1 -g gx3 -m testmachine -s diag1,thread -p 8x1
cd ~/mycase1
./cice.build
./cice.submit

testmachine is a generic machine name included with the cice scripts. The local machine name will have to
be substituted for testmachine and there are working ports for several different machines. However, it may be
necessary to port the model to a new machine. See Porting for more information about how to port. See Scripts for
more information about how to use the cice.setup and cice.submit scripts.

Please cite any use of the CICE code. More information can be found at Citing the CICE code.

1.3 Acknowledgements

This work has been completed through the CICE Consortium and its members with funding through the

• Department of Energy (Los Alamos National Laboratory)

• Department of Defense (Navy)

• Department of Commerce (National Oceanic and Atmospheric Administration)

• National Science Foundation (the National Center for Atmospheric Research)

• Environment and Climate Change Canada.

Special thanks are due to participants from these institutions and many others who contributed to previous versions of
CICE or Icepack.

1.4 Citing the CICE code

If you use the CICE code, please cite the version you are using with the CICE Digital Object Identifier (DOI):

DOI:10.5281/zenodo.1205674 (https://zenodo.org/record/1205674)

This DOI can be used to cite all CICE versions and the URL will default to the most recent version. However, each
released version of CICE will also receive its own, unique DOI that can be used for citations as well.

Please also make the CICE Consortium aware of any publications and model use.

2 Chapter 1. Introduction - CICE

https://github.com/CICE-Consortium/CICE
https://github.com/CICE-Consortium/About-Us/wiki/Git-Workflow-Guidance
https://github.com/cice-consortium/CICE/wiki

CICE Documentation

1.5 Copyright

© Copyright 2019, Triad National Security LLC. All rights reserved. This software was produced under U.S. Gov-
ernment contract 89233218CNA000001 for Los Alamos National Laboratory (LANL), which is operated by Triad
National Security, LLC for the U.S. Department of Energy. The U.S. Government has rights to use, reproduce, and
distribute this software. NEITHER THE GOVERNMENT NOR TRIAD NATIONAL SECURITY, LLC MAKES
ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFT-
WARE. If software is modified to produce derivative works, such modified software should be clearly marked, so as
not to confuse it with the version available from LANL.

Additionally, redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Triad National Security, LLC, Los Alamos National Laboratory, LANL, the U.S. Govern-
ment, nor the names of its contributors may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY TRIAD NATIONAL SECURITY, LLC AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL TRIAD NATIONAL SECURITY, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

1.5. Copyright 3

CICE Documentation

4 Chapter 1. Introduction - CICE

CHAPTER 2

Science Guide

2.1 Coupling With Other Climate Model Components

The sea ice model exchanges information with the other model components via a flux coupler. CICE has been coupled
into numerous climate models with a variety of coupling techniques. This document is oriented primarily toward
the CESM Flux Coupler [22] from NCAR, the first major climate model to incorporate CICE. The flux coupler was
originally intended to gather state variables from the component models, compute fluxes at the model interfaces,
and return these fluxes to the component models for use in the next integration period, maintaining conservation of
momentum, heat, and fresh water. However, several of these fluxes are now computed in the ice model itself and
provided to the flux coupler for distribution to the other components, for two reasons. First, some of the fluxes depend
strongly on the state of the ice, and vice versa, implying that an implicit, simultaneous determination of the ice state
and the surface fluxes is necessary for consistency and stability. Second, given the various ice types in a single grid cell,
it is more efficient for the ice model to determine the net ice characteristics of the grid cell and provide the resulting
fluxes, rather than passing several values of the state variables for each cell. These considerations are explained in
more detail below.

The fluxes and state variables passed between the sea ice model and the CESM flux coupler are listed in the Icepack
documentation. By convention, directional fluxes are positive downward. In CESM, the sea ice model may exchange
coupling fluxes using a different grid than the computational grid. This functionality is activated using the namelist
variable gridcpl_file. Another namelist variable highfreq, allows the high-frequency coupling procedure
implemented in the Regional Arctic System Model (RASM). In particular, the relative atmosphere-ice velocity (𝑈⃗𝑎−𝑢⃗)
is used instead of the full atmospheric velocity for computing turbulent fluxes in the atmospheric boundary layer.

The ice fraction 𝑎𝑖 (aice) is the total fractional ice coverage of a grid cell. That is, in each cell,

𝑎𝑖 = 0 if there is no ice
𝑎𝑖 = 1 if there is no open water

0 < 𝑎𝑖 < 1 if there is both ice and open water,

where 𝑎𝑖 is the sum of fractional ice areas for each category of ice. The ice fraction is used by the flux coupler to merge
fluxes from the ice model with fluxes from the other components. For example, the penetrating shortwave radiation
flux, weighted by 𝑎𝑖, is combined with the net shortwave radiation flux through ice-free leads, weighted by (1−𝑎𝑖), to
obtain the net shortwave flux into the ocean over the entire grid cell. The flux coupler requires the fluxes to be divided

5

https://cice-consortium-icepack.readthedocs.io/en/master/science_guide/index.html
https://cice-consortium-icepack.readthedocs.io/en/master/science_guide/index.html

CICE Documentation

by the total ice area so that the ice and land models are treated identically (land also may occupy less than 100% of an
atmospheric grid cell). These fluxes are “per unit ice area” rather than “per unit grid cell area.”

For CICE run in stand-alone mode (i.e., uncoupled), the AOMIP shortwave and longwave radiation formulas are
available in ice_forcing.F90. In function longwave_rosati_miyakoda, downwelling longwave is computed as

𝐹𝑙𝑤↓ = 𝜖𝜎𝑇 4
𝑠 − 𝜖𝜎𝑇 4

𝑎 (0.39 − 0.05𝑒1/2𝑎)(1 − 0.8𝑓𝑐𝑙𝑑) − 4𝜖𝜎𝑇 3
𝑎 (𝑇𝑠 − 𝑇𝑎) (2.1)

where the atmospheric vapor pressure (mb) is 𝑒𝑎 = 1000𝑄𝑎/(0.622 + 0.378𝑄𝑎), 𝜖 = 0.97 is the ocean emissivity, 𝜎
is the Stephan-Boltzman constant, 𝑓𝑐𝑙𝑑 is the cloud cover fraction, and 𝑇𝑎 is the surface air temperature (K). The first
term on the right is upwelling longwave due to the mean (merged) ice and ocean surface temperature, 𝑇𝑠 (K), and the
other terms on the right represent the net longwave radiation patterned after [38].

The downwelling longwave formula of [34] is also available in function longwave_parkinson_washington:

𝐹𝑙𝑤↓ = 𝜖𝜎𝑇 4
𝑎 (1 − 0.261 exp

(︀
−7.77 × 10−4𝑇 2

𝑎

)︀
(1 + 0.275𝑓𝑐𝑙𝑑) (2.2)

The value of 𝐹𝑙𝑤↑ is different for each ice thickness category, while 𝐹𝑙𝑤↓ depends on the mean value of surface
temperature averaged over all of the thickness categories and open water. The merged ice-ocean temperature in this
formula creates a feedback between longwave radiation and sea surface temperature which is unrealistic, resulting in
erroneous model sensitivities to radiative changes, e.g. other emissivity values, when run in the stand-alone mode. Al-
though our stand-alone model test configurations are useful for model development purposes, we strongly recommend
that scientific conclusions be drawn using the model only when coupled with other earth system components.

The AOMIP shortwave forcing formula (in subroutine compute_shortwave) incorporates the cloud fraction and hu-
midity through the atmospheric vapor pressure:

𝐹𝑠𝑤↓ =
1353 cos2 𝑍

10−3(cos𝑍 + 2.7)𝑒𝑎 + 1.085 cos𝑍 + 0.1

(︀
1 − 0.6𝑓3𝑐𝑙𝑑

)︀
> 0 (2.3)

where cos𝑍 is the cosine of the solar zenith angle.

Many ice models compute the sea surface slope ∇𝐻∘ from geostrophic ocean currents provided by an ocean model or
other data source. In our case, the sea surface height 𝐻∘ is a prognostic variable in POP—the flux coupler can provide
the surface slope directly, rather than inferring it from the currents. (The option of computing it from the currents
is provided in subroutine dyn_prep2.) The sea ice model uses the surface layer currents 𝑈⃗𝑤 to determine the stress
between the ocean and the ice, and subsequently the ice velocity 𝑢⃗. This stress, relative to the ice,

𝜏⃗𝑤 = 𝑐𝑤𝜌𝑤

⃒⃒⃒
𝑈⃗𝑤 − 𝑢⃗

⃒⃒⃒ [︁(︁
𝑈⃗𝑤 − 𝑢⃗

)︁
cos 𝜃 + 𝑘 ×

(︁
𝑈⃗𝑤 − 𝑢⃗

)︁
sin 𝜃

]︁
(2.4)

is then passed to the flux coupler (relative to the ocean) for use by the ocean model. Here, 𝜃 is the turning angle
between geostrophic and surface currents, 𝑐𝑤 is the ocean drag coefficient, 𝜌𝑤 is the density of seawater, and 𝑘 is the
vertical unit vector. The turning angle is necessary if the top ocean model layers are not able to resolve the Ekman
spiral in the boundary layer. If the top layer is sufficiently thin compared to the typical depth of the Ekman spiral, then
𝜃 = 0 is a good approximation. Here we assume that the top layer is thin enough.

Please see the Icepack documentation for additional information about atmospheric and oceanic forcing and other data
exchanged between the flux coupler and the sea ice model.

2.2 Fundamental Variables

The Arctic and Antarctic sea ice packs are mixtures of open water, thin first-year ice, thicker multiyear ice, and
thick pressure ridges. The thermodynamic and dynamic properties of the ice pack depend on how much ice lies in
each thickness range. Thus the basic problem in sea ice modeling is to describe the evolution of the ice thickness
distribution (ITD) in time and space.

6 Chapter 2. Science Guide

https://cice-consortium-icepack.readthedocs.io/en/master/science_guide/index.html

CICE Documentation

The fundamental equation solved by CICE is [44]:

𝜕𝑔

𝜕𝑡
= −∇ · (𝑔u) − 𝜕

𝜕ℎ
(𝑓𝑔) + 𝜓, (2.5)

where u is the horizontal ice velocity, ∇ = (𝜕
𝜕𝑥 ,

𝜕
𝜕𝑦), 𝑓 is the rate of thermodynamic ice growth, 𝜓 is a ridging

redistribution function, and 𝑔 is the ice thickness distribution function. We define 𝑔(x, ℎ, 𝑡) 𝑑ℎ as the fractional area
covered by ice in the thickness range (ℎ, ℎ+ 𝑑ℎ) at a given time and location.

Additional information about the ITD for CICE can be found in the Icepack documentation.

In addition to the fractional ice area, 𝑎𝑖𝑛, we define the following state variables for each category 𝑛. In a change from
previous CICE versions, we no longer carry snow and ice energy as separate variables; instead they and sea ice salinity
are carried as tracers on snow and ice volume.

• 𝑣𝑖𝑛, the ice volume, equal to the product of 𝑎𝑖𝑛 and the ice thickness ℎ𝑖𝑛.

• 𝑣𝑠𝑛, the snow volume, equal to the product of 𝑎𝑖𝑛 and the snow thickness ℎ𝑠𝑛.

• 𝑒𝑖𝑛𝑘, the internal ice energy in layer 𝑘, equal to the product of the ice layer volume, 𝑣𝑖𝑛/𝑁𝑖, and the ice layer
enthalpy, 𝑞𝑖𝑛𝑘. Here 𝑁𝑖 is the total number of ice layers, with a default value 𝑁𝑖 = 4, and 𝑞𝑖𝑛𝑘 is the negative
of the energy needed to melt a unit volume of ice and raise its temperature to 0 ∘C. (NOTE: In the current code,
𝑒𝑖 < 0 and 𝑞𝑖 < 0 with 𝑒𝑖 = 𝑣𝑖𝑞𝑖.)

• 𝑒𝑠𝑛𝑘, the internal snow energy in layer 𝑘, equal to the product of the snow layer volume, 𝑣𝑠𝑛/𝑁𝑠, and the snow
layer enthalpy, 𝑞𝑠𝑛𝑘, where 𝑁𝑠 is the number of snow layers. (Similarly, 𝑒𝑠 < 0 in the code.) CICE allows
multiple snow layers, but the default value is 𝑁𝑠 = 1.

• 𝑆𝑖, the bulk sea ice salt content in layer 𝑘, equal to the product of the ice layer volume and the sea ice salinity
tracer.

• 𝑇𝑠𝑓𝑛, the surface temperature.

Since the fractional area is unitless, the volume variables have units of meters (i.e., m3 of ice or snow per m2 of grid
cell area), and the energy variables have units of J/m2.

The three terms on the right-hand side of Equation (2.5) describe three kinds of sea ice transport: (1) horizontal
transport in (𝑥, 𝑦) space; (2) transport in thickness space ℎ due to thermodynamic growth and melting; and (3) transport
in thickness space ℎ due to ridging and other mechanical processes. We solve the equation by operator splitting in
three stages, with two of the three terms on the right set to zero in each stage. We compute horizontal transport using
the incremental remapping scheme of [7] as adapted for sea ice by [28]; this scheme is discussed in Section Horizontal
Transport. Ice is transported in thickness space using the remapping scheme of [27]. The mechanical redistribution
scheme, based on [44], [39], [12], [8], and [29] is outlined in the Icepack Documentation. To solve the horizontal
transport and ridging equations, we need the ice velocity u, and to compute transport in thickness space, we must
know the the ice growth rate 𝑓 in each thickness category. We use the elastic-viscous-plastic (EVP) ice dynamics
scheme of [16], as modified by [5], [15], [17] and [18], or a new elastic-anisotropic-plastic model [49][47][45] to find
the velocity, as described in Section Dynamics. Finally, we use a thermodynamic model to compute 𝑓 . The order
in which these computations are performed in the code itself was chosen so that quantities sent to the coupler are
consistent with each other and as up-to-date as possible. The Delta-Eddington radiative scheme computes albedo and
shortwave components simultaneously, and in order to have the most up-to-date values available for the coupler at the
end of the timestep, the order of radiation calculations is shifted. Albedo and shortwave components are computed
after the ice state has been modified by both thermodynamics and dynamics, so that they are consistent with the ice
area and thickness at the end of the step when sent to the coupler. However, they are computed using the downwelling
shortwave from the beginning of the timestep. Rather than recompute the albedo and shortwave components at the
beginning of the next timestep using new values of the downwelling shortwave forcing, the shortwave components
computed at the end of the last timestep are scaled for the new forcing.

2.2. Fundamental Variables 7

https://cice-consortium-icepack.readthedocs.io/en/master/science_guide/index.html
https://cice-consortium-icepack.readthedocs.io/en/master/science_guide/index.html

CICE Documentation

2.3 Tracers

The basic conservation equations for ice area fraction 𝑎𝑖𝑛, ice volume 𝑣𝑖𝑛, and snow volume 𝑣𝑠𝑛 for each thickness
category 𝑛 are

𝜕

𝜕𝑡
(𝑎𝑖𝑛) + ∇ · (𝑎𝑖𝑛u) = 0, (2.6)

𝜕𝑣𝑖𝑛
𝜕𝑡

+ ∇ · (𝑣𝑖𝑛u) = 0, (2.7)

𝜕𝑣𝑠𝑛
𝜕𝑡

+ ∇ · (𝑣𝑠𝑛u) = 0. (2.8)

The ice and snow volumes can be written equivalently in terms of tracers, ice thickness ℎ𝑖𝑛 and snow depth ℎ𝑠𝑛:

𝜕ℎ𝑖𝑛𝑎𝑖𝑛
𝜕𝑡

+ ∇ · (ℎ𝑖𝑛𝑎𝑖𝑛u) = 0, (2.9)

𝜕ℎ𝑠𝑛𝑎𝑖𝑛
𝜕𝑡

+ ∇ · (ℎ𝑠𝑛𝑎𝑖𝑛u) = 0. (2.10)

Although we maintain ice and snow volume instead of the thicknesses as state variables in CICE, the tracer form is
used for volume transport (section Horizontal Transport). There are many other tracers available, whose values are
contained in the trcrn array. Their transport equations typically have one of the following three forms

𝜕 (𝑎𝑖𝑛𝑇𝑛)

𝜕𝑡
+ ∇ · (𝑎𝑖𝑛𝑇𝑛u) = 0, (2.11)

𝜕 (𝑣𝑖𝑛𝑇𝑛)

𝜕𝑡
+ ∇ · (𝑣𝑖𝑛𝑇𝑛u) = 0, (2.12)

𝜕 (𝑣𝑠𝑛𝑇𝑛)

𝜕𝑡
+ ∇ · (𝑣𝑠𝑛𝑇𝑛u) = 0. (2.13)

Equation (2.11) describes the transport of surface temperature, whereas Equation (2.12) and Equation (2.13) describe
the transport of ice and snow enthalpy, salt, and passive tracers such as volume-weighted ice age and snow age.
Each tracer field is given an integer index, trcr_depend, which has the value 0, 1, or 2 depending on whether
the appropriate conservation equation is Equation (2.11), Equation (2.12), or Equation (2.13), respectively. The total
number of tracers is 𝑁𝑡𝑟 ≥ 1. Table Tracers provides an overview of available tracers, including the namelist flags
that turn them on and off, and their indices in the tracer arrays. If any of the three explicit pond schemes is on, then
tr_pond is true. Biogeochemistry tracers can be defined in the skeletal layer, dependent on the ice area fraction, or
through the full depth of snow and ice, in which case they utilize the bio grid and can depend on the brine fraction or
the ice volume, if the brine fraction is not in use.

Table 1: Tracer flags and indices
flag num tracers dependency index (CICE grid) index (bio grid)
default 1 aice nt_Tsfc=1
default 1 vice nt_qice
default 1 vsno nt_qsno
default 1 vice nt_sice
tr_iage 1 vice nt_iage
tr_FY 1 aice nt_FY
tr_lvl 2 aice nt_alvl

vice nt_vlvl
tr_pond_cesm 2 aice nt_apnd

apnd nt_vpnd
Continued on next page

8 Chapter 2. Science Guide

CICE Documentation

Table 1 – continued from previous page
flag num tracers dependency index (CICE grid) index (bio grid)
tr_pond_lvl 3 aice nt_apnd

apnd nt_vpnd
apnd nt_ipnd

tr_pond_topo 3 aice nt_apnd
apnd nt_vpnd
apnd nt_ipnd

tr_aero n_aero vice, vsno nt_aero
tr_brine vice nt_fbri
solve_zsal n_trzs fbri or (a,v)ice nt_bgc_S
tr_bgc_N n_algae fbri or (a,v)ice nt_bgc_N nlt_bgc_N
tr_bgc_Nit fbri or (a,v)ice nt_bgc_Nit nlt_bgc_Nit
tr_bgc_C n_doc fbri or (a,v)ice nt_bgc_DOC nlt_bgc_DOC

n_dic fbri or (a,v)ice nt_bgc_DIC nlt_bgc_DIC
tr_bgc_chl n_algae fbri or (a,v)ice nt_bgc_chl nlt_bgc_chl
tr_bgc_Am fbri or (a,v)ice nt_bgc_Am nlt_bgc_Am
tr_bgc_Sil fbri or (a,v)ice nt_bgc_Sil nlt_bgc_Sil
tr_bgc_DMS fbri or (a,v)ice nt_bgc_DMSPp nlt_bgc_DMSPd

fbri or (a,v)ice nt_bgc_DMSPd nlt_bgc_DMSPd
fbri or (a,v)ice nt_bgc_DMS nlt_bgc_DMS

tr_bgc_PON fbri or (a,v)ice nt_bgc_PON nlt_bgc_PON
tr_bgc_DON fbri or (a,v)ice nt_bgc_DON nlt_bgc_DON
tr_bgc_Fe n_fed fbri or (a,v)ice nt_bgc_Fed nlt_bgc_Fed

n_fep fbri or (a,v)ice nt_bgc_Fep nlt_bgc_Fep
tr_bgc_hum fbri or (a,v)ice nt_bgc_hum nlt_bgc_hum
tr_zaero n_zaero fbri or (a,v)ice nt_zaero nlt_zaero

1 fbri nt_zbgc_frac

Users may add any number of additional tracers that are transported conservatively, provided that the dependency
trcr_depend is defined appropriately. See Section Adding Tracers for guidance on adding tracers.

Please see the Icepack documentation for additional information about tracers that depend on other tracers, age of the
ice, aerosols, brine height, and the sea ice ecosystem.

2.4 Horizontal Transport

We wish to solve the continuity or transport equation (Equation (2.6)) for the fractional ice area in each thickness
category 𝑛. Equation (2.6) describes the conservation of ice area under horizontal transport. It is obtained from
Equation (2.5) by discretizing 𝑔 and neglecting the second and third terms on the right-hand side, which are treated
separately (As described in the Icepack Documentation).

There are similar conservation equations for ice volume (Equation (2.7)), snow volume (Equation (2.8)), ice energy
and snow energy:

𝜕𝑒𝑖𝑛𝑘
𝜕𝑡

+ ∇ · (𝑒𝑖𝑛𝑘u) = 0, (2.14)

𝜕𝑒𝑠𝑛𝑘
𝜕𝑡

+ ∇ · (𝑒𝑠𝑛𝑘u) = 0. (2.15)

By default, ice and snow are assumed to have constant densities, so that volume conservation is equivalent to mass
conservation. Variable-density ice and snow layers can be transported conservatively by defining tracers correspond-
ing to ice and snow density, as explained in the introductory comments in ice_transport_remap.F90. Prognostic
equations for ice and/or snow density may be included in future model versions but have not yet been implemented.

2.4. Horizontal Transport 9

https://cice-consortium-icepack.readthedocs.io/en/master/science_guide/index.html
https://cice-consortium-icepack.readthedocs.io/en/master/science_guide/index.html

CICE Documentation

Two transport schemes are available: upwind and the incremental remapping scheme of [7] as modified for sea ice by
[28]. The remapping scheme has several desirable features:

• It conserves the quantity being transported (area, volume, or energy).

• It is non-oscillatory; that is, it does not create spurious ripples in the transported fields.

• It preserves tracer monotonicity. That is, it does not create new extrema in the thickness and enthalpy fields; the
values at time 𝑚+ 1 are bounded by the values at time 𝑚.

• It is second-order accurate in space and therefore is much less diffusive than first-order schemes (e.g., upwind).
The accuracy may be reduced locally to first order to preserve monotonicity.

• It is efficient for large numbers of categories or tracers. Much of the work is geometrical and is performed only
once per grid cell instead of being repeated for each quantity being transported.

The time step is limited by the requirement that trajectories projected backward from grid cell corners are confined
to the four surrounding cells; this is what is meant by incremental remapping as opposed to general remapping. This
requirement leads to a CFL-like condition,

max |u|∆𝑡
∆𝑥

≤ 1.

For highly divergent velocity fields the maximum time step must be reduced by a factor of two to ensure that trajectories
do not cross. However, ice velocity fields in climate models usually have small divergences per time step relative to
the grid size.

The remapping algorithm can be summarized as follows:

1. Given mean values of the ice area and tracer fields in each grid cell, construct linear approximations of these
fields. Limit the field gradients to preserve monotonicity.

2. Given ice velocities at grid cell corners, identify departure regions for the fluxes across each cell edge. Divide
these departure regions into triangles and compute the coordinates of the triangle vertices.

3. Integrate the area and tracer fields over the departure triangles to obtain the area, volume, and energy transported
across each cell edge.

4. Given these transports, update the state variables.

Since all scalar fields are transported by the same velocity field, step (2) is done only once per time step. The other
three steps are repeated for each field in each thickness category. These steps are described below.

After the transport calculation, the sum of ice and open water areas within a grid cell may not add up to 1. The
mechanical deformation parameterization in Icepack corrects this issue by ridging the ice and creating open water
such that the ice and open water areas again add up to 1.

2.4.1 Reconstructing area and tracer fields

First, using the known values of the state variables, the ice area and tracer fields are reconstructed in each grid cell as
linear functions of 𝑥 and 𝑦. For each field we compute the value at the cell center (i.e., at the origin of a 2D Cartesian
coordinate system defined for that grid cell), along with gradients in the 𝑥 and 𝑦 directions. The gradients are limited
to preserve monotonicity. When integrated over a grid cell, the reconstructed fields must have mean values equal to the
known state variables, denoted by 𝑎̄ for fractional area, ℎ̃ for thickness, and 𝑞 for enthalpy. The mean values are not,
in general, equal to the values at the cell center. For example, the mean ice area must equal the value at the centroid,
which may not lie at the cell center.

Consider first the fractional ice area, the analog to fluid density 𝜌 in [7]. For each thickness category we construct a
field 𝑎(r) whose mean is 𝑎̄, where r = (𝑥, 𝑦) is the position vector relative to the cell center. That is, we require∫︁

𝐴

𝑎 𝑑𝐴 = 𝑎̄ 𝐴, (2.16)

10 Chapter 2. Science Guide

https://cice-consortium-icepack.readthedocs.io/en/master/science_guide/index.html

CICE Documentation

where 𝐴 =
∫︀
𝐴
𝑑𝐴 is the grid cell area. Equation (2.16) is satisfied if 𝑎(r) has the form

𝑎(r) = 𝑎̄+ 𝛼𝑎 ⟨∇𝑎⟩ · (r− r̄), (2.17)

where ⟨∇𝑎⟩ is a centered estimate of the area gradient within the cell, 𝛼𝑎 is a limiting coefficient that enforces
monotonicity, and r̄ is the cell centroid:

r̄ =
1

𝐴

∫︁
𝐴

r 𝑑𝐴.

It follows from Equation (2.17) that the ice area at the cell center (r = 0) is

𝑎𝑐 = 𝑎̄− 𝑎𝑥𝑥− 𝑎𝑦𝑦,

where 𝑎𝑥 = 𝛼𝑎(𝜕𝑎/𝜕𝑥) and 𝑎𝑦 = 𝛼𝑎(𝜕𝑎/𝜕𝑦) are the limited gradients in the 𝑥 and 𝑦 directions, respectively, and the
components of r̄, 𝑥 =

∫︀
𝐴
𝑥 𝑑𝐴/𝐴 and 𝑦 =

∫︀
𝐴
𝑦 𝑑𝐴/𝐴, are evaluated using the triangle integration formulas described

in Section Integrating fields. These means, along with higher-order means such as 𝑥2, 𝑥𝑦, and 𝑦2, are computed once
and stored.

Next consider the ice and snow thickness and enthalpy fields. Thickness is analogous to the tracer concentration 𝑇 in
[7], but there is no analog in [7] to the enthalpy. The reconstructed ice or snow thickness ℎ(r) and enthalpy 𝑞(r) must
satisfy ∫︁

𝐴

𝑎 ℎ 𝑑𝐴 = 𝑎̄ ℎ̃ 𝐴, (2.18)

∫︁
𝐴

𝑎 ℎ 𝑞 𝑑𝐴 = 𝑎̄ ℎ̃ 𝑞 𝐴, (2.19)

where ℎ̃ = ℎ(r̃) is the thickness at the center of ice area, and 𝑞 = 𝑞(r̂) is the enthalpy at the center of ice or snow
volume. Equations (2.18) and (2.19) are satisfied when ℎ(r) and 𝑞(r) are given by

ℎ(r) = ℎ̃+ 𝛼ℎ ⟨∇ℎ⟩ · (r− r̃), (2.20)

𝑞(r) = 𝑞 + 𝛼𝑞 ⟨∇𝑞⟩ · (r− r̂), (2.21)

where 𝛼ℎ and 𝛼𝑞 are limiting coefficients. The center of ice area, r̃, and the center of ice or snow volume, r̂, are given
by

r̃ =
1

𝑎̄ 𝐴

∫︁
𝐴

𝑎 r 𝑑𝐴,

r̂ =
1

𝑎̄ ℎ̃ 𝐴

∫︁
𝐴

𝑎 ℎ r 𝑑𝐴.

Evaluating the integrals, we find that the components of r̃ are

𝑥̃ =
𝑎𝑐𝑥+ 𝑎𝑥𝑥2 + 𝑎𝑦𝑥𝑦

𝑎̄
,

𝑦 =
𝑎𝑐𝑦 + 𝑎𝑥𝑥𝑦 + 𝑎𝑦𝑦2

𝑎̄
,

and the components of r̂ are

𝑥̂ =
𝑐1𝑥+ 𝑐2𝑥2 + 𝑐3𝑥𝑦 + 𝑐4𝑥3 + 𝑐5𝑥2𝑦 + 𝑐6𝑥𝑦2

𝑎̄ ℎ̃
,

𝑦 =
𝑐1𝑦 + 𝑐2𝑥𝑦 + 𝑐3𝑦2 + 𝑐4𝑥2𝑦 + 𝑐5𝑥𝑦2 + 𝑐6𝑦3

𝑎̄ ℎ̃
,

2.4. Horizontal Transport 11

CICE Documentation

where

𝑐1 ≡ 𝑎𝑐ℎ𝑐,

𝑐2 ≡ 𝑎𝑐ℎ𝑥 + 𝑎𝑥ℎ𝑐,

𝑐3 ≡ 𝑎𝑐ℎ𝑦 + 𝑎𝑦ℎ𝑐,

𝑐4 ≡ 𝑎𝑥ℎ𝑥,

𝑐5 ≡ 𝑎𝑥ℎ𝑦 + 𝑎𝑦ℎ𝑥,

𝑐6 ≡ 𝑎𝑦ℎ𝑦.

From Equation (2.20) and Equation (2.21), the thickness and enthalpy at the cell center are given by

ℎ𝑐 = ℎ̃− ℎ𝑥𝑥̃− ℎ𝑦𝑦,

𝑞𝑐 = 𝑞 − 𝑞𝑥𝑥̂− 𝑞𝑦𝑦,

where ℎ𝑥, ℎ𝑦 , 𝑞𝑥 and 𝑞𝑦 are the limited gradients of thickness and enthalpy. The surface temperature is treated the
same way as ice or snow thickness, but it has no associated enthalpy. Tracers obeying conservation equations of the
form Equation (2.12) and Equation (2.13) are treated in analogy to ice and snow enthalpy, respectively.

We preserve monotonicity by van Leer limiting. If 𝜑(𝑖, 𝑗) denotes the mean value of some field in grid cell (𝑖, 𝑗), we
first compute centered gradients of 𝜑 in the 𝑥 and 𝑦 directions, then check whether these gradients give values of 𝜑
within cell (𝑖, 𝑗) that lie outside the range of 𝜑 in the cell and its eight neighbors. Let 𝜑max and 𝜑min be the maximum
and minimum values of 𝜑 over the cell and its neighbors, and let 𝜑max and 𝜑min be the maximum and minimum values
of the reconstructed 𝜑 within the cell. Since the reconstruction is linear, 𝜑max and 𝜑min are located at cell corners. If
𝜑max > 𝜑max or 𝜑min < 𝜑min, we multiply the unlimited gradient by 𝛼 = min(𝛼max, 𝛼min), where

𝛼max = (𝜑max − 𝜑)/(𝜑max − 𝜑),

𝛼min = (𝜑min − 𝜑)/(𝜑min − 𝜑).

Otherwise the gradient need not be limited.

Earlier versions of CICE (through v3.14) computed gradients in physical space. Starting in v4.0, gradients are com-
puted in a scaled space in which each grid cell has sides of unit length. The origin is at the cell center, and the four
vertices are located at (0.5, 0.5), (-0.5,0.5),(-0.5, -0.5) and (0.5, -0.5). In this coordinate system, several of the above
grid-cell-mean quantities vanish (because they are odd functions of x and/or y), but they have been retained in the code
for generality.

2.4.2 Locating departure triangles

The method for locating departure triangles is discussed in detail by [7]. The basic idea is illustrated in Departure
Region, which shows a shaded quadrilateral departure region whose contents are transported to the target or home grid
cell, labeled 𝐻 . The neighboring grid cells are labeled by compass directions: 𝑁𝑊 , 𝑁 , 𝑁𝐸, 𝑊 , and 𝐸. The four
vectors point along the velocity field at the cell corners, and the departure region is formed by joining the starting
points of these vectors. Instead of integrating over the entire departure region, it is convenient to compute fluxes
across cell edges. We identify departure regions for the north and east edges of each cell, which are also the south
and west edges of neighboring cells. Consider the north edge of the home cell, across which there are fluxes from
the neighboring 𝑁𝑊 and 𝑁 cells. The contributing region from the 𝑁𝑊 cell is a triangle with vertices 𝑎𝑏𝑐, and
that from the 𝑁 cell is a quadrilateral that can be divided into two triangles with vertices 𝑎𝑐𝑑 and 𝑎𝑑𝑒. Focusing on
triangle 𝑎𝑏𝑐, we first determine the coordinates of vertices 𝑏 and 𝑐 relative to the cell corner (vertex 𝑎), using Euclidean
geometry to find vertex 𝑐. Then we translate the three vertices to a coordinate system centered in the 𝑁𝑊 cell. This
translation is needed in order to integrate fields (Section Integrating fields) in the coordinate system where they have
been reconstructed (Section Reconstructing area and tracer fields). Repeating this process for the north and east edges
of each grid cell, we compute the vertices of all the departure triangles associated with each cell edge.

12 Chapter 2. Science Guide

CICE Documentation

Fig. 1: Departure Region

2.4. Horizontal Transport 13

CICE Documentation

Figure Departure Region shows that in incremental remapping, conserved quantities are remapped from the shaded
departure region, a quadrilateral formed by connecting the backward trajectories from the four cell corners, to the grid
cell labeled 𝐻 . The region fluxed across the north edge of cell 𝐻 consists of a triangle (𝑎𝑏𝑐) in the 𝑁𝑊 cell and a
quadrilateral (two triangles, 𝑎𝑐𝑑 and 𝑎𝑑𝑒) in the 𝑁 cell.

Figure Triangles, reproduced from [7], shows all possible triangles that can contribute fluxes across the north edge of a
grid cell. There are 20 triangles, which can be organized into five groups of four mutually exclusive triangles as shown
in Triangular Contributions. In this table, (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are the Cartesian coordinates of the departure points
relative to the northwest and northeast cell corners, respectively. The departure points are joined by a straight line that
intersects the west edge at (0, 𝑦𝑎) relative to the northwest corner and intersects the east edge at (0, 𝑦𝑏) relative to the
northeast corner. The east cell triangles and selecting conditions are identical except for a rotation through 90 degrees.

Fig. 2: Triangles

Table Triangular Contributions show the evaluation of contributions from the 20 triangles across the north cell edge.
The coordinates 𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦𝑎, and 𝑦𝑏 are defined in the text. We define 𝑦1 = 𝑦1 if 𝑥1 > 0, else 𝑦1 = 𝑦𝑎. Similarly,
𝑦2 = 𝑦2 if 𝑥2 < 0, else 𝑦2 = 𝑦𝑏.

14 Chapter 2. Science Guide

CICE Documentation

Table 2: Triangular Contributions
Triangle group Triangle label Selecting logical condition
1 NW 𝑦𝑎 > 0 and 𝑦1 ≥ 0 and 𝑥1 < 0

NW1 𝑦𝑎 < 0 and 𝑦1 ≥ 0 and 𝑥1 < 0
W 𝑦𝑎 < 0 and 𝑦1 < 0 and 𝑥1 < 0
W2 𝑦𝑎 > 0 and 𝑦1 < 0 and 𝑥1 < 0

2 NE 𝑦𝑏 > 0 and 𝑦2 ≥ 0 and 𝑥2 > 0
NE1 𝑦𝑏 < 0 and 𝑦2 ≥ 0 and 𝑥2 > 0
E 𝑦𝑏 < 0 and 𝑦2 < 0 and 𝑥2 > 0
E2 𝑦𝑏 > 0 and 𝑦2 < 0 and 𝑥2 > 0

3 W1 𝑦𝑎 < 0 and 𝑦1 ≥ 0 and 𝑥1 < 0
NW2 𝑦𝑎 > 0 and 𝑦1 < 0 and 𝑥1 < 0
E1 𝑦𝑏 < 0 and 𝑦2 ≥ 0 and 𝑥2 > 0
NE2 𝑦𝑏 > 0 and 𝑦2 < 0 and 𝑥2 > 0

4 H1a 𝑦𝑎𝑦𝑏 ≥ 0 and 𝑦𝑎 + 𝑦𝑏 < 0
N1a 𝑦𝑎𝑦𝑏 ≥ 0 and 𝑦𝑎 + 𝑦𝑏 > 0
H1b 𝑦𝑎𝑦𝑏 < 0 and 𝑦1 < 0
N1b 𝑦𝑎𝑦𝑏 < 0 and 𝑦1 > 0

5 H2a 𝑦𝑎𝑦𝑏 ≥ 0 and 𝑦𝑎 + 𝑦𝑏 < 0
N2a 𝑦𝑎𝑦𝑏 ≥ 0 and 𝑦𝑎 + 𝑦𝑏 > 0
H2b 𝑦𝑎𝑦𝑏 < 0 and 𝑦2 < 0
N2b 𝑦𝑎𝑦𝑏 < 0 and 𝑦2 > 0

This scheme was originally designed for rectangular grids. Grid cells in CICE actually lie on the surface of a sphere
and must be projected onto a plane. The projection used in CICE maps each grid cell to a square with sides of unit
length. Departure triangles across a given cell edge are computed in a coordinate system whose origin lies at the
midpoint of the edge and whose vertices are at (-0.5, 0) and (0.5, 0). Intersection points are computed assuming
Cartesian geometry with cell edges meeting at right angles. Let CL and CR denote the left and right vertices, which
are joined by line CLR. Similarly, let DL and DR denote the departure points, which are joined by line DLR. Also, let
IL and IR denote the intersection points (0, 𝑦𝑎) and (0, 𝑦𝑏) respectively, and let IC = (𝑥𝑐, 0) denote the intersection of
CLR and DLR. It can be shown that 𝑦𝑎, 𝑦𝑏, and 𝑥𝑐 are given by

𝑦𝑎 =
𝑥𝐶𝐿(𝑦𝐷𝑀 − 𝑦𝐷𝐿) + 𝑥𝐷𝑀𝑦𝐷𝐿 − 𝑥𝐷𝐿𝑦𝐷𝑀

𝑥𝐷𝑀 − 𝑥𝐷𝐿,

𝑦𝑏 =
𝑥𝐶𝑅(𝑦𝐷𝑅 − 𝑦𝐷𝑀) − 𝑥𝐷𝑀𝑦𝐷𝑅 + 𝑥𝐷𝑅𝑦𝐷𝑀

𝑥𝐷𝑅 − 𝑥𝐷𝑀 ,

𝑥𝑐 = 𝑥𝐷𝐿 − 𝑦𝐷𝐿

(︂
𝑥𝐷𝑅 − 𝑥𝐷𝐿

𝑦𝐷𝑅 − 𝑦𝐷𝐿

)︂
Each departure triangle is defined by three of the seven points (CL, CR, DL, DR, IL, IR, IC).

Given a 2D velocity field u, the divergence ∇ · u in a given grid cell can be computed from the local velocities and
written in terms of fluxes across each cell edge:

∇ · u =
1

𝐴

[︂(︂
𝑢𝑁𝐸 + 𝑢𝑆𝐸

2

)︂
𝐿𝐸 +

(︂
𝑢𝑁𝑊 + 𝑢𝑆𝑊

2

)︂
𝐿𝑊 +

(︂
𝑢𝑁𝐸 + 𝑢𝑁𝑊

2

)︂
𝐿𝑁 +

(︂
𝑢𝑆𝐸 + 𝑢𝑆𝑊

2

)︂
𝐿𝑆

]︂
,

(2.22)

2.4. Horizontal Transport 15

CICE Documentation

where 𝐿 is an edge length and the indices 𝑁,𝑆,𝐸,𝑊 denote compass directions. Equation (2.22) is equivalent to
the divergence computed in the EVP dynamics (Section Dynamics). In general, the fluxes in this expression are not
equal to those implied by the above scheme for locating departure regions. For some applications it may be desirable to
prescribe the divergence by prescribing the area of the departure region for each edge. This can be done in CICE 4.0 by
setting l_fixed_area = true in ice_transport_driver.F90 and passing the prescribed departure areas (edgearea_e and
edgearea_n) into the remapping routine. An extra triangle is then constructed for each departure region to ensure that
the total area is equal to the prescribed value. This idea was suggested and first implemented by Mats Bentsen of the
Nansen Environmental and Remote Sensing Center (Norway), who applied an earlier version of the CICE remapping
scheme to an ocean model. The implementation in CICE v4.0 is somewhat more general, allowing for departure
regions lying on both sides of a cell edge. The extra triangle is constrained to lie in one but not both of the grid cells
that share the edge. Since this option has yet to be fully tested in CICE, the current default is l_fixed_area = false.

We made one other change in the scheme of [7] for locating triangles. In their paper, departure points are defined by
projecting cell corner velocities directly backward. That is,

xD = −u∆𝑡, (2.23)

where x𝐷 is the location of the departure point relative to the cell corner and u is the velocity at the corner. This
approximation is only first-order accurate. Accuracy can be improved by estimating the velocity at the midpoint of the
trajectory.

2.4.3 Integrating fields

Next, we integrate the reconstructed fields over the departure triangles to find the total area, volume, and energy
transported across each cell edge. Area transports are easy to compute since the area is linear in 𝑥 and 𝑦. Given a
triangle with vertices xi = (𝑥𝑖, 𝑦𝑖), 𝑖 ∈ {1, 2, 3}, the triangle area is

𝐴𝑇 =
1

2
|(𝑥2 − 𝑥1)(𝑦3 − 𝑦1) − (𝑦2 − 𝑦1)(𝑥3 − 𝑥1)| .

The integral 𝐹𝑎 of any linear function 𝑓(r) over a triangle is given by

𝐹𝑎 = 𝐴𝑇 𝑓(x0), (2.24)

where x0 = (𝑥0, 𝑦0) is the triangle midpoint,

x0 =
1

3

3∑︁
𝑖=1

x𝑖.

To compute the area transport, we evaluate the area at the midpoint,

𝑎(x0) = 𝑎𝑐 + 𝑎𝑥𝑥0 + 𝑎𝑦𝑦0,

and multiply by 𝐴𝑇 . By convention, northward and eastward transport is positive, while southward and westward
transport is negative.

Equation (2.24) cannot be used for volume transport, because the reconstructed volumes are quadratic functions of
position. (They are products of two linear functions, area and thickness.) The integral of a quadratic polynomial over
a triangle requires function evaluations at three points,

𝐹ℎ =
𝐴𝑇

3

3∑︁
𝑖=1

𝑓 (x′
𝑖) , (2.25)

where x′
𝑖 = (x0 + x𝑖)/2 are points lying halfway between the midpoint and the three vertices. [7] use this formula to

compute transports of the product 𝜌 𝑇 , which is analogous to ice volume. Equation (2.25) does not work for ice and

16 Chapter 2. Science Guide

CICE Documentation

snow energies, which are cubic functions—products of area, thickness, and enthalpy. Integrals of a cubic polynomial
over a triangle can be evaluated using a four-point formula [42]:

𝐹𝑞 = 𝐴𝑇

[︃
− 9

16
𝑓(x0) +

25

48

3∑︁
𝑖=1

𝑓(x′′
𝑖)

]︃
(2.26)

where xi
′′ = (3x0 + 2x𝑖)/5. To evaluate functions at specific points, we must compute many products of the form

𝑎(x)ℎ(x) and 𝑎(x)ℎ(x) 𝑞(x), where each term in the product is the sum of a cell-center value and two displacement
terms. In the code, the computation is sped up by storing some sums that are used repeatedly.

2.4.4 Updating state variables

Finally, we compute new values of the state variables in each ice category and grid cell. The new fractional ice areas
𝑎′𝑖𝑛(𝑖, 𝑗) are given by

𝑎′𝑖𝑛(𝑖, 𝑗) = 𝑎𝑖𝑛(𝑖, 𝑗) +
𝐹𝑎𝐸(𝑖− 1, 𝑗) − 𝐹𝑎𝐸(𝑖, 𝑗) + 𝐹𝑎𝑁 (𝑖, 𝑗 − 1) − 𝐹𝑎𝑁 (𝑖, 𝑗)

𝐴(𝑖, 𝑗)
(2.27)

where 𝐹𝑎𝐸(𝑖, 𝑗) and 𝐹𝑎𝑁 (𝑖, 𝑗) are the area transports across the east and north edges, respectively, of cell (𝑖, 𝑗), and
𝐴(𝑖, 𝑗) is the grid cell area. All transports added to one cell are subtracted from a neighboring cell; thus Equation
(2.27) conserves total ice area.

The new ice volumes and energies are computed analogously. New thicknesses are given by the ratio of volume to
area, and enthalpies by the ratio of energy to volume. Tracer monotonicity is ensured because

ℎ′ =

∫︀
𝐴
𝑎 ℎ 𝑑𝐴∫︀

𝐴
𝑎 𝑑𝐴

,

𝑞′ =

∫︀
𝐴
𝑎 ℎ 𝑞 𝑑𝐴∫︀

𝐴
𝑎 ℎ 𝑑𝐴

,

where ℎ′ and 𝑞′ are the new-time thickness and enthalpy, given by integrating the old-time ice area, volume, and energy
over a Lagrangian departure region with area 𝐴. That is, the new-time thickness and enthalpy are weighted averages
over old-time values, with non-negative weights 𝑎 and 𝑎ℎ. Thus the new-time values must lie between the maximum
and minimum of the old-time values.

2.5 Dynamics

There are now different rheologies available in the CICE code. The elastic-viscous-plastic (EVP) model represents
a modification of the standard viscous-plastic (VP) model for sea ice dynamics [11]. The elastic-anisotropic-plastic
(EAP) model, on the other hand, explicitly accounts for the observed sub-continuum anisotropy of the sea ice cover
[49][47]. If kdyn = 1 in the namelist then the EVP rheology is used (module ice_dyn_evp.F90), while kdyn = 2 is
associated with the EAP rheology (ice_dyn_eap.F90). At times scales associated with the wind forcing, the EVP
model reduces to the VP model while the EAP model reduces to the anisotropic rheology described in detail in
[49][45]. At shorter time scales the adjustment process takes place in both models by a numerically more efficient
elastic wave mechanism. While retaining the essential physics, this elastic wave modification leads to a fully explicit
numerical scheme which greatly improves the model’s computational efficiency.

The EVP sea ice dynamics model is thoroughly documented in [16], [15], [17] and [18] and the EAP dynamics in
[45]. Simulation results and performance of the EVP and EAP models have been compared with the VP model and
with each other in realistic simulations of the Arctic respectively in [20] and [45]. Here we summarize the equations
and direct the reader to the above references for details. The numerical implementation in this code release is that of
[17] and [18], with revisions to the numerical solver as in [4]. The implementation of the EAP sea ice dynamics into
CICE is described in detail in [45].

2.5. Dynamics 17

CICE Documentation

2.5.1 Momentum

The force balance per unit area in the ice pack is given by a two-dimensional momentum equation [11], obtained by
integrating the 3D equation through the thickness of the ice in the vertical direction:

𝑚
𝜕u

𝜕𝑡
= ∇ · 𝜎 + 𝜏⃗𝑎 + 𝜏⃗𝑤 + 𝜏⃗𝑏 − 𝑘 ×𝑚𝑓u−𝑚𝑔∇𝐻∘, (2.28)

where 𝑚 is the combined mass of ice and snow per unit area and 𝜏⃗𝑎 and 𝜏⃗𝑤 are wind and ocean stresses, respectively.
The term 𝜏⃗𝑏 is a seabed stress (also referred to as basal stress) that represents the grounding of pressure ridges in
shallow water [24]. The mechanical properties of the ice are represented by the internal stress tensor 𝜎𝑖𝑗 . The other
two terms on the right hand side are stresses due to Coriolis effects and the sea surface slope. The parameterization for
the wind and ice–ocean stress terms must contain the ice concentration as a multiplicative factor to be consistent with
the formal theory of free drift in low ice concentration regions. A careful explanation of the issue and its continuum
solution is provided in [18] and [5].

The momentum equation is discretized in time as follows, for the classic EVP approach. First, for clarity, the two
components of Equation (2.28) are

𝑚
𝜕𝑢

𝜕𝑡
=

𝜕𝜎1𝑗
𝜕𝑥𝑗

+ 𝜏𝑎𝑥 + 𝑎𝑖𝑐𝑤𝜌𝑤 |U𝑤 − u| [(𝑈𝑤 − 𝑢) cos 𝜃 − (𝑉𝑤 − 𝑣) sin 𝜃] − 𝐶𝑏𝑢+𝑚𝑓𝑣 −𝑚𝑔
𝜕𝐻∘

𝜕𝑥
,

𝑚
𝜕𝑣

𝜕𝑡
=

𝜕𝜎2𝑗
𝜕𝑥𝑗

+ 𝜏𝑎𝑦 + 𝑎𝑖𝑐𝑤𝜌𝑤 |U𝑤 − u| [(𝑈𝑤 − 𝑢) sin 𝜃 + (𝑉𝑤 − 𝑣) cos 𝜃] − 𝐶𝑏𝑣 −𝑚𝑓𝑢−𝑚𝑔
𝜕𝐻∘

𝜕𝑦
.

In the code, vrel = 𝑎𝑖𝑐𝑤𝜌𝑤
⃒⃒
U𝑤 − u𝑘

⃒⃒
and 𝐶𝑏 = 𝑇𝑏

(︁√︀
(𝑢𝑘)2 + (𝑣𝑘)2 + 𝑢0

)︁−1

, where 𝑘 denotes the subcycling
step. The following equations illustrate the time discretization and define some of the other variables used in the code.(︂
𝑚

∆𝑡𝑒
+ vrel cos 𝜃 + 𝐶𝑏

)︂
⏟ ⏞

cca

𝑢𝑘+1 − (𝑚𝑓 + vrel sin 𝜃)⏟ ⏞
ccb

𝑣𝑘+1 =
𝜕𝜎𝑘+1

1𝑗

𝜕𝑥𝑗⏟ ⏞
strintx

+ 𝜏𝑎𝑥 −𝑚𝑔
𝜕𝐻∘

𝜕𝑥⏟ ⏞
forcex

+vrel (𝑈𝑤 cos 𝜃 − 𝑉𝑤 sin 𝜃)⏟ ⏞
waterx

+
𝑚

∆𝑡𝑒
𝑢𝑘,

(2.29)

(𝑚𝑓 + vrel sin 𝜃)⏟ ⏞
ccb

𝑢𝑘+1 +

(︂
𝑚

∆𝑡𝑒
+ vrel cos 𝜃 + 𝐶𝑏

)︂
⏟ ⏞

cca

𝑣𝑘+1 =
𝜕𝜎𝑘+1

2𝑗

𝜕𝑥𝑗⏟ ⏞
strinty

+ 𝜏𝑎𝑦 −𝑚𝑔
𝜕𝐻∘

𝜕𝑦⏟ ⏞
forcey

+vrel (𝑈𝑤 sin 𝜃 + 𝑉𝑤 cos 𝜃)⏟ ⏞
watery

+
𝑚

∆𝑡𝑒
𝑣𝑘,

(2.30)

and vrel·waterx(y) = taux(y).

We solve this system of equations analytically for 𝑢𝑘+1 and 𝑣𝑘+1. Define

𝑢̂ = 𝐹𝑢 + 𝜏𝑎𝑥 −𝑚𝑔
𝜕𝐻∘

𝜕𝑥
+ vrel (𝑈𝑤 cos 𝜃 − 𝑉𝑤 sin 𝜃) +

𝑚

∆𝑡𝑒
𝑢𝑘 (2.31)

𝑣 = 𝐹𝑣 + 𝜏𝑎𝑦 −𝑚𝑔
𝜕𝐻∘

𝜕𝑦
+ vrel (𝑈𝑤 sin 𝜃 + 𝑉𝑤 cos 𝜃) +

𝑚

∆𝑡𝑒
𝑣𝑘, (2.32)

where F = ∇ · 𝜎𝑘+1. Then(︂
𝑚

∆𝑡𝑒
+ vrel cos 𝜃 + 𝐶𝑏

)︂
𝑢𝑘+1 − (𝑚𝑓 + vrel sin 𝜃) 𝑣𝑘+1 = 𝑢̂

(𝑚𝑓 + vrel sin 𝜃)𝑢𝑘+1 +

(︂
𝑚

∆𝑡𝑒
+ vrel cos 𝜃 + 𝐶𝑏

)︂
𝑣𝑘+1 = 𝑣.

Solving simultaneously for 𝑢𝑘+1 and 𝑣𝑘+1,

𝑢𝑘+1 =
𝑎𝑢̂+ 𝑏𝑣

𝑎2 + 𝑏2

𝑣𝑘+1 =
𝑎𝑣 − 𝑏𝑢̂

𝑎2 + 𝑏2
,

18 Chapter 2. Science Guide

CICE Documentation

where

𝑎 =
𝑚

∆𝑡𝑒
+ vrel cos 𝜃 + 𝐶𝑏 (2.33)

𝑏 = 𝑚𝑓 + vrel sin 𝜃. (2.34)

When the subcycling is finished for each (thermodynamic) time step, the ice–ocean stress must be constructed from
taux(y) and the terms containing vrel on the left hand side of the equations.

The Hibler-Bryan form for the ice-ocean stress [13] is included in ice_dyn_shared.F90 but is currently commented
out, pending further testing.

2.5.2 Seabed stress

The parameterization for the seabed stress is described in [24]. The components of the basal seabed stress are 𝜏𝑏𝑥 =
𝐶𝑏𝑢 and 𝜏𝑏𝑦 = 𝐶𝑏𝑣, where 𝐶𝑏 is a coefficient expressed as

𝐶𝑏 = 𝑘2 max[0, (ℎ𝑢 − ℎ𝑐𝑢)]𝑒−𝛼𝑏*(1−𝑎𝑢)(
√︀
𝑢2 + 𝑣2 + 𝑢0)−1, (2.35)

where 𝑘2 determines the maximum seabed stress that can be sustained by the grounded parameterized ridge(s), 𝑢0
is a small residual velocity and 𝛼𝑏 = 20 is a parameter to ensure that the seabed stress quickly drops when the ice
concentration is smaller than 1. In the code, 𝑘2 max[0, (ℎ𝑢−ℎ𝑐𝑢)]𝑒−𝛼𝑏*(1−𝑎𝑢) is defined as 𝑇𝑏. The quantities ℎ𝑢, 𝑎𝑢
and ℎ𝑐𝑢 are calculated at the ‘u’ point based on local ice conditions (surrounding tracer points). They are respectively
given by

ℎ𝑢 = max[𝑣𝑖(𝑖, 𝑗), 𝑣𝑖(𝑖+ 1, 𝑗), 𝑣𝑖(𝑖, 𝑗 + 1), 𝑣𝑖(𝑖+ 1, 𝑗 + 1)], (2.36)

𝑎𝑢 = max[𝑎𝑖(𝑖, 𝑗), 𝑎𝑖(𝑖+ 1, 𝑗), 𝑎𝑖(𝑖, 𝑗 + 1), 𝑎𝑖(𝑖+ 1, 𝑗 + 1)]. (2.37)

ℎ𝑐𝑢 = 𝑎𝑢ℎ𝑤𝑢/𝑘1, (2.38)

where the 𝑎𝑖 and 𝑣𝑖 are the total ice concentrations and ice volumes around the 𝑢 point 𝑖, 𝑗 and 𝑘1 is a parameter
that defines the critical ice thickness ℎ𝑐𝑢 at which the parameterized ridge(s) reaches the seafloor for a water depth
ℎ𝑤𝑢 = min[ℎ𝑤(𝑖, 𝑗), ℎ𝑤(𝑖+ 1, 𝑗), ℎ𝑤(𝑖, 𝑗+ 1), ℎ𝑤(𝑖+ 1, 𝑗+ 1)]. Given the formulation of 𝐶𝑏 in equation (2.35), the
seabed stress components are non-zero only when ℎ𝑢 > ℎ𝑐𝑢.

The maximum seabed stress depends on the weigth of the ridge above hydrostatic balance and the value of 𝑘2. It is,
however, the parameter 𝑘1 that has the most notable impact on the simulated extent of landfast ice. The value of 𝑘1
can be changed at runtime using the namelist variable k1. The grounding scheme can be turned on or off using the
namelist logical basalstress.

Note that the user must provide a bathymetry field for using this grounding scheme. It is suggested to have a bathymetry
field with water depths larger than 5 m that represents well shallow water regions such as the Laptev Sea and the East
Siberian Sea. To prevent unrealistic grounding, 𝑇𝑏 is set to zero when ℎ𝑤𝑢 is larger than 30 m. This maximum value
is chosen based on observations of large keels in the Arctic Ocean [1].

2.5.3 Internal stress

For convenience we formulate the stress tensor 𝜎 in terms of 𝜎1 = 𝜎11 + 𝜎22, 𝜎2 = 𝜎11 − 𝜎22, and introduce the
divergence, 𝐷𝐷, and the horizontal tension and shearing strain rates, 𝐷𝑇 and 𝐷𝑆 respectively.

CICE now outputs the internal ice pressure which is an important field to support navigation in ice-infested water. The
internal ice pressure (𝑠𝑖𝑔𝑃) is the average of the normal stresses multiplied by −1 and is therefore simply equal to
−𝜎1/2.

Elastic-Viscous-Plastic

2.5. Dynamics 19

CICE Documentation

In the EVP model the internal stress tensor is determined from a regularized version of the VP constitutive law.
Following the approach of [2] (see also [24]), the elliptical yield curve can be modified such that the ice has isotropic
tensile strength. The tensile strength 𝑇𝑝 is expressed as a fraction of the ice strength 𝑃 , that is 𝑇𝑝 = 𝑘𝑡𝑃 where 𝑘𝑡
should be set to a value between 0 and 1 (this can be changed at runtime with the namelist parameter Ktens). The
constitutive law is therefore

1

𝐸

𝜕𝜎1
𝜕𝑡

+
𝜎1
2𝜁

+
𝑃𝑅(1 − 𝑘𝑡)

2𝜁
= 𝐷𝐷, (2.39)

1

𝐸

𝜕𝜎2
𝜕𝑡

+
𝜎2
2𝜂

= 𝐷𝑇 , (2.40)

1

𝐸

𝜕𝜎12
𝜕𝑡

+
𝜎12
2𝜂

=
1

2
𝐷𝑆 , (2.41)

where

𝐷𝐷 = 𝜖̇11 + 𝜖̇22,

𝐷𝑇 = 𝜖̇11 − 𝜖̇22,

𝐷𝑆 = 2𝜖̇12,

𝜖̇𝑖𝑗 =
1

2

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
,

𝜁 =
𝑃 (1 + 𝑘𝑡)

2∆
,

𝜂 =
𝑃 (1 + 𝑘𝑡)

2∆𝑒2
,

∆ =

[︂
𝐷2

𝐷 +
1

𝑒2
(︀
𝐷2

𝑇 +𝐷2
𝑆

)︀]︂1/2
,

and 𝑃𝑅 is a “replacement pressure” (see [9], for example), which serves to prevent residual ice motion due to spatial
variations of 𝑃 when the rates of strain are exactly zero. The ice strength 𝑃 is a function of the ice thickness and
concentration as it is described in the Icepack Documentation. The parameteter 𝑒 is the ratio of the major and minor
axes of the elliptical yield curve, also called the ellipse aspect ratio. It can be changed using the namelist parameter
e_ratio.

Viscosities are updated during the subcycling, so that the entire dynamics component is subcycled within the time step,
and the elastic parameter 𝐸 is defined in terms of a damping timescale 𝑇 for elastic waves, ∆𝑡𝑒 < 𝑇 < ∆𝑡, as

𝐸 =
𝜁

𝑇
,

where 𝑇 = 𝐸∘∆𝑡 and 𝐸∘ (eyc) is a tunable parameter less than one. Including the modification proposed by [4] for
equations (2.40) and (2.41) in order to improve numerical convergence, the stress equations become

𝜕𝜎1
𝜕𝑡

+
𝜎1
2𝑇

+
𝑃𝑅(1 − 𝑘𝑡)

2𝑇
=

𝑃 (1 + 𝑘𝑡)

2𝑇∆
𝐷𝐷,

𝜕𝜎2
𝜕𝑡

+
𝜎2
2𝑇

=
𝑃 (1 + 𝑘𝑡)

2𝑇𝑒2∆
𝐷𝑇 ,

𝜕𝜎12
𝜕𝑡

+
𝜎12
2𝑇

=
𝑃 (1 + 𝑘𝑡)

4𝑇𝑒2∆
𝐷𝑆 .

20 Chapter 2. Science Guide

https://cice-consortium-icepack.readthedocs.io/en/master/science_guide/index.html

CICE Documentation

Once discretized in time, these last three equations are written as

(𝜎𝑘+1
1 − 𝜎𝑘

1)

∆𝑡𝑒
+
𝜎𝑘+1
1

2𝑇
+
𝑃 𝑘
𝑅(1 − 𝑘𝑡)

2𝑇
=

𝑃 (1 + 𝑘𝑡)

2𝑇∆𝑘
𝐷𝑘

𝐷,

(𝜎𝑘+1
2 − 𝜎𝑘

2)

∆𝑡𝑒
+
𝜎𝑘+1
2

2𝑇
=

𝑃 (1 + 𝑘𝑡)

2𝑇𝑒2∆𝑘
𝐷𝑘

𝑇 ,

(𝜎𝑘+1
12 − 𝜎𝑘

12)

∆𝑡𝑒
+
𝜎𝑘+1
12

2𝑇
=

𝑃 (1 + 𝑘𝑡)

4𝑇𝑒2∆𝑘
𝐷𝑘

𝑆 ,

(2.42)

where 𝑘 denotes again the subcycling step. All coefficients on the left-hand side are constant except for 𝑃𝑅. This
modification compensates for the decreased efficiency of including the viscosity terms in the subcycling. (Note that
the viscosities do not appear explicitly.) Choices of the parameters used to define 𝐸, 𝑇 and ∆𝑡𝑒 are discussed in
Sections Revised approach and Choosing an appropriate time step.

The bilinear discretization used for the stress terms 𝜕𝜎𝑖𝑗/𝜕𝑥𝑗 in the momentum equation is now used, which enabled
the discrete equations to be derived from the continuous equations written in curvilinear coordinates. In this man-
ner, metric terms associated with the curvature of the grid are incorporated into the discretization explicitly. Details
pertaining to the spatial discretization are found in [17].

Elastic-Anisotropic-Plastic

In the EAP model the internal stress tensor is related to the geometrical properties and orientation of underlying virtual
diamond shaped floes (see Diamond-shaped floes). In contrast to the isotropic EVP rheology, the anisotropic plastic
yield curve within the EAP rheology depends on the relative orientation of the diamond shaped floes (unit vector r in
Diamond-shaped floes), with respect to the principal direction of the deformation rate (not shown). Local anisotropy
of the sea ice cover is accounted for by an additional prognostic variable, the structure tensor A defined by

A =

∫︁
S
𝜗(r)rr𝑑r.

where S is a unit-radius circle; A is a unit trace, 2×2 matrix. From now on we shall describe the orientational
distribution of floes using the structure tensor. For simplicity we take the probability density function 𝜗(r) to be
Gaussian, 𝜗(𝑧) = 𝜔1 exp(−𝜔2𝑧

2), where 𝑧 is the ice floe inclination with respect to the axis 𝑥1 of preferential
alignment of ice floes (see Diamond-shaped floes), 𝜗(𝑧) is periodic with period 𝜋, and the positive coefficients 𝜔1 and
𝜔2 are calculated to ensure normalization of 𝜗(𝑧), i.e.

∫︀ 2𝜋

0
𝜗(𝑧)𝑑𝑧 = 1. The ratio of the principal components of A,

𝐴1/𝐴2, are derived from the phenomenological evolution equation for the structure tensor A,

𝐷A

𝐷𝑡
= F𝑖𝑠𝑜(A) + F𝑓𝑟𝑎𝑐(A,𝜎), (2.43)

where 𝑡 is the time, and 𝐷/𝐷𝑡 is the co-rotational time derivative accounting for advection and rigid body rotation
(𝐷A/𝐷𝑡 = 𝑑A/𝑑𝑡 − W · A − A · W𝑇) with W being the vorticity tensor. F𝑖𝑠𝑜 is a function that accounts for a
variety of processes (thermal cracking, melting, freezing together of floes) that contribute to a more isotropic nature to
the ice cover. F𝑓𝑟𝑎𝑐 is a function determining the ice floe re-orientation due to fracture, and explicitly depends upon
sea ice stress (but not its magnitude). Following [49], based on laboratory experiments by [40] we consider four failure
mechanisms for the Arctic sea ice cover. These are determined by the ratio of the principal values of the sea ice stress
𝜎1 and 𝜎2: (i) under biaxial tension, fractures form across the perpendicular principal axes and therefore counteract
any apparent redistribution of the floe orientation; (ii) if only one of the principal stresses is compressive, failure occurs
through axial splitting along the compression direction; (iii) under biaxial compression with a low confinement ratio,
(𝜎1/𝜎2 < 𝑅), sea ice fails Coulombically through formation of slip lines delineating new ice floes oriented along the
largest compressive stress; and finally (iv) under biaxial compression with a large confinement ratio, (𝜎1/𝜎2 ≥ 𝑅),
the ice is expected to fail along both principal directions so that the cumulative directional effect balances to zero.

Figure Diamond-shaped floes shows geometry of interlocking diamond-shaped floes (taken from [49]). 𝜑 is half of the
acute angle of the diamonds. 𝐿 is the edge length. 𝑛1, 𝑛2 and 𝜏 1, 𝜏 2 are respectively the normal and tangential unit
vectors along the diamond edges. v = 𝐿𝜏 2 · 𝜖̇ is the relative velocity between the two floes connected by the vector
𝐿𝜏 2. r is the unit vector along the main diagonal of the diamond. Note that the diamonds illustrated here represent

2.5. Dynamics 21

CICE Documentation

Fig. 3: Diamond-shaped floes

22 Chapter 2. Science Guide

CICE Documentation

one possible realisation of all possible orientations. The angle 𝑧 represents the rotation of the diamonds’ main axis
relative to their preferential orientation along the axis 𝑥1.

The new anisotropic rheology requires solving the evolution Equation (2.43) for the structure tensor in addition to
the momentum and stress equations. The evolution equation for A is solved within the EVP subcycling loop, and
consistently with the momentum and stress evolution equations, we neglect the advection term for the structure tensor.
Equation (2.43) then reduces to the system of two equations:

𝜕𝐴11

𝜕𝑡
= −𝑘𝑡

(︂
𝐴11 −

1

2

)︂
+𝑀11,

𝜕𝐴12

𝜕𝑡
= −𝑘𝑡𝐴12 +𝑀12,

where the first terms on the right hand side correspond to the isotropic contribution, 𝐹𝑖𝑠𝑜, and 𝑀11 and 𝑀12 are
the components of the term 𝐹𝑓𝑟𝑎𝑐 in Equation (2.43) that are given in [49] and [45]. These evolution equations are
discretized semi-implicitly in time. The degree of anisotropy is measured by the largest eigenvalue (𝐴1) of this tensor
(𝐴2 = 1 − 𝐴1). 𝐴1 = 1 corresponds to perfectly aligned floes and 𝐴1 = 0.5 to a uniform distribution of floe
orientation. Note that while we have specified the aspect ratio of the diamond floes, through prescribing 𝜑, we make
no assumption about the size of the diamonds so that formally the theory is scale invariant.

As described in greater detail in [49], the internal ice stress for a single orientation of the ice floes can be calculated
explicitly and decomposed, for an average ice thickness ℎ, into its ridging (r) and sliding (s) contributions

𝜎𝑏(r, ℎ) = 𝑃𝑟(ℎ)𝜎𝑏
𝑟(r) + 𝑃𝑠(ℎ)𝜎𝑏

𝑠(r), (2.44)

where 𝑃𝑟 and 𝑃𝑠 are the ridging and sliding strengths and the ridging and sliding stresses are functions of the angle
𝜃 = arctan(𝜖̇𝐼𝐼/𝜖̇𝐼), the angle 𝑦 between the major principal axis of the strain rate tensor (not shown) and the structure
tensor (𝑥1 axis in Diamond-shaped floes, and the angle 𝑧 defined in Diamond-shaped floes. In the stress expressions
above the underlying floes are assumed parallel, but in a continuum-scale sea ice region the floes can possess different
orientations in different places and we take the mean sea ice stress over a collection of floes to be given by the average

𝜎𝐸𝐴𝑃 (ℎ) = 𝑃𝑟(ℎ)

∫︁
S
𝜗(r)

[︀
𝜎𝑏

𝑟(r) + 𝑘𝜎𝑏
𝑠(r)

]︀
𝑑r (2.45)

where we have introduced the friction parameter 𝑘 = 𝑃𝑠/𝑃𝑟 and where we identify the ridging ice strength 𝑃𝑟(ℎ)
with the strength 𝑃 described in section 1 and used within the EVP framework.

As is the case for the EVP rheology, elasticity is included in the EAP description not to describe any physical effect,
but to make use of the efficient, explicit numerical algorithm used to solve the full sea ice momentum balance. We use
the analogous EAP stress equations,

𝜕𝜎1
𝜕𝑡

+
𝜎1
2𝑇

=
𝜎𝐸𝐴𝑃
1

2𝑇
, (2.46)

𝜕𝜎2
𝜕𝑡

+
𝜎2
2𝑇

=
𝜎𝐸𝐴𝑃
2

2𝑇
, (2.47)

𝜕𝜎12
𝜕𝑡

+
𝜎12
2𝑇

=
𝜎𝐸𝐴𝑃
12

2𝑇
, (2.48)

where the anisotropic stress 𝜎𝐸𝐴𝑃 is defined in a look-up table for the current values of strain rate and structure tensor.
The look-up table is constructed by computing the stress (normalized by the strength) from Equations (2.46)–(2.48)
for discrete values of the largest eigenvalue of the structure tensor, 1

2 ≤ 𝐴1 ≤ 1, the angle 0 ≤ 𝜃 ≤ 2𝜋, and the angle
−𝜋/2 ≤ 𝑦 ≤ 𝜋/2 between the major principal axis of the strain rate tensor and the structure tensor [45]. The updated
stress, after the elastic relaxation, is then passed to the momentum equation and the sea ice velocities are updated in
the usual manner within the subcycling loop of the EVP rheology. The structure tensor evolution equations are solved
implicitly at the same frequency, ∆𝑡𝑒, as the ice velocities and internal stresses. Finally, to be coherent with our new
rheology we compute the area loss rate due to ridging as |𝜖̇|𝛼𝑟(𝜃), with 𝛼𝑟(𝜃) and 𝛼𝑠(𝜃) given by [48],

𝛼𝑟(𝜃) =
𝜎𝑟
𝑖𝑗 𝜖̇𝑖𝑗

𝑃𝑟|𝜖̇|
, 𝛼𝑠(𝜃) =

𝜎𝑠
𝑖𝑗 𝜖̇𝑖𝑗

𝑃𝑠|𝜖̇|
.

Both ridging rate and sea ice strength are computed in the outer loop of the dynamics.

2.5. Dynamics 23

CICE Documentation

2.5.4 Revised approach

The revised EVP approach is based on a pseudo-time iterative scheme [25], [4], [23]. By construction, the revised
EVP approach should lead to the VP solution (given the right numerical parameters and a sufficiently large number
of iterations). To do so, the inertial term is formulated such that it matches the backward Euler approach of implicit
solvers and there is an additional term for the pseudo-time iteration. Hence, with the revised approach, the discretized
momentum equations (2.29) and (2.30) become

𝛽*(𝑢𝑘+1 − 𝑢𝑘)

∆𝑡𝑒
+
𝑚(𝑢𝑘+1 − 𝑢𝑛)

∆𝑡
+ (vrel cos 𝜃 + 𝐶𝑏)𝑢

𝑘+1 − (𝑚𝑓 + vrel sin 𝜃)𝑣𝑘+1 =
𝜕𝜎𝑘+1

1𝑗

𝜕𝑥𝑗
+ 𝜏𝑎𝑥 −𝑚𝑔

𝜕𝐻∘

𝜕𝑥
+ vrel(𝑈𝑤 cos 𝜃 − 𝑉𝑤 sin 𝜃),

(2.49)

𝛽*(𝑣𝑘+1 − 𝑣𝑘)

∆𝑡𝑒
+
𝑚(𝑣𝑘+1 − 𝑣𝑛)

∆𝑡
+ (vrel cos 𝜃 + 𝐶𝑏)𝑣

𝑘+1 + (𝑚𝑓 + vrel sin 𝜃)𝑢𝑘+1 =
𝜕𝜎𝑘+1

2𝑗

𝜕𝑥𝑗
+ 𝜏𝑎𝑦 −𝑚𝑔

𝜕𝐻∘

𝜕𝑦
+ vrel(𝑈𝑤 sin 𝜃 + 𝑉𝑤 cos 𝜃),

(2.50)

where 𝛽* is a numerical parameter and 𝑢𝑛, 𝑣𝑛 are the components of the previous time level solution. With 𝛽 =
𝛽*∆𝑡 (𝑚∆𝑡𝑒)

−1 [4], these equations can be written as

(︁
(𝛽 + 1)

𝑚

∆𝑡
+ vrel cos 𝜃 + 𝐶𝑏

)︁
⏟ ⏞

cca

𝑢𝑘+1 − (𝑚𝑓 + vrel sin 𝜃)⏟ ⏞
ccb

𝑣𝑘+1 =
𝜕𝜎𝑘+1

1𝑗

𝜕𝑥𝑗⏟ ⏞
strintx

+ 𝜏𝑎𝑥 −𝑚𝑔
𝜕𝐻∘

𝜕𝑥⏟ ⏞
forcex

+vrel (𝑈𝑤 cos 𝜃 − 𝑉𝑤 sin 𝜃)⏟ ⏞
waterx

+
𝑚

∆𝑡
(𝛽𝑢𝑘 + 𝑢𝑛),

(2.51)

(𝑚𝑓 + vrel sin 𝜃)⏟ ⏞
ccb

𝑢𝑘+1 +
(︁

(𝛽 + 1)
𝑚

∆𝑡
+ vrel cos 𝜃 + 𝐶𝑏

)︁
⏟ ⏞

cca

𝑣𝑘+1 =
𝜕𝜎𝑘+1

2𝑗

𝜕𝑥𝑗⏟ ⏞
strinty

+ 𝜏𝑎𝑦 −𝑚𝑔
𝜕𝐻∘

𝜕𝑦⏟ ⏞
forcey

+vrel (𝑈𝑤 sin 𝜃 + 𝑉𝑤 cos 𝜃)⏟ ⏞
watery

+
𝑚

∆𝑡
(𝛽𝑣𝑘 + 𝑣𝑛),

(2.52)

At this point, the solutions 𝑢𝑘+1 and 𝑣𝑘+1 are obtained in the same manner as for the standard EVP approach (see
equations (2.31) to (2.34)).

Introducing another numerical parameter 𝛼 = 2𝑇∆𝑡−1
𝑒 [4], the stress equations in (2.42) become

𝛼(𝜎𝑘+1
1 − 𝜎𝑘

1) + 𝜎𝑘
1 + 𝑃 𝑘

𝑅(1 − 𝑘𝑡) =
𝑃 (1 + 𝑘𝑡)

∆𝑘
𝐷𝑘

𝐷,

𝛼(𝜎𝑘+1
2 − 𝜎𝑘

2) + 𝜎𝑘
2 =

𝑃 (1 + 𝑘𝑡)

𝑒2∆𝑘
𝐷𝑘

𝑇 ,

𝛼(𝜎𝑘+1
12 − 𝜎𝑘

12) + 𝜎𝑘
12 =

𝑃 (1 + 𝑘𝑡)

2𝑒2∆𝑘
𝐷𝑘

𝑆 ,

where as opposed to the classic EVP, the second term in each equation is at iteration 𝑘 [4]. Also, as opposed to the
classic EVP, ∆𝑡𝑒 times the number of subcycles (or iterations) does not need to be equal to the advective time step
∆𝑡. Finally, as with the classic EVP approach, the stresses are initialized using the previous time level values. The
revised EVP is activated by setting the namelist parameter revised_evp = true. In the code 𝛼 = 𝑎𝑟𝑙𝑥 and 𝛽 = 𝑏𝑟𝑙𝑥.
The values of 𝑎𝑟𝑙𝑥 and 𝑏𝑟𝑙𝑥 can be set in the namelist. It is recommended to use large values of these parameters and
to set 𝑎𝑟𝑙𝑥 = 𝑏𝑟𝑙𝑥 [23].

24 Chapter 2. Science Guide

CHAPTER 3

User Guide

3.1 Implementation

CICE is written in FORTRAN90 and runs on platforms using UNIX, LINUX, and other operating systems. The
code is based on a two-dimensional horizontal orthogonal grid that is broken into two-dimensional horizontal blocks
and parallelized over blocks with MPI and OpenMP threads. The code also includes some optimizations for vector
architectures.

CICE consists of source code under the cicecore/ directory that supports model dynamics and top-level control. The
column physics source code is under the icepack/ directory and this is implemented as a submodule in github from a
separate repository (CICE) There is also a configuration/ directory that includes scripts for configuring CICE cases.

3.1.1 Directory structure

The present code distribution includes source code and scripts. Forcing data is available from the ftp site. The directory
structure of CICE is as follows

LICENSE.pdf license for using and sharing the code

DistributionPolicy.pdf policy for using and sharing the code

README.md basic information and pointers

icepack/ the Icepack module. The icepack subdirectory includes Icepack specific scripts, drivers, and documentation.
CICE only uses the columnphysics source code under icepack/columnphysics/.

cicecore/ CICE source code

cicecore/cicedynB/ routines associated with the dynamics core

cicecore/driver/ top-level CICE drivers and coupling layers

cicecore/shared/ CICE source code that is independent of the dynamical core

cicecore/version.txt file that indicates the CICE model version.

configuration/scripts/ support scripts, see Scripts

25

https://github.com/CICE-Consortium/Icepack

CICE Documentation

doc/ documentation

cice.setup main CICE script for creating cases

A case (compile) directory is created upon initial execution of the script cice.setup at the user-specified location
provided after the -c flag. Executing the command ./cice.setup -h provides helpful information for this tool.

3.1.2 Grid, boundary conditions and masks

The spatial discretization is specialized for a generalized orthogonal B-grid as in [32] or [41]. The ice and snow area,
volume and energy are given at the center of the cell, velocity is defined at the corners, and the internal ice stress tensor
takes four different values within a grid cell; bilinear approximations are used for the stress tensor and the ice velocity
across the cell, as described in [17]. This tends to avoid the grid decoupling problems associated with the B-grid. EVP
is available on the C-grid through the MITgcm code distribution, http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/
seaice/.

Since ice thickness and thermodynamic variables such as temperature are given in the center of each cell, the grid cells
are referred to as “T cells.” We also occasionally refer to “U cells,” which are centered on the northeast corner of the
corresponding T cells and have velocity in the center of each. The velocity components are aligned along grid lines.

The user has several choices of grid routines: popgrid reads grid lengths and other parameters for a nonuniform grid
(including tripole and regional grids), and rectgrid creates a regular rectangular grid. The input files global_gx3.grid
and global_gx3.kmt contain the ⟨3∘⟩ POP grid and land mask; global_gx1.grid and global_gx1.kmt contain the ⟨1∘⟩
grid and land mask, and global_tx1.grid and global_tx1.kmt contain the ⟨1∘⟩ POP tripole grid and land mask. These
are binary unformatted, direct access, Big Endian files.

In CESM, the sea ice model may exchange coupling fluxes using a different grid than the computational grid. This
functionality is activated using the namelist variable gridcpl_file.

Grid domains and blocks

In general, the global gridded domain is nx_global×ny_global, while the subdomains used in the block dis-
tribution are nx_block×ny_block. The physical portion of a subdomain is indexed as [ilo:ihi, jlo:jhi],
with nghost “ghost” or “halo” cells outside the domain used for boundary conditions. These parameters are illustrated
in Grid parameters in one dimension. The routines global_scatter and global_gather distribute information from the
global domain to the local domains and back, respectively. If MPI is not being used for grid decomposition in the ice
model, these routines simply adjust the indexing on the global domain to the single, local domain index coordinates.
Although we recommend that the user choose the local domains so that the global domain is evenly divided, if this is
not possible then the furthest east and/or north blocks will contain nonphysical points (“padding”). These points are
excluded from the computation domain and have little effect on model performance.

Figure Grid parameters shows the grid parameters for a sample one-dimensional, 20-cell global domain decomposed
into four local subdomains. Each local domain has one ghost (halo) cell on each side, and the physical portion of the
local domains are labeled ilo:ihi. The parameter nx_block is the total number of cells in the local domain,
including ghost cells, and the same numbering system is applied to each of the four subdomains.

The user sets the NTASKS and NTHRDS settings in cice.settings and chooses a block size block_size_x
×block_size_y, max_blocks, and decomposition information distribution_type,
processor_shape, and distribution_type in ice_in. That information is used to determine how
the blocks are distributed across the processors, and how the processors are distributed across the grid domain.
Recommended combinations of these parameters for best performance are given in Section Performance. The script
cice.setup computes some default decompositions and layouts but the user can overwrite the defaults by manually
changing the values in ice_in. At runtime, the model will print decomposition information to the log file, and if the
block size or max blocks is inconsistent with the task and thread size, the model will abort. The code will also print
a warning if the maximum number of blocks is too large. Although this is not fatal, it does use extra memory. If
max_blocks is set to -1, the code will compute a max_blocks on the fly.

26 Chapter 3. User Guide

http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/seaice/
http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/seaice/

CICE Documentation

Fig. 1: Grid parameters

3.1. Implementation 27

CICE Documentation

A loop at the end of routine create_blocks in module ice_blocks.F90 will print the locations for all of the blocks
on the global grid if dbug is set to be true. Likewise, a similar loop at the end of routine create_local_block_ids in
module ice_distribution.F90 will print the processor and local block number for each block. With this information,
the grid decomposition into processors and blocks can be ascertained. The dbug flag must be manually set in the
code in each case (independently of the dbug flag in ice_in), as there may be hundreds or thousands of blocks to print
and this information should be needed only rarely. This information is much easier to look at using a debugger such
as Totalview. There is also an output field that can be activated in icefields_nml, f_blkmask, that prints out the
variable blkmask to the history file and which labels the blocks in the grid decomposition according to blkmask
= my_task + iblk/100.

Tripole grids

The tripole grid is a device for constructing a global grid with a normal south pole and southern boundary condition,
which avoids placing a physical boundary or grid singularity in the Arctic Ocean. Instead of a single north pole, it has
two “poles” in the north, both located on land, with a line of grid points between them. This line of points is called the
“fold,” and it is the “top row” of the physical grid. One pole is at the left-hand end of the top row, and the other is in
the middle of the row. The grid is constructed by “folding” the top row, so that the left-hand half and the right-hand
half of it coincide. Two choices for constructing the tripole grid are available. The one first introduced to CICE is
called “U-fold”, which means that the poles and the grid cells between them are U cells on the grid. Alternatively the
poles and the cells between them can be grid T cells, making a “T-fold.” Both of these options are also supported by
the OPA/NEMO ocean model, which calls the U-fold an “f-fold” (because it uses the Arakawa C-grid in which U cells
are on T-rows). The choice of tripole grid is given by the namelist variable ns_boundary_type, ‘tripole’ for
the U-fold and ‘tripoleT’ for the T-fold grid.

In the U-fold tripole grid, the poles have U-index nx_global/2 and nx_global on the top U-row of the physical
grid, and points with U-index i and nx_global− i are coincident. Let the fold have U-row index 𝑛 on the global
grid; this will also be the T-row index of the T-row to the south of the fold. There are ghost (halo) T- and U-rows to
the north, beyond the fold, on the logical grid. The point with index i along the ghost T-row of index 𝑛+ 1 physically
coincides with point nx_global−i+1 on the T-row of index 𝑛. The ghost U-row of index 𝑛+1 physically coincides
with the U-row of index 𝑛− 1.

In the T-fold tripole grid, the poles have T-index 1 and and nx_global/2 + 1 on the top T-row of the physical grid,
and points with T-index i and nx_global− i + 2 are coincident. Let the fold have T-row index 𝑛 on the global grid.
It is usual for the northernmost row of the physical domain to be a U-row, but in the case of the T-fold, the U-row of
index 𝑛 is “beyond” the fold; although it is not a ghost row, it is not physically independent, because it coincides with
U-row 𝑛−1, and it therefore has to be treated like a ghost row. Points i on U-row 𝑛 coincides with nx_global−i+1
on U-row 𝑛− 1. There are still ghost T- and U-rows 𝑛+ 1 to the north of U-row 𝑛. Ghost T-row 𝑛+ 1 coincides with
T-row 𝑛− 1, and ghost U-row 𝑛+ 1 coincides with U-row 𝑛− 2.

The tripole grid thus requires two special kinds of treatment for certain rows, arranged by the halo-update routines.
First, within rows along the fold, coincident points must always have the same value. This is achieved by averaging
them in pairs. Second, values for ghost rows and the “quasi-ghost” U-row on the T-fold grid are reflected copies of
the coincident physical rows. Both operations involve the tripole buffer, which is used to assemble the data for the
affected rows. Special treatment is also required in the scattering routine, and when computing global sums one of
each pair of coincident points has to be excluded.

Vertical Grids

The sea ice physics described in a single column or grid cell is contained in the Icepack submodule, which can be run
independently of the CICE model. Icepack includes a vertical grid for the physics and a “bio-grid” for biogeochemistry,
described in the Icepack Documentation. History variables available for column output are ice and snow temperature,
Tinz and Tsnz, and the ice salinity profile, Sinz. These variables also include thickness category as a fourth dimension.

28 Chapter 3. User Guide

CICE Documentation

Boundary conditions

Much of the infrastructure used in CICE, including the boundary routines, is adopted from POP. The boundary routines
perform boundary communications among processors when MPI is in use and among blocks whenever there is more
than one block per processor.

Open/cyclic boundary conditions are the default in CICE; the physical domain can still be closed using the land mask.
In our bipolar, displaced-pole grids, one row of grid cells along the north and south boundaries is located on land, and
along east/west domain boundaries not masked by land, periodic conditions wrap the domain around the globe. CICE
can be run on regional grids with open boundary conditions; except for variables describing grid lengths, non-land halo
cells along the grid edge must be filled by restoring them to specified values. The namelist variable restore_ice
turns this functionality on and off; the restoring timescale trestore may be used (it is also used for restoring ocean
sea surface temperature in stand-alone ice runs). This implementation is only intended to provide the “hooks” for a
more sophisticated treatment; the rectangular grid option can be used to test this configuration. The ‘displaced_pole’
grid option should not be used unless the regional grid contains land all along the north and south boundaries. The
current form of the boundary condition routines does not allow Neumann boundary conditions, which must be set
explicitly. This has been done in an unreleased branch of the code; contact Elizabeth for more information.

For exact restarts using restoring, set restart_ext = true in namelist to use the extended-grid subroutines.

On tripole grids, the order of operations used for calculating elements of the stress tensor can differ on either side of
the fold, leading to round-off differences. Although restarts using the extended grid routines are exact for a given run,
the solution will differ from another run in which restarts are written at different times. For this reason, explicit halo
updates of the stress tensor are implemented for the tripole grid, both within the dynamics calculation and for restarts.
This has not been implemented yet for tripoleT grids, pending further testing.

Masks

A land mask hm (𝑀ℎ) is specified in the cell centers, with 0 representing land and 1 representing ocean cells. A
corresponding mask uvm (𝑀𝑢) for velocity and other corner quantities is given by

𝑀𝑢(𝑖, 𝑗) = min{𝑀ℎ(𝑙), 𝑙 = (𝑖, 𝑗), (𝑖+ 1, 𝑗), (𝑖, 𝑗 + 1), (𝑖+ 1, 𝑗 + 1)}.

The logical masks tmask and umask (which correspond to the real masks hm and uvm, respectively) are useful in
conditional statements.

In addition to the land masks, two other masks are implemented in dyn_prep in order to reduce the dynamics compo-
nent’s work on a global grid. At each time step the logical masks ice_tmask and ice_umask are determined
from the current ice extent, such that they have the value “true” wherever ice exists. They also include a border of cells
around the ice pack for numerical purposes. These masks are used in the dynamics component to prevent unnecessary
calculations on grid points where there is no ice. They are not used in the thermodynamics component, so that ice
may form in previously ice-free cells. Like the land masks hm and uvm, the ice extent masks ice_tmask and
ice_umask are for T cells and U cells, respectively.

Improved parallel performance may result from utilizing halo masks for boundary updates of the full ice state, incre-
mental remapping transport, or for EVP or EAP dynamics. These options are accessed through the logical namelist
flags maskhalo_bound, maskhalo_remap, and maskhalo_dyn, respectively. Only the halo cells con-
taining needed information are communicated.

Two additional masks are created for the user’s convenience: lmask_n and lmask_s can be used to compute or
write data only for the northern or southern hemispheres, respectively. Special constants (spval and spval_dbl,
each equal to 1030) are used to indicate land points in the history files and diagnostics.

3.1. Implementation 29

CICE Documentation

Performance

Namelist options (domain_nml) provide considerable flexibility for finding efficient processor and block configu-
ration. Some of these choices are illustrated in Distribution options. Users have control of many aspects of the
decomposition such as the block size (block_size_x, block_size_y), the distribution_type,
the distribution_wght, the distribution_wght_file (when distribution_type =
wghtfile), and the processor_shape (when distribution_type = cartesian).

The user specifies the total number of tasks and threads in cice.settings and the block size and decompostion in
the namelist file. The main trades offs are the relative efficiency of large square blocks versus model internal load
balance as CICE computation cost is very small for ice-free blocks. Smaller, more numerous blocks provides an
opportunity for better load balance by allocating each processor both ice-covered and ice-free blocks. But smaller,
more numerous blocks becomes less efficient due to MPI communication associated with halo updates. In practice,
blocks should probably not have fewer than about 8 to 10 grid cells in each direction, and more square blocks tend to
optimize the volume-to-surface ratio important for communication cost. Often 3 to 8 blocks per processor provide the
decompositions flexiblity to create reasonable load balance configurations.

The distribution_type options allow standard cartesian distributions of blocks, redistribution via a ‘rake’ al-
gorithm for improved load balancing across processors, and redistribution based on space-filling curves. There are also
additional distribution types (‘roundrobin,’ ‘sectrobin,’ ‘sectcart’, and ‘spiralcenter’) that support alternative decom-
positions and also allow more flexibility in the number of processors used. Finally, there is a ‘wghtfile’ decomposition
that generates a decomposition based on weights specified in an input file.

Fig. 2: Distribution options

Figure Distribution options shows distribution of 256 blocks across 16 processors, represented by colors, on the gx1
grid: (a) cartesian, slenderX1, (b) cartesian, slenderX2, (c) cartesian, square-ice (square-pop is equivalent here), (d)
rake with block weighting, (e) rake with latitude weighting, (f) spacecurve. Each block consists of 20x24 grid cells,
and white blocks consist entirely of land cells.

Figure Decomposition options shows sample decompositions for (a) spiral center and (b) wghtfile for an Arctic polar
grid. (c) is the weight field in the input file use to drive the decompostion in (b).

30 Chapter 3. User Guide

CICE Documentation

Fig. 3: Decomposition options

processor_shape is used with the distribution_type cartesian option, and it allocates blocks to pro-
cessors in various groupings such as tall, thin processor domains (slenderX1 or slenderX2, often better for sea
ice simulations on global grids where nearly all of the work is at the top and bottom of the grid with little to do in
between) and close-to-square domains (square-pop or square-ice), which maximize the volume to surface ra-
tio (and therefore on-processor computations to message passing, if there were ice in every grid cell). In cases where
the number of processors is not a perfect square (4, 9, 16. . .), the processor_shape namelist variable allows the
user to choose how the processors are arranged. Here again, it is better in the sea ice model to have more processors
in x than in y, for example, 8 processors arranged 4x2 (square-ice) rather than 2x4 (square-pop). The latter
option is offered for direct-communication compatibility with POP, in which this is the default.

distribution_wght chooses how the work-per-block estimates are weighted. The ‘block’ option is the default
in POP and it weights each block equally. This is useful in POP which always has work in each block and is written
with a lot of array syntax requiring calculations over entire blocks (whether or not land is present). This option
is provided in CICE as well for direct-communication compatibility with POP. The ‘latitude’ option weights the
blocks based on latitude and the number of ocean grid cells they contain. Many of the non-cartesian decompositions
support automatic land block elimination and provide alternative ways to decompose blocks without needing the
distribution_wght.

The rake distribution type is initialized as a standard, Cartesian distribution. Using the work-per-block estimates,
blocks are “raked” onto neighboring processors as needed to improve load balancing characteristics among processors,
first in the x direction and then in y.

Space-filling curves reduce a multi-dimensional space (2D, in our case) to one dimension. The curve is composed of
a string of blocks that is snipped into sections, again based on the work per processor, and each piece is placed on a
processor for optimal load balancing. This option requires that the block size be chosen such that the number of blocks
in the x direction and the number of blocks in the y direction must be factorable as 2𝑛3𝑚5𝑝 where 𝑛,𝑚, 𝑝 are integers.
For example, a 16x16 array of blocks, each containing 20x24 grid cells, fills the gx1 grid (𝑛 = 4,𝑚 = 𝑝 = 0). If
either of these conditions is not met, the spacecurve decomposition will fail.

While the Cartesian distribution groups sets of blocks by processor, the ‘roundrobin’ distribution loops through the
blocks and processors together, putting one block on each processor until the blocks are gone. This provides good
load balancing but poor communication characteristics due to the number of neighbors and the amount of data needed
to communicate. The ‘sectrobin’ and ‘sectcart’ algorithms loop similarly, but put groups of blocks on each processor
to improve the communication characteristics. In the ‘sectcart’ case, the domain is divided into four (east-west,north-
south) quarters and the loops are done over each, sequentially.

The wghtfile decomposition drives the decomposition based on weights provided in a weight file. That file should
be a netcdf file with a double real field called wght containing the relative weight of each gridcell. Decomposition
options (b) and (c) show an example. The weights associated with each gridcell will be summed on a per block
basis and normalized to about 10 bins to carry out the distribution of highest to lowest block weights to processors.
Scorecard provides an overview of the pros and cons of the various distribution types.

Figure Scorecard shows the scorecard for block distribution choices in CICE, courtesy T. Craig. For more information,
see [6] or http://www.cesm.ucar.edu/events/workshops/ws.2012/presentations/sewg/craig.pdf

The maskhalo options in the namelist improve performance by removing unnecessary halo communications where

3.1. Implementation 31

http://www.cesm.ucar.edu/events/workshops/ws.2012/presentations/sewg/craig.pdf

CICE Documentation

Fig. 4: Scorecard

32 Chapter 3. User Guide

CICE Documentation

there is no ice. There is some overhead in setting up the halo masks, which is done during the timestepping procedure
as the ice area changes, but this option usually improves timings even for relatively small processor counts. T. Craig
has found that performance improved by more than 20% for combinations of updated decompositions and masked
haloes, in CESM’s version of CICE.

Throughout the code, (i, j) loops have been combined into a single loop, often over just ocean cells or those containing
sea ice. This was done to reduce unnecessary operations and to improve vector performance.

Timings illustrates the CICE v5 computational expense of various options, relative to the total time (excluding ini-
tialization) of a 7-layer configuration using BL99 thermodynamics, EVP dynamics, and the ‘ccsm3’ shortwave pa-
rameterization on the gx1 grid, run for one year from a no-ice initial condition. The block distribution consisted of
20 × 192 blocks spread over 32 processors (‘slenderX2’) with no threads and -O2 optimization. Timings varied by
about ±3% in identically configured runs due to machine load. Extra time required for tracers has two components,
that needed to carry the tracer itself (advection, category conversions) and that needed for the calculations associated
with the particular tracer. The age tracers (FY and iage) require very little extra calculation, so their timings represent
essentially the time needed just to carry an extra tracer. The topo melt pond scheme is slightly faster than the others
because it calculates pond area and volume once per grid cell, while the others calculate it for each thickness category.

Fig. 5: Timings

Figure Timings shows change in ‘TimeLoop’ timings from the 7-layer configuration using BL99 thermodynamics
and EVP dynamics. Timings were made on a nondedicated machine, with variations of about ±3% in identically
configured runs (light grey). Darker grey indicates the time needed for extra required options; The Delta-Eddington
radiation scheme is required for all melt pond schemes and the aerosol tracers, and the level-ice pond parameterization
additionally requires the level-ice tracers.

3.1.3 Initialization and coupling

The ice model’s parameters and variables are initialized in several steps. Many constants and physical parameters are
set in ice_constants.F90. Namelist variables (Table of namelist options), whose values can be altered at run time, are
handled in input_data and other initialization routines. These variables are given default values in the code, which

3.1. Implementation 33

CICE Documentation

may then be changed when the input file ice_in is read. Other physical constants, numerical parameters, and variables
are first set in initialization routines for each ice model component or module. Then, if the ice model is being restarted
from a previous run, core variables are read and reinitialized in restartfile, while tracer variables needed for specific
configurations are read in separate restart routines associated with each tracer or specialized parameterization. Finally,
albedo and other quantities dependent on the initial ice state are set. Some of these parameters will be described in
more detail in Table of namelist options.

The restart files supplied with the code release include the core variables on the default configuration, that is, with
seven vertical layers and the ice thickness distribution defined by kcatbound = 0. Restart information for some
tracers is also included in the netCDF restart files.

Three namelist variables control model initialization, ice_ic, runtype, and restart, as described in Ice
Initial State. It is possible to do an initial run from a file filename in two ways: (1) set runtype = ‘initial’,
restart = true and ice_ic = filename, or (2) runtype = ‘continue’ and pointer_file = ./restart/ice.restart_file where
./restart/ice.restart_file contains the line “./restart/[filename]”. The first option is convenient when repeatedly start-
ing from a given file when subsequent restart files have been written. With this arrangement, the tracer restart flags can
be set to true or false, depending on whether the tracer restart data exist. With the second option, tracer restart flags
are set to ‘continue’ for all active tracers.

An additional namelist option, restart_ext specifies whether halo cells are included in the restart files. This
option is useful for tripole and regional grids, but can not be used with PIO.

MPI is initialized in init_communicate for both coupled and stand-alone MPI runs. The ice component communicates
with a flux coupler or other climate components via external routines that handle the variables listed in the Icepack
documentation. For stand-alone runs, routines in ice_forcing.F90 read and interpolate data from files, and are intended
merely to provide guidance for the user to write his or her own routines. Whether the code is to be run in stand-alone
or coupled mode is determined at compile time, as described below.

Table Ice Initial State shows ice initial state resulting from combinations of ice_ic, runtype and restart. 𝑎If
false, restart is reset to true. 𝑏restart is reset to false. 𝑐ice_ic is reset to ‘none.’

Table 1: Ice Initial State
ice_ic

initial/false initial/true continue/true (or false𝑎)
none no ice no ice𝑏 restart using pointer_file
default SST/latitude dependent SST/latitude dependent𝑏 restart using pointer_file
filename no ice𝑐 start from filename restart using pointer_file

3.1.4 Choosing an appropriate time step

The time step is chosen based on stability of the transport component (both horizontal and in thickness space) and on
resolution of the physical forcing. CICE allows the dynamics, advection and ridging portion of the code to be run with
a shorter timestep, ∆𝑡𝑑𝑦𝑛 (dt_dyn), than the thermodynamics timestep ∆𝑡 (dt). In this case, dt and the integer
ndtd are specified, and dt_dyn = dt/ndtd.

A conservative estimate of the horizontal transport time step bound, or CFL condition, under remapping yields

∆𝑡𝑑𝑦𝑛 <
min (∆𝑥,∆𝑦)

2 max (𝑢, 𝑣)
.

Numerical estimates for this bound for several POP grids, assuming max(𝑢, 𝑣) = 0.5 m/s, are as follows:

34 Chapter 3. User Guide

https://cice-consortium-icepack.readthedocs.io/en/master/science_guide/index.html
https://cice-consortium-icepack.readthedocs.io/en/master/science_guide/index.html

CICE Documentation

Table 2: Time Step Bound
grid label N pole singularity dimensions min

√
∆𝑥 · ∆𝑦 max ∆𝑡𝑑𝑦𝑛

gx3 Greenland 100 × 116 39 × 103 m 10.8hr
gx1 Greenland 320 × 384 18 × 103 m 5.0hr
p4 Canada 900 × 600 6.5 × 103 m 1.8hr

As discussed in [29], the maximum time step in practice is usually determined by the time scale for large changes
in the ice strength (which depends in part on wind strength). Using the strength parameterization of [39], limits the
time step to ∼30 minutes for the old ridging scheme (krdg_partic = 0), and to ∼2 hours for the new scheme
(krdg_partic = 1), assuming ∆𝑥 = 10 km. Practical limits may be somewhat less, depending on the strength of
the atmospheric winds.

Transport in thickness space imposes a similar restraint on the time step, given by the ice growth/melt rate and the
smallest range of thickness among the categories, ∆𝑡 < min(∆𝐻)/2 max(𝑓), where ∆𝐻 is the distance between
category boundaries and 𝑓 is the thermodynamic growth rate. For the 5-category ice thickness distribution used as the
default in this distribution, this is not a stringent limitation: ∆𝑡 < 19.4 hr, assuming max(𝑓) = 40 cm/day.

In the classic EVP or EAP approach (kdyn = 1 or 2, revised_evp = false), the dynamics component is subcycled
ndte (𝑁) times per dynamics time step so that the elastic waves essentially disappear before the next time step. The
subcycling time step (∆𝑡𝑒) is thus

𝑑𝑡𝑒 = 𝑑𝑡_𝑑𝑦𝑛/𝑛𝑑𝑡𝑒.

A second parameter, 𝐸∘ (eyc), defines the elastic wave damping timescale 𝑇 , described in Section Dynamics, as
eyc\ * dt_dyn. The forcing terms are not updated during the subcycling. Given the small step (dte) at which
the EVP dynamics model is subcycled, the elastic parameter 𝐸 is also limited by stability constraints, as discussed
in [16]. Linear stability analysis for the dynamics component shows that the numerical method is stable as long as
the subcycling time step ∆𝑡𝑒 sufficiently resolves the damping timescale 𝑇 . For the stability analysis we had to make
several simplifications of the problem; hence the location of the boundary between stable and unstable regions is
merely an estimate. In practice, the ratio ∆𝑡𝑒 : 𝑇 : ∆𝑡 = 1 : 40 : 120 provides both stability and acceptable
efficiency for time steps (∆𝑡) on the order of 1 hour.

Note that only 𝑇 and ∆𝑡𝑒 figure into the stability of the dynamics component; ∆𝑡 does not. Although the time step
may not be tightly limited by stability considerations, large time steps (e.g., ∆𝑡 = 1 day, given daily forcing) do not
produce accurate results in the dynamics component. The reasons for this error are discussed in [16]; see [20] for its
practical effects. The thermodynamics component is stable for any time step, as long as the surface temperature 𝑇𝑠𝑓𝑐
is computed internally. The numerical constraint on the thermodynamics time step is associated with the transport
scheme rather than the thermodynamic solver.

For the revised EVP approach (kdyn = 1, revised_evp = true), the relaxation parameter arlx1i effectively
sets the damping timescale in the problem, and brlx represents the effective subcycling [4] (see Section Revised
approach).

3.1.5 Model output

History files

Model output data is averaged over the period(s) given by histfreq and histfreq_n, and written to bi-
nary or netCDF files prepended by history_file in ice_in. These settings for history files are set in the
setup_nml section of ice_in (see Table of namelist options). If history_file = ‘iceh’ then the filenames will
have the form iceh.[timeID].nc or iceh.[timeID].da, depending on the output file format chosen in cice.settings (set
ICE_IOTYPE). The netCDF history files are CF-compliant; header information for data contained in the netCDF
files is displayed with the command ncdump -h filename.nc. Parallel netCDF output is available using the
PIO library; the attribute io_flavor distinguishes output files written with PIO from those written with standard

3.1. Implementation 35

CICE Documentation

netCDF. With binary files, a separate header file is written with equivalent information. Standard fields are output
according to settings in the icefields_nml section of ice_in (see Table of namelist options). The user may add (or
subtract) variables not already available in the namelist by following the instructions in section Adding History fields.

The history module has been divided into several modules based on the desired formatting and on the variables them-
selves. Parameters, variables and routines needed by multiple modules is in ice_history_shared.F90, while the pri-
mary routines for initializing and accumulating all of the history variables are in ice_history.F90. These routines call
format-specific code in the io_binary, io_netcdf and io_pio directories. History variables specific to certain compo-
nents or parameterizations are collected in their own history modules (ice_history_bgc.F90, ice_history_drag.F90,
ice_history_mechred.F90, ice_history_pond.F90).

The history modules allow output at different frequencies. Five output frequencies (1, h, d, m, y) are available
simultaneously during a run. The same variable can be output at different frequencies (say daily and monthly) via its
namelist flag, f_ ⟨𝑣𝑎𝑟⟩, which is now a character string corresponding to histfreq or ‘x’ for none. (Grid variable
flags are still logicals, since they are written to all files, no matter what the frequency is.) If there are no namelist flags
with a given histfreq value, or if an element of histfreq_n is 0, then no file will be written at that frequency.
The output period can be discerned from the filenames.

For example, in the namelist:

``histfreq`` = ’1’, ’h’, ’d’, ’m’, ’y’
``histfreq_n`` = 1, 6, 0, 1, 1
``f_hi`` = ’1’
``f_hs`` = ’h’
``f_Tsfc`` = ’d’
``f_aice`` = ’m’
``f_meltb`` = ’mh’
``f_iage`` = ’x’

Here, hi will be written to a file on every timestep, hs will be written once every 6 hours, aice once a month,
meltb once a month AND once every 6 hours, and Tsfc and iage will not be written.

From an efficiency standpoint, it is best to set unused frequencies in histfreq to ‘x’. Having output at all 5
frequencies takes nearly 5 times as long as for a single frequency. If you only want monthly output, the most efficient
setting is histfreq = ’m’,’x’,’x’,’x’,’x’. The code counts the number of desired streams (nstreams) based on
histfreq.

The history variable names must be unique for netCDF, so in cases where a variable is written at more than one
frequency, the variable name is appended with the frequency in files after the first one. In the example above, meltb
is called meltb in the monthly file (for backward compatibility with the default configuration) and meltb_h in the
6-hourly file.

Using the same frequency twice in histfreq will have unexpected consequences and currently will cause the code
to abort. It is not possible at the moment to output averages once a month and also once every 3 months, for example.

If write_ic is set to true in ice_in, a snapshot of the same set of history fields at the start of the run will be written
to the history directory in iceh_ic.[timeID].nc(da). Several history variables are hard-coded for instantaneous output
regardless of the averaging flag, at the frequency given by their namelist flag.

The normalized principal components of internal ice stress are computed in principal_stress and written to the history
file. This calculation is not necessary for the simulation; principal stresses are merely computed for diagnostic purposes
and included here for the user’s convenience.

Several history variables are available in two forms, a value representing an average over the sea ice fraction of the
grid cell, and another that is multiplied by 𝑎𝑖, representing an average over the grid cell area. Our naming convention
attaches the suffix “_ai” to the grid-cell-mean variable names.

Beginning with CICE v6, history variables requested by the Sea Ice Model Intercomparison Project (SIMIP) [33] have
been added as possible history output variables (e.g. f_sithick, f_sidmassgrowthbottom, etc.). The lists
of monthly and daily requested SIMIP variables provide the names of possible history fields in CICE. However, each

36 Chapter 3. User Guide

http://clipc-services.ceda.ac.uk/dreq/u/MIPtable::SImon.html
http://clipc-services.ceda.ac.uk/dreq/u/MIPtable::SIday.html

CICE Documentation

of the additional variables can be output at any temporal frequency specified in the icefields_nml section of ice_in as
detailed above. Additionally, a new history output variable, f_CMIP, has been added. When f_CMIP is added to
the icefields_nml section of ice_in then all SIMIP variables will be turned on for output at the frequency specified by
f_CMIP.

Diagnostic files

Like histfreq, the parameter diagfreq can be used to regulate how often output is written to a log file. The
log file unit to which diagnostic output is written is set in ice_fileunits.F90. If diag_type = ‘stdout’, then it
is written to standard out (or to ice.log.[ID] if you redirect standard out as in cice.run); otherwise it is written to
the file given by diag_file. In addition to the standard diagnostic output (maximum area-averaged thickness,
velocity, average albedo, total ice area, and total ice and snow volumes), the namelist options print_points and
print_global cause additional diagnostic information to be computed and written. print_global outputs
global sums that are useful for checking global conservation of mass and energy. print_points writes data for
two specific grid points. Currently, one point is near the North Pole and the other is in the Weddell Sea; these may be
changed in ice_in.

Timers are declared and initialized in ice_timers.F90, and the code to be timed is wrapped with calls to ice_timer_start
and ice_timer_stop. Finally, ice_timer_print writes the results to the log file. The optional “stats” argument (true/false)
prints additional statistics. Calling ice_timer_print_all prints all of the timings at once, rather than having to call each
individually. Currently, the timers are set up as in CICE timers. Section Adding Timers contains instructions for adding
timers.

The timings provided by these timers are not mutually exclusive. For example, the column timer (5) includes the
timings from 6–10, and subroutine bound (timer 15) is called from many different places in the code, including the
dynamics and advection routines.

The timers use MPI_WTIME for parallel runs and the F90 intrinsic system_clock for single-processor runs.

Table 3: CICE timers
Timer
Index Label
1 Total the entire run
2 Step total minus initialization and exit
3 Dynamics EVP
4 Advection horizontal transport
5 Column all vertical (column) processes
6 Thermo vertical thermodynamics
7 Shortwave SW radiation and albedo
8 Meltponds melt ponds
9 Ridging mechanical redistribution
10 Cat Conv transport in thickness space
11 Coupling sending/receiving coupler messages
12 ReadWrite reading/writing files
13 Diags diagnostics (log file)
14 History history output
15 Bound boundary conditions and subdomain communications
16 BGC biogeochemistry

Restart files

CICE provides restart data in binary unformatted or netCDF formats, via the ICE_IOTYPE flag in cice.settings
and namelist variable restart_format. Restart and history files must use the same format. As with the history

3.1. Implementation 37

CICE Documentation

output, there is also an option for writing parallel netCDF restart files using PIO.

The restart files created by CICE contain all of the variables needed for a full, exact restart. The filename begins
with the character string ‘iced.’, and the restart dump frequency is given by the namelist variables dumpfreq and
dumpfreq_n. The pointer to the filename from which the restart data is to be read for a continuation run is set in
pointer_file. The code assumes that auxiliary binary tracer restart files will be identified using the same pointer
and file name prefix, but with an additional character string in the file name that is associated with each tracer set. All
variables are included in netCDF restart files.

Additional namelist flags provide further control of restart behavior. dump_last = true causes a set of restart files
to be written at the end of a run when it is otherwise not scheduled to occur. The flag use_restart_time
enables the user to choose to use the model date provided in the restart files. If use_restart_time = false
then the initial model date stamp is determined from the namelist parameters. lcdf64 = true sets 64-bit netCDF output,
allowing larger file sizes.

Routines for gathering, scattering and (unformatted) reading and writing of the “extended” global grid, including
the physical domain and ghost (halo) cells around the outer edges, allow exact restarts on regional grids with open
boundary conditions, and they will also simplify restarts on the various tripole grids. They are accessed by setting
restart_ext = true in namelist. Extended grid restarts are not available when using PIO; in this case extra halo
update calls fill ghost cells for tripole grids (do not use PIO for regional grids).

Two netCDF restart files are available for the CICE v5 and v6 code distributions for the gx3 and gx1 grids (see
Forcing data for information about obtaining these files). They were created using the default v5 model configuration,
but initialized with no ice. The gx3 case was run for 1 year using the 1997 forcing data provided with the code.
The gx1 case was run for 20 years, so that the date of restart in the file is 1978-01-01. Note that the restart dates
provided in the restart files can be overridden using the namelist variables use_restart_time, year_init
and istep0. The forcing time can also be overridden using fyear_init.

3.2 Running CICE

Quick-start instructions are provided in the Quick Start section.

3.2.1 Software Requirements

To run stand-alone, CICE requires

• gmake (GNU Make)

• Fortran and C compilers (Intel, PGI, GNU, Cray, and NAG have been tested)

• NetCDF

• MPI (this is actually optional but without it you can only run on 1 processor)

Below are lists of software versions that the Consortium has tested at some point. There is no guarantee that all
compiler versions work with all CICE model versions. At any given point, the Consortium is regularly testing on
several different compilers, but not necessarily on all possible versions or combinations. A CICE goal is to be relatively
portable across different hardware, compilers, and other software. As a result, the coding implementation tends to be
on the conservative side at times. If there are problems porting to a particular system, please let the Consortium know.

The Consortium has tested the following compilers at some point,

• Intel 15.0.3.187

• Intel 16.0.1.150

• Intel 17.0.1.132

38 Chapter 3. User Guide

CICE Documentation

• Intel 17.0.2.174

• Intel 17.0.5.239

• Intel 18.0.1.163

• Intel 19.0.2

• Intel 19.0.3.199

• PGI 16.10.0

• GNU 6.3.0

• GNU 7.2.0

• GNU 7.3.0

• Cray 8.5.8

• Cray 8.6.4

• NAG 6.2

The Consortium has tested the following mpi versions,

• MPICH 7.3.2

• MPICH 7.5.3

• MPICH 7.6.2

• MPICH 7.6.3

• MPICH 7.7.6

• Intel MPI 18.0.1

• MPT 2.14

• MPT 2.17

• MPT 2.18

• MPT 2.19

• OpenMPI 1.6.5

The NetCDF implementation is relatively general and should work with any version of NetCDF 3 or 4. The Consortium
has tested

• NetCDF 4.3.0

• NetCDF 4.3.2

• NetCDF 4.4.0

• NetCDF 4.4.1.1.32

• NetCDF 4.4.1.1

• NetCDF 4.4.2

• NetCDF 4.5.0

• NetCDF 4.6.1.3

Please email the Consortium if this list can be extended.

3.2. Running CICE 39

CICE Documentation

3.2.2 Scripts

The CICE scripts are written to allow quick setup of cases and tests. Once a case is generated, users can manually
modify the namelist and other files to custom configure the case. Several settings are available via scripts as well.

Overview

Most of the scripts that configure, build and run CICE are contained in the directory configuration/scripts/, except
for cice.setup, which is in the main directory. cice.setup is the main script that generates a case.

Users may need to port the scripts to their local machine. Specific instructions for porting are provided in Porting.

cice.setup -h will provide the latest information about how to use the tool. cice.setup --help will pro-
vide an extended version of the help. There are three usage modes,

• --case or -c creates individual stand alone cases.

• --test creates individual tests. Tests are just cases that have some extra automation in order to carry out
particular tests such as exact restart.

• --suite creates a test suite. Test suites are predefined sets of tests and --suite provides the ability to
quickly setup, build, and run a full suite of tests.

All modes will require use of --mach or -m to specify the machine and case and test modes can use --set or -s to
define specific options. --test and --suite will require --testid to be set and both of the test modes can use
--bdir, --bgen, --bcmp, and --diff to generate (save) results and compare results with prior results as well
as --tdir to specify the location of the test directory. Testing will be described in greater detail in the Testing CICE
section.

Again, cice.setup --help will show the latest usage information including the available --set options, the
current ported machines, and the test choices.

To create a case, run cice.setup:

cice.setup -c mycase -m machine
cd mycase

Once a case/test is created, several files are placed in the case directory

• env.[machine] defines the environment

• cice.settings defines many variables associated with building and running the model

• makdep.c is a tool that will automatically generate the make dependencies

• Macros.[machine] defines the Makefile macros

• Makefile is the makefile used to build the model

• cice.build is a script that builds and compiles the model

• ice_in is the namelist input file

• setup_run_dirs.csh is a script that will create the run directories. This will be called automatically from the
cice.run script if the user does not invoke it.

• cice.run is a batch run script

• cice.submit is a simple script that submits the cice.run script

Once the case is created, all scripts and namelist are fully resolved. Users can edit any of the files in the case directory
manually to change the model configuration, build options, or batch settings. The file dependency is indicated in the
above list. For instance, if any of the files before cice.build in the list are edited, cice.build should be rerun.

40 Chapter 3. User Guide

CICE Documentation

The casescripts/ directory holds scripts used to create the case and can largely be ignored. Once a case is created, the
cice.build script should be run interactively and then the case should be submitted by executing the cice.submit script
interactively. The cice.submit script simply submits the cice.run script. You can also submit the cice.run script on
the command line.

Some hints:

• To change the block sizes required at build time, edit the cice.settings file.

• To change namelist, manually edit the ice_in file

• To change batch settings, manually edit the top of the cice.run or cice.test (if running a test) file

• To turn on the debug compiler flags, set ICE_BLDDEBUG in cice.setttings to true. It is also possible to use the
debug option (-s debug) when creating the case with cice.setup to set this option automatically.

• To change compiler options, manually edit the Macros file

• To clean the build before each compile, set ICE_CLEANBUILD in cice.settings to true (this is the default
value), or use the buildclean option (-s buildclean) when creating the case with cice.setup. To not
clean before the build, set ICE_CLEANBUILD in cice.settings to false, or use the buildincremental
option (-s buildincremental) when creating the case with cice.setup. It is recommended that the
ICE_CLEANBUILD be set to true if there are any questions about whether the build is proceeding properly.

To build and run:

./cice.build

./cice.submit

The build and run log files will be copied into the logs directory in the case directory. Other model output will be in
the run directory. The run directory is set in cice.settings via the ICE_RUNDIR variable. To modify the case setup,
changes should be made in the case directory, NOT the run directory.

Command Line Options

cice.setup -h provides a summary of the command line options. There are three different modes, --case,
--test, and --suite. This section provides details about the relevant options for setting up cases with examples.
Testing will be described in greater detail in the Testing CICE section.

--help, -h prints cice.setup help information to the terminal and exits.

--version prints the CICE version to the terminal and exits.

--setvers VERSION internally updates the CICE version in your sandbox. Those changes can then be commited
(or not) to the repository. –version will show the updated value. The argument VERSION is typically a string
like “5.1.2” but could be any alphanumeric string.

--case, -c CASE specifies the case name. This can be either a relative path of an absolute path. This cannot be
used with –test or –suite. Either --case, --test, or --suite is required.

--mach, -m MACHINE specifies the machine name. This should be consistent with the name defined in the Macros
and env files in configurations/scripts/machines. This is required in all modes.

--env, -e ENVIRONMENT1,ENVIRONMENT2,ENVIRONMENT3 specifies the environment or compiler as-
sociated with the machine. This should be consistent with the name defined in the Macros and env files in
configurations/scripts/machines. Each machine can have multiple supported environments including support
for different compilers or other system setups. When used with --suite or --test, the ENVIRONMENT
can be a set of comma deliminated values with no spaces and the tests will then be run for all of those environ-
ments. With --case, only one ENVIRONMENT should be specified. (default is intel)

3.2. Running CICE 41

CICE Documentation

--pes, -p MxN[[xBXxBY[xMB] specifies the number of tasks and threads the case should be run on. This only
works with --case. The format is tasks x threads or “M”x”N” where M is tasks and N is threads and both
are integers. BX, BY, and MB can also be set via this option where BX is the x-direction blocksize, BY is the
y-direction blocksize, and MB is the max-blocks setting. If BX, BY, and MB are not set, they will be computed
automatically based on the grid size and the task/thread count. More specifically, this option has three modes,
–pes MxN, –pes MxNxBXxBY, and –pes MxNxBXxBYxMB. (default is 4x1)

--acct ACCOUNT specifies a batch account number. This is optional. See Machine Account Settings for more
information.

--grid, -g GRID specifies the grid. This is a string and for the current CICE driver, gx1, gx3, and tx1 are sup-
ported. (default = gx3)

--set, -s SET1,SET2,SET3 specifies the optional settings for the case. The settings for --suite are defined in
the suite file. Multiple settings can be specified by providing a comma deliminated set of values without spaces
between settings. The available settings are in configurations/scripts/options and cice.setup --help
will also list them. These settings files can change either the namelist values or overall case settings (such as the
debug flag).

For CICE, when setting up cases, the --case and --mach must be specified. It’s also recommended that --env
be set explicitly as well. --pes and --grid can be very useful. --acct is not normally used. A more convenient
method is to use the ~/cice_proj file, see Machine Account Settings. The --set option can be extremely handy. The
--set options are documented in Preset Options.

Preset Options

There are several preset options. These are hardwired in configurations/scripts/options and are specfied for a case or
test by the --set command line option. You can see the full list of settings by doing cice.setup --help.

The default CICE namelist and CICE settings are specified in the files configuration/scripts/ice_in and configura-
tion/scripts/cice.settings respectively. When picking settings (options), the set_env.setting and set_nml.setting will
be used to change the defaults. This is done as part of the cice.setup and the modifications are resolved in the
cice.settings and ice_in file placed in the case directory. If multiple options are chosen and then conflict, then the last
option chosen takes precedent. Not all options are compatible with each other.

Some of the options are

debug which turns on the compiler debug flags

buildclean which turns on the option to clean the build before each compile

buildincremental which turns off the option to clean the build before each compile

short, medium, long which change the batch time limit

gx3, gx1, tx1 are associate with grid specific settings

diag1 which turns on diagnostics each timestep

run10day, run1year, etc which specifies a run length

dslenderX1, droundrobin, dspacecurve, etc specify decomposition options

bgcISPOL and bgcNICE specify bgc options

boxadv, boxdyn, and boxrestore are simple box configurations

alt* which turns on various combinations of dynamics and physics options for testing

and there are others. These may change as needed. Use cice.setup --help to see the latest. To add a new
option, just add the appropriate file in configuration/scripts/options. For more information, see Test Options

42 Chapter 3. User Guide

CICE Documentation

Examples

The simplest case is just to setup a default configuration specifying the case name, machine, and environment:

cice.setup --case mycase1 --mach spirit --env intel

To add some optional settings, one might do:

cice.setup --case mycase2 --mach spirit --env intel --set debug,diag1,run1year

Once the cases are created, users are free to modify the cice.settings and ice_in namelist to further modify their setup.

3.2.3 Porting

To port, an env.[machine]_[environment] and Macros.[machine]_[environment] file have to be added to the con-
figuration/scripts/machines/ directory and the configuration/scripts/cice.batch.csh file needs to be modified. In
general, the machine is specified in cice.setup with --mach and the environment (compiler) is specified with
--env.

• cd to configuration/scripts/machines/

• Copy an existing env and a Macros file to new names for your new machine

• Edit your env and Macros files

• cd .. to configuration/scripts/

• Edit the cice.batch.csh script to add a section for your machine with batch settings and job launch settings

• Download and untar a forcing dataset to the location defined by ICE_MACHINE_INPUTDATA in the env file

In fact, this process almost certainly will require some iteration. The easiest way to carry this out is to create
an initial set of changes as described above, then create a case and manually modify the env.[machine] file and
Macros.[machine] file until the case can build and run. Then copy the files from the case directory back to configu-
ration/scripts/machines/ and update the configuration/scripts/cice.batch.csh file, retest, and then add and commit
the updated machine files to the repository.

Cross-compiling

It can happen that the model must be built on a platform and run on another, for example when the run environment is
only available in a batch queue. The program makdep (see Overview), however, is both compiled and run as part of
the build process.

In order to support this, the Makefile uses a variable CFLAGS_HOST that can hold compiler flags specfic to the
build machine for the compilation of makdep. If this feature is needed, add the variable CFLAGS_HOST to the
Macros.[machine]_[environment] file. For example :

CFLAGS_HOST = -xHost

Machine Account Settings

The machine account default is specified by the variable ICE_MACHINE_ACCT in the env.[machine] file. The easiest
way to change a user’s default is to create a file in your home directory called .cice_proj and add your preferred account
name to the first line. There is also an option (--acct) in cice.setup to define the account number. The order of
precedent is cice.setup command line option, .cice_proj setting, and then value in the env.[machine] file.

3.2. Running CICE 43

CICE Documentation

Machine Queue Settings

Supported machines will have a default queue specified by the variable ICE_MACHINE_QUEUE in the env.[machine]
file. This can also be manually changed in the cice.run or cice.test scripts or even better, use the --queue option in
cice.setup.

3.2.4 Forcing data

The input data space is defined on a per machine basis by the ICE_MACHINE_INPUTDATA variable in the
env.[machine] file. That file space is often shared among multiple users, and it can be desirable to consider using
a common file space with group read and write permissions such that a set of users can update the inputdata area as
new datasets are available.

CICE input datasets are stored on an anonymous ftp server. More information about how to download the input data
can be found at https://github.com/CICE-Consortium/CICE/wiki. Test forcing datasets are available for various grids
at the ftp site. These data files are designed only for testing the code, not for use in production runs or as observational
data. Please do not publish results based on these data sets.

3.2.5 Run Directories

The cice.setup script creates a case directory. However, the model is actually built and run under the ICE_OBJDIR
and ICE_RUNDIR directories as defined in the cice.settings file.

Build and run logs will be copied from the run directory into the case logs/ directory when complete.

3.2.6 Local modifications

Scripts and other case settings can be changed manually in the case directory and used. Source code can be modified
in the main sandbox. When changes are made, the code should be rebuilt before being resubmitted. It is always
recommended that users modify the scripts and input settings in the case directory, NOT the run directory. In general,
files in the run directory are overwritten by versions in the case directory when the model is built, submitted, and run.

3.3 Testing CICE

This section documents primarily how to use the CICE scripts to carry out CICE testing. Exactly what to test is
a separate question and depends on the kinds of code changes being made. Prior to merging changes to the CICE
Consortium master, changes will be reviewed and developers will need to provide a summary of the tests carried out.

There is a base suite of tests provided by default with CICE and this may be a good starting point for testing.

The testing scripts support several features

• Ability to test individual (via --test) or multiple tests (via --suite) using an input file to define the suite

• Ability to use test suites defined in the package or test suites defined by the user

• Ability to store test results for regresssion testing (--bgen)

• Ability to compare results to prior baselines to verify bit-for-bit (--bcmp)

• Ability to define where baseline tests are stored (--bdir)

• Ability to compare tests against each other (--diff)

• Ability to set account number (--acct), which is otherwise not set and may result in tests not being submitted

44 Chapter 3. User Guide

https://github.com/CICE-Consortium/CICE/wiki

CICE Documentation

3.3.1 Individual Tests

The CICE scripts support both setup of individual tests as well as test suites. Individual tests are run from the command
line:

./cice.setup --test smoke --mach conrad --env cray --set diag1,debug --testid myid

Tests are just like cases but have some additional scripting around them. Individual tests can be created and manually
modified just like cases. Many of the command line arguments for individual tests are similar to Command Line
Options for --case. For individual tests, the following command line options can be set

--test TESTNAME specifies the test type. This is probably either smoke or restart but see cice.setup –help for the
latest. This is required instead of --case.

--testid ID specifies the testid. This is required for every use of --test and --suite. This is a user defined
string that will allow each test to have a unique case and run directory name. This is also required.

--tdir PATH specifies the test directory. Testcases will be created in this directory. (default is .)

--mach MACHINE (see Command Line Options)

--env ENVIRONMENT1 (see Command Line Options)

--set SET1,SET2,SET3 (see Command Line Options)

--acct ACCOUNT (see Command Line Options)

--grid GRID (see Command Line Options)

--pes MxNxBXxBYxMB (see Command Line Options)

There are several additional options that come with --test that are not available with --case for regression and
comparision testing,

--bdir DIR specifies the top level location of the baseline results. This is used in conjuction with --bgen and
--bcmp. The default is set by ICE_MACHINE_BASELINE in the env.[machine]_[environment] file.

--bgen DIR specifies the name of the directory under [bdir] where test results will be stored. When this flag is
set, it automatically creates that directory and stores results from the test under that directory. If DIR is set to
default, then the scripts will automatically generate a directory name based on the CICE hash and the date
and time. This can be useful for tracking the baselines by hash.

--bcmp DIR specifies the name of the directory under [bdir] that the current tests will be compared to. When this
flag is set, it automatically invokes regression testing and compares results from the current test to those prior
results. If DIR is set to default, then the script will automatically generate the last directory name in the
[bdir] directory. This can be useful for automated regression testing.

--diff LONG_TESTNAME invokes a comparison against another local test. This allows different tests to be
compared to each other for bit-for-bit-ness. This is different than --bcmp. --bcmp is regression testing,
comparing identical test results between different model versions. --diff allows comparison of two different
test cases against each other. For instance, different block sizes, decompositions, and other model features are
expected to produced identical results and --diff supports that testing. The restrictions for use of --diff
are that the test has to already be completed and the testid has to match. The LONG_TESTNAME string should
be of format [test]_[grid]_[pes]_[sets]. The [machine], [env], and [testid] will be added to that string to complete
the testname being compared. (See also Individual Test Examples #5)

The format of the case directory name for a test will always be [machine]_[env]_[test]_[grid]_[pes]_[sets].
[testid] The [sets] will always be sorted alphabetically by the script so --set debug,diag1 and --set
diag1,debug produces the same testname and test with _debug_diag1 in that order.

To build and run a test after invoking the ./cice.setup command, the process is the same as for a case. cd to the test
directory, run the build script, and run the submit script:

3.3. Testing CICE 45

CICE Documentation

cd [test_case]
./cice.build
./cice.submit

The test results will be generated in a local file called test_output. To check those results:

cat test_output

Tests are defined under configuration/scripts/tests/. Some tests currently supported are:

• smoke - Runs the model for default length. The length and options can be set with the --set command
line option. The test passes if the model completes successfully.

• restart - Runs the model for 10 days, writing a restart file at the end of day 5 and again at the end of the
run. Runs the model a second time starting from the day 5 restart and writes a restart at then end of
day 10 of the model run. The test passes if both runs complete and if the restart files at the end of day 10
from both runs are bit-for-bit identical.

• decomp - Runs a set of different decompositions on a given configuration

Please run ./cice.setup --help for the latest information.

Adding a new test

See Test scripts

Individual Test Examples

1) Basic default single test

Define the test, mach, env, and testid.

./cice.setup --test smoke --mach wolf --env gnu --testid t00
cd wolf_gnu_smoke_col_1x1.t00
./cice.build
./cice.submit
./cat test_output

2) Simple test with some options

Add --set

./cice.setup --test smoke --mach wolf --env gnu --set diag1,debug --testid t00
cd wolf_gnu_smoke_col_1x1_debug_diag1.t00
./cice.build
./cice.submit
./cat test_output

3) Single test, generate a baseline dataset

Add --bgen

./cice.setup --test smoke --mach wolf -env gnu --bgen cice.v01 --testid t00 --set
→˓diag1
cd wolf_gnu_smoke_col_1x1_diag1.t00
./cice.build
./cice.submit
./cat test_output

46 Chapter 3. User Guide

CICE Documentation

4) Single test, compare results to a prior baseline

Add --bcmp. For this to work, the prior baseline must exist and have the exact same base testname [ma-
chine]_[env]_[test]_[grid]_[pes]_[sets]

./cice.setup --test smoke --mach wolf -env gnu --bcmp cice.v01 --testid t01 --set
→˓diag1
cd wolf_gnu_smoke_col_1x1_diag1.t01
./cice.build
./cice.submit
./cat test_output

5) Simple test, generate a baseline dataset and compare to a prior baseline

Use --bgen and --bcmp. The prior baseline must exist already.

./cice.setup --test smoke --mach wolf -env gnu --bgen cice.v02 --bcmp cice.v01 --
→˓testid t02 --set diag1
cd wolf_gnu_smoke_col_1x1_diag1.t02
./cice.build
./cice.submit
./cat test_output

6) Simple test, comparison against another test

--diff provides a way to compare tests with each other. For this to work, the tests have to be run in a specific
order and the testids need to match. The test is always compared relative to the current case directory.

To run the first test,

./cice.setup --test smoke --mach wolf -env gnu --testid tx01 --set debug
cd wolf_gnu_smoke_col_1x1_debug.tx01
./cice.build
./cice.submit
./cat test_output

Then to run the second test and compare to the results from the first test

./cice.setup --test smoke --mach wolf -env gnu --testid tx01 --diff smoke_col_1x1_
→˓debug
cd wolf_gnu_smoke_col_1x1.tx01
./cice.build
./cice.submit
./cat test_output

The scripts will add a [machine]_[environment] to the beginning of the diff argument and the same testid to
the end of the diff argument. Then the runs will be compared for bit-for-bit and a result will be produced in
test_output.

Specific Test Cases

In addition to the test implemented in the general testing framework, specific tests have been developed to validate
specific portions of the model. These specific tests are detailed in this section.

3.3. Testing CICE 47

CICE Documentation

box2001

The box2001 test case is configured to perform the rectangular-grid box test detailed in [15]. It is configured to run
a 72-hour simulation with thermodynamics disabled in a rectangular domain (80 x 80 grid cells) with a land boundary
around the entire domain. It includes the following namelist modifications:

• dxrect: 16.e5 cm

• dyrect: 16.e5 cm

• ktherm: -1 (disables thermodynamics)

• coriolis: zero (zero coriolis force)

• ice_data_type : box2001 (special ice concentration initialization)

• atm_data_type : box2001 (special atmospheric and ocean forcing)

Ocean stresses are computed as in [15] where they are circular and centered in the square domain. The ice distribution
is fixed, with a constant 2 meter ice thickness and a concentration field that varies linearly in the x-direction from 0 to
1 and is constant in the y-direction. No islands are included in this configuration. The test is configured to run on a
single processor.

To run the test:

./cice.setup -m <machine> --test smoke -s box2001 --testid <test_id> --grid gbox80 --
→˓acct <queue manager account> -p 1x1

boxslotcyl

The boxslotcyl test case is an advection test configured to perform the slotted cylinder test detailed in [51]. It is
configured to run a 12-day simulation with thermodynamics, ridging and dynamics disabled, in a square domain (80 x
80 grid cells) with a land boundary around the entire domain. It includes the following namelist modifications:

• dxrect: 10.e5 cm (10 km)

• dyrect: 10.e5 cm (10 km)

• ktherm: -1 (disables thermodynamics)

• kridge: -1 (disables ridging)

• kdyn: -1 (disables dynamics)

• ice_data_type : boxslotcyl (special ice concentration and velocity initialization)

Dynamics is disabled because we directly impose a constant ice velocity. The ice velocity field is circular and centered
in the square domain, and such that the slotted cylinder makes a complete revolution with a period 𝑇 = 12 days :

(𝑢, 𝑣) = 𝑢0

(︂
2𝑦 − 𝐿

𝐿
,
−2𝑥+ 𝐿

𝐿

)︂
(3.1)

where 𝐿 is the physical domain length and 𝑢0 = 𝜋𝐿/𝑇 . The initial ice distribution is a slotted cylinder of radius
𝑟 = 3𝐿/10 centered at (𝑥, 𝑦) = (𝐿/2, 3𝐿/4). The slot has a width of 𝐿/6 and a depth of 5𝐿/6 and is placed radially.

The time step is one hour, which with the above speed and mesh size yields a Courant number of 0.86.

The test can run on multiple processors.

To run the test:

48 Chapter 3. User Guide

CICE Documentation

./cice.setup -m <machine> --test smoke -s boxslotcyl --testid <test_id> --grid gbox80
→˓--acct <queue manager account> -p nxm

3.3.2 Test suites

Test suites support running multiple tests specified via an input file. When invoking the test suite option (--suite)
with cice.setup, all tests will be created, built, and submitted automatically under a local directory called test-
suite.[testid] as part of involing the suite.:

./cice.setup --suite base_suite --mach wolf --env gnu --testid myid

Like an individual test, the --testid option must be specified and can be any string. Once the tests are complete,
results can be checked by running the results.csh script in the [suite_name].[testid]:

cd testsuite.[testid]
./results.csh

To report the test results, as is required for Pull Requests to be accepted into the master the CICE Consortium code see
Test Reporting.

If using the --tdir option, that directory must not exist before the script is run. The tdir directory will be created by
the script and it will be populated by all tests as well as scripts that support the test suite:

./cice.setup --suite base_suite --mach wolf --env gnu --testid myid --tdir /scratch/
→˓$user/testsuite.myid

Multiple suites are supported on the command line as comma separated arguments:

./cice.setup --suite base_suite,decomp_suite --mach wolf --env gnu --testid myid

If a user adds --set to the suite, all tests in that suite will add that option:

./cice.setup --suite base_suite,decomp_suite --mach wolf --env gnu --testid myid -s
→˓debug

The option settings defined in the suite have precendent over the command line values if there are conflicts.

The predefined test suites are defined under configuration/scripts/tests and the files defining the suites have a suffix
of .ts in that directory. The format for the test suite file is relatively simple. It is a text file with white space delimited
columns that define a handful of values in a specific order. The first column is the test name, the second the grid, the
third the pe count, the fourth column is the --set options and the fifth column is the --diff argument. The fourth
and fifth columns are optional. Lines that begin with # or are blank are ignored. For example,

#Test Grid PEs Sets Diff
smoke col 1x1 diag1
smoke col 1x1 diag1,run1year smoke_col_1x1_diag1
smoke col 1x1 debug,run1year

restart col 1x1 debug
restart col 1x1 diag1
restart col 1x1 pondcesm
restart col 1x1 pondlvl
restart col 1x1 pondtopo

The argument to --suite defines the test suite (.ts) filename and that argument can contain a path. cice.setup will
look for the filename in the local directory, in configuration/scripts/tests/, or in the path defined by the --suite
option.

3.3. Testing CICE 49

CICE Documentation

Because many of the command line options are specified in the input file, ONLY the following options are valid for
suites,

--suite filename required, input filename with list of suites

--mach MACHINE required

--env ENVIRONMENT1,ENVIRONMENT2 strongly recommended

--set SET1,SET2 optional

--acct ACCOUNT optional

--tdir PATH optional

--testid ID required

--bdir DIR optional, top level baselines directory and defined by default by ICE_MACHINE_BASELINE in
env.[machine]_[environment].

--bgen DIR recommended, test output is copied to this directory under [bdir]

--bcmp DIR recommended, test output are compared to prior results in this directory under [bdir]

--report This is only used by --suite and when set, invokes a script that sends the test results to the results
page when all tests are complete. Please see Test Reporting for more information.

Please see Command Line Options and Individual Tests for more details about how these options are used.

Test Suite Examples

1) Basic test suite

Specify suite, mach, env, testid.

./cice.setup --suite base_suite --mach conrad --env cray --testid v01a
cd testsuite.v01a
wait for runs to complete
./results.csh

2) Basic test suite with user defined test directory

Specify suite, mach, env, testid, tdir.

./cice.setup --suite base_suite --mach conrad --env cray --testid v01a --
→˓tdir /scratch/$user/ts.v01a
cd /scratch/$user/ts.v01a
wait for runs to complete
./results.csh

3) Basic test suite on multiple environments

Specify multiple envs.

./cice.setup --suite base_suite --mach conrad --env cray,pgi,intel,gnu --
→˓testid v01a
cd testsuite.v01a
wait for runs to complete
./results.csh

Each env can be run as a separate invokation of cice.setup but if that approach is taken, it is recom-
mended that different testids be used.

50 Chapter 3. User Guide

CICE Documentation

4) Basic test suite with generate option defined

Add --set

./cice.setup --suite base_suite --mach conrad --env gnu --testid v01b --
→˓set diag1
cd testsuite.v01b
wait for runs to complete

./results.csh

If there are conflicts between the --set options in the suite and on the command line, the suite will
take precedent.

5) Multiple test suites from a single command line

Add comma delimited list of suites

./cice.setup --suite base_suite,decomp_suite --mach conrad --env gnu --
→˓testid v01c
cd testsuite.v01c
wait for runs to complete
./results.csh

If there are redundant tests in multiple suites, the scripts will understand that and only create one
test.

6) Basic test suite, store baselines in user defined name

Add --bgen

./cice.setup --suite base_suite --mach conrad --env cray --testid v01a --
→˓bgen cice.v01a
cd testsuite.v01a
wait for runs to complete
./results.csh

This will store the results in the default [bdir] directory under the subdirectory cice.v01a.

7) Basic test suite, store baselines in user defined top level directory

Add --bgen and --bdir

./cice.setup --suite base_suite --mach conrad --env cray --testid v01a --
→˓bgen cice.v01a --bdir /tmp/user/CICE_BASELINES
cd testsuite.v01a
wait for runs to complete
./results.csh

This will store the results in /tmp/user/CICE_BASELINES/cice.v01a.

8) Basic test suite, store baselines in auto-generated directory

Add --bgen default

./cice.setup --suite base_suite --mach conrad --env cray --testid v01a --
→˓bgen default
cd testsuite.v01a
wait for runs to complete
./results.csh

This will store the results in the default [bdir] directory under a directory name generated by the
script that includes the hash and date.

3.3. Testing CICE 51

CICE Documentation

9) Basic test suite, compare to prior baselines

Add --bcmp

./cice.setup --suite base_suite --mach conrad --env cray --testid v02a --
→˓bcmp cice.v01a
cd testsuite.v02a
wait for runs to complete
./results.csh

This will compare to results saved in the baseline [bdir] directory under the subdirectory cice.v01a.
With the --bcmp option, the results will be tested against prior baselines to verify bit-for-bit, which
is an important step prior to approval of many (not all, see Code Compliance Test (non bit-for-bit
validation)) Pull Requests to incorporate code into the CICE Consortium master code. You can use
other regression options as well. (--bdir and --bgen)

10) Basic test suite, use of default string in regression testing

default is a special argument to --bgen and --bcmp. When used, the scripts will automate
generation of the directories. In the case of --bgen, a unique directory name consisting of
the hash and a date will be created. In the case of --bcmp, the latest directory in [bdir] will
automatically be used. This provides a number of useful features

• the --bgen directory will be named after the hash automatically

• the --bcmp will always find the most recent set of baselines

• the --bcmp reporting will include information about the comparison directory name
which will include hash information

• automation can be invoked easily, especially if --bdir is used to create separate baseline
directories as needed.

Imagine the case where the default settings are used and --bdir is used to create a unique
location. You could easily carry out regular builds automatically via,

set mydate = `date -u "+%Y%m%d"`
git clone https://github.com/myfork/cice cice.$mydate --recursive
cd cice.$mydate
./cice.setup --suite base_suite --mach conrad --env cray,gnu,intel,
→˓pgi --testid $mydate --bcmp default --bgen default --bdir /tmp/
→˓work/user/CICE_BASELINES_MASTER

When this is invoked, a new set of baselines will be generated and compared to the prior results
each time without having to change the arguments.

11) Reusing a test suite

Add the buildincremental option (-s buildincremental). This permits the suite to be
rerun without recompiling the whole code.

./cice.setup --suite base_suite --mach conrad --env intel --testid
→˓v01b --set buildincremental
cd testsuite.v01b
wait for runs to complete
./results.csh
modify code
./suite.submit # or ./suite.run to run the suite interactively
wait for runs to complete
./results.csh

52 Chapter 3. User Guide

CICE Documentation

Only modified files will be recompiled, and the suite will be rerun.

12) Create and test a custom suite

Create your own input text file consisting of 5 columns of data,

• Test

• Grid

• pes

• sets (optional)

• diff test (optional)

such as

> cat mysuite
smoke col 1x1 diag1,debug
restart col 1x1
restart col 1x1 diag1,debug restart_col_1x1
restart col 1x1 mynewoption,diag1,debug

then use that input file, mysuite

./cice.setup --suite mysuite --mach conrad --env cray --testid v01a -
→˓-bgen default
cd testsuite.v01a
wait for runs to complete
./results.csh

You can use all the standard regression testing options (--bgen, --bcmp, --bdir). Make
sure any “diff” testing that goes on is on tests that are created earlier in the test list, as early as
possible. Unfortunately, there is still no absolute guarantee the tests will be completed in the
correct sequence.

3.3.3 Test Reporting

The CICE testing scripts have the capability to post test results to the official CICE Consortium Test-Results wiki page.
You may need write permission on the wiki. If you are interested in using the wiki, please contact the Consortium.
Note that in order for code to be accepted to the CICE master through a Pull Request it is necessary for the developer
to provide proof that their code passes relevant tests. This can be accomplished by posting the full results to the wiki,
or by copying the testing summary to the Pull Request comments.

To post results, once a test suite is complete, run results.csh and report_results.csh from the suite
directory,

./cice.setup --suite base_suite --mach conrad --env cray --testid v01a
cd testsuite.v01a
#wait for runs to complete
./results.csh
./report_results.csh

The reporting can also be automated by adding --report to cice.setup

./cice.setup --suite base_suite --mach conrad --env cray --testid v01a --report

With --report, the suite will create all the tests, build and submit them, wait for all runs to be complete, and run
the results and report_results scripts.

3.3. Testing CICE 53

https://github.com/CICE-Consortium/Test-Results/wiki

CICE Documentation

3.3.4 Code Compliance Test (non bit-for-bit validation)

A core tenet of CICE dycore and CICE innovations is that they must not change the physics and biogeochemistry of
existing model configurations, notwithstanding obsolete model components. Therefore, alterations to existing CICE
Consortium code must only fix demonstrable numerical or scientific inaccuracies or bugs, or be necessary to introduce
new science into the code. New physics and biogeochemistry introduced into the model must not change model
answers when switched off, and in that case CICEcore and CICE must reproduce answers bit-for-bit as compared to
previous simulations with the same namelist configurations. This bit-for-bit requirement is common in Earth System
Modeling projects, but often cannot be achieved in practice because model additions may require changes to existing
code. In this circumstance, bit-for-bit reproducibility using one compiler may not be unachievable on a different
computing platform with a different compiler. Therefore, tools for scientific testing of CICE code changes have been
developed to accompany bit-for-bit testing. These tools exploit the statistical properties of simulated sea ice thickness
to confirm or deny the null hypothesis, which is that new additions to the CICE dycore and CICE have not significantly
altered simulated ice volume using previous model configurations. Here we describe the CICE testing tools, which
are applies to output from five-year gx-1 simulations that use the standard CICE atmospheric forcing. A scientific
justification of the testing is provided in [19]. The following sections follow [36].

Two-Stage Paired Thickness Test

The first quality check aims to confirm the null hypotheses 𝐻0 : 𝜇𝑑=0 at every model grid point, given the mean
thickness difference 𝜇𝑑 between paired CICE simulations ‘𝑎’ and ‘𝑏’ that should be identical. 𝜇𝑑 is approximated
as ℎ̄𝑑 = 1

𝑛

∑︀𝑛
𝑖=1(ℎ𝑎𝑖−ℎ𝑏𝑖) for 𝑛 paired samples of ice thickness ℎ𝑎𝑖 and ℎ𝑏𝑖 in each grid cell of the gx-1 mesh.

Following [50], the associated 𝑡-statistic expects a zero mean, and is therefore

𝑡 =
ℎ̄𝑑

𝜎𝑑/
√
𝑛𝑒𝑓𝑓

(3.2)

given variance 𝜎 2
𝑑 = 1

𝑛−1

∑︀𝑛
𝑖=1(ℎ𝑑𝑖 − ℎ̄𝑑)2 of ℎ𝑑𝑖=(ℎ𝑎𝑖−ℎ𝑏𝑖) and effective sample size

𝑛𝑒𝑓𝑓=𝑛
(1 − 𝑟1)

(1 + 𝑟1)
(3.3)

for lag-1 autocorrelation:

𝑟1 =

𝑛−1∑︀
𝑖=1

[︀
(ℎ𝑑𝑖 − ℎ̄𝑑1:𝑛−1)(ℎ𝑑𝑖+1 − ℎ̄𝑑2:𝑛)

]︀
√︃

𝑛−1∑︀
𝑖=1

(ℎ𝑑𝑖 − ℎ̄𝑑1:𝑛−1)2
𝑛∑︀

𝑖=2

(ℎ𝑑𝑖 − ℎ̄𝑑2:𝑛)2

. (3.4)

Here, ℎ̄𝑑1:𝑛−1 is the mean of all samples except the last, and ℎ̄𝑑2:𝑛 is the mean of samples except the first, and both
differ from the overall mean ℎ̄𝑑 in equations ((3.2)). That is:

ℎ̄𝑑1:𝑛−1 =
1

𝑛−1

𝑛−1∑︁
𝑖=1

ℎ𝑑𝑖, ℎ̄𝑑2:𝑛 =
1

𝑛−1

𝑛∑︁
𝑖=2

ℎ𝑑𝑖, ℎ̄𝑑 =
1

𝑛

𝑛∑︁
𝑖=1

ℎ𝑑𝑖 (3.5)

Following [52], the effective sample size is limited to 𝑛𝑒𝑓𝑓 ∈ [2, 𝑛]. This definition of 𝑛𝑒𝑓𝑓 assumes ice thickness
evolves as an AR(1) process [46], which can be justified by analyzing the spectral density of daily samples of ice
thickness from 5-year records in CICE Consortium member models [19]. The AR(1) approximation is inadmissible
for paired velocity samples, because ice drift possesses periodicity from inertia and tides [14][26][37]. Conversely,
tests of paired ice concentration samples may be less sensitive to ice drift than ice thickness. In short, ice thickness is
the best variable for CICE Consortium quality control (QC), and for the test of the mean in particular.

Care is required in analyzing mean sea ice thickness changes using ((3.2)) with 𝑁=𝑛𝑒𝑓𝑓−1 degrees of freedom. [52]
demonstrate that the 𝑡-test in ((3.2)) becomes conservative when 𝑛𝑒𝑓𝑓 < 30, meaning that 𝐻0 may be erroneously

54 Chapter 3. User Guide

CICE Documentation

confirmed for highly auto-correlated series. Strong autocorrelation frequently occurs in modeled sea ice thickness,
and 𝑟1 > 0.99 is possible in parts of the gx-1 domain for the five-year QC simulations. In the event that 𝐻0 is
confirmed but 2 ≤ 𝑛𝑒𝑓𝑓 < 30, the 𝑡-test progresses to the ‘Table Lookup Test’ of [52], to check that the first-stage test
using ((3.2)) was not conservative. The Table Lookup Test chooses critical 𝑡 values |𝑡| < 𝑡𝑐𝑟𝑖𝑡(1−𝛼/2, 𝑁) at the 𝛼
significance level based on 𝑟1. It uses the conventional 𝑡 = ℎ̄𝑑

√
𝑛/𝜎𝑑 statistic with degrees of freedom 𝑁=𝑛−1, but

with 𝑡𝑐𝑟𝑖𝑡 values generated using the Monte Carlo technique described in [52], and summarized in Two-sided t_{crit}
values for 5-year QC simulations (𝑁 = 1824) at the two-sided 80% confidence interval (𝛼 = 0.2). We choose this
interval to limit Type II errors, whereby a QC test erroneously confirms 𝐻0.

Table Two-sided t_{crit} values shows the summary of two-sided 𝑡𝑐𝑟𝑖𝑡 values for the Table Lookup Test of [52] at the
80% confidence interval generated for 𝑁 = 1824 degrees of freedom and lag-1 autocorrelation 𝑟1.

Table 4: Two-sided 𝑡𝑐𝑟𝑖𝑡 values
𝑟1 -0.05 0.0 0.2 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.97 0.99
𝑡𝑐𝑟𝑖𝑡 1.32 1.32 1.54 2.02 2.29 2.46 3.17 3.99 5.59 8.44 10.85 20.44

Quadratic Skill Compliance Test

In addition to the two-stage test of mean sea ice thickness, we also check that paired simulations are highly correlated
and have similar variance using a skill metric adapted from [43]. A general skill score applicable to Taylor diagrams
takes the form

𝑆𝑚 =
4(1 +𝑅)𝑚

(𝜎̂𝑓 + 1/𝜎̂𝑓)2(1 +𝑅0)𝑚
(3.6)

where 𝑚 = 1 for variance-weighted skill, and 𝑚 = 4 for correlation-weighted performance, as given in equations (4)
and (5) of [43], respectively. We choose 𝑚 = 2 to balance the importance of variance and correlation reproduction
in QC tests, where 𝜎̂𝑓 = 𝜎𝑏/𝜎𝑎 is the ratio of the standard deviations of simulations ‘𝑏’ and ‘𝑎’, respectively, and
simulation ‘𝑎’ is the control. 𝑅0 is the maximum possible correlation between two series for correlation coefficient 𝑅
calculated between respective thickness pairs ℎ𝑎 and ℎ𝑏. Bit-for-bit reproduction of previous CICE simulations means
that perfect correlation is possible, and so 𝑅0 = 1, giving the quadratic skill of run ‘𝑏’ relative to run ‘𝑎’:

𝑆 =

[︂
(1 +𝑅)(𝜎𝑎𝜎𝑏)

(𝜎𝑎2 + 𝜎𝑏2)

]︂2
(3.7)

This provides a skill score between 0 and 1. We apply this 𝑆 metric separately to the northern and southern hemispheres
of the gx-1 grid by area-weighting the daily thickness samples discussed in the Two-Stage Paired Thickness QC Test.
The hemispheric mean thickness over a 5-year simulation for run ‘𝑎’ is:

ℎ̄𝑎 =
1

𝑛

𝑛∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑊𝑗 ℎ𝑎𝑖,𝑗 (3.8)

at time sample 𝑖 and grid point index 𝑗, with an equivalent equation for simulation ‘𝑏’. 𝑛 is the total number of time
samples (nominally 𝑛 = 1825) and 𝐽 is the total number of grid points on the gx-1 grid. 𝑊𝑗 is the weight attributed
to each grid point according to its area 𝐴𝑗 , given as

𝑊𝑗 =
𝐴𝑗∑︀𝐽
𝑗=1𝐴𝑗

(3.9)

for all grid points within each hemisphere with one or more non-zero thicknesses in one or both sets of samples ℎ𝑎𝑖,𝑗

or ℎ𝑏𝑖,𝑗 . The area-weighted variance for simulation ‘𝑎’ is:

𝜎 2
𝑎 =

𝐽

(𝑛𝐽 − 1)

𝑛∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑊𝑗 (ℎ𝑎𝑖,𝑗
− ℎ̄𝑎)2 (3.10)

3.3. Testing CICE 55

CICE Documentation

where 𝐽 is the number of non-zero 𝑊𝑗 weights, and 𝜎𝑏 is calculated equivalently for run ‘𝑏’. In this context, 𝑅
becomes a weighted correlation coefficient, calculated as

𝑅 =
cov(ℎ𝑎, ℎ𝑏)

𝜎𝑎 𝜎𝑏
(3.11)

given the weighted covariance

cov(ℎ𝑎, ℎ𝑏) =
𝐽

(𝑛𝐽 − 1)

𝑛∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑊𝑗 (ℎ𝑎𝑖,𝑗
− ℎ̄𝑎)(ℎ𝑏𝑖,𝑗 − ℎ̄𝑏). (3.12)

Using equations ((3.7)) to ((3.12)), the skill score 𝑆 is calculated separately for the northern and southern hemispheres,
and must exceed a critical value nominally set to 𝑆𝑐𝑟𝑖𝑡 = 0.99 to pass the test. Practical illustrations of this test and
the Two-Stage test described in the previous section are provided in [19].

Code Compliance Testing Procedure

The CICE code compliance test is performed by running a python script (configurations/scripts/tests/QC/cice.t-
test.py). In order to run the script, the following requirements must be met:

• Python v2.7 or later

• netcdf Python package

• numpy Python package

• matplotlib Python package (optional)

• basemap Python package (optional)

In order to generate the files necessary for the compliance test, test cases should be created with the qc option (i.e.,
--set qc) when running cice.setup. This option results in daily, non-averaged history files being written for a 5
year simulation.

To install the necessary Python packages, the pip Python utility can be used.

pip install --user netCDF4
pip install --user numpy
pip install --user matplotlib

To run the compliance test, setup a baseline run with the original baseline model and then a perturbation run based on
recent model changes. Use --sets qc in both runs in addition to other settings needed. Then use the QC script to
compare history output,

cp configuration/scripts/tests/QC/cice.t-test.py .
./cice.t-test.py /path/to/baseline/history /path/to/test/history

The script will produce output similar to:

INFO:__main__:Number of files: 1825
INFO:__main__:Two-Stage Test Passed
INFO:__main__:Quadratic Skill Test Passed for Northern Hemisphere
INFO:__main__:Quadratic Skill Test Passed for Southern Hemisphere
INFO:__main__:
INFO:__main__:Quality Control Test PASSED

Additionally, the exit code from the test (echo $?) will be 0 if the test passed, and 1 if the test failed.

56 Chapter 3. User Guide

CICE Documentation

Implementation notes: 1) Provide a pass/fail on each of the confidence intervals, 2) Facilitate output of a bitmap for
each test so that locations of failures can be identified.

The cice.t-test.py requires memory to store multiple two-dimensional fields spanning 1825 unique timesteps, a total
of several GB. An appropriate resource is needed to run the script. If the script runs out of memory on an interactive
resource, try logging into a batch resource or finding a large memory node.

End-To-End Testing Procedure

Below is an example of a step-by-step procedure for testing a code change that might result in non bit-for-bit results.
First, run a regression test,

Run a full regression test to verify bit-for-bit

Create a baseline dataset (only necessary if no baseline exists on the system)
git clone the baseline code

./cice.setup -m onyx -e intel --suite base_suite --testid base0 -bgen cice.my.baseline

Run the test suite with the new code
git clone the new code

./cice.setup -m onyx -e intel --suite base_suite --testid test0 --bcmp cice.my.
→˓baseline

Check the results

cd testsuite.test0
./results.csh

If the regression comparisons fail, then you may want to run the QC test,

Run the QC test

Create a QC baseline
From the baseline sandbox

./cice.setup -m onyx -e intel --test smoke -g gx1 -p 44x1 --testid qc_base -s qc,
→˓medium
cd onyx_intel_smoke_gx1_44x1_medium_qc.qc_base
./cice.build
./cice.submit

Create the t-test testing data
From the update sandbox

./cice.setup -m onyx -e intel --test smoke -g gx1 -p 44x1 -testid qc_test -s qc,medium
cd onyx_intel_smoke_gx1_44x1_medium_qc.qc_test
./cice.build
./cice.submit

Wait for runs to finish
Perform the QC test

cp configuration/scripts/tests/QC/cice.t-test.py
./cice.t-test.py /p/work/turner/CICE_RUNS/onyx_intel_smoke_gx1_44x1_medium_qc.qc_base
→˓\

(continues on next page)

3.3. Testing CICE 57

CICE Documentation

(continued from previous page)

/p/work/turner/CICE_RUNS/onyx_intel_smoke_gx1_44x1_medium_qc.qc_test

Example output:
INFO:__main__:Number of files: 1825
INFO:__main__:Two-Stage Test Passed
INFO:__main__:Quadratic Skill Test Passed for Northern Hemisphere
INFO:__main__:Quadratic Skill Test Passed for Southern Hemisphere
INFO:__main__:
INFO:__main__:Quality Control Test PASSED

3.3.5 Test Plotting

The CICE scripts include a script (timeseries.csh) that will generate timeseries figures from a diagnostic output
file. When running a test suite, the timeseries.csh script is automatically copied to the suite directory. If the
timeseries.csh script is to be used on a test or case that is not a part of a test suite, users will need to run
the timeseries.csh script from the tests directory (./configuration/scripts/tests/timeseries.
csh ./path/), or copy it to a local directory. When used with the test suites or given a path, it needs to be run in
the directory above the particular case being plotted, but it can also be run on isolated log files in the same directory,
without a path.

For example:

Run the test suite.

$./cice.setup -m conrad -e intel --suite base_suite --testid t00

Wait for suite to finish then go to the directory.

$ cd testsuite.t00

Run the timeseries script on the desired case.

$./timeseries.csh /p/work1/turner/CICE_RUNS/conrad_intel_smoke_col_1x1_diag1_
→˓run1year.t00/

The output figures are placed in the directory where the timeseries.csh script is run.

To generate plots for all of the cases within a suite with a testid, create and run a script such as

#!/bin/csh
foreach dir (`ls -1 | grep testid`)

echo $dir
timeseries.csh $dir

end

This plotting script can be used to plot the following variables:

• total ice area (𝑘𝑚2)

• total ice extent (𝑘𝑚2)

• total ice volume (𝑚3)

• total snow volume (𝑚3)

• RMS ice speed (𝑚/𝑠)

58 Chapter 3. User Guide

CICE Documentation

3.4 Case Settings

There are two important files that define the case, cice.settings and ice_in. cice.settings is a list of env variables that
define many values used to setup, build and run the case. ice_in is the input namelist file for CICE. Variables in both
files are described below.

3.4.1 Table of CICE Settings

The cice.settings file is reasonably well self documented. Several of the variables defined in the file are not used in
CICE. They exist to support the CICE model.

Table 5: CICE settings
variable options/format description recommended value
ICE_CASENAME string case name set by cice.setup
ICE_SANDBOX string sandbox directory set by cice.setup
ICE_MACHINE string machine name set by cice.setup
ICE_COMPILER string environment name set by cice.setup
ICE_MACHCOMP string machine_environment name set by cice.setup
ICE_SCRIPTS string scripts directory set by cice.setup
ICE_CASEDIR string case directory set by cice.setup
ICE_RUNDIR string run directory set by cice.setup
ICE_OBJDIR string compile directory ${ICE_RUNDIR}/compile
ICE_RSTDIR string unused ${ICE_RUNDIR}/restart
ICE_HSTDIR string unused ${ICE_RUNDIR}/history
ICE_LOGDIR string log directory ${ICE_CASEDIR}/logs
ICE_DRVOPT string unused cice
ICE_IOTYPE string I/O format set by cice.setup

netcdf serial netCDF
pio parallel netCDF
none netCDF library is not available

ICE_CLEANBUILD true, false automatically clean before building true
ICE_QUIETMODE true, false reduce build output to the screen false
ICE_GRID string (see below) grid set by cice.setup

gx3 3-deg displace-pole (Greenland)
global grid

gx1 1-deg displace-pole (Greenland)
global grid

tx1 1-deg tripole global grid
gbox80 80x80 box
gbox128 128x128 box

ICE_NTASKS integer number of tasks, must be set to 1 set by cice.setup
ICE_NTHRDS integer number of threads per task, must be

set to 1
set by cice.setup

ICE_TEST string test setting if using a test set by cice.setup
ICE_TESTNAME string test name if using a test set by cice.setup
ICE_BASELINE string baseline directory name, associated

with cice.setup -bdir
set by cice.setup

ICE_BASEGEN string baseline directory name for regres-
sion generation, associated with
cice.setup -bgen

set by cice.setup

Continued on next page

3.4. Case Settings 59

CICE Documentation

Table 5 – continued from previous page
variable options/format description recommended value
ICE_BASECOM string baseline directory name for regres-

sion comparison, associated with
cice.setup -bcmp

set by cice.setup

ICE_BFBCOMP string location of case for comparison, as-
sociated with cice.setup -td

set by cice.setup

ICE_SPVAL string special value for cice.settings
strings

set by cice.setup

ICE_RUNLENGTH integer (see below) batch run length default set by cice.setup
0 15 minutes (default)
1 59 minutes
2 2 hours
other 2 < 𝑁 < 8 N hours
8 or larger 8 hours

ICE_ACCOUNT string batch account number set by cice.setup, .cice_proj
or by default

ICE_QUEUE string batch queue name set by cice.setup or by de-
fault

ICE_THREADED true, false force threading in compile,
will always compile threaded if
ICE_NTHRDS > 1

false

ICE_BLDDEBUG true, false turn on compile debug flags false

3.4.2 Table of namelist options

Table 6: Namelist options
also
in
Icepack

variable options/format description recommended
value

setup_nml
Time, Diagnostics

* days_per_year 360 or 365 number of days in a model year 365
* use_leap_years true/false if true, include leap days
* year_init yyyy the initial year, if not using restart
* istep0 integer initial time step number 0
* dt seconds thermodynamics time step length

3600.

* npt integer total number of time steps to take
* ndtd integer number of dynam-

ics/advection/ridging/steps per thermo
timestep

1

Initialization/Restarting
runtype initial start from ice_ic

continue restart using pointer_file
* ice_ic default latitude and sst dependent default

none no ice
path/file restart file name

Continued on next page

60 Chapter 3. User Guide

CICE Documentation

Table 6 – continued from previous page
also
in
Icepack

variable options/format description recommended
value

restart true/false initialize using restart file .true.
use_restart_timetrue/false set initial date using restart file .true.
restart_format nc read/write restart files (use with PIO)

bin read/write binary restart files
lcdf64 true/false if true, use 64-bit format
numin integer minimum internal IO unit number 11
numax integer maximum internal IO unit number 99

* restart_dir path/ path to restart directory
restart_ext true/false read/write halo cells in restart files
restart_file filename prefix output file for restart dump ‘iced’
pointer_file pointer filename contains restart filename

* dumpfreq y write restart every dumpfreq_n years y
m write restart every dumpfreq_n

months
d write restart every dumpfreq_n days
h write restart every dumpfreq_n hours
1 write restart every dumpfreq_n time

step
dumpfreq_n integer frequency restart data is written 1

* dump_last true/false if true, write restart on last time step of
simulation
Model Output

bfbflag off/lsum4/lsum8/lsum16/ddpdd/reprosumglobal sum methods off
* diagfreq integer frequency of diagnostic output in dt 24

e.g., 10 once every 10 time steps
* diag_type stdout write diagnostic output to stdout

file write diagnostic output to file
diag_file filename diagnostic output file (script may reset)
print_global true/false print diagnostic data, global sums .false.
print_points true/false print diagnostic data for two grid points .false.
latpnt real latitude of (2) diagnostic points
lonpnt real longitude of (2) diagnostic points
dbug true/false if true, write extra diagnostics .false.
histfreq string array defines output frequencies

y write history every histfreq_n years
m write history every histfreq_n

months
d write history every histfreq_n days
h write history every histfreq_n hours
1 write history every histfreq_n time

step
x unused frequency stream (not written)

histfreq_n integer array frequency history output is written
0 do not write to history

hist_avg true write time-averaged data .true.
false write snapshots of data

history_dir path/ path to history output directory
Continued on next page

3.4. Case Settings 61

CICE Documentation

Table 6 – continued from previous page
also
in
Icepack

variable options/format description recommended
value

history_file filename prefix output file for history ‘iceh’
write_ic true/false write initial condition
incond_dir path/ path to initial condition directory
incond_file filename prefix output file for initial condition ‘iceh’
runid string label for run (currently CESM only)

grid_nml
Grid

grid_format nc read grid and kmt files ‘bin’
bin read direct access, binary file

grid_type rectangular defined in rectgrid
displaced_pole read from file in popgrid
tripole read from file in popgrid
regional read from file in popgrid

grid_file filename name of grid file to be read ‘grid’
bathymetry_filefilename name of bathymetry file to be read ‘grid’
use_bathymetry true/false use read in bathymetry file for basalstress

option
kmt_file filename name of land mask file to be read ‘kmt’
gridcpl_file filename input file for coupling grid info

* kcatbound 0 original category boundary formula 0
1 new formula with round numbers
2 WMO standard categories
-1 one category

dxrect real x-direction grid spacing (cm) for rectan-
gular grid

dyrect real y-direction grid spacing (cm) for rectan-
gular grid

ncat integer number of ice thickness categories 5
nilyr integer number of vertical layers in ice 7
nslyr integer number of vertical layers in snow 1
nblyr integer number of zbgc layers 7

domain_nml
Domain

nprocs integer number of processors to use
nx_global integer global grid size in x direction
ny_global integer global grid size in y direction
block_size_x integer block size in x direction
block_size_y integer block size in y direction
max_blocks integer maximum number of blocks per MPI task

for memory allocation
processor_shapeslenderX1 1 processor in the y direction (tall, thin)

slenderX2 2 processors in the y direction (thin)
square-ice more processors in x than y, ∼ square
square-pop more processors in y than x, ∼ square

distribution_typecartesian distribute blocks in 2D Cartesian array
Continued on next page

62 Chapter 3. User Guide

CICE Documentation

Table 6 – continued from previous page
also
in
Icepack

variable options/format description recommended
value

roundrobin 1 block per proc until blocks are used
sectcart blocks distributed to domain quadrants
sectrobin several blocks per proc until used
rake redistribute blocks among neighbors
spacecurve distribute blocks via space-filling curves
spiralcenter distribute blocks via roundrobin from

center of grid outward in a spiral
wghtfile distribute blocks based on weights speci-

fied in distribution_wght_file
distribution_wghtblock full block size sets work_per_block

latitude latitude/ocean sets work_per_block
distribution_wght_filefilename distribution weight file when distribu-

tion_type is wghtfile
ew_boundary_typecyclic periodic boundary conditions in x-

direction
open Dirichlet boundary conditions in x

ns_boundary_typecyclic periodic boundary conditions in y-
direction

open Dirichlet boundary conditions in y
tripole U-fold tripole boundary conditions in y
tripoleT T-fold tripole boundary conditions in y

maskhalo_dyn true/false mask unused halo cells for dynamics
maskhalo_remap true/false mask unused halo cells for transport
maskhalo_bound true/false mask unused halo cells for boundary up-

dates

tracer_nml
Tracers

n_aero integer number of aerosol tracers 1
n_zaero 0,1,2,3,4,5,6 number of z aerosol tracers in use 0
n_algae 0,1,2,3 number of algal tracers 0
n_doc 0,1,2,3 number of dissolved organic carbon 0
n_dic 0,1 number of dissolved inorganic carbon 0
n_don 0,1 number of dissolved organize nitrogen 0
n_fed 0,1,2 number of dissolved iron tracers 0
n_fep 0,1,2 number of particulate iron tracers 0

* tr_iage true/false ice age
restart_age true/false restart tracer values from file

* tr_FY true/false first-year ice area
restart_FY true/false restart tracer values from file

* tr_lvl true/false level ice area and volume
restart_lvl true/false restart tracer values from file

* tr_pond_cesm true/false CESM melt ponds
restart_pond_cesmtrue/false restart tracer values from file

* tr_pond_topo true/false topo melt ponds
restart_pond_topotrue/false restart tracer values from file

* tr_pond_lvl true/false level-ice melt ponds
restart_pond_lvltrue/false restart tracer values from file

Continued on next page

3.4. Case Settings 63

CICE Documentation

Table 6 – continued from previous page
also
in
Icepack

variable options/format description recommended
value

* tr_aero true/false aerosols
restart_aero true/false restart tracer values from file

thermo_nml
Thermodynamics

* kitd 0 delta function ITD approximation 1
1 linear remapping ITD approximation

* ktherm 0 zero-layer thermodynamic model
1 Bitz and Lipscomb thermodynamic

model
2 mushy-layer thermodynamic model
-1 thermodynamics disabled

* conduct Maykut71 conductivity [30]
bubbly conductivity [35]

* a_rapid_mode real brine channel diameter 0.5x10 −3 m
* Rac_rapid_mode real critical Rayleigh number 10
* aspect_rapid_modereal brine convection aspect ratio 1
* dSdt_slow_mode real drainage strength parameter -1.5x10 −7 m/s/K
* phi_c_slow_mode0 < 𝜑𝑐 < 1 critical liquid fraction 0.05
* phi_i_mushy 0 < 𝜑𝑖 < 1 solid fraction at lower boundary 0.85

dynamics_nml
Dynamics

kdyn -1 dynamics OFF 1
0 dynamics OFF
1 EVP dynamics
2 EAP dynamics
1 dynamics ON

revised_evp true/false use revised EVP formulation
ndte integer number of EVP subcycles 240
advection remap linear remapping advection ‘remap’

upwind donor cell advection
* kstrength 0 ice strength formulation [11] 1

1 ice strength formulation [39]
* krdg_partic 0 old ridging participation function 1

1 new ridging participation function
* krdg_redist 0 old ridging redistribution function 1

1 new ridging redistribution function
* mu_rdg real e-folding scale of ridged ice
* Cf real ratio of ridging work to PE change in

ridging 17.

coriolis latitude Coriolis variable by latitude ‘latitude’
constant Constant coriolis value = 1.46e-4
zero Zero coriolis

kridge 1 Ridging Enabled 1
-1 Ridging Disabled

Continued on next page

64 Chapter 3. User Guide

CICE Documentation

Table 6 – continued from previous page
also
in
Icepack

variable options/format description recommended
value

ktransport 1 Transport Enabled 1
-1 Transport Disabled

basalstress true/false use basal stress parameterization for
landfast ice

k1 real 1st free parameter for landfast parameter-
ization 8.

e_ratio real EVP ellipse aspect ratio 2.0
Ktens real Tensile strength factor (see [2]) 0.0

shortwave_nml
Shortwave

* shortwave ccsm3 NCAR CCSM3 distribution method
dEdd Delta-Eddington method

* albedo_type ccsm3 NCAR CCSM3 albedos ‘default’
constant four constant albedos

* albicev 0 < 𝛼 < 1 visible ice albedo for thicker ice
* albicei 0 < 𝛼 < 1 near infrared ice albedo for thicker ice
* albsnowv 0 < 𝛼 < 1 visible, cold snow albedo
* albsnowi 0 < 𝛼 < 1 near infrared, cold snow albedo
* ahmax real albedo is constant above this thickness 0.3 m
* R_ice real tuning parameter for sea ice albedo from

Delta-Eddington shortwave
* R_pnd real . . . for ponded sea ice albedo . . .
* R_snw real . . . for snow (broadband albedo) . . .
* dT_mlt real ∆ temperature per ∆ snow grain radius
* rsnw_mlt real maximum melting snow grain radius
* kalg real absorption coefficient for algae

ponds_nml
Melt Ponds

* hp1 real critical ice lid thickness for topo ponds 0.01 m
* hs0 real snow depth of transition to bare sea ice 0.03 m
* hs1 real snow depth of transition to pond ice 0.03 m
* dpscale real time scale for flushing in permeable ice 1 × 10−3

* frzpnd hlid Stefan refreezing with pond ice thickness ‘hlid’
cesm CESM refreezing empirical formula

* rfracmin 0 ≤ 𝑟𝑚𝑖𝑛 ≤ 1 minimum melt water added to ponds 0.15
* rfracmax 0 ≤ 𝑟𝑚𝑎𝑥 ≤ 1 maximum melt water added to ponds 1.0
* pndaspect real aspect ratio of pond changes (depth:area) 0.8

forcing_nml
Forcing

* formdrag true/false calculate form drag
* atmbndy default stability-based boundary layer ‘default’

constant bulk transfer coefficients
* fyear_init yyyy first year of atmospheric forcing data

Continued on next page

3.4. Case Settings 65

CICE Documentation

Table 6 – continued from previous page
also
in
Icepack

variable options/format description recommended
value

* ycycle integer number of years in forcing data cycle
* calc_strair true calculate wind stress and speed

false read wind stress and speed from files
* highfreq true/false high-frequency atmo coupling
* natmiter integer number of atmo boundary layer iterations
* calc_Tsfc true/false calculate surface temperature .true.
* default_season winter Sets initial values of forcing and is over-

written if forcing is read in.
* precip_units mks liquid precipitation data units

mm_per_month
mm_per_sec (same as MKS units)
m_per_sec

* tfrz_option minus1p8 constant ocean freezing temperature
(−1.8∘𝐶)

linear_salt linear function of salinity (ktherm=1)
mushy_layer matches mushy-layer thermo (ktherm=2)

* ustar_min real minimum value of ocean friction velocity 0.0005 m/s
* emissivity real emissivity of snow and ice 0.95
* fbot_xfer_type constant constant ocean heat transfer coefficient

Cdn_ocn variable ocean heat transfer coefficient
* update_ocn_f true include frazil water/salt fluxes in ocn

fluxes
false do not include (when coupling with POP)

* l_mpond_fresh true retain (topo) pond water until ponds drain
false release (topo) pond water immediately to

ocean
* oceanmixed_ice true/false active ocean mixed layer calculation .true. (if un-

coupled)
* restore_ocn true/false restore sst to data
* trestore integer sst restoring time scale (days)

restore_ice true/false restore ice state along lateral boundaries
* atm_data_type default constant values defined in the code

LYq AOMIP/Large-Yeager forcing data
monthly monthly forcing data
ncar NCAR bulk forcing data
box2001 forcing data for [15] box problem
oned column forcing data
hycom HYCOM atm forcing data in netcdf for-

mat
* ocn_data_type default constant values defined in the code

clim climatological data
ncar POP ocean forcing data
hycom HYCOM ocean forcing data in netcdf

format
Constant initial
forcing

bgc_data_type default constant values defined in the code
clim climatological data
ncar POP ocean forcing data

Continued on next page

66 Chapter 3. User Guide

CICE Documentation

Table 6 – continued from previous page
also
in
Icepack

variable options/format description recommended
value

hycom HYCOM ocean forcing data in netcdf
format

Constant initial
forcing

fe_data_type default default forcing value for iron
clim iron forcing from ocean climatology

ice_data_type string ice initialization for special tests default
default no special initialization
box2001 initialize ice concentration for box2001

test ([15])
boxslotcyl initialize ice concentration and velocity

for boxslotcyl test ([51])
atm_data_formatnc read atmo forcing files

bin read direct access, binary files
ocn_data_formatnc read ocean forcing files

bin read direct access, binary files
* oceanmixed_filefilename data file containing ocean forcing data

atm_data_dir path/ path to atmospheric forcing data direc-
tory

ocn_data_dir path/ path to oceanic forcing data directory
bgc_data_dir path/ path to oceanic forcing data directory

zbgc_nml
Biogeochemistry More informa-

tion about the
BGC tuning can
be found in the
Icepack Documen-
tation.

* tr_brine true/false brine height tracer
* tr_zaero true/false vertical aerosol tracers
* modal_aero true/false modal aersols

restore_bgc true/false restore bgc to data
solve_zsal true/false update salinity tracer profile

* skl_bgc true/false biogeochemistry
bgc_flux_type Jin2006 ice–ocean flux velocity of [21]

constant constant ice–ocean flux velocity
restart_bgc true/false restart tracer values from file
tr_bgc_C_sk true/false algal carbon tracer
tr_bgc_chl_sk true/false algal chlorophyll tracer
tr_bgc_Am_sk true/false ammonium tracer
tr_bgc_Sil_sk true/false silicate tracer
tr_bgc_DMSPp_sktrue/false particulate DMSP tracer
tr_bgc_DMSPd_sktrue/false dissolved DMSP tracer
tr_bgc_DMS_sk true/false DMS tracer
phi_snow real snow porosity for brine height tracer

icefields_nml
History Fields

Continued on next page

3.4. Case Settings 67

https://cice-consortium-icepack.readthedocs.io/en/master/science_guide/index.html
https://cice-consortium-icepack.readthedocs.io/en/master/science_guide/index.html

CICE Documentation

Table 6 – continued from previous page
also
in
Icepack

variable options/format description recommended
value

f_<var> string frequency units for writing <var> to
history

y write history every histfreq_n years
m write history every histfreq_n

months
d write history every histfreq_n days
h write history every histfreq_n hours
1 write history every time step
x do not write <var> to history
md e.g., write both monthly and daily files

f_<var>_ai grid cell average of <var> (×𝑎𝑖)

3.5 Troubleshooting

Check the FAQ: https://github.com/CICE-Consortium/CICE/wiki

3.5.1 Initial setup

If there are problems, you can manually edit the env, Macros, and cice.run files in the case directory until things are
working properly. Then you can copy the env and Macros files back to configuration/scripts/machines.

Changes made directly in the run directory, e.g. to the namelist file, will be overwritten if scripts in the case directory
are run again later.

If changes are needed in the cice.run.setup.csh script, it must be manually modified.

Ensure that the block size block_size_x, block_size_y, and max_blocks is compatible with the proces-
sor_shape and other domain options in ice_in

If using the rake or space-filling curve algorithms for block distribution (distribution_type in ice_in) the code will abort
if max_blocks is not large enough. The correct value is provided in the diagnostic output. Also, the spacecurve
setting can only be used with certain block sizes that results in number of blocks in the x and y directions being only
multiples of 2, 3, or 5.

If starting from a restart file, ensure that kcatbound is the same as that used to create the file (kcatbound = 0 for the
files included in this code distribution). Other configuration parameters, such as NICELYR, must also be consistent
between runs.

For stand-alone runs, check that -Dcoupled is not set in the Macros.* file.

For coupled runs, check that -Dcoupled and other coupled-model-specific (e.g., CESM, popcice or hadgem) prepro-
cessing options are set in the Macros.* file.

Set ICE_CLEANBUILD to true to clean before rebuilding.

3.5.2 Restarts

Manual restart tests require the path to the restart file be included in ice_in in the namelist file.

Ensure that kcatbound is the same as that used to create the restart file. Other configuration parameters, such as
nilyr, must also be consistent between runs.

68 Chapter 3. User Guide

https://github.com/CICE-Consortium/CICE/wiki

CICE Documentation

CICE v5 and later use a model configuration that makes restarting from older simulations difficult. In particular, the
number of ice categories, the category boundaries, and the number of vertical layers within each category must be the
same in the restart file and in the run restarting from that file. Moreover, significant differences in the physics, such
as the salinity profile, may cause the code to fail upon restart. Therefore, new model configurations may need to be
started using runtype = ‘initial’. Binary restart files that were provided with CICE v4.1 were made using the BL99
thermodynamics with 4 layers and 5 thickness categories (kcatbound = 0) and therefore can not be used for the default
CICE v5 and later configuration (7 layers). In addition, CICE’s default restart file format is now instead of binary.

Restarting a run using runtype = ‘continue’ requires restart data for all tracers used in the new run. If tracer restart data
is not available, use runtype = ‘initial’, setting ice_ic to the name of the core restart file and setting to true the namelist
restart flags for each tracer that is available. The unavailable tracers will be initialized to their default settings.

On tripole grids, use restart_ext = true when using either binary or regular (non-PIO) netcdf.

Provided that the same number of ice layers (default: 4) will be used for the new runs, it is possible to convert v4.1
restart files to the new file structure and then to format. If the same physical parameterizations are used, the code
should be able to execute from these files. However if different physics is used (for instance, mushy thermo instead of
BL99), the code may still fail. To convert a v4.1 restart file, consult section 5.2 in the CICE v5 documentation.

If restart files are taking a long time to be written serially (i.e., not using PIO), see the next section.

3.5.3 Slow execution

On some architectures, underflows (10−300 for example) are not flushed to zero automatically. Usually a com-
piler flag is available to do this, but if not, try uncommenting the block of code at the end of subroutine stress in
ice_dyn_evp.F90 or ice_dyn_eap.F90. You will take a hit for the extra computations, but it will not be as bad as
running with the underflows.

3.5.4 Debugging hints

Several utilities are available that can be helpful when debugging the code. Not all of these will work everywhere in
the code, due to possible conflicts in module dependencies.

debug_ice (CICE.F90) A wrapper for print_state that is easily called from numerous points during the timestepping
loop (see CICE_RunMod.F90_debug, which can be substituted for CICE_RunMod.F90).

print_state (ice_diagnostics.F90) Print the ice state and forcing fields for a given grid cell.

dbug = true (ice_in) Print numerous diagnostic quantities.

print_global (ice_in) If true, compute and print numerous global sums for energy and mass balance analysis. This
option can significantly degrade code efficiency.

print_points (ice_in) If true, print numerous diagnostic quantities for two grid cells, one near the north pole and one
in the Weddell Sea. This utility also provides the local grid indices and block and processor numbers (ip, jp,
iblkp, mtask) for these points, which can be used in conjunction with check_step, to call print_state. These flags
are set in ice_diagnostics.F90. This option can be fairly slow, due to gathering data from processors.

global_minval, global_maxval, global_sum (ice_global_reductions.F90) Compute and print the minimum and max-
imum values for an individual real array, or its global sum.

3.5.5 Known bugs

• Fluxes sent to the CESM coupler may have incorrect values in grid cells that change from an ice-free state to
having ice during the given time step, or vice versa, due to scaling by the ice area. The authors of the CESM

3.5. Troubleshooting 69

https://github.com/CICE-Consortium/CICE-svn-trunk/blob/master/cicedoc/cicedoc.pdf

CICE Documentation

flux coupler insist on the area scaling so that the ice and land models are treated consistently in the coupler (but
note that the land area does not suddenly become zero in a grid cell, as does the ice area).

• With the old CCSM radiative scheme (shortwave = ‘default’ or ‘ccsm3’), a sizable fraction (more than 10%)
of the total shortwave radiation is absorbed at the surface but should be penetrating into the ice interior instead.
This is due to use of the aggregated, effective albedo rather than the bare ice albedo when snowpatch < 1.

• The date-of-onset diagnostic variables, melt_onset and frz_onset, are not included in the core restart file, and
therefore may be incorrect for the current year if the run is restarted after Jan 1. Also, these variables were
implemented with the Arctic in mind and may be incorrect for the Antarctic.

• The single-processor system_clock time may give erratic results on some architectures.

• History files that contain time averaged data (hist_avg = true in ice_in) will be incorrect if restarting from
midway through an averaging period.

• In stand-alone runs, restarts from the end of ycycle will not be exact.

• Using the same frequency twice in histfreq will have unexpected consequences and causes the code to abort.

• Latitude and longitude fields in the history output may be wrong when using padding.

• History and restart files will not be written on the first timestep in some cases.

3.5.6 Interpretation of albedos

More information about interpretation of albedos can be found in the Icepack documentation.

3.5.7 Proliferating subprocess parameterizations

With the addition of several alternative parameterizations for sea ice processes, a number of subprocesses now appear
in multiple parts of the code with differing descriptions. For instance, sea ice porosity and permeability, along with
associated flushing and flooding, are calculated separately for mushy thermodynamics, topo and level-ice melt ponds,
and for the brine height tracer, each employing its own equations. Likewise, the BL99 and mushy thermodynamics
compute freeboard and snow–ice formation differently, and the topo and level-ice melt pond schemes both allow
fresh ice to grow atop melt ponds, using slightly different formulations for Stefan freezing. These various process
parameterizations will be compared and their subprocess descriptions possibly unified in the future.

70 Chapter 3. User Guide

https://cice-consortium-icepack.readthedocs.io/en/master/user_guide/index.html

CHAPTER 4

Developer Guide

4.1 About Development

The CICE model consists of four different parts, the CICE dynamics and supporting infrastructure, the CICE driver
code, the Icepack column physics code, and the scripts. Development of each of these pieces is described separately.

Guiding principles for the creation of CICE include the following:

• CICE can be run in stand-alone or coupled modes. A top layer driver, coupling layer, or model cap can be
used to drive the CICE model.

• The Icepack column physics modules are independent, consist of methods that operate on individual grid-
cells, and contain no underlying infrastructure. CICE must call into Icepack using interfaces and ap-
proaches specified by Icepack.

4.1.1 Git workflow and Pull Requests

There is extensive Information for Developers documentation available. See https://github.com/CICE-Consortium/
About-Us/wiki/Resource-Index#information-for-developers for information on:

• Contributing to model development

• Software development practices guide

• git Workflow Guide - including extensive information about the Pull Request process and requirements

• Documentation Workflow Guide

4.2 Dynamics and Infrastructure

The CICE cicecore/ directory consists of the non icepack source code. Within that directory there are the following
subdirectories

cicecore/cicedynB/analysis contains higher level history and diagnostic routines.

71

https://github.com/CICE-Consortium/About-Us/wiki/Resource-Index#information-for-developers
https://github.com/CICE-Consortium/About-Us/wiki/Resource-Index#information-for-developers

CICE Documentation

cicecore/cicedynB/dynamics contains all the dynamical evp, eap, and transport routines.

cicecore/cicedynB/general contains routines associated with forcing, flux calculation, initialization, and model
timestepping.

cicecore/cicedynB/infrastructure contains most of the low-level infrastructure associated with communication (halo
updates, gather, scatter, global sums, etc) and I/O reading and writing binary and netcdf files.

cicecore/drivers/ contains subdirectories that support stand-alone drivers and other high level coupling layers.

cicecore/shared/ contains some basic methods related to grid decomposition, time managers, constants, kinds, and
restart capabilities.

4.2.1 Dynamics

Dynamical Solvers

The dynamics solvers are found in cicecore/cicedynB/dynamics/. A couple of different solvers are available including
EVP, revised EVP, and EAP. The dynamics solver is specified in namelist with the kdyn variable. kdyn=1 is evp,
kdyn=2 is eap, and revised evp requires the revised_evp namelist flag be set to true.

Multiple evp solvers are supported thru the namelist flag kevp_kernel. The standard implementation and cur-
rent default is kevp_kernel=0. In this case, the stress is solved on the regular decomposition via subcycling
and calls to subroutine stress and subroutine stepu with MPI global sums required in each subcycling call. With
kevp_kernel=2, the data required to compute the stress is gathered to the root MPI process and the stress
calculation is performed on the root task without any MPI global sums. OpenMP parallelism is supported in
kevp_kernel=2. The solutions with kevp_kernel set to 0 or 2 will not be bit-for-bit identical but should
be the same to roundoff and produce the same climate. kevp_kernel=2 may perform better for some configura-
tions, some machines, and some pe counts. kevp_kernel=2 is not supported with the tripole grid and is still being
validated. Until kevp_kernel=2 is fully validated, it will abort if set. To override the abort, use value 102 for
testing.

Transport

The transport (advection) methods are found in cicecore/cicedynB/dynamics/. Two methods are supported, upwind
and remap. These are set in namelist via the advection variable.

4.2.2 Infrastructure

Kinds

cicecore/shared/ice_kinds_mod.F90 defines the kinds datatypes used in CICE. These kinds are used throughout
CICE code to define variable types. The CICE kinds are adopted from the kinds defined in Icepack for consistency in
interfaces.

Constants

cicecore/shared/ice_constants.F90 defines several model constants. Some are hardwired parameters while others
have internal defaults and can be set thru namelist.

72 Chapter 4. Developer Guide

CICE Documentation

Dynamic Array Allocation

CICE v5 and earlier was implemented using mainly static arrays and required several CPPs to be set to define grid
size, blocks sizes, tracer numbers, and so forth. With CICE v6 and later, arrays are dynamically allocated and those
parameters are namelist settings. The following CPPs are no longer used in CICE v6 and later versions,

-DNXGLOB=100 -DNYGLOB=116 -DBLCKX=25 -DBLCKY=29 -DMXBLCKS=4 -DNICELYR=7
-DNSNWLYR=1 -DNICECAT=5 -DTRAGE=1 -DTRFY=1 -DTRLVL=1 -DTRPND=1 -DTRBRI=0 -
DNTRAERO=1 -DTRZS=0 -DNBGCLYR=7 -DTRALG=0 -DTRBGCZ=0 -DTRDOC=0 -DTRDOC=0
-DTRDIC=0 -DTRDON=0 -DTRFED=0 -DTRFEP=0 -DTRZAERO=0 -DTRBGCS=0 -DNUMIN=11
-DNUMAX=99

as they have been migrated to Table of namelist options

nx_global, ny_global, block_size_x, block_size_y, max_blocks, nilyr, nslyr, ncat, nblyr, n_aero, n_zaero,
n_algae, n_doc, n_dic, n_don, n_fed, n_fep, numin, numax

Time Manager

Time manager data is module data in cicecore/shared/ice_calendar.F90. Much of the time manager data is public and
operated on during the model timestepping. The model timestepping actually takes place in the CICE_RunMod.F90
file which is part of the driver code and tends to look like this:

call ice_step
istep = istep + 1 ! update time step counters
istep1 = istep1 + 1
time = time + dt ! determine the time and date

Communication

Two low-level communications packages, mpi and serial, are provided as part of CICE. This software provides a
middle layer between the model and the underlying libraries. Only the CICE mpi or serial directories are compiled
with CICE, not both.

cicedynB/infrastructure/comm/mpi/ is based on MPI and provides various methods to do halo updates, global sums,
gather/scatter, broadcasts and similar using some fairly generic interfaces to isolate the MPI calls in the code.

cicedynB/infrastructure/comm/serial/ support the same interfaces, but operates in shared memory mode with no
MPI. The serial library will be used, by default in the CICE scripts, if the number of MPI tasks is set to 1. The serial
library allows the model to be run on a single core or with OpenMP parallelism only without requiring an MPI library.

I/O

There are three low-level IO packages in CICE, io_netcdf, io_binary, and io_pio. This software provides a middle
layer between the model and the underlying IO writing. Only one of the three IO directories can be built with CICE.
The CICE scripts will build with the io_netcdf by default, but other options can be selecting by setting ICE_IOTYPE
in cice.settings in the case. This has to be set before CICE is built.

cicedynB/infrastructure/io/io_netcdf/ is the default for the standalone CICE model, and it supports writing history
and restart files in netcdf format using standard netcdf calls. It does this by writing from and reading to the root task
and gathering and scattering fields from the root task to support model parallelism.

cicedynB/infrastructure/io/io_binary/ supports files in binary format using a gather/scatter approach and reading to
and writing from the root task.

4.2. Dynamics and Infrastructure 73

CICE Documentation

cicedynB/infrastructure/io/io_pio/ support reading and writing through the pio interface. pio is a parallel io library
(https://github.com/NCAR/ParallelIO) that supports reading and writing of binary and netcdf file through various
interfaces including netcdf and pnetcdf. pio is generally more parallel in memory even when using serial netcdf than
the standard gather/scatter methods, and it provides parallel read/write capabilities by optionally linking and using
pnetcdf.

4.3 Driver and Coupling

The driver and coupling layer is found in cicecore/drivers/. The standalone driver is found under ci-
cecore/drivers/cice/ and other high level coupling layers are found in other directories. In general, CICE will build
with only one of these drivers, depending how the model is run and coupled. Within the cicecore/drivers/cice/ direc-
tory, the following files are found,

CICE.F90 is the top level program file and that calls CICE_Initialize, CICE_Run, and CICE_Finalize methods.
CICE_InitMod.F90 contains the CICE_Initialize method and other next level source code. CICE_RunMod.F90
contains the CICE_Run method and other next level source code. CICE_FinalMod.F90 contains the CICE_Finalize
method and other next level source code.

Other cicecore/drivers/ directories are similarly implemented with a top level coupling layer, that is largely spec-
ified by an external coupled system and then some version of the CICE_InitMod.F90, CICE_RunMod.F90, and
CICE_FinalMod.F90 files.

4.3.1 Calling Sequence

The initialize calling sequence looks something like:

call init_communicate ! initial setup for message passing
call init_fileunits ! unit numbers
call icepack_configure() ! initialize icepack
call input_data ! namelist variables
call init_zbgc ! vertical biogeochemistry namelist
call init_domain_blocks ! set up block decomposition
call init_grid1 ! domain distribution
call alloc_* ! allocate arrays
call init_ice_timers ! initialize all timers
call init_grid2 ! grid variables
call init_calendar ! initialize some calendar stuff
call init_hist (dt) ! initialize output history file
if (kdyn == 2) then

call init_eap (dt_dyn) ! define eap dynamics parameters, variables
else ! for both kdyn = 0 or 1

call init_evp (dt_dyn) ! define evp dynamics parameters, variables
endif
call init_coupler_flux ! initialize fluxes exchanged with coupler
call init_thermo_vertical ! initialize vertical thermodynamics
call icepack_init_itd(ncat, hin_max) ! ice thickness distribution
call calendar(time) ! determine the initial date
call init_forcing_ocn(dt) ! initialize sss and sst from data
call init_state ! initialize the ice state
call init_transport ! initialize horizontal transport
call ice_HaloRestore_init ! restored boundary conditions
call init_restart ! initialize restart variables
call init_diags ! initialize diagnostic output points
call init_history_therm ! initialize thermo history variables

(continues on next page)

74 Chapter 4. Developer Guide

https://github.com/NCAR/ParallelIO

CICE Documentation

(continued from previous page)

call init_history_dyn ! initialize dynamic history variables
call init_shortwave ! initialize radiative transfer
call init_forcing_atmo ! initialize atmospheric forcing (standalone)

See a CICE_InitMod.F90 file for the latest.

The run sequence within a time loop looks something like:

call init_mass_diags ! diagnostics per timestep
call init_history_therm
call init_history_bgc

do iblk = 1, nblocks
if (calc_Tsfc) call prep_radiation (dt, iblk)
call step_therm1 (dt, iblk) ! vertical thermodynamics
call biogeochemistry (dt, iblk) ! biogeochemistry
call step_therm2 (dt, iblk) ! ice thickness distribution thermo

enddo ! iblk

call update_state (dt, daidtt, dvidtt, dagedtt, offset)

do k = 1, ndtd
call step_dyn_horiz (dt_dyn)
do iblk = 1, nblocks

call step_dyn_ridge (dt_dyn, ndtd, iblk)
enddo
call update_state (dt_dyn, daidtd, dvidtd, dagedtd, offset)

enddo

do iblk = 1, nblocks
call step_radiation (dt, iblk)
call coupling_prep (iblk)

enddo ! iblk

See a CICE_RunMod.F90 file for the latest.

4.4 Icepack

The CICE model calls the Icepack columnphysics source code. The Icepack model is documented separately, see
https://github.com/CICE-Consortium/Icepack.

More specifically, the CICE model uses methods defined in icepack_intfc.F90. It uses the init, query, and write
methods to set, get, and document Icepack values. And it follows the icepack_warnings methodology where
icepack_warnings_aborted is checked and icepack_warnings_print is called after every call to an Icepack method.
It does not directly “use” Icepack data and access Icepack data only thru interfaces.

4.5 Scripts

The scripts are the third part of the cice package. They support setting up cases, building, and running the cice
stand-alone model.

4.4. Icepack 75

https://github.com/CICE-Consortium/Icepack

CICE Documentation

4.5.1 File List

The directory structure under configure/scripts is as follows.

configuration/scripts/
Makefile primary makefile
cice.batch.csh creates batch scripts for particular machines
cice.build compiles the code
cice.decomp.csh computes a decomposition given a grid and task/thread count
cice.launch.csh creates script logic that runs the executable
cice.run.setup.csh sets up the run scripts
cice.settings defines environment, model configuration and run settings
cice.test.setup.csh creates configurations for testing the model
ice_in namelist input data
machines/ machine specific files to set env and Macros
makdep.c determines module dependencies
options/ other namelist configurations available from the cice.setup command line
parse_namelist.sh replaces namelist with command-line configuration
parse_namelist_from_settings.sh replaces namelist with values from cice.settings
parse_settings.sh replaces settings with command-line configuration
setup_run_dirs.csh creates the case run directories
set_version_number.csh updates the model version number from the cice.setup command line
tests/ scripts for configuring and running basic tests

4.5.2 Strategy

The cice scripts are implemented such that everything is resolved after cice.setup is called. This is done by both
copying specific files into the case directory and running scripts as part of the cice.setup command line to setup
various files.

cice.setup drives the case setup. It is written in csh. All supporting scripts are relatively simple csh or sh scripts. See
Scripts for additional details.

The file cice.settings specifies a set of env defaults for the case. The file ice_in defines the namelist input for the cice
driver.

4.5.3 Preset Case Options

The cice.setup --set option allows the user to choose some predetermined cice settings and namelist. Those
options are defined in configurations/scripts/options/ and the files are prefixed by either set_env or set_nml. When
cice.setup is executed, the appropriate files are read from configurations/scripts/options/ and the cice.settings and/or
ice_in files are updated in the case directory based on the values in those files.

The filename suffix determines the name of the -s option. So, for instance,

cice.setup -s diag1,debug,bgcISPOL

will search for option files with suffixes of diag1, debug, and bgcISPOL and then apply those settings.

parse_namelist.sh, parse_settings.sh, and parse_namelist_from_settings.sh are the three scripts that modify ice_in
and cice.settings.

76 Chapter 4. Developer Guide

CICE Documentation

To add new options, just add new files to the configurations/scripts/options/ directory with appropriate names and
syntax. The set_nml file syntax is the same as namelist syntax and the set_env files are consistent with csh setenv
syntax. See other files for examples of the syntax.

4.5.4 Build Scripts

CICE uses GNU Make to build the model. There is a common Makefile for all machines. Each machine provides
a Macros file to define some Makefile variables and and an env file to specify the modules/software stack for each
compiler. The machine is built by the cice.build script which invokes Make. There is a special trap for circular
dependencies in the cice.build script to highlight this error when it occurs.

4.5.5 Machines

Machine specific information is contained in configuration/scripts/machines. That directory contains a Macros file
and an env file for each supported machine. One other files will need to be changed to support a port, that is configu-
ration/scripts/cice.batch.csh. To port to a new machine, see Porting.

4.5.6 Test Options

Values that are associated with the –sets cice.setup are defined in configuration/scripts/options. Those files are text
files and cice.setup uses the values in those files to modify the cice.settings and ice_in files in the case as the case is
created. Files name set_env.$option are associated with values in the cice.settings file. Files named set_nml.$option
are associated with values in ice.in. These files contain simple keyword pair values one line at a time. A line starting
with # is a comment. Files names that start with test_ are used specifically for tests.

That directory also contains files named set_files.$option. This provides an extra layer on top of the individual setting
files that allows settings to be defined based on groups of other settings. The set_files.$option files contain a list of
–sets options to be applied.

The $option part of the filename is the argument to –sets argument in cice.setup. Multiple options can be specified by
creating a comma delimited list. In the case where settings contradict each other, the last defined is used.

4.5.7 Test scripts

Under configuration/scripts/tests are several files including the scripts to setup the various tests, such as smoke and
restart tests (test_smoke.script, test_restart.script) and the files that describe with options files are needed for each
test (ie. test_smoke.files, test_restart.files). A baseline test script (baseline.script) is also there to setup the general
regression and comparison testing. That directory also contains the preset test suites (ie. base_suite.ts) and a file that
supports post-processing on the model output (timeseries.csh). There is also a script report_results.csh that pushes
results from test suites back to the CICE-Consortium test results wiki page.

To add a new test (for example newtest), several files may be needed,

• configuration/scripts/tests/test_newtest.script defines how to run the test. This chunk of script will be incor-
porated into the case test script

• configuration/scripts/tests/test_newtest.files list the set of options files found in configura-
tion/scripts/options/ needed to run this test. Those files will be copied into the test directory when the
test is invoked so they are available for the test_newtest.script to use.

• some new files may be needed in configuration/scripts/options/. These could be relatively generic set_nml or
set_env files, or they could be test specific files typically carrying a prefix of test_nml.

Generating a new test, particularly the test_newtest.script usually takes some iteration before it’s working properly.

4.5. Scripts 77

CICE Documentation

4.5.8 Code Compliance Script

The code compliance test validates non bit-for-bit model changes. The directory configuration/scripts/tests/QC
contains scripts related to the compliance testing, and this process is described in Code Compliance Test (non bit-
for-bit validation). This section will describe a set of scripts that test and validate the code compliance process.
This should be done when the compliance test or compliance test scripts (i.e., cice.t-test.py) are modified.
Again, this section documents a validation process for the compliance scripts; it does not describe to how run the
compliance test itself.

Two scripts have been created to automatically validate the code compliance script. These scripts are:

• gen_qc_cases.csh, which creates the 4 test cases required for validation, builds the executable, and submits
to the queue.

• compare_qc_cases.csh, which runs the code compliance script on three combinations of the 4 test cases
and outputs whether or not the correct response was received.

The gen_qc_cases.csh script allows users to pass some arguments similar to the cice.setup script. These
options include:

• --mach, -m: Machine (REQUIRED)

• --env, -e: Compiler

• --pes, -p: tasks x threads

• --acct : Account number for batch submission

• --grid, -g: Grid

• --queue : Queue for the batch submission

• --testid : test ID, user-defined id for testing

The script creates 4 test cases, with testIDs qc_base, qc_bfb, qc_nonbfb, and qc_fail. qc_base is the base
test case with the default QC namelist. qc_bfb is identical to qc_base. qc_nonbfb is a test that is not bit-for-bit
when compared to qc_base, but not climate changing. qc_fail is a test that is not bit-for-bit and also climate
changing.

In order to run the compare_qc_cases.csh script, the following requirements must be met:

• Python v2.7 or later

• netcdf Python package

• numpy Python package

To install the necessary Python packages, the pip Python utility can be used.

pip install --user netCDF4
pip install --user numpy

Note: Some machines might report pip: Command not found. If you encounter this error, check to see if
there is any Python module (module avail python) that you might need to load prior to using pip.

To perform the validation, execute the following commands.

From the CICE base directory
cp configuration/scripts/tests/QC/gen_qc_cases.csh .
cp configuration/scripts/tests/QC/compare_qc_cases.csh

Create the required test cases
./gen_qc_cases.csh -m <machine> --acct <acct>

(continues on next page)

78 Chapter 4. Developer Guide

CICE Documentation

(continued from previous page)

Wait for all 4 jobs to complete

Perform the comparisons
./compare_qc_cases.csh

The compare_qc_cases.csh script will run the QC script on the following combinations:

• qc_base vs. qc_bfb

• qc_base vs. qc_nonbfb

• qc_base vs. qc_fail

An example of the output from compare_qc_cases.csh is shown below.:

===== Running QC tests and writing output to validate_qc.log =====
Running QC test on base and bfb directories.
Expected result: PASSED
Result: PASSED

Running QC test on base and non-bfb directories.
Expected result: PASSED
Result: PASSED

Running QC test on base and climate-changing directories.
Expected result: FAILED
Result: FAILED

QC Test has validated

4.6 Other things

4.6.1 Reproducible Sums

Reproducible sums in the CICE diagnostics are set with the namelist bfbflag. CICE prognostics results do NOT depend
on the global sum implementation. The results are bit-for-bit identical with any bfbflag. The bfbflag only impacts the
results and performance of the global diagnostics written to the CICE log file. For best performance, the off (or
lsum8 which is equivalent) setting is recommended. This will probably not produce bit-for-bit results with different
decompositions. For bit-for-bit results, the reprosum setting is recommended. This should be only slightly slower than
the lsum8 implementation.

Global sums of real types are not reproducible due to different order of operations of the sums of the individual data
which introduced roundoff errors. This is caused when the model data is laid out in different block decompositions or
on different pe counts so the data is stored in memory in different orders. Integer data should be bit-for-bit identical
regardless of the order of operation of the sums.

The bfbflag namelist is a character string with several valid settings. The tradeoff in these settings is the likelihood for
bit-for-bit results versus their cost. The bfbflag settings are implemented as follows,

off is the default and equivalent to lsum8.

lsum4 is a local sum computed with single precision (4 byte) data and a scalar mpi allreduce. This is extremely
unlikely to be bit-for-bit for different decompositions. This should generally not be used as the accuracy is very poor
for a model implemented with double precision (8 byte) variables.

4.6. Other things 79

CICE Documentation

lsum8 is a local sum computed with double precision data and a scalar mpi allreduce. This is extremely unlikely to
be bit-for-bit for different decompositions but is fast. For CICE implemented in double precision, the differences in
global sums for different decompositions should be at the roundoff level.

lsum16 is a local sum computed with quadruple precision (16 byte) data and a scalar mpi allreduce. This is very
likely to be bit-for-bit for different decompositions. However, it should be noted that this implementation is not
available or does not work properly with some compiler and some MPI implementation. Support for quad precision
and consistency between underlying fortran and c datatypes can result in inability to compile or incorrect results.
The source code associated with this implementation can be turned off with the cpp, NO_R16. Otherwise, it is
recommended that this option NOT be used or that results be carefully validated on any platform before it is used.

reprosum is a fixed point method based on ordered double integer sums that requires two scalar reductions per global
sum. This is extremely likely to be bfb, but will be slightly more expensive than the lsum algorithms. See [31]

ddpdd is a parallel double-double algorithm using single scalar reduction. This is very likely to be bfb, but is not as
fast or accurate as the reprosum implementation. See [10]

4.6.2 Adding Timers

Timing any section of code, or multiple sections, consists of defining the timer and then wrapping the code with
start and stop commands for that timer. Printing of the timer output is done simultaneously for all timers. To add
a timer, first declare it (timer_[tmr]) at the top of ice_timers.F90 (we recommend doing this in both the mpi/ and
serial/ directories), then add a call to get_ice_timer in the subroutine init_ice_timers. In the module containing the
code to be timed, call ice_timer_start‘(‘timer_[tmr]) at the beginning of the section to be timed, and a similar call to
ice_timer_stop at the end. A use ice_timers statement may need to be added to the subroutine being modified. Be
careful not to have one command outside of a loop and the other command inside. Timers can be run for individual
blocks, if desired, by including the block ID in the timer calls.

4.6.3 Adding History fields

To add a variable to be printed in the history output, search for ‘example’ in ice_history_shared.F90:

1. add a frequency flag for the new field

2. add the flag to the namelist (here and also in ice_in)

3. add an index number

and in ice_history.F90:

1. broadcast the flag

2. add a call to define_hist_field

3. add a call to accum_hist_field

The example is for a standard, two-dimensional (horizontal) field; for other array sizes, choose another history variable
with a similar shape as an example. Some history variables, especially tracers, are grouped in other files according to
their purpose (bgc, melt ponds, etc.).

To add an output frequency for an existing variable, see section History files.

4.6.4 Adding Tracers

We require that any changes made to the code be implemented in such a way that they can be “turned off” through
namelist flags. In most cases, code run with such changes should be bit-for-bit identical with the unmodified code.

80 Chapter 4. Developer Guide

CICE Documentation

Occasionally, non-bit-for-bit changes are necessary, e.g. associated with an unavoidable change in the order of opera-
tions. In these cases, changes should be made in stages to isolate the non-bit-for-bit changes, so that those that should
be bit-for-bit can be tested separately.

Tracers added to CICE will also require extensive modifications to the Icepack driver, including initialization, namelist
flags and restart capabilities. Modifications to the Icepack driver should reflect the modifications needed in CICE but
are not expected to match completely. We recommend that the logical namelist variable tr_[tracer] be used for
all calls involving the new tracer outside of ice_[tracer].F90, in case other users do not want to use that tracer.

A number of optional tracers are available in the code, including ice age, first-year ice area, melt pond area and
volume, brine height, aerosols, and level ice area and volume (from which ridged ice quantities are derived). Salinity,
enthalpies, age, aerosols, level-ice volume, brine height and most melt pond quantities are volume-weighted tracers,
while first-year area, pond area, and level-ice area are area-weighted tracers. Biogeochemistry tracers in the skeletal
layer are area-weighted, and vertical biogeochemistry tracers are volume-weighted. In the absence of sources and
sinks, the total mass of a volume-weighted tracer such as aerosol (kg) is conserved under transport in horizontal and
thickness space (the mass in a given grid cell will change), whereas the aerosol concentration (kg/m) is unchanged
following the motion, and in particular, the concentration is unchanged when there is surface or basal melting. The
proper units for a volume-weighted mass tracer in the tracer array are kg/m.

In several places in the code, tracer computations must be performed on the conserved “tracer volume” rather than the
tracer itself; for example, the conserved quantity is ℎ𝑝𝑛𝑑𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙𝑎𝑖, not ℎ𝑝𝑛𝑑. Conserved quantities are thus computed
according to the tracer dependencies (weights), which are tracked using the arrays trcr_depend (indicates depen-
dency on area, ice volume or snow volume), trcr_base (a dependency mask), n_trcr_strata (the number of
underlying tracer layers), and nt_strata (indices of underlying layers). Additional information about tracers can
be found in the Icepack documentation.

To add a tracer, follow these steps using one of the existing tracers as a pattern.

1) icepack_tracers.F90 and icepack_[tracer].F90: declare tracers, add flags and indices, and create
physics routines as described in the Icepack documentation

2) ice_arrays_column.F90: declare arrays

3) ice_init_column.F90: initialize arrays

4) ice_init.F90: (some of this may be done in icepack_[tracer].F90 instead)

• declare tr_[tracer] and nt_[tracer] as needed

• add logical namelist variables tr_[tracer], restart_[tracer]

• initialize and broadcast namelist variables

• check for potential conflicts, aborting if any occur

• print namelist variables to diagnostic output file

• initialize tracer flags etc in icepack (call icepack_init_tracer_flags etc)

• increment number of tracers in use based on namelist input (ntrcr)

• define tracer dependencies

5) CICE_InitMod.F90: initialize tracer (includes reading restart file)

6) CICE_RunMod.F90, ice_step_mod.F90 (and elsewhere as needed):

• call routine to write tracer restart data

• call Icepack or other routines to update tracer value (often called from ice_step_mod.F90)

7) ice_restart.F90: define restart variables (for binary, netCDF and PIO)

8) ice_restart_column.F90: create routines to read, write tracer restart data

4.6. Other things 81

https://cice-consortium-icepack.readthedocs.io/en/master/developer_guide/index.html
https://cice-consortium-icepack.readthedocs.io/en/master/developer_guide/dg_adding_tracers.html

CICE Documentation

9) ice_fileunits.F90: add new dump and restart file units

10) ice_history_[tracer].F90: add history variables (Section Adding History fields)

11) ice_in: add namelist variables to tracer_nml and icefields_nml. Best practice is to set the namelist
values so that the new capability is turned off, and create an option file with your preferred configu-
ration in configuration/scripts/options.

12) If strict conservation is necessary, add diagnostics as noted for topo ponds in the Icepack documen-
tation.

13) Update documentation, including cice_index.rst and ug_case_settings.rst

82 Chapter 4. Developer Guide

https://cice-consortium-icepack.readthedocs.io/en/master/science_guide/index.html
https://cice-consortium-icepack.readthedocs.io/en/master/science_guide/index.html

CHAPTER 5

Index of primary variables and parameters

This index defines many of the symbols used frequently in the CICE model code. Values appearing in this list are fixed
or recommended; most namelist parameters are indicated (𝐸∘) with their default values. For other namelist options,
see Section Table of namelist options. All quantities in the code are expressed in MKS units (temperatures may take
either Celsius or Kelvin units).

Table 1: Alphabetical Index

A
a11,a12 structure tensor components
a2D history field accumulations, 2d
a3Dz history field accumulations, 3D vertical
a3Db history field accumulations, 3D bio grid
a3Dc history field accumulations, 3D categories
a4Di history field accumulations, 4D categories, vertical ice
a4Db history field accumulations, 4D categories, vertical bio

grid
a4Ds history field accumulations, 4D categories, vertical

snow
a_min minimum area concentration for computing velocity 0.001
a_rapid_mode ∙ brine channel diameter
advection ∙ type of advection algorithm used (‘remap’ or ‘up-

wind’)
remap

ahmax ∙ thickness above which ice albedo is constant 0.3m
aice_extmin minimum value for ice extent diagnostic 0.15
aice_init concentration of ice at beginning of timestep
aice0 fractional open water area
aice(n) total concentration of ice in grid cell (in category n)
albedo_type ∙ type of albedo parameterization (‘ccsm3’ or ‘con-

stant’)
albcnt counter for averaging albedo

Continued on next page

83

CICE Documentation

Table 1 – continued from previous page

albice bare ice albedo
albicei ∙ near infrared ice albedo for thicker ice
albicev ∙ visible ice albedo for thicker ice
albocn ocean albedo 0.06
albpnd melt pond albedo
albsno snow albedo
albsnowi ∙ near infrared, cold snow albedo
albsnowv ∙ visible, cold snow albedo
algalN algal nitrogen concentration mmol/m3

alv(n)dr(f) albedo: visible (near IR), direct (diffuse)
alv(n)dr(f)_ai grid-box-mean value of alv(n)dr(f)
amm ammonia/um concentration mmol/m3

ANGLE for conversions between the POP grid and latitude-
longitude grids

radians

ANGLET ANGLE converted to T-cells radians
aparticn participation function
apeff_ai grid-cell-mean effective pond fraction
apondn area concentration of melt ponds
arlx1i relaxation constant for dynamics (stress)
araftn area fraction of rafted ice
aredistrn redistribution function: fraction of new ridge area
ardgn fractional area of ridged ice
aspect_rapid_mode ∙ brine convection aspect ratio 1
astar e-folding scale for participation function 0.05
atm_data_dir ∙ directory for atmospheric forcing data
atm_data_format ∙ format of atmospheric forcing files
atm_data_type ∙ type of atmospheric forcing
atmbndy ∙ atmo boundary layer parameterization (‘default’ or

‘constant’)
avail_hist_fields type for history field data
awtidf weighting factor for near-ir, diffuse albedo 0.36218
awtidr weighting factor for near-ir, direct albedo 0.00182
awtvdf weighting factor for visible, diffuse albedo 0.63282
awtvdr weighting factor for visible, direct albedo 0.00318
B
bfb_flag ∙ for bit-for-bit reproducible diagnostics
bgc_data_dir ∙ data directory for bgc
bgc_data_type ∙ source of silicate, nitrate data
bgc_flux_type ∙ ice–ocean flux velocity
bgc_tracer_type tracer_type for bgc tracers
bgrid nondimensional vertical grid points for bio grid
bignum a large number 1030

block data type for blocks
block_id global block number
block_size_x(y) number of cells along x(y) direction of block
blockGlobalID global block IDs
blockLocalID local block IDs
blockLocation processor location of block
blocks_ice local block IDs

Continued on next page

84 Chapter 5. Index of primary variables and parameters

CICE Documentation

Table 1 – continued from previous page

bphi porosity of ice layers on bio grid
brlx relaxation constant for dynamics (momentum)
bTiz temperature of ice layers on bio grid
C
c<n> real(𝑛)
calc_strair ∙ if true, calculate wind stress T
calc_Tsfc ∙ if true, calculate surface temperature T
Cdn_atm atmospheric drag coefficient
Cdn_ocn ocean drag coefficient
Cf ∙ ratio of ridging work to PE change in ridging

17.

cgrid vertical grid points for ice grid (compare bgrid)
char_len length of character variable strings 80
char_len_long length of longer character variable strings 256
check_step time step on which to begin writing debugging data
check_umax if true, check for ice speed > umax_stab
cldf cloud fraction
cm_to_m cm to meters conversion 0.01
coldice value for constant albedo parameterization 0.70
coldsnow value for constant albedo parameterization 0.81
conduct ∙ conductivity parameterization
congel basal ice growth m
cosw cosine of the turning angle in water

1.

coszen cosine of the zenith angle
Cp proportionality constant for potential energy kg/m2/s2

cp_air specific heat of air 1005.0 J/kg/K
cp_ice specific heat of fresh ice

2106. J/kg/K

cp_ocn specific heat of sea water
4218. J/kg/K

cp_wv specific heat of water vapor 1.81x103 J/kg/K
cp063 diffuse fresnel reflectivity (above) 0.063
cp455 diffuse fresnel reflectivity (below) 0.455
Cs fraction of shear energy contributing to ridging 0.25
Cstar constant in Hibler ice strength formula

20.

cxm combination of HTN values
cxp combination of HTN values
cym combination of HTE values
cyp combination of HTE values
D
daice_da data assimilation concentration increment rate
daidtd ice area tendency due to dynamics/transport 1/s
daidtt ice area tendency due to thermodynamics 1/s

Continued on next page

85

CICE Documentation

Table 1 – continued from previous page

dalb_mlt [see icepack_shortwave.F90] -0.075
dalb_mlti [see icepack_shortwave.F90] -0.100
dalb_mltv [see icepack_shortwave.F90] -0.150
darcy_V Darcy velocity used for brine height tracer
dardg1(n)dt rate of fractional area loss by ridging ice (category n) 1/s
dardg2(n)dt rate of fractional area gain by new ridges (category n) 1/s
daymo number of days in one month
daycal day number at end of month
days_per_year ∙ number of days in one year 365
dbl_kind definition of double precision selected_real_kind(13)
dbug ∙ write extra diagnostics .false.
Delta function of strain rates (see Section Dynamics) 1/s
default_season Season from which initial values of forcing are set. winter
denom1 combination of constants for stress equation
depressT ratio of freezing temperature to salinity of brine 0.054 deg/ppt
dhbr_bt change in brine height at the bottom of the column
dhbr_top change in brine height at the top of the column
dhsn depth difference for snow on sea ice and pond ice
diag_file ∙ diagnostic output file (alternative to standard out)
diag_type ∙ where diagnostic output is written stdout
diagfreq ∙ how often diagnostic output is written (10 = once per

10 dt)
distrb distribution data type
distrb_info block distribution information
distribution_type ∙ method used to distribute blocks on processors
distribution_weight ∙ weighting method used to compute work per block
divu strain rate I component, velocity divergence 1/s
divu_adv divergence associated with advection 1/s
dms dimethyl sulfide concentration mmol/m3

dmsp dimethyl sulfoniopropionate concentration mmol/m3

dpscale ∙ time scale for flushing in permeable ice 1 × 10−3

dragio drag coefficient for water on ice 0.00536
dSdt_slow_mode ∙ drainage strength parameter
dsnow change in snow thickness m
dt ∙ thermodynamics time step

3600. s

dt_dyn dynamics/ridging/transport time step
dT_mlt ∙ ∆ temperature per ∆ snow grain radius

1. deg

dte subcycling time step for EVP dynamics (∆𝑡𝑒) s
dte2T dte / 2(damping time scale)
dtei 1/dte, where dte is the EVP subcycling time step 1/s
dump_file ∙ output file for restart dump
dumpfreq ∙ dump frequency for restarts, y, m, d, h or 1
dumpfreq_n ∙ restart output frequency
dump_last ∙ if true, write restart on last time step of simulation
dxhy combination of HTE values

Continued on next page

86 Chapter 5. Index of primary variables and parameters

CICE Documentation

Table 1 – continued from previous page

dxt width of T cell (∆𝑥) through the middle m
dxu width of U cell (∆𝑥) through the middle m
dyhx combination of HTN values
dyn_dt dynamics and transport time step (∆𝑡𝑑𝑦𝑛) s
dyt height of T cell (∆𝑦) through the middle m
dyu height of U cell (∆𝑦) through the middle m
dvidtd ice volume tendency due to dynamics/transport m/s
dvidtt ice volume tendency due to thermodynamics m/s
dvirdg(n)dt ice volume ridging rate (category n) m/s
E
e11, e12, e22 strain rate tensor components
ecci yield curve minor/major axis ratio, squared 1/4
eice(n) energy of melting of ice per unit area (in category n) J/m2

emissivity emissivity of snow and ice 0.95
eps13 a small number 10−13

eps16 a small number 10−16

esno(n) energy of melting of snow per unit area (in category n) J/m2

evap evaporative water flux kg/m2/s
ew_boundary_type ∙ type of east-west boundary condition
eyc coefficient for calculating the parameter E, 0< eyc <1 0.36
F
faero_atm aerosol deposition rate kg/m2/s
faero_ocn aerosol flux to the ocean kg/m2/s
fbot_xfer_type ∙ type of heat transfer coefficient under ice
fcondtop(n)(_f) conductive heat flux W/m2

fcor_blk Coriolis parameter 1/s
ferrmax max allowed energy flux error (thermodynamics) 1x 10−3 W/m2

ffracn fraction of fsurfn used to melt pond ice
fhocn net heat flux to ocean W/m2

fhocn_ai grid-box-mean net heat flux to ocean (fhocn) W/m2

field_loc_center field centered on grid cell 1
field_loc_Eface field centered on east face 4
field_loc_NEcorner field on northeast corner 2
field_loc_Nface field centered on north face 3
field_loc_noupdate ignore location of field -1
field_loc_unknown unknown location of field 0
field_loc_Wface field centered on west face 5
field_type_angle angle field type 3
field_type_noupdate ignore field type -1
field_type_scalar scalar field type 1
field_type_unknown unknown field type 0
field_type_vector vector field type 2
first_ice flag for initial ice formation
flat latent heat flux W/m2

floediam effective floe diameter for lateral melt
300. m

floeshape floe shape constant for lateral melt 0.66
flux_bio all biogeochemistry fluxes passed to ocean

Continued on next page

87

CICE Documentation

Table 1 – continued from previous page

flux_bio_ai all biogeochemistry fluxes passed to ocean, grid cell
mean

flw incoming longwave radiation W/m2

flwout outgoing longwave radiation W/m2

fm Coriolis parameter * mass in U cell kg/s
formdrag ∙ calculate form drag
fpond fresh water flux to ponds kg/m2/s
fr_resp bgc respiration fraction 0.05
frain rainfall rate kg/m2/s
frazil frazil ice growth m
fresh fresh water flux to ocean kg/m2/s
fresh_ai grid-box-mean fresh water flux (fresh) kg/m2/s
frz_onset day of year that freezing begins
frzmlt freezing/melting potential W/m2

frzmlt_init freezing/melting potential at beginning of time step W/m2

frzmlt_max maximum magnitude of freezing/melting potential
1000. W/m2

frzpnd ∙ Stefan refreezing of melt ponds ‘hlid’
fsalt net salt flux to ocean kg/m2/s
fsalt_ai grid-box-mean salt flux to ocean (fsalt) kg/m2/s
fsens sensible heat flux W/m2

fsnow snowfall rate kg/m2/s
fsnowrdg snow fraction that survives in ridging 0.5
fsurf(n)(_f) net surface heat flux excluding fcondtop W/m2

fsw incoming shortwave radiation W/m2

fswabs total absorbed shortwave radiation W/m2

fswfac scaling factor to adjust ice quantities for updated data
fswint shortwave absorbed in ice interior W/m2

fswpenl shortwave penetrating through ice layers W/m2

fswthru shortwave penetrating to ocean W/m2

fswthru_ai grid-box-mean shortwave penetrating to ocean
(fswthru)

W/m2

fyear current data year
fyear_final last data year
fyear_init ∙ initial data year
G
gravit gravitational acceleration 9.80616 m/s2

grid_file ∙ input file for grid info
grid_format ∙ format of grid files
grid_type ∙ ‘rectangular’, ‘displaced_pole’, ‘column’ or ‘re-

gional’
gridcpl_file ∙ input file for coupling grid info
grow_net specific biogeochemistry growth rate per grid cell s −1

Gstar piecewise-linear ridging participation function param-
eter

0.15

H
halo_info information for updating ghost cells
heat_capacity ∙ if true, use salinity-dependent thermodynamics T

Continued on next page

88 Chapter 5. Index of primary variables and parameters

CICE Documentation

Table 1 – continued from previous page

hfrazilmin minimum thickness of new frazil ice 0.05 m
hi_min minimum ice thickness for thinnest ice category 0.01 m
hi_ssl ice surface scattering layer thickness 0.05 m
hicen ice thickness in category n m
highfreq ∙ high-frequency atmo coupling F
hin_old ice thickness prior to growth/melt m
hin_max category thickness limits m
hist_avg ∙ if true, write averaged data instead of snapshots T
histfreq ∙ units of history output frequency: y, m, w, d or 1
histfreq_n ∙ integer output frequency in histfreq units
history_dir ∙ path to history output files
history_file ∙ history output file prefix
hm land/boundary mask, thickness (T-cell)
hmix ocean mixed layer depth

20. m

hour hour of the year
hp0 pond depth at which shortwave transition to bare ice

occurs
0.2 m

hp1 ∙ critical ice lid thickness for topo ponds (dEdd) 0.01 m
hpmin minimum melt pond depth (shortwave) 0.005 m
hpondn melt pond depth m
hs_min minimum thickness for which 𝑇𝑠 is computed 1.×10−4 m
hs0 ∙ snow depth at which transition to ice occurs (dEdd) 0.03 m
hs1 ∙ snow depth of transition to pond ice 0.03 m
hs_ssl snow surface scattering layer thickness 0.04 m
Hstar determines mean thickness of ridged ice

25. m

HTE length of eastern edge (∆𝑦) of T-cell m
HTN length of northern edge (∆𝑥) of T-cell m
HTS length of southern edge (∆𝑥) of T-cell m
HTW length of western edge of (∆𝑦) T-cell m
I
i(j)_glob global domain location for each grid cell
i0vis fraction of penetrating visible solar radiation 0.70
iblkp block on which to write debugging data
i(j)block Cartesian i,j position of block
ice_hist_field type for history variables
ice_ic ∙ choice of initial conditions (see Ice Initial State)
ice_stdout unit number for standard output
ice_stderr unit number for standard error output
ice_ref_salinity reference salinity for ice–ocean exchanges

4. ppt

icells number of grid cells with specified property (for vec-
torization)

iceruf ice surface roughness 5.×10−4 m
icetmask ice extent mask (T-cell)
iceumask ice extent mask (U-cell)

Continued on next page

89

CICE Documentation

Table 1 – continued from previous page

idate the date at the end of the current time step (yyyymmdd)
idate0 initial date
ierr general-use error flag
igrid interface points for vertical bio grid
i(j)hi last i(j) index of physical domain (local)
i(j)lo first i(j) index of physical domain (local)
incond_dir ∙ directory to write snapshot of initial condition
incond_file ∙ prefix for initial condition file name
int_kind definition of an integer selected_real_kind(6)
integral_order polynomial order of quadrature integrals in remapping 3
ip, jp local processor coordinates on which to write debug-

ging data
istep local step counter for time loop
istep0 ∙ number of steps taken in previous run 0
istep1 total number of steps at current time step
Iswabs shortwave radiation absorbed in ice layers W/m2

J
K
kalg ∙ absorption coefficient for algae
kappav visible extinction coefficient in ice,

wavelength<700nm
1.4 m−1

kcatbound ∙ category boundary formula
kdyn ∙ type of dynamics (1 = EVP, 0 = off) 1
kg_to_g kg to g conversion factor

1000.

kice thermal conductivity of fresh ice ([3]) 2.03 W/m/deg
kitd ∙ type of itd conversions (0 = delta function, 1 = linear

remap)
1

kmt_file ∙ input file for land mask info
krdg_partic ∙ ridging participation function 1
krdg_redist ∙ ridging redistribution function 1
krgdn mean ridge thickness per thickness of ridging ice
kseaice thermal conductivity of ice for zero-layer thermody-

namics
2.0 W/m/deg

ksno thermal conductivity of snow 0.30 W/m/deg
kstrength ∙ ice stength formulation (1= [39], 0 = [11]) 1
ktherm ∙ thermodynamic formulation (0 = zero-layer, 1 = [3],

2 = mushy)
L
l_brine flag for brine pocket effects
l_conservation_check if true, check conservation when ridging
l_fixed_area flag for prescribing remapping fluxes
l_mpond_fresh ∙ if true, retain (topo) pond water until ponds drain
latpnt ∙ desired latitude of diagnostic points degrees N
latt(u)_bounds latitude of T(U) grid cell corners degrees N
lcdf64 ∙ if true, use 64-bit format
Lfresh latent heat of melting of fresh ice = Lsub - Lvap J/kg
lhcoef transfer coefficient for latent heat

Continued on next page

90 Chapter 5. Index of primary variables and parameters

CICE Documentation

Table 1 – continued from previous page

lmask_n(s) northern (southern) hemisphere mask
local_id local address of block in current distribution
log_kind definition of a logical variable kind(.true.)
lonpnt ∙ desired longitude of diagnostic points degrees E
lont(u)_bounds longitude of T(U) grid cell corners degrees E
Lsub latent heat of sublimation for fresh water 2.835× 106 J/kg
ltripole_grid flag to signal use of tripole grid
Lvap latent heat of vaporization for fresh water 2.501× 106 J/kg
M
m_min minimum mass for computing velocity 0.01 kg/m2

m_to_cm meters to cm conversion
100.

m1 constant for lateral melt rate 1.6×10−6 m/s deg−𝑚2

m2 constant for lateral melt rate 1.36
m2_to_km2 m2 to km2 conversion 1×10−6

maskhalo_bound ∙ turns on bound_state halo masking
maskhalo_dyn ∙ turns on dynamics halo masking
maskhalo_remap ∙ turns on transport halo masking
master_task task ID for the controlling processor
max_blocks maximum number of blocks per processor
max_ntrcr maximum number of tracers available 5
maxraft maximum thickness of ice that rafts

1. m

mday day of the month
meltb basal ice melt m
meltl lateral ice melt m
melts snow melt m
meltt top ice melt m
min_salin threshold for brine pockets 0.1 ppt
mlt_onset day of year that surface melt begins
month the month number
monthp previous month number
mps_to_cmpdy m per s to cm per day conversion 8.64×106

mtask local processor number that writes debugging data
mu_rdg ∙ e-folding scale of ridged ice
my_task task ID for the current processor
N
n_aero number of aerosol species
natmiter ∙ number of atmo boundary layer iterations 5
nblocks number of blocks on current processor
nblocks_tot total number of blocks in decomposition
nblocks_x(y) total number of blocks in x(y) direction
nbtrcr number of biology tracers
ncat number of ice categories 5
ncat_hist number of categories written to history
ndte ∙ number of subcycles 120
ndtd ∙ number of dynamics/advection steps under thermo 1

Continued on next page

91

CICE Documentation

Table 1 – continued from previous page

new_day flag for beginning new day
new_hour flag for beginning new hour
new_month flag for beginning new month
new_year flag for beginning new year
nghost number of rows of ghost cells surrounding each subdo-

main
1

ngroups number of groups of flux triangles in remapping 5
nhlat northern latitude of artificial mask edge 30∘S
nilyr number of ice layers in each category 4
nit nitrate concentration mmol/m3

nlt_bgc_[chem] ocean sources and sinks for biogeochemistry
nml_filename namelist file name
nprocs ∙ total number of processors
npt ∙ total number of time steps (dt)
ns_boundary_type ∙ type of north-south boundary condition
nslyr number of snow layers in each category
nspint number of solar spectral intervals
nstreams number of history output streams (frequencies)
nt_<trcr> tracer index
ntrace number of fields being transported
ntrcr number of tracers
nu_diag unit number for diagnostics output file
nu_dump unit number for dump file for restarting
nu_dump_eap unit number for EAP dynamics dump file for restarting
nu_dump_[tracer] unit number for tracer dump file for restarting
nu_forcing unit number for forcing data file
nu_grid unit number for grid file
nu_hdr unit number for binary history header file
nu_history unit number for history file
nu_kmt unit number for land mask file
nu_nml unit number for namelist input file
nu_restart unit number for restart input file
nu_restart_eap unit number for EAP dynamics restart input file
nu_restart_[tracer] unit number for tracer restart input file
nu_rst_pointer unit number for pointer to latest restart file
num_avail_hist_fields_[shape]number of history fields of each array shape
nvar number of horizontal grid fields written to history
nvarz number of category, vertical grid fields written to his-

tory
nx(y)_block total number of gridpoints on block in x(y) direction
nx(y)_global number of physical gridpoints in x(y) direction, global

domain
nyr year number
O
ocean_bio concentrations of bgc constituents in the ocean
oceanmixed_file ∙ data file containing ocean forcing data
oceanmixed_ice ∙ if true, use internal ocean mixed layer
ocn_data_dir ∙ directory for ocean forcing data
ocn_data_format ∙ format of ocean forcing files

Continued on next page

92 Chapter 5. Index of primary variables and parameters

CICE Documentation

Table 1 – continued from previous page

ocn_data_type ∙ source of surface temperature, salinity data
omega angular velocity of Earth 7.292×10−5 rad/s
opening rate of ice opening due to divergence and shear 1/s
P
p001 1/1000
p01 1/100
p025 1/40
p027 1/36
p05 1/20
p055 1/18
p1 1/10
p111 1/9
p15 15/100
p166 1/6
p2 1/5
p222 2/9
p25 1/4
p333 1/3
p4 2/5
p5 1/2
p52083 25/48
p5625m -9/16
p6 3/5
p666 2/3
p75 3/4
phi_c_slow_mode ∙ critical liquid fraction
phi_i_mushy ∙ solid fraction at lower boundary
phi_sk skeletal layer porosity
phi_snow ∙ snow porosity for brine height tracer
pi 𝜋
pi2 2𝜋
pih 𝜋/2
piq 𝜋/4
pi(j,b,m)loc x (y, block, task) location of diagnostic points
plat grid latitude of diagnostic points
plon grid longitude of diagnostic points
pndaspect ∙ aspect ratio of pond changes (depth:area) 0.8
pointer_file ∙ input file for restarting
potT atmospheric potential temperature K
PP_net total primary productivity per grid cell mg C/m2/s
precip_units ∙ liquid precipitation data units
print_global ∙ if true, print global data F
print_points ∙ if true, print point data F
processor_shape ∙ descriptor for processor aspect ratio
prs_sig replacement pressure N/m
Pstar ice strength parameter 2.75×104N/m
puny a small positive number 1×10−11

Q
Qa specific humidity at 10 m kg/kg

Continued on next page

93

CICE Documentation

Table 1 – continued from previous page

qdp deep ocean heat flux W/m2

qqqice for saturated specific humidity over ice 1.16378×107kg/m3

qqqocn for saturated specific humidity over ocean 6.275724×106kg/m3

Qref 2m atmospheric reference specific humidity kg/kg
R
R_C2N algal carbon to nitrate factor

7. mole/mole

R_gC2molC mg/mmol carbon 12.01 mg/mole
R_chl2N algal chlorophyll to nitrate factor

3. mg/mmol

R_ice ∙ parameter for Delta-Eddington ice albedo
R_pnd ∙ parameter for Delta-Eddington pond albedo
R_S2N algal silicate to nitrate factor 0.03 mole/mole
R_snw ∙ parameter for Delta-Eddington snow albedo
r16_kind definition of quad precision selected_real_kind(26)
Rac_rapid_mode ∙ critical Rayleigh number 10
rad_to_deg degree-radian conversion 180/𝜋
radius earth radius 6.37×106 m
rdg_conv convergence for ridging 1/s
rdg_shear shear for ridging 1/s
real_kind definition of single precision real selected_real_kind(6)
refindx refractive index of sea ice 1.310
revp real(revised_evp)
restart ∙ if true, initialize using restart file instead of defaults T
restart_age ∙ if true, read age restart file
restart_bgc ∙ if true, read bgc restart file
restart_dir ∙ path to restart/dump files
restart_file ∙ restart file prefix
restart_format ∙ restart file format
restart_[tracer] ∙ if true, read tracer restart file
restart_ext ∙ if true, read/write halo cells in restart file
restore_bgc ∙ if true, restore nitrate/silicate to data
restore_ice ∙ if true, restore ice state along lateral boundaries
restore_ocn ∙ restore sst to data
revised_evp ∙ if true, use revised EVP parameters and approach
rfracmin ∙ minimum melt water fraction added to ponds 0.15
rfracmax ∙ maximum melt water fraction added to ponds 1.0
rhoa air density kg/m3

rhofresh density of fresh water 1000.0 kg/m3

rhoi density of ice
917. kg/m3

rhos density of snow
330. kg/m3

rhosi average sea ice density (for hbrine tracer)
940. kg/m3

Continued on next page

94 Chapter 5. Index of primary variables and parameters

CICE Documentation

Table 1 – continued from previous page

rhow density of seawater
1026. kg/m3

rnilyr real(nlyr)
rside fraction of ice that melts laterally
rsnw_fresh freshly fallen snow grain radius

100. × 10−6 m

rsnw_melt ∙ melting snow grain radius
1000. × 10−6 m

rsnw_nonmelt nonmelting snow grain radius
500. × 10−6 m

rsnw_sig standard deviation of snow grain radius
250. × 10−6 m

runid ∙ identifier for run
runtype ∙ type of initialization used
S
s11, s12, s22 stress tensor components
saltmax max salinity, at ice base ([3]) 3.2 ppt
scale_factor scaling factor for shortwave radiation components
sec seconds elasped into idate
secday number of seconds in a day

86400.

shcoef transfer coefficient for sensible heat
shear strain rate II component 1/s
shlat southern latitude of artificial mask edge 30∘N
shortwave ∙ flag for shortwave parameterization (‘ccsm3’ or

‘dEdd’)
sig1(2) principal stress components (diagnostic)
sil silicate concentration mmol/m3

sinw sine of the turning angle in water
0.

Sinz ice salinity profile ppt
sk_l skeletal layer thickness 0.03 m
snoice snow–ice formation m
snowpatch length scale for parameterizing nonuniform snow cov-

erage
0.02 m

skl_bgc ∙ biogeochemistry on/off
spval special value (single precision) 1030

spval_dbl special value (double precision) 1030

ss_tltx(y) sea surface in the x(y) direction m/m
sss sea surface salinity ppt
sst sea surface temperature C
Sswabs shortwave radiation absorbed in snow layers W/m2

stefan-boltzmann Stefan-Boltzmann constant 5.67×10−8 W/m2K4

Continued on next page

95

CICE Documentation

Table 1 – continued from previous page

stop_now if 1, end program execution
strairx(y) stress on ice by air in the x(y)-direction (centered in U

cell)
N/m2

strairx(y)T stress on ice by air, x(y)-direction (centered in T cell) N/m2

strax(y) wind stress components from data N/m2

strength ice strength (pressure) N/m
stress12 internal ice stress, 𝜎12 N/m
stressm internal ice stress, 𝜎11 − 𝜎22 N/m
stressp internal ice stress, 𝜎11 + 𝜎22 N/m
strintx(y) divergence of internal ice stress, x(y) N/m2

strocnx(y) ice–ocean stress in the x(y)-direction (U-cell) N/m2

strocnx(y)T ice–ocean stress, x(y)-dir. (T-cell) N/m2

strtltx(y) surface stress due to sea surface slope N/m2

swv(n)dr(f) incoming shortwave radiation, visible (near IR), direct
(diffuse)

W/m2

T
Tair air temperature at 10 m K
tarea area of T-cell m2

tarean area of northern hemisphere T-cells m2

tarear 1/tarea 1/m2

tareas area of southern hemisphere T-cells m2

tcstr string identifying T grid for history variables
tday absolute day number
Tf freezing temperature C
Tffresh freezing temp of fresh ice 273.15 K
tfrz_option ∙ form of ocean freezing temperature
thinS minimum ice thickness for brine tracer
time total elapsed time s
time_beg beginning time for history averages
time_bounds beginning and ending time for history averages
time_end ending time for history averages
time_forc time of last forcing update s
Timelt melting temperature of ice top surface

0. C

tinyarea puny * tarea m2

Tinz Internal ice temperature C
TLAT latitude of cell center radians
TLON longitude of cell center radians
tmask land/boundary mask, thickness (T-cell)
tmass total mass of ice and snow kg/m2

Tmin minimum allowed internal temperature -100. C
Tmltz melting temperature profile of ice
Tocnfrz temperature of constant freezing point parameteriza-

tion
-1.8 C

tr_aero ∙ if true, use aerosol tracers
tr_bgc_[tracer] ∙ if true, use biogeochemistry tracers
tr_brine ∙ if true, use brine height tracer
tr_FY ∙ if true, use first-year area tracer

Continued on next page

96 Chapter 5. Index of primary variables and parameters

CICE Documentation

Table 1 – continued from previous page

tr_iage ∙ if true, use ice age tracer
tr_lvl ∙ if true, use level ice area and volume tracers
tr_pond_cesm ∙ if true, use CESM melt pond scheme
tr_pond_lvl ∙ if true, use level-ice melt pond scheme
tr_pond_topo ∙ if true, use topo melt pond scheme
trcr ice tracers
trcr_depend tracer dependency on basic state variables
Tref 2m atmospheric reference temperature K
trestore ∙ restoring time scale days
tripole if true, block lies along tripole boundary
tripoleT if true, tripole boundary is T-fold; if false, U-fold
Tsf_errmax max allowed 𝑇s𝑓 error (thermodynamics) 5.×10−4deg
Tsfc(n) temperature of ice/snow top surface (in category n) C
Tsnz Internal snow temperature C
Tsmelt melting temperature of snow top surface

0. C

TTTice for saturated specific humidity over ice 5897.8 K
TTTocn for saturated specific humidity over ocean 5107.4 K
U
uarea area of U-cell m 2

uarear 1/uarea m −2

uatm wind velocity in the x direction m/s
ULAT latitude of U-cell centers radians
ULON longitude of U-cell centers radians
umask land/boundary mask, velocity (U-cell)
umax_stab ice speed threshold (diagnostics)

1. m/s

umin min wind speed for turbulent fluxes
1. m/s

uocn ocean current in the x-direction m/s
update_ocn_f ∙ if true, include frazil ice fluxes in ocean flux fields
use_leap_years ∙ if true, include leap days
use_restart_time ∙ if true, use date from restart file
ustar_min ∙ minimum friction velocity under ice
ucstr string identifying U grid for history variables
uvel x-component of ice velocity m/s
uvel_init x-component of ice velocity at beginning of time step m/s
uvm land/boundary mask, velocity (U-cell)
V
vatm wind velocity in the y direction m/s
vice(n) volume per unit area of ice (in category n) m
vicen_init ice volume at beginning of timestep m
viscosity_dyn dynamic viscosity of brine 1.79 × 10−3 kg/m/s
vocn ocean current in the y-direction m/s
vonkar von Karman constant 0.4
vraftn volume of rafted ice m

Continued on next page

97

CICE Documentation

Table 1 – continued from previous page

vrdgn volume of ridged ice m
vredistrn redistribution function: fraction of new ridge volume
vsno(n) volume per unit area of snow (in category n) m
vvel y-component of ice velocity m/s
vvel_init y-component of ice velocity at beginning of time step m/s
W
warmice value for constant albedo parameterization 0.68
warmsno value for constant albedo parameterization 0.77
wind wind speed m/s
write_history if true, write history now
write_ic ∙ if true, write initial conditions
write_restart if 1, write restart now
X
Y
ycycle ∙ number of years in forcing data cycle
yday day of the year
yield_curve type of yield curve ellipse
yieldstress11(12, 22) yield stress tensor components
year_init ∙ the initial year
Z
zlvl atmospheric level height m
zref reference height for stability

10. m

zTrf reference height for 𝑇𝑟𝑒𝑓 , 𝑄𝑟𝑒𝑓 , 𝑈𝑟𝑒𝑓

2. m

zvir gas constant (water vapor)/gas constant (air) - 1 0.606

98 Chapter 5. Index of primary variables and parameters

CHAPTER 6

References

References

• search

99

CICE Documentation

100 Chapter 6. References

Bibliography

[1] T.L. Amundrud, H. Malling, and R.G. Ingram. Geometrical constraints on the evolution of ridged sea ice. J.
Geophys. Res. Oceans, 2004. URL: http://dx.doi.org/10.1029/2003JC002251.

[2] C. Konig Beatty and D.M. Holland. Modeling landfast ice by adding tensile strength. J. Phys. Oceanogr.,
40:185–198, 2010. URL: http://dx.doi.org/10.1175/2009JPO4105.1.

[3] C.M. Bitz and W.H. Lipscomb. An energy-conserving thermodynamic sea ice model for climate study. J. Geo-
phys. Res. Oceans, 104(C7):15669–15677, 1999. URL: http://dx.doi.org/10.1029/1999JC900100.

[4] S. Bouillon, T. Fichefet, V. Legat, and G. Madec. The elastic-viscous-plastic method revisited. Ocean Modelling,
71:1–12, 2013. URL: http://dx.doi.org/10.1016/j.ocemod.2013.05.013.

[5] W.M. Connolley, J.M. Gregory, E.C. Hunke, and A.J. McLaren. On the consistent scaling of terms in the sea ice
dynamics equation. J. Phys. Oceanogr., 34:1776–1780, 2004. URL: http://dx.doi.org/10.1175/1520-0485(2004)
034\T1\textless{}1776:OTCSOT\T1\textgreater{}2.0.CO;2.

[6] A. Craig, S. Mickelson, E.C. Hunke, and D. Bailey. Improved parallel performance of the CICE model
in CESM1. Int. J High Perform. Comput. Appl, 29(2):154–165, 2014. URL: http://dx.doi.org/10.1177/
1094342014548771.

[7] J.K. Dukowicz and J.R. Baumgardner. Incremental remapping as a transport/advection algorithm. J. Comput.
Phys., 160:318–335, 2000. URL: http://dx.doi.org/10.1006/jcph.2000.6465.

[8] G.M. Flato and W.D. Hibler. Ridging and strength in modeling the thickness distribution of Arctic sea ice. J.
Geophys. Res. Oceans, 100:18611–18626, 1995. URL: http://dx.doi.org/10.1029/95JC02091.

[9] C.A. Geiger, W.D. Hibler, and S.F. Ackley. Large-scale sea ice drift and deformation: Comparison between
models and observations in the western Weddell Sea during 1992. J. Geophys. Res. Oceans, 103:21893–21913,
1998. URL: http://dx.doi.org/10.1029/98JC01258.

[10] Y. He and C.H.Q. Ding. Using Accurate Arithmetics to Improve Numerical Reproducibility and Stability in
Parallel Applications. The Journal of Supercomputing, 18:259–277, 2001. URL: http://dx.doi.org/10.1023/A:
1008153532043.

[11] W.D. Hibler. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9:817–846, 1979. URL: http://dx.
doi.org/10.1175/1520-0485(1979)009\T1\textless{}0815:ADTSIM\T1\textgreater{}2.0.CO;2.

[12] W.D. Hibler. Modeling a variable thickness sea ice cover. Mon. Wea. Rev., 108:1943–1973, 1980. URL: http:
//dx.doi.org/10.1175/1520-0493(1980)108\T1\textless{}1943:MAVTSI\T1\textgreater{}2.0.CO;2.

101

http://dx.doi.org/10.1029/2003JC002251
http://dx.doi.org/10.1175/2009JPO4105.1
http://dx.doi.org/10.1029/1999JC900100
http://dx.doi.org/10.1016/j.ocemod.2013.05.013
http://dx.doi.org/10.1175/1520-0485(2004)034\T1\textless {}1776:OTCSOT\T1\textgreater {}2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2004)034\T1\textless {}1776:OTCSOT\T1\textgreater {}2.0.CO;2
http://dx.doi.org/10.1177/1094342014548771
http://dx.doi.org/10.1177/1094342014548771
http://dx.doi.org/10.1006/jcph.2000.6465
http://dx.doi.org/10.1029/95JC02091
http://dx.doi.org/10.1029/98JC01258
http://dx.doi.org/10.1023/A:1008153532043
http://dx.doi.org/10.1023/A:1008153532043
http://dx.doi.org/10.1175/1520-0485(1979)009\T1\textless {}0815:ADTSIM\T1\textgreater {}2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1979)009\T1\textless {}0815:ADTSIM\T1\textgreater {}2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1980)108\T1\textless {}1943:MAVTSI\T1\textgreater {}2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1980)108\T1\textless {}1943:MAVTSI\T1\textgreater {}2.0.CO;2

CICE Documentation

[13] W.D. Hibler and K. Bryan. A diagnostic ice-ocean model. J. Phys. Oceanogr., 17:987–1015, 1987. URL: http:
//dx.doi.org/10.1175/1520-0485(1987)017\T1\textless{}0987:ADIM\T1\textgreater{}2.0.CO;2.

[14] W.D. Hibler, A. Roberts, P. Heil, A.Y. Proshutinsky, H.L. Simmons, and J. Lovick. Modeling M2 tidal
variability in Arctic sea-ice drift and deformation. Ann. Glaciol., 2006. URL: http://dx.doi.org/10.3189/
172756406781811178.

[15] E.C. Hunke. Viscous-plastic sea ice dynamics with the EVP model: Linearization issues. J. Comp. Phys.,
170:18–38, 2001. URL: http://dx.doi.org/10.1006/jcph.2001.6710.

[16] E.C. Hunke and J.K. Dukowicz. An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanogr.,
27:1849–1867, 1997. URL: http://dx.doi.org/10.1175/1520-0485(1997)027\T1\textless{}1849:AEVPMF\T1\
textgreater{}2.0.CO;2.

[17] E.C. Hunke and J.K. Dukowicz. The Elastic-Viscous-Plastic sea ice dynamics model in general orthogonal
curvilinear coordinates on a sphere—Effect of metric terms. Mon. Wea. Rev., 130:1848–1865, 2002. URL:
http://dx.doi.org/10.1175/1520-0493(2002)130\T1\textless{}1848:TEVPSI\T1\textgreater{}2.0.CO;2.

[18] E.C. Hunke and J.K. Dukowicz. The sea ice momentum equation in the free drift regime. Technical Report LA-
UR-03-2219, Los Alamos National Laboratory, 2003. URL: https://github.com/CICE-Consortium/CICE/blob/
master/doc/PDF/LAUR-03-2219.pdf.

[19] E.C. Hunke, A. Roberts, R. Allard, J.F. Lemieux, M. Turner, A.P. Craig, A.K. DuVivier, D. Bailey, M.M. Holland,
M. Winton, F. Dupont, and R. Grumbine. The CICE Consortium Sea Ice Modeling Suite. In Prep., 2018. URL:
http://dx.doi.org/IN-PROGRESS.

[20] E.C. Hunke and Y. Zhang. A comparison of sea ice dynamics models at high resolution. Mon. Wea.
Rev., 127:396–408, 1999. URL: http://dx.doi.org/10.1175/1520-0493(1999)127\T1\textless{}0396:ACOSID\
T1\textgreater{}2.0.CO;2.

[21] M. Jin, C. Deal, J. Wang, K.H. Shin, N. Tanaka, T.E. Whiteledge, S.H. Lee, and R.R. Gradinger. Controls of the
landfast ice-ocean ecosystem offshore Barrow, Alaska. Ann. Glaciol., 44:63–72, 2006. URL: https://github.com/
CICE-Consortium/CICE/blob/master/doc/PDF/JDWSTWLG06.pdf.

[22] B.G. Kauffman and W.G. Large. The CCSM coupler, version 5.0.1. 2002. URL: https://github.com/
CICE-Consortium/CICE/blob/master/doc/PDF/KL_NCAR2002.pdf.

[23] M. Kimmritz, S. Danilov, and M. Losch. On the convergence of the modified elastic-viscous-plastic method for
solving the sea ice momentum equation. J. Comp. Phys., 296:90–100, 2015. URL: http://dx.doi.org/10.1016/j.
jcp.2015.04.051.

[24] J.F. Lemieux, F. Dupont, P. Blain, F. Roy, G.C. Smith, and G.M. Flato. Improving the simulation of landfast ice by
combining tensile strength and a parameterization for grounded ridges. J. Geophys. Res. Oceans, 121:7354–7368,
2016. URL: http://dx.doi.org/10.1002/2016JC012006.

[25] J.F. Lemieux, D.A. Knoll, B. Tremblay, D.M. Holland, and M. Losch. A comparison of the Jacobian-free Newton
Krylov method and the EVP model for solving the sea ice momentum equation with a viscous-plastic formula-
tion: a serial algorithm study. J. Comp. Phys., 231:5926–5944, 2012. URL: http://dx.doi.org/10.1016/j.jcp.2012.
05.024.

[26] M. Leppäranta, A. Oikkonen, K. Shirasawa, and Y. Fukamachi. A treatise on frequency spectrum of drift ice
velocity. Cold Reg. Sci. Technol., 76-77:83–91, 2012. doi:http://dx.doi.org/10.1016/j.coldregions.2011.12.005.

[27] W.H. Lipscomb. Remapping the thickness distribution in sea ice models. J. Geophys. Res. Oceans,
106:13989–14000, 2001. URL: http://dx.doi.org/10.1029/2000JC000518.

[28] W.H. Lipscomb and E.C. Hunke. Modeling sea ice transport using incremental remapping. Mon. Wea.
Rev., 132:1341–1354, 2004. URL: http://dx.doi.org/10.1175/1520-0493(2004)132\T1\textless{}1341:MSITUI\
T1\textgreater{}2.0.CO;2.

[29] W.H. Lipscomb, E.C. Hunke, W. Maslowski, and J. Jakacki. Ridging, strength, and stability in high-resolution
sea ice models. J. Geophys. Res. Oceans, 2007. URL: http://dx.doi.org/10.1029/2005JC003355.

102 Bibliography

http://dx.doi.org/10.1175/1520-0485(1987)017\T1\textless {}0987:ADIM\T1\textgreater {}2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1987)017\T1\textless {}0987:ADIM\T1\textgreater {}2.0.CO;2
http://dx.doi.org/10.3189/172756406781811178
http://dx.doi.org/10.3189/172756406781811178
http://dx.doi.org/10.1006/jcph.2001.6710
http://dx.doi.org/10.1175/1520-0485(1997)027\T1\textless {}1849:AEVPMF\T1\textgreater {}2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1997)027\T1\textless {}1849:AEVPMF\T1\textgreater {}2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2002)130\T1\textless {}1848:TEVPSI\T1\textgreater {}2.0.CO;2
https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/LAUR-03-2219.pdf
https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/LAUR-03-2219.pdf
http://dx.doi.org/IN-PROGRESS
http://dx.doi.org/10.1175/1520-0493(1999)127\T1\textless {}0396:ACOSID\T1\textgreater {}2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1999)127\T1\textless {}0396:ACOSID\T1\textgreater {}2.0.CO;2
https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/JDWSTWLG06.pdf
https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/JDWSTWLG06.pdf
https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/KL_NCAR2002.pdf
https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/KL_NCAR2002.pdf
http://dx.doi.org/10.1016/j.jcp.2015.04.051
http://dx.doi.org/10.1016/j.jcp.2015.04.051
http://dx.doi.org/10.1002/2016JC012006
http://dx.doi.org/10.1016/j.jcp.2012.05.024
http://dx.doi.org/10.1016/j.jcp.2012.05.024
https://doi.org/http://dx.doi.org/10.1016/j.coldregions.2011.12.005
http://dx.doi.org/10.1029/2000JC000518
http://dx.doi.org/10.1175/1520-0493(2004)132\T1\textless {}1341:MSITUI\T1\textgreater {}2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2004)132\T1\textless {}1341:MSITUI\T1\textgreater {}2.0.CO;2
http://dx.doi.org/10.1029/2005JC003355

CICE Documentation

[30] G.A. Maykut and N. Untersteiner. Some results from a time dependent thermodynamic model of sea ice. J.
Geophys. Res., 76:1550–1575, 1971. URL: http://dx.doi.org/10.1029/JC076i006p01550.

[31] A.A. Mirin and P.H. Worley. Improving the Performance Scalability of the Community Atmosphere Model. Int.
J High Perform. Comput. Appl, 26(1):17–30, 2012. URL: http://dx.doi.org/10.1177/1094342011412630.

[32] R.J. Murray. Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126:251–273, 1996.
URL: http://dx.doi.org/10.1006/jcph.1996.0136.

[33] D. Notz, A. Jahn, E. Hunke, F. Massonnet, J. Stroeve, B. Tremblay, and M. Vancoppenolle. The CMIP6 Sea-
Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations. Geosci.
Model Dev., 9:3427–3446, 2016. URL: http://dx.doi.org/10.5194/gmd-9-3427-2016.

[34] C.L. Parkinson and W.M. Washington. A large-scale numerical model of sea ice. J. Geophys. Res. Oceans,
84(C1):331–337, 1979. URL: http://dx.doi.org/10.1029/JC084iC01p00311.

[35] D.J. Pringle, H. Eicken, H.J. Trodahl, and L.G.E. Backstrom. Thermal conductivity of landfast Antarctic and
Arctic sea ice. J. Geophys. Res. Oceans, 2007. URL: http://dx.doi.org/10.1029/2006JC003641.

[36] A. Roberts, E.C. Hunke, R. Allard, D.A. Bailey, A.P. Craig, J. Lemieux, and M.D. Turner. Quality control for
community-based sea-ice model development. Philos. Trans. Royal Soc. A, 2018. URL: http://dx.doi.org/10.
1098/rsta.2017.0344.

[37] A.F. Roberts, A.P. Craig, W. Maslowski, R. Osinski, A.K. DuVivier, M. Hughes, B. Nijssen, J.J. Cas-
sano, and M. Brunke. Simulating transient ice-ocean Ekman transport in the Regional Arctic System Model
and Community Earth System Model. Ann. Glaciol., 56(69):211–228, 2015. URL: http://dx.doi.org/10.3189/
2015AoG69A760.

[38] A. Rosati and K. Miyakoda. A general circulation model for upper ocean simulation. J. Phys. Oceanogr.,
18:1601–1626, 1988. URL: http://dx.doi.org/10.1175/1520-0485(1988)018\T1\textless{}1601:AGCMFU\T1\
textgreater{}2.0.CO;2.

[39] D.A. Rothrock. The energetics of plastic deformation of pack ice by ridging. J. Geophys. Res., 80:4514–4519,
1975. URL: http://dx.doi.org/10.1029/JC080i033p04514.

[40] E.M. Schulson. Brittle failure of ice. Eng. Fract. Mech., 68:1839–1887, 2001. URL: http://dx.doi.org/10.1016/
S0013-7944(01)00037-6.

[41] R.D. Smith, S. Kortas, and B. Meltz. Curvilinear coordinates for global ocean models. Technical Report LA-
UR-95-1146, Los Alamos National Laboratory, 1995. URL: https://github.com/CICE-Consortium/CICE/blob/
master/doc/PDF/LAUR-95-1146.pdf.

[42] A.H. Stroud. Approximate Calculation of Multiple Integrals. Prentice-Hall, 1971. Englewood Cliffs, New Jersey.

[43] K.E. Taylor. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos.,
106(D7):7183–7192, 2001. URL: http://dx.doi.org/10.1029/2000JD900719.

[44] A.S. Thorndike, D.A. Rothrock, G.A. Maykut, and R. Colony. The thickness distribution of sea ice. J. Geophys.
Res., 80:4501–4513, 1975. URL: http://dx.doi.org/10.1029/JC080i033p04501.

[45] M. Tsamados, D.L. Feltham, and A.V. Wilchinsky. Impact of a new anisotropic rheology on simulations of Arctic
sea ice. J. Geophys. Res. Oceans, 118:91–107, 2013. URL: http://dx.doi.org/10.1029/2012JC007990.

[46] H. von Storch and F.W. Zwiers. Statistical Analysis in Climate Research. Cambridge University Press, 1999.
Cambridge, UK.

[47] J. Weiss and E.M. Schulson. Coulombic faulting from the grain scale to the geophysical scale: lessons from ice.
J. of Phys. D: Appl. Phys., 42:214017, 2009. URL: http://dx.doi.org/10.1088/0022-3727/42/21/214017.

[48] A.V. Wilchinsky and D.L. Feltham. Dependence of sea ice yield-curve shape on ice thickness. J. Phys. Oceanogr.,
34:2852–2856, 2004. URL: http://dx.doi.org/10.1175/JPO2667.1.

Bibliography 103

http://dx.doi.org/10.1029/JC076i006p01550
http://dx.doi.org/10.1177/1094342011412630
http://dx.doi.org/10.1006/jcph.1996.0136
http://dx.doi.org/10.5194/gmd-9-3427-2016
http://dx.doi.org/10.1029/JC084iC01p00311
http://dx.doi.org/10.1029/2006JC003641
http://dx.doi.org/10.1098/rsta.2017.0344
http://dx.doi.org/10.1098/rsta.2017.0344
http://dx.doi.org/10.3189/2015AoG69A760
http://dx.doi.org/10.3189/2015AoG69A760
http://dx.doi.org/10.1175/1520-0485(1988)018\T1\textless {}1601:AGCMFU\T1\textgreater {}2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1988)018\T1\textless {}1601:AGCMFU\T1\textgreater {}2.0.CO;2
http://dx.doi.org/10.1029/JC080i033p04514
http://dx.doi.org/10.1016/S0013-7944(01)00037-6
http://dx.doi.org/10.1016/S0013-7944(01)00037-6
https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/LAUR-95-1146.pdf
https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/LAUR-95-1146.pdf
http://dx.doi.org/10.1029/2000JD900719
http://dx.doi.org/10.1029/JC080i033p04501
http://dx.doi.org/10.1029/2012JC007990
http://dx.doi.org/10.1088/0022-3727/42/21/214017
http://dx.doi.org/10.1175/JPO2667.1

CICE Documentation

[49] A.V. Wilchinsky and D.L. Feltham. Modelling the rheology of sea ice as a collection of diamond-shaped floes.
J. Non-Newtonian Fluid Mech., 138:22–32, 2006. URL: http://dx.doi.org/10.1016/j.jnnfm.2006.05.001.

[50] D.S. Wilks. Statistical methods in the atmospheric sciences. Academic Press, 2006. 2nd ed.

[51] S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. J. Comp. Phys.,
31(3):335–362, 1979. URL: http://dx.doi.org/10.1016/0021-9991(79)90051-2.

[52] F.W. Zwiers and H. von Storch. Taking serial correlation into account in tests of the mean. J. Cli-
mate, 8(2):336–351, 1995. URL: http://dx.doi.org/10.1175/1520-0442(1995)008\T1\textless{}0336:TSCIAI\
T1\textgreater{}2.0.CO;2.

104 Bibliography

http://dx.doi.org/10.1016/j.jnnfm.2006.05.001
http://dx.doi.org/10.1016/0021-9991(79)90051-2
http://dx.doi.org/10.1175/1520-0442(1995)008\T1\textless {}0336:TSCIAI\T1\textgreater {}2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1995)008\T1\textless {}0336:TSCIAI\T1\textgreater {}2.0.CO;2

	Introduction - CICE
	About CICE
	Quick Start
	Acknowledgements
	Citing the CICE code
	Copyright

	Science Guide
	Coupling With Other Climate Model Components
	Fundamental Variables
	Tracers
	Horizontal Transport
	Dynamics

	User Guide
	Implementation
	Running CICE
	Testing CICE
	Case Settings
	Troubleshooting

	Developer Guide
	About Development
	Dynamics and Infrastructure
	Driver and Coupling
	Icepack
	Scripts
	Other things

	Index of primary variables and parameters
	References
	Bibliography

