
SOFTWARE TOOL ARTICLE

 Geniac: Automatic Configuration GENerator and

Installer for nextflow pipelines [version 2; peer review: 2

approved]
Fabrice Allain1-4, Julien Roméjon1-4, Philippe La Rosa1-4, Frédéric Jarlier1-4,
Nicolas Servant1-4, Philippe Hupé 1-5

1Institut Curie, Paris, F-75005, France
2U900, Inserm, Paris, F-75005, France
3PSL Research University, Paris, F-75005, France
4Mines Paris Tech, Fontainebleau, F-77305, France
5UMR144, CNRS, Paris, F-75005, France

First published: 02 Jul 2021, 1:76
https://doi.org/10.12688/openreseurope.13861.1
Latest published: 21 Feb 2022, 1:76
https://doi.org/10.12688/openreseurope.13861.2

v2

Abstract
With the advent of high-throughput biotechnological platforms and
their ever-growing capacity, life science has turned into a digitized,
computational and data-intensive discipline. As a consequence,
standard analysis with a bioinformatics pipeline in the context of
routine production has become a challenge such that the data can be
processed in real-time and delivered to the end-users as fast as
possible. The usage of workflow management systems along with
packaging systems and containerization technologies offer an
opportunity to tackle this challenge. While very powerful, they can be
used and combined in many multiple ways which may differ from one
developer to another. Therefore, promoting the homogeneity of the
workflow implementation requires guidelines and protocols which
detail how the source code of the bioinformatics pipeline should be
written and organized to ensure its usability, maintainability,
interoperability, sustainability, portability, reproducibility, scalability
and efficiency. Capitalizing on Nextflow, Conda, Docker, Singularity
and the nf-core initiative, we propose a set of best practices along the
development life cycle of the bioinformatics pipeline and deployment
for production operations which target different expert communities
including i) the bioinformaticians and statisticians ii) the software
engineers and iii) the data managers and core facility engineers. We
implemented Geniac (Automatic Configuration GENerator and
Installer for nextflow pipelines) which consists of a toolbox with three
components: i) a technical documentation available at
https://geniac.readthedocs.io to detail coding guidelines for the
bioinformatics pipeline with Nextflow, ii) a command line interface
with a linter to check that the code respects the guidelines, and iii) an

Open Peer Review

Approval Status

1 2

version 2

(revision)
21 Feb 2022

view

version 1
02 Jul 2021 view view

Toni Hermoso Pulido , The Barcelona

Institute of Science and Technology,

Barcelona, Spain

1.

Frédéric Lemoine , Institut Pasteur,

Université Paris Cité, Paris, France

2.

Any reports and responses or comments on the

article can be found at the end of the article.

Open Research Europe

Page 1 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

https://open-research-europe.ec.europa.eu/articles/1-76/v2
https://open-research-europe.ec.europa.eu/articles/1-76/v2
https://orcid.org/0000-0001-8468-3424
https://doi.org/10.12688/openreseurope.13861.1
https://doi.org/10.12688/openreseurope.13861.2
https://open-research-europe.ec.europa.eu/articles/1-76/v2
https://open-research-europe.ec.europa.eu/articles/1-76/v2#referee-response-28633
https://open-research-europe.ec.europa.eu/articles/1-76/v1
https://open-research-europe.ec.europa.eu/articles/1-76/v2#referee-response-27225
https://open-research-europe.ec.europa.eu/articles/1-76/v2#referee-response-27224
https://orcid.org/0000-0003-2016-6465
https://orcid.org/0000-0001-9576-4449
http://crossmark.crossref.org/dialog/?doi=10.12688/openreseurope.13861.2&domain=pdf&date_stamp=2022-02-21

Corresponding author: Philippe Hupé (philippe.hupe@curie.fr)
Author roles: Allain F: Methodology, Software, Writing – Review & Editing; Roméjon J: Conceptualization, Methodology, Software,
Writing – Review & Editing; La Rosa P: Methodology, Software, Writing – Review & Editing; Jarlier F: Validation, Writing – Review &
Editing; Servant N: Methodology, Software, Writing – Review & Editing; Hupé P: Conceptualization, Funding Acquisition, Methodology,
Software, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This research was financially supported by the European Union’s Horizon 2020 research and innovation programme
under the grant agreement No 825835 (project EUCANCan). This work was also supported by the Institut Curie and the Centre national
de la recherche scientifique.
Copyright: © 2022 Allain F et al. This is an open access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Allain F, Roméjon J, La Rosa P et al. Geniac: Automatic Configuration GENerator and Installer for nextflow
pipelines [version 2; peer review: 2 approved] Open Research Europe 2022, 1:76 https://doi.org/10.12688/openreseurope.13861.2
First published: 02 Jul 2021, 1:76 https://doi.org/10.12688/openreseurope.13861.1

add-on to generate configuration files, build the containers and
deploy the pipeline. The Geniac toolbox aims at the harmonization of
development practices across developers and automation of the
generation of configuration files and containers by parsing the source
code of the Nextflow pipeline.

Keywords
workflow management systems, containerization, reproducibility,
high-performance computing, bioinformatics pipelines

This article is included in the Societal

Challenges gateway.

Open Research Europe

Page 2 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

mailto:philippe.hupe@curie.fr
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/openreseurope.13861.2
https://doi.org/10.12688/openreseurope.13861.1
https://open-research-europe.ec.europa.eu/gateways/societalchallenges
https://open-research-europe.ec.europa.eu/gateways/societalchallenges
https://open-research-europe.ec.europa.eu/gateways/societalchallenges

Introduction
With the advent of high-throughput biotechnological platforms and their ever-growing capacity, life science
has turned into a digitized, computational and data-intensive discipline. While genomics was the major driving
force for high-throughput sequencing, other fields including proteomics, imaging and microscopy now
contribute to this data explosion (Goh & Wong, 2020). Therefore, the bottleneck shifted from data generation to
the ability to process and analyze data with efficient algorithms.

The data analysis actually encompasses two levels, corresponding to different time scales. The first level con-
sists of the iterative research development of innovative and state-of-the-art analysis methods to address novel
scientific questions. This level usually takes several months or years. In contrast, the second level consists of
routine production analysis using mature and validated methods to apply standard analysis (including qual-
ity control) to the new samples processed by these high-throughput biotechnological platforms (Reiter
et al., 2021). The production analysis must be performed within a short-delay (few hours up to few days)
in order to process in real-time the huge data flow produced by these platforms, such that the relevant
biological information can be extracted and provided to the end-users as fast as possible for their
downstream analysis. This time constraint is even more important when the data are used in healthcare to
support therapeutic decisions: in this case, quick parallel algorithms are required to process high-throughput
sequencing data (Jarlier et al., 2020). Both levels feed each other in a virtuous circle.

Whatever the level, the analysis is generally a complex workflow (or pipeline) which involves many steps
with different informatics languages and software, whether developed in-house or by third-parties. Coordinat-
ing the execution and allowing the scalability of these different steps to benefit from high-performance com-
puting infrastructures to speed-up computation have been simplified with the development of workflow
management systems (Leipzig, 2017; Strozzi et al., 2019) in combination with several technologies (Gruening
et al., 2018; Tanjo et al., 2021) including package management systems with Conda or Bioconda (Grüning
et al., 2018), and containers with Docker (Merkel, 2014) or Singularity (Kurtzer et al., 2017). Impor-
tantly, the use of workflow management systems also promotes reusable, reproducible and shareable analy-
sis according to the FAIR principles (Wilkinson et al., 2016) which not only apply to data but also to workflows
(Goble et al., 2020). Among the workflow management systems, Nextflow (Di Tommaso et al., 2017) became
very popular and offers many interesting features (Jackson et al., 2021). It uses a dataflow programming
model which implicitly defines the dependencies between the processes via their outputs and inputs such that
different processes can be run in parallel and/or wait for each other when needed.

Whenever run for production analysis, the workflow has no choice but to succeed such that the results can be
delivered in time to the end-users. If the workflow fails because of hardware issues or edge/corner cases due to
the data themselves, then debugging, fixing, re-installing and resuming the workflow must be performed as
fast as possible. This obviously requires harmonized guidelines and protocols across the different developers
involved in the development life cycle of the pipeline. This way, it is easier to maintain many different pipelines
on one hand and it simplifies the skill transfer from one person to another on the other hand. We developed the
biogitflow protocols which cover the code versioning using git and GitLab (Kamoun et al., 2020). However,
these protocols do not address how to write the code itself. While very valuable guidelines have been proposed to
avoid pitfalls in the implementation of bioinformatics pipelines using the technological stack with workflows
management systems, package management systems and containers (Gruening et al., 2018; Reiter et al., 2021;
Tanjo et al., 2021), they remain very generic. Therefore, software engineering best practices and technical proto-
cols for coding are necessary in order to promote software quality in bioinformatics to ensure the usability, main-
tainability, interoperability, sustainability, portability, reproducibility, scalability and efficiency of the workflows, as
highlighted by several authors (da Veiga Leprevost et al., 2014; Georgeson et al., 2019; Lawlor & Walsh, 2015).

          Amendments from Version 1
This version improves upon the main issues raised by the reviewer1 and reviewer2. The “Use cases” section has been further
detailed to explain i) how to “Add a Nextflow process for a tool available from source code”, ii) how to test the pipeline, and
iii) how to use the new options (init, install, test) available in the Geniac commmand line interface which is now available on
PyPI. Figure 3 has been modified to show where the files automatically generated in the build directory are copied in the install
directory. The documentation of geniac and geniac-demo have been improved. The manuscript relies on the new Geniac
version-2.0.0. We have fixed several wordings along the manuscript�.

Any further responses from the reviewers can be found at the end of the article

REVISED

Page 3 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

https://docs.conda.io/
https://biogitflow.readthedocs.io/
https://git-scm.com/
https://about.gitlab.com/

We acknowledge the nf-core initiative (Ewels et al., 2020) which plays a major role in promoting the
software engineering best practices to implement bioinformatics pipelines with Nextflow including code
template, linter, code reviewing and continuous integration for better quality. Our Bioinformatics Core Facility
decided to capitalize on both Nextflow and the nf-core initiative to provide the end-users with bioinfor-
matics pipelines in the context of production analysis. In this article, we describe additional guidelines on
how to write the Nextflow code. We propose a set of best practices along the development life cycle of
the pipeline and deployment for production operations which address different expert communities: i) the
bioinformaticians and statisticians who prototype the pipeline with state-of-the-art methods in order to extract
most of the hidden value from the data and provide the end-users with summary reports, ii) the software
engineers who optimize the pipeline to reduce the amount of required informatics resources, to shorten
the time to result delivery, iii) the data managers and core facility engineers who deploy and operate the
pipeline for daily production analysis for the end-users. The guidelines were motivated by: i) allowing the
different expert communities to still work with their preferred work habits, ii) reducing the overall devel-
opment cycle from the prototyping stage to deployment in a production environment, iii) providing port-
able pipelines with containers (Docker and Singularity), and iv) automating (whenever possible) the building of
containers from the source code of the pipeline. Therefore, we implemented Geniac (Automatic Configura-
tion GENerator and Installer for nextflow pipelines) (Hupé et al., 2022) to address these challenges. Geniac
may be used alone for any pipeline built with Nextflow or as an extension of the nf-core guidelines to reduce
the code complexity during the prototyping stage and standardize the deployment process.

Geniac actually consists of a toolbox with three components: a technical documentation available at
https://geniac.readthedocs.io, a command line interface (CLI) with a linter to check that the code respects
the guidelines, and an add-on to generate configuration files, build the containers and deploy the pipeline. We
introduce here the main features of the Geniac toolbox.

Methods
General principle
The ultimate goal of the proposed best practices of coding with Nextflow was to ensure the portability and
reproducibility of the pipeline with containerization techniques (such as Docker and Singularity). Therefore,
the rationale behind Geniac was motivated by the automation of the construction of the containers without
explicitly writing the Dockerfile or the Singularity Definition File recipes (whenever possible). To do so, the
pipeline source code is parsed by Geniac. The portability of the pipeline with containers can be achieved
in two ways: either a single container including all the tools required by the pipeline is provided, or
several containers (one container for each tool to be as modular as possible) are provided. We decided to
retain this second way, as this one container - one tool strategy was strongly recommended by several experts
(Gruening et al., 2018) who stated that Each container should encapsulate only one piece of software
that performs a unique task with a well-defined goal (e.g. sequence aligner, mass spectra identification).
Moreover, the one container - one tool strategy has the following advantages:

• �most of the pipelines share tools in common meaning that, once a container is built for one tool, it
can be easily reused in other pipelines,

• �sometimes, different tools that might be incompatible with each other are required, making the usage
of a single container including all the tools for the pipeline impossible,

• �building a container with all the tools can be very long and possibly tedious. Each time the
pipeline changes, the single container has to be rebuilt. With the one container - one tool strategy, only
the container in which the tool has changed has to be updated (which is faster),

• �the building of the containers can be parallelized to speed-up the deployment of containers.

Generally, the building of the containers occurs in the very late stage of the development cycle of the
pipeline, once it has been validated by the end-users and is ready to be deployed in production. Therefore,
the guidelines also took into consideration that the pipeline could simply be run during its very early stage of
prototyping by bioinformaticians and statisticians, without systematically building the containers whenever
a new version of the tool is tested or a new tool is added. This challenge can be easily tackled
with the Conda packaging system (Gruening et al., 2018) which offers great flexibility to bioinformaticians
and statisticians in order to install and test new tools (when available in the different Conda channels,
which is the case for most of the bioinformatics tools). For this reason, the Geniac toolbox allows for the
possibility of running the pipeline with different Nextflow profiles (a profile is a set of configuration attributes

Page 4 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

https://nf-co.re/
https://nf-co.re/
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac
https://geniac.readthedocs.io/
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac

which can be activated/chosen when launching a pipeline execution by using the -profile command line
option with Nextflow) including:

singularity to use the Singularity containers.

docker to use the Docker containers.

conda to use a single Conda environment on which all the tools are available.

multiconda to use a dedicated Conda environment for each tool.

path to define the PATH environment variable for which all the tools are assumed to be installed in the
same directory.

multipath to define a dedicated PATH environment variable for which each tool is installed individually.

In addition to these profiles which set where the tools are accessible, we defined the cluster profile which
can be combined with the previous profiles so that Nextflow launches the computation on a high-performance
computing cluster.

As the Geniac toolbox automatically generates the configuration files used by these different profiles from
the source code, it ensures that they are consistent with each other. Moreover, it saves time for the devel-
oper who does not have to write them one by one. All these different profiles are made available with the
Geniac toolbox so that it covers all of the preferred work habits of a developer. However, we strongly
encourage the use of multiconda during prototyping and singularity for production. Of note,
both conda and path profiles may not work if the pipeline needs tools that are not compatible with
each other.

The one container - one tool strategy has to be translated in terms of coding best practices with Nextflow
so that the source code can be automatically parsed to generate these Nextflow configuration files and build
the containers. The coding relies mainly on the use of the label directive for each process which uses
only one tool and one container at a time, along with the withLabel process selector defined in each
configuration file for the different profiles which can be run with the -profile Nextflow option. Figure 1
illustrates this principle on two tools and three Nextflow processes.

Availability of the tool
When implementing a new tool in a pipeline, the main question to answer is Where is the tool available?
Depending on the answer, the developer has to follow specific guidelines which are fully detailed in the

Figure 1. one container - one tool strategy and coding of the Nextflow pipeline: each tool that is used by the
pipeline has its own container. In the different configuration files which are specific to a Nextflow profile, each tool is
declared with the withLabel process selector. To use the appropriate tool in a Nextflow process, the use of the label
directive with the name of the tool makes the link. The same tool can be used in different processes when different
tasks have to be performed at different stages or with different options.

Page 5 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac

Geniac documentation. Whenever possible, it is recommended to use the tool from the Conda packaging
system (Gruening et al., 2018). However, not all tools are available in Conda. Therefore, we guide the
developer through a series of chronological questions which redirect the developer to the appropriate
section whenever an answer is Yes. The questions are the following: i) Is it just a standard Unix
command?, ii) Is it available in Conda?, iii) Is it available only as a binary or as an executable script?,
iv) Is the source code available?, v) Have you still not answered yes? Briefly, the developer has to
perform some actions such as modify the conf/geniac.config file, copy the source code of the tool in
the modules/fromSource folder, write some recipes in the folder recipes, copy some files in the bin or
recipes/dependencies folders, depending on the answer to the questions. In most of the cases, the tool
should be available in Conda which is the most comfortable situation as it allows the automation of the crea-
tion of the containers and the configuration files for Nextflow profiles. However, the toolbox is able to tackle
any other situations, although this requires more configuration on the developer’s side. Figure 2 describes
the overall workflow with Geniac.

Implementation
It is important to note that the Geniac toolbox (Hupé et al., 2022a) relies on the structure of the Geniac
Template (Servant & Hupé, 2022) while the latter could work without Geniac (provided that the miss-
ing configuration files for the different Nextflow profiles are added manually). It also means that the Geniac
documentation explains how the Geniac Template works with the Geniac toolbox. Therefore, the source
code must be organized as shown in Figure 3A with some mandatory files from the Geniac Template
in blue and the Geniac toolbox itself in the eponymous folder in green. Based on this organization, the
automatic generation of the Nextflow configuration files, container recipes and images are performed by some
Nextflow scripts (geniac/install/singularity.nf and geniac/install/docker.nf) which
are invoked by Cmake scripts. The file nextflow.config includes all the configuration files that are
automatically generated by Geniac to define the different Nextflow profiles. As it will be illustrated in the
Use Cases section, the file conf/geniac.config is essential as it allows registration of the tools avail-
able from Conda. The main Cmake script is the file geniac/CMakeLists.txt which invokes a series of
functions from the geniac/cmake folder. The command line interface (CLI) corresponds to a standalone
python package within the geniac/src folder. It includes a linter which offers the possibility for the devel-
oper to check the code’s compliance with the guidelines. The linter includes the following tests: i) existence
of mandatory or optional files and folders in the Nextflow project tree structure, ii) configuration and consistency
of labels with process directives in the Nextflow pipeline, iii) validation of the geniac configuration file, iv) avail-
ability of tools and their dependencies. Similarly to the nf-core linter, the output can be exploited manually or
automatically within a continuous integration pipeline since any critical error reported by the linter changes
the exit code from 0 to 1. The CLI also provides other commands for users not familiar with cmake or make
commands to initiate a working directory, install and test the pipeline.

Figure 2. General principle of the Geniac guidelines and toolbox: 1/ a new tool is added in the pipeline according
to the guidelines in the Geniac documentation depending on where the tool is available, 2/ the toolbox parses the
structure of the source repository and the content of the conf/geniac.config file in order to automatically generate
all the configuration files which define the Nextflow profiles, 3/ during the parsing, it also generates the container
recipes (here the Singularity Definition Files) which are used to 4/ build the containers (here the Singularity images).

Page 6 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

https://geniac.readthedocs.io/
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac-template
https://github.com/bioinfo-pf-curie/geniac-template
https://github.com/bioinfo-pf-curie/geniac
https://geniac.readthedocs.io/
https://geniac.readthedocs.io/
https://github.com/bioinfo-pf-curie/geniac-template
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac-template
https://github.com/bioinfo-pf-curie/geniac
https://cmake.org/
https://github.com/bioinfo-pf-curie/geniac
https://cmake.org/
https://www.python.org/
https://github.com/bioinfo-pf-curie/geniac
https://geniac.readthedocs.io/

In order to ensure the reproducibility with Singularity, the geniac/install/singularity.nf script cre-
ates the singularity.config file such that Singularity is executed with specific options. Indeed, the default
behavior of Singularity makes it possible to access the user’s $HOME directory from the host on which the proc-
ess is executed. Some programming languages such as python or R preemptively load libraries from the user
$HOME if they exist rather than the libraries from the canonical installation. To tackle this major issue, the
singularity.config file i) sets the option “-B \”\$PWD\”:/tmp --containall” which is passed
on the Singularity command line when invoked by Nextflow and ii) sets “singularity.autoMounts
= false” such that the developer explicitly decides during the deployment what folders have to be availa-
ble within the container. The --containall sets some directories as empty (including $HOME and /tmp) thus
avoiding possible libraries installed in the user’s $HOME to be loaded by these programming language.
The -B option allowing the binding of the /tmp (inside the container) to the work directory of the Nextflow
process (i.e. in the folder like work/2d/8202294 created by Nextflow during the execution) is also neces-
sary. Indeed, the default overlay size of /tmp inside the Singularity image is few MB that makes the writing of
temporary files required by many tools impossible due to space limitation. We preferred to bind /tmp to the
work directory of the Nextflow process instead of on the actual /tmp of the host since it might use some RAM
(tmpfs) which is not reported to the job scheduler (such as SLURM or PBS). Our configuration isolates the
$HOME from the host whatever the programming language used inside a Nextflow process which makes this
solution universal. However, this solves this issue only for the singularity profile. In the case of the conda
or multiconda profiles, we addressed this issue by adding ad-hoc environment variables using the befo-
reScript directive beforeScript = “export R_LIBS_USER=\”-\”; export R_PROFILE_
USER=\”-\”; export R_ENVIRON_USER=\”-\”; export PYTHONNOUSERSITE=1” in the files

Figure 3. Organization of the different directories. A) source code directory: in blue are listed the mandatory
files which could be retrieved from the Geniac Template, in green appears the folder of the Geniac toolbox itself
which contains the files from the Geniac repository. Examples of source code are available on the GitHub repositories
for both the Geniac Demo and the Geniac Demo DSL2 (in red is highlighted what is specific to a Nextflow pipeline
which is implemented with DSL2). B) build directory: once the pipeline has been configured with cmake and built with
make, a workDir folder appears with all the files which are automatically generated by Geniac. C) install directory:
during the installation with make install several folders are created such as the pipeline folder which contains
the Nextflow code. The files located within the same block in the build directory are copied in the folder of the same
color in the install directory.

Page 7 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

https://www.python.org/
https://www.r-project.org/
https://github.com/bioinfo-pf-curie/geniac-template
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac-demo
https://github.com/bioinfo-pf-curie/geniac-demo-dsl2
https://github.com/bioinfo-pf-curie/geniac

which are automatically generated by Geniac. If any other programming language suffers from the same behavior,
ad-hoc solutions will have to be added. Note that the default options when using Docker containers within
Nextflow avoid access to $HOME, this profile is therefore not concerned by the reproducibility issue.

Operation
The Geniac toolbox is intended to run on a Linux distribution with Nextflow (>= 21.10.6), git (>= 2.0), Cmake
(>= 3.0), Make (>= 4.1) and Conda (>= 4.10.1). To use the containers, either Apptainer/Singularity (>= 3.8.5)
or Docker (>= 18.0) are needed. The Geniac command line interface requires python (>= 3.10).

Use cases
In this section, several use cases are described. They are available in the bash script data/useCases.bash
from the Geniac repository so that the reader can reproduce them step-by-step. The use cases depend on
each other meaning that they must be sequentially performed from the beginning. They also require the
installation of Nextflow (>= 20.01.0), git (>= 2.0), Cmake (>= 3.0), Make (>= 4.1), Conda (>= 4.10.1) and
Singularity. The conducting line of this section is the deployment of a pipeline to be run in routine
production with Singularity on a high-performance computing cluster having SLURM as a job-scheduler. A
comprehensive overview of the Geniac functionalities is available in the Geniac documentation.

Create the geniac conda environment
In order to run the different use cases, create the geniac conda environment which provides all the dependencies
needed:

export GENIAC_CONDA="https://raw.githubusercontent.com/bioinfo-pf-curie/
geniac/release/environment.yml"

wget ${GENIAC_CONDA}
conda env create -f environment.yml
conda activate geniac

Add a Nextflow process for a tool available in Conda
We explain here how to add a new process in the pipeline when the tool is available in Conda. First, the
source code from the Geniac Demo (Hupé et al., 2022b) repository can be downloaded as follows:

export WORK_DIR="${HOME}/tmp/myPipeline"
export SRC_DIR="${WORK_DIR}/src"
export INSTALL_DIR="${WORK_DIR}/install"
export BUILD_DIR="${WORK_DIR}/build"
export GIT_URL="https://github.com/bioinfo-pf-curie/geniac-demo.git"

mkdir -p ${INSTALL_DIR} ${BUILD_DIR}

clone the repository
the option --recursive is needed if you use geniac as a submodule
git clone --recursive ${GIT_URL} ${SRC_DIR}

Let’s assume that the tool multiqc (Ewels et al., 2016) must be added in the pipeline. The section
params.geniac.tools of the file ${SRC_DIR}/conf/geniac.config must contain the following line:

multiqc = "conda-forge::lzstring=1.0.4=py_1001
 ↪ conda-forge::matplotlib-base=3.1.1=py37h250f245_2
 ↪ conda-forge::spectra=0.0.11=py_1 bioconda::multiqc=1.8=py_2"

The syntax follows the pattern from the conda package naming convention, so that the version is
explicit as recommended in some guidelines (Gruening et al., 2018):

toolName = "condaChannelName::softName=version=buildString"

If other Conda dependencies are required, they are added according to the same convention as shown for
multiqc. In order to use the tool in a Nextflow process, use the label directive using the exact same

Page 8 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac
https://www.nextflow.io/
https://git-scm.com/
https://cmake.org/
https://www.gnu.org/software/make/
https://conda.io/
http://apptainer.org/
https://www.docker.com/
https://github.com/bioinfo-pf-curie/geniac
https://www.python.org/
https://github.com/bioinfo-pf-curie/geniac
https://www.nextflow.io/
https://git-scm.com/
https://cmake.org/
https://www.gnu.org/software/make/
https://conda.io/
https://sylabs.io/
https://github.com/bioinfo-pf-curie/geniac
https://geniac.readthedocs.io/
https://github.com/bioinfo-pf-curie/geniac-demo

name as given in the params.geniac.tools section. For example, the process multiqc in the file
${SRC_DIR}/main.nf contains the label multiqc defined in the file ${SRC_DIR}/conf/geniac.
config:

process multiqc {
 label 'multiqc'

 // write your nextflow code.

}

Add a Nextflow process for a tool available from source code
As not all the tools are available in Conda, we explain here how to add a new process in the pipeline when the tool is
available from source code. It offers a great flexibility as the software developer can control the source code and tune
the installation process. However, this obviously requires more configuration. In particular, the software developer has
to be fluent with Cmake.

Let’s assume that the tool helloWorld must be added in the pipeline. Its source code must be copied in the
folder ${SRC_DIR}/modules/fromSource/helloWorld. In order to use the tool in a Nextflow proc-
ess, use the label directive using the exact same name as given to this folder (i.e. helloWorld). Then, the
Cmake template script {SRC_DIR}/geniac/data/modules/fromSource/CMakeLists.txt is
copied into {SRC_DIR}/modules/fromSource/CmakeLists.txt and the following Cmake directive
is added:

ExternalProject_Add(
 helloWorld
 SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/helloWorld
 CMAKE_ARGS
 -
DCMAKE_INSTALL_PREFIX=${CMAKE_BINARY_DIR}/externalProject/bin)

Lastly, the ${SRC_DIR}/modules/fromSource/helloWorld/CmakeLists.txt Cmake script
must be written to detail how the tool must be compiled and installed, for example:

project(helloWorld LANGUAGES CXX)
project (helloWorld)
add_executable(helloWorld main.cpp)
install(TARGETS helloWorld DESTINATION ${CMAKE_INSTALL_PREFIX})

Check the code with the linter
The Geniac command line interface is available in the conda environment which has been created and activated
a the beginning of tthe Use cases section.

Run the linter on your repository:

geniac lint ${SRC_DIR}

Build the Singularity containers
It consists of two main steps. First, the pipeline is configured with the required cmake options. The options
with the pattern -DCMAKE_<UPPER_CASE>=<value> correspond to the variables available in the
cmake language (CMAKE_INSTALL_PREFIX defines where the analysis pipeline will be deployed). The
options with the pattern -Dap_<lower_case>=<value> correspond to the ad-hoc variables defined
by the Geniac toolbox (see the Geniac documentation for the list of available options). In this use case,
the option -Dap_install_singularity_images=ON tells Geniac to build and install the Singu-
larity images and -Dap_nf_executor=slurm to set SLURM as the executor (i.e. the job-scheduler) in
the cluster profile used by Nextflow. Secondly, it starts the build of the pipeline with the make command.
These two steps work as follows:

Page 9 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

https://cmake.org/
https://cmake.org/
https://cmake.org/
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac
https://geniac.readthedocs.io/
https://github.com/bioinfo-pf-curie/geniac

cd ${BUILD_DIR}

configure the pipeline
cmake ${SRC_DIR}/geniac -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR}
 ↪ -Dap_install_singularity_images=ON -Dap_nf_executor=slurm

/!\ with sudo, the singularity and nextflow commands must be
/!\ in the secure_path option declared in the file /etc/sudoers

build the files needed by the pipeline
sudo make

change file owner/group to the current user
sudo chown -R $(id -gn):$(id -gn) ${BUILD_DIR}

During the build process, Geniac generates the different configuration files, the Singularity recipes and images
in the ${BUILD_DIR}/workDir folder as shown in Figure 3B. In particular, the ${BUILD_DIR}/work-
Dir/results/conf/singularity.config file needed to run the singularity profile is created
at this stage. Note that these files are not present in the ${SRC_DIR} as they are automatically generated. The
root credentials are needed to build the Singularity images thus requiring the use of the sudo commands.

Deploy the pipeline
The deployment of the pipeline is performed with the make command:

make install

After the deployment, the pipeline is available in the ${INSTALL_DIR}/pipeline folder in which
the main.nf Nextflow file is available (see Figure 3C). Other folders are also created which contain the
Singularity images, a folder (or a symlink depending on the option used during the configuration) for the
genome annotations, and folders for the path and multipath profiles. In particular, the ${BUILD_DIR}/
workDir/results/conf/singularity.config file created in the previous stage is deployed in the
${INSTALL_DIR}/conf/singularity.config file needed to run the singularity profile.

Test and run the pipeline
As testing is generally a challenging part of the development and maintenance of the pipeline, we strongly rec-
ommend to create a conf/test.config profile along with a minimal dataset in the test/data folder
such that it can be processed quickly to check that new developments did not introduce error. In this section,
we show how to run the pipeline using this test profile.

The pipeline can be run with the singularity profile locally on the computer as follows:

cd ${INSTALL_DIR}/pipeline
nextflow -c conf/test.config run main.nf -profile singularity

The pipeline can be run with the singularity and cluster profiles on a high-performance computing
cluster with the SLURM job-scheduler as follows:

nextflow -c conf/test.config run main.nf -profile singularity,cluster

Of note, running the pipeline with the test profile can be directly done from the ${BUILD_DIR} directory using
the commands make test_singularity or make test_singularity_cluster respectively.

Geniac command line interface
For users not familiar with cmake or make commands we propose a command line interface. The use case can be
performed with the following commands:

Page 10 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

https://github.com/bioinfo-pf-curie/geniac

export WORK_DIR="${HOME}/tmp/myPipeline_CLI"
export INSTALL_DIR="${WORK_DIR}/install"
geniac init -w ${WORK_DIR} ${GIT_URL}
cd ${WORK_DIR}
geniac lint
geniac install . ${INSTALL_DIR} -m singularity
sudo chown -R $(id -gn):$(id -gn) build
geniac test singularity
geniac test singularity --check-cluster

Compatibility with Nextflow DSL2
Geniac is fully compatible with Nextflow DSL2 provided that the process, workflows and subworkflows are
organized in the ${SRC_DIR}/nf-modules folder as shown in red in Figure 3A. The Geniac Demo
DSL2 (La Rosa et al., 2022) repository can be used instead of the Geniac Demo. To do so just set, at the very
beginning of the Use cases section, the value of GIT_URL to:

export GIT_URL="https://github.com/bioinfo-pf-curie/geniac-demo-dsl2.git"

Conclusions
Geniac consists of a toolbox with three components: a technical documentation available at https://gen-
iac.readthedocs.io, a command line interface with a linter to check that the code respects the guidelines,
and an add-on to generate configuration files, build the container and deploy the pipeline.

Compared to nf-core, Geniac builds upon their best-practises by adding additional guidelines, but is more flexible
and can be easily adjusted to any pipeline template. More precisely, the only requirement in Geniac is the use of
the label directive for each process which should use only one tool and one container at a time. The use of labels
enables the one container - one tool strategy which was motivated by the development of Geniac. To do so, the spe-
cific conf/geniac.config file is added in the pipeline repository along with a specific profiles section (which
differs from nf-core) in the nextflow.config to use Geniac.

The Geniac Demo and Geniac Demo DSL2 pipelines are available so that the reader can practice the
Geniac guidelines. The Geniac Template makes it possible to start a new pipeline from scratch. The
Geniac toolbox is fully compatible with Nextflow DSL1 and DSL2. While it supports the automatic gen-
eration of Docker and Singularity containers, it is straightforward to add any other containerization framework
such as podman or shifter. The development of the Geniac toolbox was strongly motivated by the context of
production analysis. However, we strongly encourage the use of Geniac in the context of the research devel-
opment analysis. Our Bioinformatics Core facility uses the Geniac toolbox for a ten of pipelines deployed
for production analysis covering a large variety of sequencing applications with both short-read and long-
read technologies: it includes quality controls, analysis of ChIP-seq, ATAC-seq, RNA-seq, Whole Exome-seq,
Whole Genome-seq and CRISPR data.

Data availability
All data underlying the results are available as part of the article and no additional source data are required.

Software availability
• �Source code for geniac available from: https://github.com/bioinfo-pf-curie/geniac

• �Archived source code at time of publication: https://doi.org/10.5281/zenodo.6039812
(Hupé et al., 2022a)

• �Source code for geniac-demo available from: https://github.com/bioinfo-pf-curie/geniac-demo

• �Archived source code at time of publication: https://doi.org/10.5281/zenodo.6040173
(Hupé et al., 2022b)

• �Source code for geniac-demo-dsl2 available from: https://github.com/bioinfo-pf-curie/geniac-demo-dsl2

• �Archived source code at time of publication: https://doi.org/10.5281/zenodo.6040166
(La Rosa et al., 2022)

Page 11 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac-demo-dsl2
https://github.com/bioinfo-pf-curie/geniac-demo-dsl2
https://github.com/bioinfo-pf-curie/geniac-demo
https://github.com/bioinfo-pf-curie/geniac
https://geniac.readthedocs.io
https://geniac.readthedocs.io
https://nf-co.re/
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac-demo
https://github.com/bioinfo-pf-curie/geniac-demo-dsl2
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac-template
https://github.com/bioinfo-pf-curie/geniac
https://podman.io/
https://github.com/NERSC/shifter
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac
https://doi.org/10.5281/zenodo.6039812
https://github.com/bioinfo-pf-curie/geniac-demo
https://doi.org/10.5281/zenodo.6040173
https://github.com/bioinfo-pf-curie/geniac-demo-dsl2
https://doi.org/10.5281/zenodo.6040166

References

	 da Veiga Leprevost F, Barbosa VC, Francisco EL, et al.: On best
practices in the development of bioinformatics software. Front
Genet. 2014; 5: 199.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Di Tommaso P, Chatzou M, Floden EW, et al.: Nextflow enables
reproducible computational workflows. Nat Biotechnol. 2017;
35(4): 316–319.
PubMed Abstract | Publisher Full Text

	 Ewels P, Magnusson M, Lundin S, et al.: Multiqc: summarize
analysis results for multiple tools and samples in a single
report. Bioinformatics. 2016; 32(19): 3047–3048.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Ewels PA, Peltzer A, Fillinger S, et al.: The nf-core framework for
community-curated bioinformatics pipelines. Nat Biotechnol.
2020; 38(3): 276–278.
PubMed Abstract | Publisher Full Text

	 Georgeson P, Syme A, Sloggett C, et al.: Bionitio: demonstrating
and facilitating best practices for bioinformatics  
command-line software. Gigascience. 2019; 8(9): giz109.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Goble C, Cohen-Boulakia S, Soiland-Reyes S, et al.: FAIR
Computational Workflows. Data Intell. 2020; 2(1–2): 108–121.
Publisher Full Text

	 Goh WWB, Wong L: The birth of bio-data science: Trends,
expectations, and applications. Genomics Proteomics
Bioinformatics. 2020; 18(1): 5—15.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Gruening B, Sallou O, Moreno P, et al.: Recommendations
for the packaging and containerizing of bioinformatics
software [version 2; peer review: 2 approved, 1 approved with
reservations]. F1000Res. 2018; 7: ISCB Comm J-742.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Grüning B, Dale R, Sjödin A, et al.: Bioconda: sustainable and
comprehensive software distribution for the life sciences. Nat
Methods. 2018; 15(7): 475–476.
PubMed Abstract | Publisher Full Text

	 Hupé P, Allain F, Roméjon J: bioinfo-pf-curie/geniac:  
version-2.0.0. 2022a.
http://www.doi.org/10.5281/zenodo.6039812

	 Hupé P, Allain F, Servant N, et al.: bioinfo-pf-curie/geniac-demo:
version-2.0.0. 2022b.
http://www.doi.org/10.5281/zenodo.6040173

	 Jackson M, Kavoussanakis K, Wallace EWJ: Using prototyping to
choose a bioinformatics workflow manage-ment system.

PLoS Comput Biol. 2021; 17(2): e1008622.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Jarlier F, Joly N, Fedy N, et al.: QUARTIC: QUick pArallel
algoRithms for high-Throughput sequencIng data proCessing
[version 3; peer review: 2 approved]. F1000Res. 2020; 9: 240.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Kamoun C, Roméjon J, de Soyres H, et al.: biogitflow:
development workflow protocols for bioinformatics pipelines
with git and gitlab. F1000Res. 2020; 9: 632.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Kurtzer GM, Sochat V, Bauer MW: Singularity: Scientific containers
for mobility of compute. PLoS One. 2017; 12(5): e0177459.
PubMed Abstract | Publisher Full Text | Free Full Text

	 La Rosa P, Hupé P, Roméjon J, et al.: bioinfo-pf-curie/ 
geniac-demo-dsl2: version-2.0.0. 2022.
http://www.doi.org/10.5281/zenodo.6040166

	 Lawlor B, Walsh P: Engineering bioinformatics: building
reliability, performance and productivity into bioinformatics
software. Bioengineered. 2015; 6(4): 193–203.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Leipzig J: A review of bioinformatic pipeline frameworks. Brief
Bioinform. 2017; 18(3): 530–536.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Merkel D: Docker: Lightweight linux containers for consistent
development and deployment. Linux J. 2014; 2014(239).
Reference Source

	 Reiter T, Brooks PT, Irber L, et al.: Streamlining data-intensive
biology with workflow systems. Gigascience. 2021; 10(1): giaa140.
PubMed Abstract | Publisher Full Text

	 Servant N, Hupé P: bioinfo-pf-curie/geniac-template:  
version-2.0.0. 2022.
http://www.doi.org/10.5281/zenodo.6040058

	 Strozzi F, Janssen R, Wurmus R, et al.: Scalable Workflows and
Reproducible Data Analysis for Genomics. Methods Mol Biol.
2019; 1910: 723–745.
PubMed Abstract | Publisher Full Text

	 Tanjo T, Kawai Y, Tokunaga K, et al.: Practical guide for managing
large-scale human genome data in research. J Hum Genet. 2021;
66(1): 39–52.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Wilkinson MD, Dumontier M, Aalbersberg IJJ, et al.: The fair
guiding principles for scientific data management and
stewardship. Sci Data. 2016; 3: 160018.
PubMed Abstract | Publisher Full Text | Free Full Text

• �Source code for geniac-template available from: https://github.com/bioinfo-pf-curie/geniac-template

• �Archived source code at time of publication: https://doi.org/10.5281/zenodo.6040058
(Servant & Hupé, 2022)

• �All documentation is available at: https://geniac.readthedocs.io

• �License: CeCILL Version 2.1

Author contributions
J.R. and P.H. conceived the coding best practices and automation principles proposed by Geniac. P.H. devel-
oped Geniac and Geniac Demo. P.L.R. developed Geniac Demo DSL2. N.S. and P.H. developed the
Geniac Template. F.A. developed the Geniac command line interface. F.J. tested the different demo
pipelines. P.H. wrote the manuscript and the documentation. P.H. supervised the study.

Acknowledgements
We are grateful to our colleagues from the Bioinformatics Core Facility for their feedback on the Geniac
toolbox and from the ICT department.

Page 12 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

http://www.ncbi.nlm.nih.gov/pubmed/25071829
http://dx.doi.org/10.3389/fgene.2014.00199
http://www.ncbi.nlm.nih.gov/pmc/articles/4078907
http://www.ncbi.nlm.nih.gov/pubmed/28398311
http://dx.doi.org/10.1038/nbt.3820
http://www.ncbi.nlm.nih.gov/pubmed/27312411
http://dx.doi.org/10.1093/bioinformatics/btw354
http://www.ncbi.nlm.nih.gov/pmc/articles/5039924
http://www.ncbi.nlm.nih.gov/pubmed/32055031
http://dx.doi.org/10.1038/s41587-020-0439-x
http://www.ncbi.nlm.nih.gov/pubmed/31544213
http://dx.doi.org/10.1093/gigascience/giz109
http://www.ncbi.nlm.nih.gov/pmc/articles/6755254
http://dx.doi.org/10.1162/dint_a_00033
http://www.ncbi.nlm.nih.gov/pubmed/32428604
http://dx.doi.org/10.1016/j.gpb.2020.01.002
http://www.ncbi.nlm.nih.gov/pmc/articles/7393550
http://www.ncbi.nlm.nih.gov/pubmed/31543945
http://dx.doi.org/10.12688/f1000research.15140.2
http://www.ncbi.nlm.nih.gov/pmc/articles/6738188
http://www.ncbi.nlm.nih.gov/pubmed/29967506
http://dx.doi.org/10.1038/s41592-018-0046-7
http://www.doi.org/10.5281/zenodo.6039812
http://www.doi.org/10.5281/zenodo.6040173
http://www.ncbi.nlm.nih.gov/pubmed/33630841
http://dx.doi.org/10.1371/journal.pcbi.1008622
http://www.ncbi.nlm.nih.gov/pmc/articles/7906312
http://www.ncbi.nlm.nih.gov/pubmed/32913637
http://dx.doi.org/10.12688/f1000research.22954.3
http://www.ncbi.nlm.nih.gov/pmc/articles/7429925
http://www.ncbi.nlm.nih.gov/pubmed/33732441
http://dx.doi.org/10.12688/f1000research.24714.3
http://www.ncbi.nlm.nih.gov/pmc/articles/7921891
http://www.ncbi.nlm.nih.gov/pubmed/28494014
http://dx.doi.org/10.1371/journal.pone.0177459
http://www.ncbi.nlm.nih.gov/pmc/articles/5426675
http://www.doi.org/10.5281/zenodo.6040166
http://www.ncbi.nlm.nih.gov/pubmed/25996054
http://dx.doi.org/10.1080/21655979.2015.1050162
http://www.ncbi.nlm.nih.gov/pmc/articles/4601517
http://www.ncbi.nlm.nih.gov/pubmed/27013646
http://dx.doi.org/10.1093/bib/bbw020
http://www.ncbi.nlm.nih.gov/pmc/articles/5429012
https://dl.acm.org/doi/10.5555/2600239.2600241
http://www.ncbi.nlm.nih.gov/pubmed/33438730
http://dx.doi.org/10.1093/gigascience/giaa140
http://www.doi.org/10.5281/zenodo.6040058
http://www.ncbi.nlm.nih.gov/pubmed/31278683
http://dx.doi.org/10.1007/978-1-4939-9074-0_24
http://www.ncbi.nlm.nih.gov/pubmed/33097812
http://dx.doi.org/10.1038/s10038-020-00862-1
http://www.ncbi.nlm.nih.gov/pmc/articles/7728600
http://www.ncbi.nlm.nih.gov/pubmed/26978244
http://dx.doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pmc/articles/4792175
https://github.com/bioinfo-pf-curie/geniac-template
https://doi.org/10.5281/zenodo.6040058
https://geniac.readthedocs.io
https://cecill.info/licences/Licence_CeCILL_V2.1-en.html
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac-demo
https://github.com/bioinfo-pf-curie/geniac-demo-dsl2
https://github.com/bioinfo-pf-curie/geniac-template
https://github.com/bioinfo-pf-curie/geniac
https://github.com/bioinfo-pf-curie/geniac

Open Peer Review
Current Peer Review Status:

Version 2

Reviewer Report 24 March 2022

https://doi.org/10.21956/openreseurope.15693.r28633

© 2022 Lemoine F. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Frédéric Lemoine
Evolutionary Genomics of RNA viruses & Bioinformatics and Biostatistics Hub, F-75015, Institut
Pasteur, Université Paris Cité, Paris, France

I thank the authors for the work they did to address the points I raised and to make the
manuscript clearer.

I have no further comments to make.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I work in the field of evolutionary bioinformatics where I develop tools and
workflows. I am interested in the reproducibility of bioinformatics analyses, and I use Nextflow
and container technologies on a daily basis.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 31 August 2021

https://doi.org/10.21956/openreseurope.14944.r27224

© 2021 Lemoine F. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Open Research Europe

Page 13 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

https://doi.org/10.21956/openreseurope.15693.r28633
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-9576-4449
https://doi.org/10.21956/openreseurope.14944.r27224
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Frédéric Lemoine
Evolutionary Genomics of RNA viruses & Bioinformatics and Biostatistics Hub, F-75015, Institut
Pasteur, Université Paris Cité, Paris, France

This manuscript describes Geniac, a toolbox aiming at increasing the reproducibility and
reusability of Nextflow workflows. To do so, Geniac has the following features:

It defines a set of good practices for the development of Nextflow workflows, via a detailed
documentation.

1.

It provides a linter to check that the best coding practices are respected.

2.

It provides a "add-on" that automatically builds dependencies, generates the singularity (or
docker) containers needed to run the workflow, checks the configuration files, and installs
the workflow in the specified directory ("deploy").

3.

Geniac tackles an important issue with bioinformatic analyses: Pipelines are rarely homogeneous
in terms of description and implementation, which leads to reproducibility, maintenance, and
reusability difficulties. In terms of goals, Geniac present some similarities with nf-core, which aims
at curating and harmonizing pipeline implementations.The solution proposed by Geniac is to
define of a set of homogeneous practices for workflow development (e.g. how to describe process
dependencies, how to name variables, channels and files, and provide tools to check workflows,
build containers and install the workflow). The price to pay for more reproducible and
homogeneous workflows is a more complex technological stack (with CMake specifically) and
workflow architecture. Technically, Geniac is based on the following technologies: Nextflow,
conda, Docker (or Singularity) and CMake. Although technical, the manuscript explains clearly the
philosophy, the goals, the usage and the usefulness of Geniac. The tools are usable in the
provided workflow example, I was able to run the geniac-demo and the linter works well and is
easy to use.

I believe that Geniac is a useful tool that answers important questions. However, I think it would
be easier to understand and use with a few clarifications in my opinion:

I had some initial difficulties to run the geniac-demo workflow. I think the documentation
(on readthedoc and on the git repositories) could be clearer about how to run the workflow
in different situations, at least with docker or singularity. For example, I initially had an error
when the install and the build directories were included in the geniac-demo directory.
Before understanding the general philosophy of Geniac, I also had some difficulties to
understand how to generate the singularity.config file needed to generate singularity
images and run the workflow. A more visible step by step concrete quick-start example
could be very useful.

○

Following the previous point, I was a bit confused by the README in the geniac-demo and
geniac-template repositories, where I was looking for information on how to run the
example. The documentation could be better adapted to the workflows. For example the
geniac.md file refers to nf-CRISPR repository.

○

Testing the workflow is also generally a difficult part of the development and maintenance
of workflows. It is not mentioned clearly in the introduction or in the discussion, though I
think that tests can be performed using test profiles in Geniac. I think it would be great to
give a little bit more insights on what tests consist of in geniac workflows.

○

Open Research Europe

Page 14 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

http://orcid.org/0000-0001-9576-4449

The abstract states that workflow systems + containers increase usage complexity. I am not
sure that Geniac tackles this problem, since it adds a new layer of complexity in the top of
Nextflow, Docker, etc (which is unavoidable). If I understand correctly, Geniac is mainly
solving the problem of workflow homogeneity in terms of structure, description, and
documentation, and thus make the workflow more reproducible, maintainable and
reusable.

○

A more detailed description of the specificities of Geniac compared to nf-core may be a
great addition to the manuscript.

○

Are there already any public real-world Geniac compatible workflows in production? If so, it
could be interesting to mention a few of them.

○

A few typos/suggestions :
Abstract+Introduction: "which address" => "which target"?

○

Introduction: "the workflow has no choice but deliver": Isn't it more the facility rather than
the workflow that has no choice?

○

Introduction: "being less invasive to the different expert communities": This point is not very
clear to me. Would it be possible to rephrase it?

○

Methods: "to be as granular as possible", maybe clearer with "to obtain the finest level of
granularity"?

○

Methods: "The building of the containers can be parallelized to reduce the time in which...".
It is not very clear to me. Would something like "to speed up the deployment of new
containers" make sense?

○

The DOI link in the ref Servant & Hupé 2021 does not work (there is an additional space in
the URL).

○

 Methods: "Other folders are also created which contains"=>"contain".○

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?

Open Research Europe

Page 15 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I work in the field of evolutionary bioinformatics where I develop tools and
workflows. I am interested in the reproducibility of bioinformatics analyses, and I use Nextflow
and container technologies on a daily basis.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Author Response 11 Feb 2022
Philippe HUPE, Institut Curie, Paris, France

First, we would like to thank the reviewer. We are very grateful for his time, contribution
and very valuable comments which significantly helped to improve the article and the
documentation of the Geniac. You will find below a detailed answer to the different issues
that we have addressed in the revised manuscript. Best regards, Philippe Hupé. (Reviewer
comments in italics)

I had some initial difficulties to run the geniac-demo workflow. I think the documentation (on
readthedoc and on the git repositories) could be clearer about how to run the workflow in
different situations, at least with docker or singularity. For example, I initially had an error when
the install and the build directories were included in the geniac-demo directory. Before
understanding the general philosophy of Geniac, I also had some difficulties to understand how
to generate the singularity.config file needed to generate singularity images and run the
workflow. A more visible step-by-step concrete quick-start example could be very useful.
Following the previous point, I was a bit confused by the README in the geniac-demo and geniac-
template repositories, where I was looking for information on how to run the example. The
documentation could be better adapted to the workflows. For example the geniac.md file refers
to nf-CRISPR repository.
Reply: We are sorry that the geniac-demo was not relevant as it was simply a copy/paste
from the geniac-template. Therefore, the geniac-demo documentation has been modified.
As suggested by the reviewer1, we included in the README a "Quick start" section such that
the reader can test and run the pipeline either with the multiconda or the singularity profile
using the new command line interface.

Testing the workflow is also generally a difficult part of the development and maintenance of
workflows. It is not mentioned clearly in the introduction or in the discussion, though I think that
tests can be performed using test profiles in Geniac. I think it would be great to give a little bit
more insights on what tests consist of in geniac workflows.
Reply: Testing is indeed a major component of software development. Therefore, the
section "Run the pipeline" has been renamed "Test and run the pipeline". We highlighted
the necessity to include a test profile and test data. We have also indicated that geniac
integrates several Make commands to facilitate the test of the pipeline.

Open Research Europe

Page 16 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

The abstract states that workflow systems + containers increase usage complexity. I am not sure
that Geniac tackles this problem, since it adds a new layer of complexity in the top of Nextflow,
Docker, etc (which is unavoidable). If I understand correctly, Geniac is mainly solving the problem
of workflow homogeneity in terms of structure, description, and documentation, and thus make
the workflow more reproducible, maintainable and reusable.
Reply: The abstract has been modified as suggested to mention that "promoting the
homogeneity of the workflow implementation requires guidelines and protocols" such as
Geniac intends.

A more detailed description of the specificities of Geniac compared to nf-core may be a great
addition to the manuscript.
Reply: We added a new paragraph in the Conclusion to explain how Geniac compares to nf-
core.

Are there already any public real-world Geniac compatible workflows in production? If so, it could
be interesting to mention a few of them. Indeed, geniac is used in our Bioinformatics Core
Facility.
Reply: This has now been added in the Conclusion.

A few typos/suggestions : > * Abstract+Introduction: "which address" => "which target"?
Reply: This has been corrected.

Introduction: "the workflow has no choice but deliver": Isn't it more the facility rather than the
workflow that has no choice?
Reply: This is right, the sentence has been rephrased.

Introduction: "being less invasive to the different expert communities": This point is not very clear
to me. Would it be possible to rephrase it?
Reply: This has been rephrased to explain that geniac wants to preserved the preferred
work habits of the developers.

Methods: "to be as granular as possible", maybe clearer with "to obtain the finest level of
granularity"?
Reply: We have replaced granular by modular since the idea of "one container - one tool"
strategy is that each container can be seen as a module which performs a given task.

Methods: "The building of the containers can be parallelized to reduce the time in which...". It is
not very clear to me. Would something like "to speed up the deployment of new containers" make
sense?
Reply: Indeed, the sentence has been rephrased as suggested.

The DOI link in the ref Servant & Hupé 2021 does not work (there is an additional space in the
URL).
Reply: This has been corrected.

Methods: "Other folders are also created which contains"=>"contain".

Open Research Europe

Page 17 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

Reply: This has been corrected.

Competing Interests: No competing interests were disclosed.

Reviewer Report 02 August 2021

https://doi.org/10.21956/openreseurope.14944.r27225

© 2021 Hermoso Pulido T. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Toni Hermoso Pulido
Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona,
Spain

In this article, the Geniac toolbox is presented. The software consists of several tools to address
some common difficulties of deploying and adapting Nextflow pipelines to fit into different
computing environments. Its major emphasis is ensuring both code reproducibility and
production-level reliability. Technically speaking, it depends on Nextflow itself and CMake
automation and packaging tool. A Python-based code analysis (linter) tool is also provided for
checking pipeline setup in advance before the actual build and deployment process takes place.

Provided software for the pipelines relies primarily on Conda package manager, which Geniac
facilitates to adapt to different approaches (e.g., single or multi), and converts to handy container
images such as Singularity-based ones.

Experienced practitioners familiar with Nextflow, Conda and container technologies can easily
follow the instructions and customize the provided examples (which are based on both legacy and
DSL2 Nextflow syntax). Maybe the final result and associated folders of the pipeline preparation
(build, install), as depicted in Figure 3, could be more clearly stated.

Despite it being mentioned in the article and in the toolbox documentation as an actual possibility,
a more explicit example case of a software step that does not rely on Conda could be a nice
addition.

As a user experience suggestion for future releases, it could be interesting that the geniac
executable could be already provided straight from the Python Package Index (PyPI). It would also
help new adopters, specially if not so familiar with CMake, if geniac could wrap some of the
execution calls that are included in the useCases.bash script.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?

Open Research Europe

Page 18 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

https://doi.org/10.21956/openreseurope.14944.r27225
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-2016-6465

Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I work in Bioinformatics. I have experience developing and deploying
Nextflow pipelines, and I regularly take care of infrastructure and devops-related tasks.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 11 Feb 2022
Philippe HUPE, Institut Curie, Paris, France

First, we would like to thank the reviewer. We are very grateful for his time, contribution
and very valuable comments which significantly helped to improve the article and the
documentation of the Geniac. You will find below a detailed answer to the different issues
that we have addressed in the revised manuscript. Best regards, Philippe Hupé. (Reviewer
comments in italics)

In this article, the Geniac toolbox is presented. The software consists of several tools to address
some common difficulties of deploying and adapting Nextflow pipelines to fit into different
computing environments. Its major emphasis is ensuring both code reproducibility and
production-level reliability. Technically speaking, it depends on Nextflow itself and CMake
automation and packaging tool. A Python-based code analysis (linter) tool is also provided for
checking pipeline setup in advance before the actual build and deployment process takes place.
Provided software for the pipelines relies primarily on Conda package manager, which Geniac
facilitates to adapt to different approaches (e.g., single or multi), and converts to handy container
images such as Singularity-based ones.
Experienced practitioners familiar with Nextflow, Conda and container technologies can easily
follow the instructions and customize the provided examples (which are based on both legacy
and DSL2 Nextflow syntax). Maybe the final result and associated folders of the pipeline
preparation (build, install), as depicted in Figure 3, could be more clearly stated.
Reply: The Figure 3B and 3C have been modified to highlight where the files automatically
generated in the build directory are copied in the install directory.

Despite it being mentioned in the article and in the toolbox documentation as an actual
possibility, a more explicit example case of a software step that does not rely on Conda could be a
nice addition.

Open Research Europe

Page 19 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

Reply: We added a new section in the manuscript to describe how to "Add a Nextflow
process for a tool available from source code".

As a user experience suggestion for future releases, it could be interesting that the geniac
executable could be already provided straight from the Python Package Index (PyPI).
Reply: The Geniac command line interface is now available on PyPI at
https://pypi.org/project/geniac/.

It would also help new adopters, specially if not so familiar with CMake, if geniac could wrap
some of the execution calls that are included in the useCases.bash script.
Reply: New options have been added to the Geniac command line interface to facilitate the
use of geniac for developers not familiar with CMake commands. The new section "Geniac
command line interface" has been added in the manuscript to illustrate what command
lines can be used for the proposed use case. The documentation has been updated with
these new functionalities.

Competing Interests: No competing interests were disclosed.

Open Research Europe

Page 20 of 20

Open Research Europe 2022, 1:76 Last updated: 24 MAR 2022

