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Abstract: The energy management strategy of a hybrid-electric aircraft is coupled with the design of
the propulsion system itself. A new design space exploration methodology based on Set-Based Design
is introduced to analyse the effects of different strategies on the fuel consumption, NOx and take-off
mass. Probabilities are used to evaluate and discard areas of the design space not capable of satisfying
the constraints and requirements, saving computational time corresponding to an average of 75%.
The study is carried on a 50-seater regional turboprop with a parallel hybrid-electric architecture. The
strategies are modelled as piecewise linear functions of the degree of hybridisation and are applied
to different mission phases to explore how the strategy complexity and the number of hybridised
segments can influence the behaviour of the system. The results indicate that the complexity of the
parametrisation does not affect the trade-off between fuel consumption and NOx emissions. On the
contrary, a significant trade-off is identified on which phases are hybridised. That is, the least fuel
consumption is obtained only by hybridising the longest mission phase, while less NOx emissions
are generated if more phases are hybridised. Finally, the maximum take-off mass was investigated
as a parameter, and the impact to the trade-off between the objectives was analysed. Three energy
management strategies were suggested from these findings, which achieved a reduction to the fuel
consumption of up to 10% and a reduction to NOx emissions of up to 15%.

Keywords: hybrid-electric aircraft; hybrid-electric propulsion; energy management strategy; set-
based design; design space exploration; optimisation

1. Introduction

Electrification has been at the forefront of sustainable aviation research for the last
10 years. Projects such as the European Union’s FlightPath 2050 seek to reduce the CO2
and NOx emissions of the commercial fleet by 75% and 90%, respectively, compared to the
best-of-class in 2000 [1]. These goals fall within a global trend of aviation de-carbonification
measures proposed by the ICAO [2]. One type of electrified aircraft concept is the hybrid-
electric aircraft (HEA), where the power required for propulsion is supplied by more than
one type of energy source, usually fuel and batteries [3,4]. Hybrid propulsion is proposed as
a stepping stone towards full electrification, as future electric technologies are expected to
be inadequate for achieving enough range to be competitive with conventional commercial
aircraft [5].

Unlike other propulsion systems, HEAs have multiple energy sources and power
distribution paths. An Energy Management Strategy (EMS) can be introduced to find the
optimal use of the available energy for a defined mission. EMS is a function of the degree
of hybridisation (DoH) [6] of the power over time, where DoH is the ratio of the power
that is supplied by the electric source over the overall power required by the aircraft at
that point in time. This single parameter is sufficient if there are only two power paths.
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Otherwise, multiple non-dimensional parameters have to be specified for each path, such
as how much energy is provided by batteries over the total electrical power production if
the system has multiple electrical power sources [3,4].

The problem of specifying an optimal EMS is complicated by how unpredictable
its operational conditions can be. The HEA can operate between any airports within its
maximum range and service ceiling. The approaches to solve this problem are divided into
two families: offline methods and online methods [7,8]. The offline approaches find the
optimal strategy by simulating the vehicle’s operational life and tuning the parameters
of the EMS. Some examples include heuristic rules [9], fuzzy control [10] and global
optimisation algorithms such as dynamic programming [11]. On the contrary, online
methods tune the EMS during the vehicle operation, such as Pontryagin’s Maximum
Principle [12].

However, few studies have been published where the EMS and HEPS sizing are cou-
pled [13–16]. Indeed, the EMS of an HEA has to address the change in power requirements
from the change in aircraft mass during its operation, which is not present in HE land vehi-
cles. In this respect, two opposite approaches are generally adopted. The first one consists
of considering a fixed energy management strategy, usually a uniform degree of hybridisa-
tion over cruise and climb, and the size of the aircraft according to the energy requirements.
This approach is usually selected to study and compare different HE architectures and
can be found in Pornet [13] and Zamboni [14]. The other approach is to iteratively couple
the energy management optimisation with the system sizing. Trawick [15] implemented
a global optimisation methodology where dynamic programming is used to construct
the optimal EMS and sequentially size the system. This approach is more flexible since
it does not assume any analytical form of the power schedule but calculates the optimal
schedule by starting from the end state of the aircraft and searching backwards the optimal
power setting that minimises the objective function. The drawback is the high memory and
computational cost, as the algorithm has to evaluate N ×M2 states when searching for the
optimal path, assuming a single-setting discretised M times over N time steps.

The presented work tries to implement a new design space exploration methodology
to study the coupling between the EMS and the HEPS. For this reason we selected an
architecture that is well-studied in the literature [17–25] and is the most mature within
the FUTPRINT50 project. Regarding the modelling of the EMS, an intermediate approach
is adopted where the class of possible DoH functions are restricted within the set of
polynomial functions. Then, the design space methodology searches for the parameters
that minimise fuel consumption and NOx emissions. At each iteration, the evaluation
function sizes the mass of required fuel and batteries, taking into account the power–mass
coupling. The goal is to identify an optimal energy management strategy for a given
mission and value of maximum take-off mass.

The problem of finding the EMS that satisfies the requirements and constraints of the
system under design is an engineering design problem. Hence, the design space exploration
and optimisation techniques are required. A significant challenge in this field is handling
the complex interactions and feedbacks between multiple subsystems [26].

Several approaches have been developed, which can be divided into two families:
an iterative or point-based approach and a convergent or parallel-based approach. In the
first type, a candidate design or solution is selected from an initial trade-off analysis and
refined with several iterations with optimisation tools and higher fidelity analysis. This
approach is the traditional process of conceptual, preliminary and detail design, often
called the “waterfall model” in software engineering. Examples of this approach can
be found in Ullman [27] and Pahl [28]. In the context of design space exploration, the
Margin Value Method [29] is a point-based approach that, from a starting configuration,
identifies excessive margins, any parameter that sub-optimally satisfies the constraints
and evaluates the possible improvement by quantifying the trade-off between robustness
and performance degradation. Guenov [30] presents a Margin Allocation method to
dynamically assess the effect of margins on performance, other margins and constraint
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satisfaction, so that the designer can understand the interactions between the system under
design, its components and the overall requirements.

Conversely, the second type considers and evolves many candidate designs in parallel,
discarding the unfeasible, undesirable or non-robust ones. Design methodologies that
fall within this category are the Method of Controlled Convergence of Pugh [31], the
Design–Build–Test cycle of Wheelwright [32] and Set-Based Design (SBD) [33,34].

This paper focuses on Set-Based Design, whose principle is to generate as many
configurations and delay critical design decisions as much as possible [35]. The aim is to
avoid problems that often surface at advanced stages of the design process, which would
require a major redesign or reversal of early decisions, prompting an increased cost both
in terms of time and resources [36]. Set-Based Design has been recently investigated for
the problem of designing products under flexible requirements [37,38], and incorporate
resilience to unexpected modes of operation [39]. Furthermore, the large sweeping of the
design space combined with a multi-disciplinary model makes SBD principles suitable for
design space exploration and trade-off activities of complex systems [40]. SBD has also
been applied in decision analysis, where it has been combined with Value of Information
methods, enabling robust design selection [41,42].

The framework developed for this study combines set-based design with multi-
objective optimisation. Most optimisation methods are point-based in nature, where
single designs are optimised; hence, several authors have attempted to extend these for
design sets.

Some authors use a multi-objective optimiser to search for the optimal set or family of
solutions without exploring the individual designs. Sets are evaluated based on abstract
quantities such as general optimality, variability, robustness [43], hypervolume size and
imprecision [44]. Trade-off studies are performed. Some examples of this general approach
are the Set-Based Concept method [43,45], the Set Swarm Optimisation [46] and the Set-
Based Genetic Algorithm [44].

In contrast, others use SBD principles to reduce the searchable design space before
introducing the optimiser. These approaches evaluate sets by mapping their input param-
eters to the optimisation objectives [47]. The final result expresses multiple individual
designs that belong to the surviving sets.

Some examples are the Set-Based MDO of Hannapel [48], the Technology Charateriza-
tion Models method [47] and the ADOPT framework [49]. The last one was chosen as it
allows us to study the interaction between the input parameters and the design require-
ments. Furthermore, it allows us to identify and reject areas of the design space which
are unable to satisfy the top-level requirements. However, the major drawback of this
framework is the necessity of expertise on the problem under design for constructing if–else
expert rules capable of filtering out unfeasible and undesirable configurations. Otherwise,
even with a moderate number of parameters, the combinatorial explosion makes the entire
methodology impractical to use. In fact, one major challenge in SBD methodologies is
identifying the sets or subspaces out of all the possible combinations of discretised inputs
that satisfy the requirements and discarding those that do not. Previous approaches can be
divided into three main categories:

• Algorithmic approaches which classify the sets by propagating constraints. Examples
include Constraint Satisfaction solvers [50,51] and Fuzzy Set theory [52].

• Machine Learning classification which constructs a decision boundary based on sam-
ples responses. Examples include Bayesian network classifiers [53], Support Vector
Machines [47] and k-Means Clustering [54].

• Decision-based approaches which model the restriction of the design space as a
transition between states. Examples include Markov Decision Processes [55] and
Reinforcement Learning [56].

These approaches offer a deterministic classification of desirability of each design space
subset. In the methodology presented in this paper the quantification of the uncertainty
of the mapping procedure is considered. A Gaussian Process Regression was adopted to
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evaluate the capability of each set to satisfy the requirements and constraints. While this
mathematical tool falls within the family of Machine Learning approaches, it provides an
estimation of the variance of its response [57], hence enabling a probabilistic assessment of
the design space [58].

While the application of probability theory has been widely used for the propagation
of uncertainties on system performance [59,60], robust optimisation [61] and sensitivity
analysis [62], it has been rarely used to assess the uncertainty of top level design require-
ments satisfaction. The previous use of probabilities in the context of top-level requirements
satisfaction has been found recently in Guenov [30] and Di Bianchi [63]. Both authors use
probabilities to estimate the ability of a design to satisfy the constraints, given some uncer-
tainty: specifically on the margin for Guenov and on the constraint values for Di Bianchi. We
seek to explore this approach and apply it in the context of Set-Based Design Optimisation.

In this paper, Section 2 describes the modeling and methodologies adopted for
this study with Section 2.1, focusing on the new design exploration framework, while
Sections 2.2 and 2.3 describe the parametrisation of the energy management schedule and
the overall sizing and analysis of the hybrid-electric propulsion system. Section 3 presents
the baseline aircraft, the sizing mission, the selected hybrid-electric propulsion architecture
and the matrix of experiments performed in this study. Section 4 presents the results of
these experiments, both from the perspective of the methodology (Section 4.1) and the en-
ergy management scheduling problem (Sections 4.2–4.4). These are discussed in Section 5.1
and Sections 5.2–5.4, respectively. Finally, three families of energy management strategies
were recommended in Section 5.5, and the findings are summarised in Section 6.

2. Materials and Methods
2.1. Design Exploration Methodology

The present methodology implements and extends the previous work by Georgiades [49],
which employs a two-step process to explore and refine the design space with a convergent
approach. Here, the principles of Set-Based Design are implemented with the enumeration
of all possible combinations of discrete input parameter levels. These design “subspaces”
are evaluated and discarded according to a set of feasibility and desirability rules, which
encode the expert knowledge of the system under design. Then, an optimisation algorithm
is used to search the surviving subspaces for the best design points. This new information
is used by the designer to further discard areas of the design space and continue the
convergence towards a final set of candidate solutions.

This method is improved by replacing the feasibility and desirability rules with a
statistical response approach, which seeks to estimate the probability to satisfy the optimi-
sation constraints and, if known, to bound the objectives. This second type of constraint
is a “soft constraint” defined as a minimum desired outcome from the optimisation. For
instance, if the designer desires the model to have no more than a value f for the objective
to be minimised F, the framework allows us to introduce the constraint F(x) < f to discard
the areas of the design space that, even if minimised, will not meet this desired objective.
This approach allows us to replace the desirability rules used previously [58]. Figure 1
presents the flowchart of the improved methodology.
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Figure 1. Flowchart of the proposed methodology.

The exploration step, where areas of the design space are marked as discarded and
ignored, is necessary to avoid the combinatorial explosion of a traditional full search while
allowing for alternatives that could be less performing but more robust. Equation (1) defines
the number of total subspaces given npar parameters, where each k-th parameter has lk
levels. For example, two parameters such as climb DOH and cruise DOH (both ranging
between 0 and 1), divided into 4 levels each would generate 16 subspaces such as [(0–0.25),
(0–0.25)] (level 0 of both parameters) or [(0.5–0.75), (0.25–0.5)] (level 1 and level 2). Table 1
shows how rapidly the number of subspaces can grow even with a moderate number of
discrete input parameters.

Nsubspace =
npar

∏
k=0

lk (1)

Table 1. Total number of subspaces for different numbers of parameters and levels.

npar l = 2 l = 3 l = 4 l = 5

2 4 9 16 25
3 8 27 64 125
4 16 81 256 625
5 32 273 1024 3125
6 64 729 4096 15,625

The evaluation of each subspace is carried out with a statistical surrogate model trained
for each of the constraints, returning its response and its standard deviation. Gaussian
processes, reliably used in surrogate modeling [64], are employed which have the advantage
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of returning the statistical momentum of a Gaussian distribution as output for its trained
inputs. This allows us to calculate the probability over a single sample using the Gaussian
cumulative distribution function Φ, as described next. The implementation used is the
Gaussian Process Regressor algorithm of scikit-learn Python library [65].

Let yi be a quantity of interest from the model under design F(X), which is constrained
by the inequality yi < gi. Then, the target probabilities for this constraint Pi are defined
such that:

P(yi < gi) ≥ Pi (2)

Next, the probability to satisfy this constraint for a single sample in the design space,
defined by the vector of parameters Xk = {x1, x1, ..., xnpar}, has to be calculated. First, a
Gaussian Process yi ∼ GP(X) is trained, from which the mean response µk

i and its variance
σk

i can be calculated. Then, the probability of Equation (2) for sample Xk is found:

Pk(yi < gi) = Φ

(
gi − µk

i

σk
i

)
(3)

The Equation (3) can be used on a single sample only. To estimate the probability
of satisfying the constraint yi < gi over a subspace, a large number of points within the
subspace are sampled using a Latin Hypercube [66] scheme, then the number of points
which satisfy the inequality of Equation (2) are counted over the total number of samples.
Effectively the conditional probability of satisfying the constraint over a single subspace
is calculated with a Monte Carlo approach. Finally, if more constraints are present, the
total probability of the subspace is obtained by multiplying all the individual conditioned
probabilities together, assuming they are all conditionally independent from each other.
If the total probability is less than a threshold set by the designer, the subspace is marked
as discarded. In summary, the algorithm used for the exploration step is presented in
Algorithm 1, with the respective flowchart shown in Figure 2.

Subspace j

Generate X j
k samples

from Latin Hypercube
sampling of subspace j

Calculate probabilistic
response of quantity yi:

µk
yi

, σk
yi

= fi(X j
k)

Sampled Model
Response Data

Probabilistic Constraint

P(yi < gi) ≥ Pi

Calculate
sample probability

Pk(yi < gi) = Φ
(

gi−µk
i

σk
i

)
Calculate the subspace

probability of
i-th requirement
Pi,j =

ni,sat
Nsamples

where ni,sat is the num-
ber of samples where

Pk(yi < gi) ≥ Pi

Calculate the total
subspace probability
Pj = ∏Nconstraints

i=0 Pi,j

Train

gi

Pi

Figure 2. Flowchart of the exploration step.

Once every subspace has been evaluated, those with a probability under a user-
specified threshold are marked for discard and are not evaluated in the second step, i.e., the
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search step. Those that survive are converted into an optimisation problem where the levels
of the parameters become variable bounds. Objectives and constraints are the same from
the exploration step, except for the “soft constraints” used previously. The results from the
exploration step are stored in a .csv file, which can be inspected by the designer. If desired,
discarded subspaces can be manually re-introduced before running the search step.

Algorithm 1 Exploration Algorithm

Xsamples ← LHS(Parameters)
ysamples ← F(Xsamples) . Generate Samples to Train the Surrogate Models
for yi in Nconstraints do

Train yi ∼ GP i(X)
fi ← GP i(X)

end for
for Subspace j do

Xsamples ← LHS(Subspacej)
for yi in Nconstraints do

ni,sat ← 0 . Variable to count how many samples satisfy Equation (2)
for Xk = {x1, x2, ..., xNpar} in Xsamples do

µk
i , σk

i ← fi(Xk)

Pi
k ← Φ

(
gi−µk

i
σk

i

)
. gi from the constraint yi < gi

if Pi
k > Pi then
ni,sat ← ni,sat + 1

end if
end for
Pi,j =

ni,sat
Nsamples

. Probability of i-th constraint of j-th subspace
end for
Pj ← ∏Nconstraints

i=0 Pi,j

if Pj < Pthreshold then
Mark Subspace j as discarded

end if
end for

Optimisation is performed using the Python library pymoo [67], which implements
several optimisation algorithms based on heuristic methods. In the context of design
exploration, optimality is sought as a mechanism to undestand the impact of the parameters
over the objectives and its trade-offs, rather than identifying the single best design. With this
goal in mind, the population-based Universal Non-dominated Sorting Genetic Algorithm
III (U-NSGA-III) was selected, which is efficient in both single, multi- and many-objective
problems [68]. It is chosen as it is a gradient-free method, granting flexibility in the
evaluation function. The drawback of population methods, however, is the large amount
of evaluations of the objective function; hence, modeling should be as computationally
cheap as possible. Surrogate methods such as Radial Basis Function interpolation [69],
Kriging [64] and, more recently, Artifical Neural networks [70], can be introduced to replace
costly simulations. Indeed, RBF interpolation is used for calculating the fuel flow of the gas
turbine, as explained in Section 2.3.

After all optimisations have been run, results are stored in a .csv format for visualisa-
tion and post-processing. An interactive web-based visualisation tool is being developed
alongside the described methodology. The multi-dimensionality of the output data requires
multiple types of graphs where data can be selected and visualised on multiple axes. A
convenient form is the parallel coordinates plot [71], which can be augmented if combined
with scatter plots [72].
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2.2. Energy Management Modeling

Energy management strategies are defined as a continuous piecewise linear degree of
hybridisation over the entire mission, with values ranging from 0 to 1. DoH is set to zero
when a mission phase is powered only by the gas turbine. Otherwise, the DoH is defined
with a combination of two parameters: the degree of hybridisation itself h and its relative
distance position x across the mission phase. These two quantities are defined as follows:

hi =
Pre

Prt
∈ [0, 1]

xi =
d
L
∈ [0, 1]

(4)

where Prt is the total power (in Watts) required to sustain flight across the mission phase, of
which Pre is the amount to be provided by electric propulsion, d is the length of the phase
spanned over the total phase length L (in kilometers). Within each phase, a number of
points are defined, where h is set and linearly interpolated between them. This approach
allows modeling both constant, linear or piecewise linear energy management strategies.
Figure 3 shows some possible hybridisation strategies over a single mission phase. If a
single or two h values are provided, their respective positions x are omitted, as the code
automatically assumes a constant or linear interpolation over the phase.

A B

C

h0

(a) Constant DoH

A B

C

h0

D

h1

(b) Linear DoH

A B

C

h0
D

h2

E

x1

F

h1

(c) Two Linear DoH

Figure 3. Examples of energy management definitions over a single mission phase.

2.3. Propulsion System Modeling

A low-fidelity simulation code was developed to size the mass of the batteries with a
power flow approach [14], which allows for fast function evaluations but with sufficient
accuracy to enable the study of these trade-offs. Each mission phase is divided in a set of
steps, where each flight parameter (Mass, L/D, V, Vz, etc.) is assumed constant. For each
step, the required flight power is calculated after the propeller as:

Prt = gV
M

L/D
+ gVz M (5)

where g is the acceleration of gravity, V is flight velocity, Vz the climb/descent rate and M
is the current aircraft mass.

This power is divided between the gas turbine and the electric motors depending on
the degree of hybridisation hi (Equation (4)) at that position in the mission.

The energy sources of the hybrid propulsive system are the gas turbine and the battery.
The total electric power, which has to be provided by the battery to fly the mission is
calculated by applying the efficiencies of each component in the electric power chain. The
value of each efficiency is assumed constant for the entire mission. The battery is sized by
dividing this power by its energy density.

Required fuel, instead, is calculated by estimating the fuel flow from table of gas
turbine data with a radial-basis function interpolation and multiplying it by the step time.
These data have been previously computed with the in-house gas turbine performance
tool TURBOMATCH [73], with a span of all possible combinations of altitude, Mach and
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required shaft power from the selected mission. The step adopted for altitude, Mach
number and power are 300 m, 0.1 and 100 kW, respectively. The maximum power for
each combination of altitude and Mach number is limited by the maximum allowable TET
(Turbine Entry Temperature).

While the required fuel, which is consumed during the mission, can be used as an
indicator of CO2 emissions, NOx emissions had to be estimated by using the Boeing
FuelFlow2 method [74]. The data required to model the turboprop EINOx were collected
from Filippone and Bojdo [75]. The model does not take into account the presence of a
Thermal Management System (TMS) to cool the electronic equipment.

3. Test Case Definitions
3.1. Aircraft Model Assumptions

The goal of the model for the presented numerical experiments is to capture the
interaction between the EMS, the HEPS and the aircraft. In particular, the variables of
interest of the aircraft are its mass M and its aerodynamic performance L/D.

The selected aircraft is a retrofit of the ATR 42-600, where the original Pratt & Whitney
Canada PW-127 gas turbine is kept and electric propulsion is introduced alongside. The
battery cells are assumed to be replaceable and, much like fuel, limited to the amount
needed to fly a specific mission.

As explained in Section 2.3, the mass of both fuel and batteries is computed iteratively,
until the required power to fly the mission matches the power that the fuel and batteries can
provide. In this computation, the payload mass and the operating empty mass are assumed
constant, as well as the mass of the electrical equipment (motors, power electronics, cabling).
Finally, structural re-sizing of the airframe is not considered in this study either. Therefore,
the maximum take-off mass is constrained to 20,000 kg, which reflects to a 7.5% increment
over the ATR 42-600 nominal maximum take-off weight [76]. Table 2 presents the aircraft
data used in this study.

Table 2. Aircraft Properties.

Maximum Take-Off Mass 20,000 kg
Operating Empty Mass 11,550 kg
Payload Mass 5000 kg
L/D Climbout 10.5
L/D Climb/Descent 16
L/D Cruise 14.5
L/D Final 7.5

3.2. Mission

A single mission is selected between all the presented test cases. This mission is the
maximum range reference flight mission defined by FUTPRINT50 [77], whose profile is
shown in Figure 4. It is divided into two stages, a main flight stage of 800 km of distance
and a flight to an alternate airport stage of 95 km with a 30 min holding pattern. Average
climb rate is 996 ft/min (5.059 m/s), while cruise speed is 268 kt (137.78 m/s).
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Figure 4. Mission Profile.

3.3. Propulsion System Model and Assumptions

Figure 5 presents the structure of the selected parallel hybrid propulsion system. The
power supplied to the propeller is generated by the gas turbine and the electric motor,
through a planetary gearbox. The assumed properties of the engines, electrical components
and the propeller are presented in Tables 3 and 4.

Figure 5. Propulsion system configuration.

Table 3. Propulsion system parameters.

Propeller Efficiency (Take-Off) 0.64
Propeller Efficiency (Climb) 0.73
Propeller Efficiency (Cruise) 0.86
Propeller Efficiency (Other) 0.8
Gearbox Efficiency 0.99
Electric Motor Efficiency 0.95
Power Electronics Efficiency 0.94
Cabling Efficiency 0.995
Battery Efficiency 0.95
Battery Energy Density [Wh/kg] 500
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Table 4. Engine specifications at ISA-SLS.

OPR 14.9 HPT cooling flow to core flow ratio 0.12
Mass flow (kg/s) 8.4 LPT cooling flow to core flow ratio 0.05
TET (K) 1250 LPC efficiency 0.87
Net power (kW) 1698.6 HPC efficiency 0.88
Residual thrust (N) 712.1 HPT efficiency 0.89
Efficiency 0.35 LPT efficiency 0.89
SP (MWsec/kg) 0.20 Combustor pressure loss 0.05

The propulsion system model ignores the effects of auxiliary components such as the
thermal management system (TMS). This aspect was not included as it is secondary to
the interaction between EMS and HEPS. Furthermore, the efficiency of the components is
assumed constant, except for the gas turbine.

The selected gas turbine engine is thermodynamically similar to PW127 used on the
ATR-72-600. The engine is a three-spool gas turbine, where the gas generator is comprised
of a high-pressure turbine (HPT), which drives a high pressure compressor (HPC), and
a low pressure turbine (LPT), which drives a low pressure compressor (LPC). The free
turbine (FT) drives the propeller through the gearbox, as shown in Figure 5. The same
baseline engine is kept for different studies by de-rating the engine for different DoHs. This
is simply performed by running the engine at a lower operating point which does not have
any impact on the operability of the compressors. By de-rating the engine, the operating
point of the compressors moves along their normal operating line.

The battery energy density figure was selected by considering a 2035 technological
scenario [78].

The efficiencies of the electrical components are estimated as the average of the mostly
adopted ones for power electronics and electrical machines, as found in the literature [79].
These values may vary depending on the design requirements, such as the type of the
machine and its specific power [80]. However, for the model in this study, some of the
efficiency values were chosen based on experience. Similarly, the propeller efficiency for
different mission segments is calculated from in-house simulations.

Finally, for the purpose of this study, battery recharging during flight has been ig-
nored, as it is not the focus. Therefore, electrical power always flows from the battery to
the propeller.

3.4. Energy Management Experiments

Given the flexibility of the energy management modeling, it is possible to define as
many parameters as desired to describe one or more hybridised mission phases. Therefore,
a matrix of experiments has been defined by combining different hybridised mission phases
with different energy management strategies. Each experiment is identified by a number for
ease of reference during discussion in Table 5, plus an acronym composed by the hybridised
mission phase names and its parametrisation type. For instance, Experiment 6, which has
Climb and Cruise hybridised phases and a Linear DoH parametrisation, would be referred
to as CC-L.
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Table 5. Definition of Experiments.

Hybridised Mission Phases
(In Order) Uniform DoH Linear DoH Two Segments DoH Three Segments DoH

Cruise ex. 1 C-U ex. 5 C-L ex. 9 C-2S ex. 11 C-3S

Climb, Cruise ex. 2 CC-U ex. 6 CC-L ex. 10 CC-2S ex. 12 CC-3S

TO, Climb, Cruise, Final ex. 3 TCC-U ex. 7 a TCC-L - -

Climb, Cruise, Climb to
Alternate, Cruise to
Alternate

ex. 4 CCA-U ex. 8 CCA-L - -

a DoH for TO and Final phases are kept uniform as they are very short.

All experiments share the same optimisation problem formulated in Equation (6) and
have DoH bounded between 0.1 and 1. Psat is the target satisfaction probability of the
constraint, as it was defined in Equation (2) If a hybridised phase is defined with more
than three points, additional constraints are added to guarantee the x position of the inner
points do not cross each other (i.e., x2 > x1, x3 > x2, etc.). Descent was excluded from
hybridisation since battery charging is ignored (see Section 3.3), and the engine is assumed
to be set to idle in this mission phase.

minimise
X

M f uel , MNOx

subject to Mtakeo f f ≤ 20, 000 kg (Psat ≥ 0.5)
(6)

For the purpose of discussing the results in Section 4, these experiments are grouped
into test cases. However, given the large amount of results, the most relevant ones for each
discussed test case were selected and presented. These cases are as follows:

• Parametrisation Complexity: Study the effects of increasing the complexity of the
energy management parametrisation. The experiments considered are 1, 2, 5, 6, 9, 10,
11 and 12.

• Mission Hybridisation: Understand which and how many mission phases should be
hybridised, and the effects of their inclusion in the energy management system. The
experiments considered are 1, 2, 3, 4, 5, 6, 7 and 8.

• Take-Off Mass Constraint: Understand the impact the take-off mass constraint has
over the performance of the propulsive system. The experiments considered are 6
and 10.

The baseline values of the reference aircraft (ATR-42-600) are calculated with the
methods presented in Section 2.3 and shown in Table 6. These quantities are used to
calculate the improvement of the presented energy management strategies and normalise
the scatter plots.

Table 6. Baseline reference values.

Take-Off Mass 17,568 kg
Burned Fuel (M f ) 1018.22 kg
NOx Emissions (MNOx ) 11.179 kg

4. Results
4.1. Effectiveness of Design Space Exploration Methodology

This section presents the computational cost for running each experiment and the
effectiveness of the probabilistic constraints and estimates how much time was saved with
the presented methodology. All the calculations presented in this study were performed
on a 16-core machine (Two Intel E5-2620 v4 CPUs) and a total of 128 GB of memory.
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Tables 7 and 8 present the total number of design subspaces, the discarded percentile and
the time required to execute the entire calculation for each experiment.

Table 7. Number of discarded subspaces.

Experiment LevelNpar Npar Nsubspaces % Discarded

C-U 41 4 4 50.0%
CC-U 42 4 16 75.0%
TCC-U 42, 32 7 144 79.2%
CCA-U 44 4 256 94.5%
C-L 42 2 16 62.5%
CC-L 44 4 256 85.1%
TCC-L 36 6 729 90.1%
CCA-L 38 8 6561 98.9%
C-2S 34 4 81 61.7%
CC-2S 38 8 6561 90.8%
C-3S 36 6 729 84.2%
CC-3S 312 12 531,441 99.9%

Table 8. Breakdown of the total computational time.

Experiment Sampling
Time (s)

Training
Time (s)

Exploring
Time (s)

Search
Time (s)

Total Run
Time (h)

C-U 2.644 0.025 0.357 166.30 0.047
CC-U 3.543 0.037 0.018 863.16 0.241
TCC-U 9.512 0.193 1.166 6552.60 1.823
CCA-U 4.529 0.058 1.174 3611.16 1.005
C-L 9.058 0.058 0.019 1245.18 0.348
CC-L 9.603 0.073 0.857 9878.86 2.747
TCC-L 10.745 0.127 0.673 16,188.48 4.500
CCA-L 10.204 0.025 24.367 19,518.74 5.431
C-2S 9.560 0.162 0.460 6754.59 1.879
CC-2S 11.005 0.042 25.138 135,967.70 37.779
C-3S 7.357 0.064 3.329 25,144.75 6.988
CC-3S 9.673 0.171 5819.547 54,580.23 16.780

Table 9 compares the actual computational time with the estimated one if the frame-
work is searched in every subspace, ignoring the results from the exploration phase. Even
with the overhead of the sampling, Gaussian process training and the probabilistic ex-
ploration, the total time required by the framework is less than would have been needed
to search each subspace. The amount of saved time, however, is directly proportional
to the number of discarded subspaces. The best practice is to have relaxed probabilistic
constraints and fewer parameters for a first run, then increase the probabilistic constraints
to drive the exploration towards the desired response. For instance, after identifying where
the Pareto front is, the user can add a probabilistic soft constraint on the objectives such
that the framework discards those areas of the design space far from the global Pareto front.
This approach is consistent with the “convergent approach” to design, of which Set-Based
design is an implementation.
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Table 9. Comparison between the actual computational time and the estimated one without the
probabilistic exploration.

Experiment Total Run
Time (ch)

Estimated Runtime without
Discarded Subspaces (ch) % Saved Time

C-U 0.75 1.48 49.09%
CC-U 3.85 15.35 74.90%
TCC-U 29.17 138.01 78.86%
CCA-U 16.08 293.48 94.52%
C-L 5.57 14.76 62.22%
CC-L 43.95 295.79 85.14%
TCC-L 72.00 728.48 90.12%
CCA-L 86.90 7796.80 98.89%
C-2S 30.07 78.44 61.67%
CC-2S 604.46 6553.42 90.78%
C-3S 111.80 708.43 84.22%
CC-3S 268.49 530,519.84 99.95%

M f uel ≤ 940 kg (Psat ≥ 0.5)

MNOx ≤ 10.25 kg (Psat ≥ 0.5)
(7)

In addition to the experiments presented in Table 5, an additional experiment was
performed by adding soft constraints over the objectives to the Climb-Cruise with Two
Segments case (experiment 10). These additional soft constraints, shown in Equation (7),
were selected from the inspection of the Pareto fronts (See Sections 4.2 and 4.3 ) to further
discard subspaces that most likely do not contain global optimum points.

Figures 6 and 7 present the data points of the original case and the one with additional
constraints, respectively. These results show the probabilistic constraints are effective at
limiting the search to those subspaces within the desired constraints, especially hard ones,
such as the take-off mass constraint. Figure 8 presents the objective space of the two cases
overlapped, indicating the soft constraints were capable of restricting the search away from
areas with low objective improvement. However, the soft constraints did not strongly limit
near the Pareto front as it was required, with some optimal points above the constraints.
Secondly, the relatively low total probability in Figure 7 suggests that the system under
design does not have the same sensibility to each constraint.
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Figure 6. Data of Experiment CC-2S.
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Figure 7. Data of Experiment CC-2S with additional soft constraints.
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4.2. Parametrisation Complexity

The experiments selected for this study have two subdivisions based on the number of
hybridised phases. The first set presents a single hybridised phase, cruise, while the second
set hybridises both climb and cruise.

Figure 9a presents the results of only those experiments with cruise as hybridised.
There is no Pareto front between M f and MNOx . Instead, the constant and linear parametri-
sations overlap with a single optimal point, whereas the two-segment and three-segment
strategies have two close points. By tracing the shape of each energy management strategy
(Figure 10), it is observed that they all converge towards the constant parametrisation. In
particular, the three-segment strategies degenerate into a two-segment one by having their
first point overlapping the beginning of the mission phase.
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Figure 9. Effects of parametrisation complexity: (a) Optimal points Objective space of cruise-only
hybridised strategies; (b) Pareto fronts of climb and cruise hybridisation strategies.
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Figure 10. Hybridisation strategies of the optimal points of Figure 9a.

Figure 9b presents the results of those experiments where climb and cruise are hy-
bridised. Contrary to the results in Figure 9a, here, a Pareto front is present. The more
complex parametrisations have more points and include some strategies which dominate
the simpler ones. Figure 11 shows the optimal energy management strategies found, cor-
responding to the marked points in Figure 9b. Points which are close to each other in
the objective space present very similar topologies, regardless of parametrisation. This is
particularly true for the extremities of the Pareto fronts (Figure 11a,b) and the highlighted
points marked as “b” and “d” (Figure 11c). In Figure 11d, the optimiser found a linearly
increasing h strategy for the climb phase, which allows these points to dominate the original
uniform strategy. Details of these optimal points are presented in Table A1.

These result indicate that complex parametrisations beyond two segments do not
produce significant improvements over the objectives. According to analysis, linear and
two-segment strategies are flexible enough to identify the Pareto front in the objective space.
However, it should be noted that the optimal points of the two-segment type present a 2%
extra reduction in NOx emissions to the linear counterparts towards the upper-left area
of the front (where the burned fuel mass is lower). This indicates that the topology and
parametrisation of the energy management strategy affects more the emissions of NOx than
the fuel consumption (and by extent, the CO2 emissions).
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Figure 11. Optimal energy management strategies of Figure 9b: (a) Selection a; (b) Selection c;
(c) Selections b and d; (d) Point closest to origin, marked with “X” in Figure 9b.

4.3. Mission Hybridisation

This group of experiments has two subsets depending on the type of parametrisation
used in the energy management definition. The first set has uniform parametrisation
(Figure 12a), while the second one is linear (Figure 12b). The details of the strategies of the
most notable optimal points can be found in appendix (Figures A5 and A6).

The results in the objective space indicate that hybridising shorter phases, such as take-
off and final approach, bring no significant change in total emissions or fuel consumption.
Indeed, in Figure 12a,b, the discrepancy between the Pareto front of Climb–Cruise missions
and TO–Climb–Cruise–Land is of 0.5% in burned fuel mass and 1% in NOx emissions.
However, as it will be argued in Section 5, the hybridisation of low-altitude operations are
fundamental to reducing pollution and noise near airports and the communities living
close by.
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Figure 12. Effects of mission hybridisation: (a) Pareto fronts of uniform strategies with different hy-
bridised mission phases; (b) Pareto fronts of linear strategies with different hybridised mission phases.

Furthermore, the hybridisation of the alternate portion of the mission, alongside
the main one, produced a shift towards less NOx emissions at the cost of higher fuel
consumption. Strategies that hybridise only the main portion of the mission dominate
those that hybridise both the main and alternate parts.

Table 10 reports the detailed results for each of the identified optimal points of
Figure 12a. In each Pareto front, there is a trade-off between the battery mass and fuel
mass, while the overall efficiency of the propulsion system ηtotal and the NOx emissions
are seemingly correlated. Furthermore, if the overall efficiency is greater, a reduction in
NOx is present but a reduction in CO2 (fuel consumption) is not, ηtotal is defined as:

ηtotal =
Ptr

Ptotal source
(8)

where Ptr is the total required power to fly the aircraft, and Ptotal source is the total power
provided by the gas turbine and battery before efficiency.

Table 10. Detailed results of the points in Figure 12a.

Point TOM [kg] M f uel [kg] Mbattery [kg] MNOx [kg] ηtotal

Baseline 17,568 1018.22 0 11.179 0.299

C-U, min(M f , MNOx ) 19,998 908.30 2539.75 10.021 0.316

CC-U, min(M f ) 19,998 910.63 2537.65 9.978 0.316
CC-U, min(M f , MNOx ) 19,992 924.52 2518.23 9.651 0.319
CC-U, min(MNOx ) 19,999 928.93 2520.33 9.405 0.326

TCC-U, min(M f ) 19,998 909.63 2538.67 10.004 0.320
TCC-U, min(M f , MNOx ) 19,995 923.11 2522.46 9.728 0.322
TCC-U, min(MNOx ) 19,999 930.69 2519.03 9.398 0.332

CCA-U, min(M f ) 19,984 925.21 2508.95 9.937 0.328
CCA-U, min(M f , MNOx ) 19,998 931.51 2516.56 9.423 0.328
CCA-U, min(MNOx ) 19,999 939.59 2510.19 9.269 0.342

The comparison between Figure 12a,b indicates that, despite the higher amount of
parameters and degrees of freedom from the linear energy management strategies, there
is no difference in the trends from the number and types of hybridised mission phases. It
can be concluded that the parametrisation of the hybridisation strategy does not affect the
behavior in the objective space when a different number of hybridised phases are compared.
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4.4. Maximum Take-Off Mass

Figure 13 presents a family of Pareto fronts using data from experiments 6 and 10,
where each front is the optimal energy management strategy available for a given take-off
mass constraint. The fronts tend to shrink and collapse into a single point as the maximum
take-off mass limit is reduced.

Figure 14 shows the energy management strategy, which lies halfway between each
Pareto front for each constraint level (more visualised strategies can be found in Figure A7).
It is evident that the DoH is greater the higher is the maximum take-off mass limit, since it
allows for more mass battery capacity.
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Figure 13. Pareto fronts for different Take-off Mass constraints.
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Figure 14. Energy management strategies for different take-off mass constraint levels.

The shape of the presented energy management strategies is similar for both types of
functions (linear and two-segment piece-wise linear) for each type of optimal point. As
presented in Section 4.2, the added freedom of an intermediate point does not produce
significantly different shapes than the linear counterpart. Instead, the trade-off between hy-
bridising climb or cruise is present in each take-off mass constraint level and corresponding
to the trade-off between NOx emissions and fuel consumption.
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5. Discussion
5.1. Design Space Exploration Capabilities

This study was carried out with the design space exploration methodology presented
in Section 2.1. This framework applies Set-Based Design principles to optimisation by
enumerating end evaluating many design subspaces and discarding the ones unable
to satisfy the requirements set by the designer. A probabilistic approach to perform this
evaluation was introduced, where the probability of a subspace to satisfy a set of inequalities
expressing the requirements was estimated by the use of machine learning and sampling.
The optimiser is then introduced in the surviving subspaces to identify the local Pareto
front. Using a thorough exploration rather than an optimiser in the entire design space
allows us to analyse the interaction between input parameters, objectives and constraints,
independently of the global optimum. Additionally, a whole family of possible solutions
are generated, which can be used if the global constraints are more conservative than
what was initially set. For instance, the results presented in Section 4.4 show the effect
of the take-off mass constraint over the objective space and, consequently, on the input
parameters. From the perspective of performance, the data in Section 4.1 demonstrate that
the computational time of the presented framework is less than introducing the optimiser
alone in each subspace, even though the exploration phase sweeps all the subspaces.

Finally, it was shown in Figure 6 that the subspace probability constraint and the value
itself do correlate. Therefore, the exploration phase effectively discards areas of the design
space which would not satisfy the hard constraints, as it was previously demonstrated [58].

The addition of soft constraints for restricting the search near the global Pareto front
(Figure 7) resulted in less surviving subspaces and a more restricted objective space
(Figure 8). While the least optimal solutions were effectively discarded, the restriction
was not as hard as could be expected, with a “spillover” of possible solutions outside of the
constraints of Equation (7).

While this effect requires further investigation and testing, several causes can be
suggested: the number of discrete levels of the input parameters, the number of sampled
points in each subspace, the sensibility of the model responses to the input parameters
and the satisfaction probability. Indeed, if the subspaces are too coarse, they might cover
areas that include both globally optimal solutions and the least desirable solutions. These
subspaces, therefore, include the probabilistic constraint boundary and, if not adequately
sampled, are discarded, eliminating some possible optimal points. Conversely, if they are
kept, the sub-optimal solutions are retained, and spillover is visible in the objective space.
Model sensibility would also play a role in the shape and steepness of the probabilistic
constraint boundary. However, unlike the two other parameters, it cannot be controlled.
Finally, the satisfaction probability Psat determines what the threshold for a single sample to
be accepted is, and therefore, how much the hyper-volume of a design subspace is capable
of satisfying the probabilistic constraints.

In summary, the inclusion of soft constraints in the exploration phase defines an
“exploration–exploitation” problem, where the continuous parameter discretisation, the
sampling and the satisfaction probability determine if the accepted design space is re-
stricted to the most desirable solutions (exploitation) or relaxed to accept sub-optimal
solutions (exploration).

5.2. Effects of Parametrisation Complexity

The results presented in Section 4.2 describe the interaction between the topology
and parametrisation complexity of an energy management strategy and the effect on fuel
consumption and NOx emissions. It was concluded that parametrisations no more complex
than linear and two-segment piecewise linear solutions are enough to find the Pareto front
over the fuel consumption and emissions objectives. However, the linear parametrisation
was not able to capture some of the solutions between the extremities of the Pareto front.
Instead, the two-segment piecewise linear solutions explored the upper-left region of the
Pareto front, dominating the linear solutions (Figure 9b). Finally, when close to the Pareto
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front, the strategies that had more parameters presented the same topological shape as
their simpler counterparts.

Additionally, the comparison between the experiments of Figures 9a and 12a demon-
strates that at least two mission phases are required to obtain a Pareto front in the two
objectives. The trade-off is present when cruise and climb are hybridised, and hybridising
cruise minimises fuel consumption over NOx emissions, and vice-versa for the climb phase.

The explanation of this phenomenon is related to the amount of power required
in these phases: The climb is a power-intensive process where usually the maximum
cycle temperature of the gas turbine is defined, which is the combustion chamber exhaust
temperature. This is correlated with NOx emissions, as high temperatures dissociate O2
to produce oxygen radicals that react with N2 to produce nitrous oxides [81]. Hybridising
climb allows us to reduce the required power from the gas turbine and therefore lower
its combustion temperature and NOx emissions. However, because the climb is a shorter
phase than cruise and the maximum amount of battery mass is limited by the maximum
take-off mass, the cruise will be less hybridised, and more fuel will be consumed in this
phase. The opposite happens when the cruise is prioritised: More battery mass is allocated
to provide energy during the cruise, but in climb, NOx emissions will be higher as the gas
turbine has to provide more power.

As shown in Section 5.3, the total burned fuel is minimised when the battery mass is
mainly allocated to the longest mission phases, especially cruise.

5.3. Effects of Mission Hybridisation

From the results in Figure 12a,b, it can be concluded that the longer phases of the
mission, when hybridised, have the highest impact on reducing fuel consumption and
NOx emissions. Even if take-off is energy-intensive, shorter phases’ hybridisation did not
significantly improve the Pareto front. Nevertheless, the hybridisation of these short phases
at low altitudes, such as take-off and landing, should be taken into consideration as they
provide a reduction in noise and pollution at airports and nearby communities. While
noise was not modelled in this study, as the focus was on gaseous emissions (CO2 and
NOx), airport pollution and noise are two of the major drivers of current hybrid-electric
aircraft research [2,77].

However, the strategy that minimises the fuel consumption the most, and therefore
the CO2 emissions, is the one where the longest mission phase, cruise, is hybridised. If
climbing, take-off, landing and the climb and cruise to alternate phases are added, the
fuel consumption increases despite having more of the mission hybridised and less NOx
emissions. Descent is not hybridised in all the experiments since battery recharging is
ignored (see Sections 3.3 and 3.4). As explained in Section 3.2, Table 10 demonstrates this
behavior clearly. Because the maximum take-off mass is limited, and therefore the amount
of mass to be split between batteries and fuel is limited, when more mission phases are
included in the hybridisation, more of the battery energy has to be distributed. Thus, the
degree of hybridisation is lower for the longest mission phases (see Figure A5 for details).
The consequence is an overall increment in the efficiency of the propulsive system and
reduction in NOx, as, on average, more of the required power is provided by the more
chain-efficient electric subsystem and the gas turbine operates at a lower power setting.

However, more fuel will be consumed in those long phases due to the lower degree of
hybridisation. This trade-off is visible when comparing the Pareto front of Climb–Cruise–
Alternates to the original Climb–Cruise only hybridisation (Figure 12a,b). Interestingly, this
trade-off behaviour is largely independent of the type of energy-management parametrisa-
tion used.

5.4. Effects of Maximum Take-Off Mass

In Section 5.3, it was discussed how the trade-off between fuel consumption and NOx
emissions is caused by the allocation of the limited amount of electrical energy stored in
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the batteries, which is proportional to the maximum amount of battery mass that can be
allowed within the maximum take-off limit of the aircraft.

The results from Section 4.4 further demonstrate the effects of the take-off mass
limitation over the aircraft performance. Figure 13 demonstrates how, as the maximum
take-off mass is reduced, the Pareto front between the two objectives is smaller up to
collapse into a single optimal point. The available mass for batteries is so small that only
one of the two phases can be hybridised. As is seen in Figure A7, the lower is the maximum
take-off mass limit, the lower the average degree of hybridisation is during the mission.

Given the trend, under this model, it might assumed that increasing the maximum
take-off mass limit of the aircraft would always reduce the fuel consumption and the
emissions overall. However, the model presented in Section 2.3 assumes a constant value of
empty operating mass (OEM), which is a major simplification adopted, as this study did not
increase the maximum take-off mass over the reference aircraft too much. A more detailed
aircraft model should include an estimation of the empty mass due to the structural sizing
of the airframe for carrying the additional battery mass and the additional weight due
to the electrical system having to manage more electrical power. Therefore, this trend is
expected to have diminishing returns, as more batteries would require a heavier aircraft
with higher production costs, requiring more power to fly.

5.5. Recommended Strategies

According to the discussion of the results four groups of optimum strategies were
identified. Two for the Climb–Cruise with Linear parametrisation and two for the Climb–
Cruise with Two Segments parametrisation case. These selections of groups of solutions are
shown along the trade-off in Figure 15 and also in the corresponding Parallel Coordinates
plots in Figures 16 and 17. These selections highlight the effects of the trade-off between
the two objectives.

The shapes of each respective energy management strategy are shown in
Figures 18 and 19, respectively. Average trends were identified from these selected points,
shown in Figures 18 and 19 with a black dashed line. These average strategies have been
simulated and drawn in the objective space along their original samples (see the crosses in
Figure 15).

While some of the averaged strategies do not fall within the sampled group due to the
non-linearity of the simulation, these points are nonetheless close to the original selection
and follow their respective trends within 1% of discrepancy for both objectives.
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Figure 15. Points selected for the recommended strategies.
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Figure 17. Parallel coordinates visualisation of Experiment 10.
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Figure 19. Visualisation of Experiment 10 energy management strategies.

Three possible general shapes for the energy management strategy are indicated.
As evident from Figure 15, the points of Selection 1 of Experiment 6 and Selection 2 of
Experiment 10 fall within the same objective area. Their respective energy management
strategies are similar, except for an impulse at the beginning of the climb phase (Figure 19b),
which is an artefact of the optimisation algorithm. Another point of note is the steep climb
after a late introduction of electric power in the climb phase of Selection 1 of Experiment 10
(Figure 19a). This behaviour is what allows the two-segment strategies to expand the
Pareto front in this region and dominate linear strategies. The improvement in M f uel
is the consequence of the increased utilisation of batteries during the cruise phase (see
Section 5.3). Finally, the proposed general shapes in detail are:

1. Linearly increasing DoH in climb, starting from zero, and constant DoH in cruise
(Figures 18a and 19b). This strategy is balanced between the two objectives and
represents a good compromise.

2. Late deployment of electric power in climb, with a steep linear increment in DoH
and moderately increasing DoH in cruise (Figure 19a). This strategy prioritises the
reduction of fuel consumption over the emissions of NOx, as more battery capacity is
allocated in cruise.

3. Moderately increasing DoH in climb, starting from a non-zero value, and moderately
increasing DoH in cruise (Figure 18b). This strategy prioritises the reduction of NOx
over fuel consumption, as more battery capacity is allocated in climb.

No specific degree of the hybridisation values is provided for these strategies because,
as discussed in Section 5.4, the amount of battery mass available determines the average
degree of hybridisation. These DoH values of these strategies are determined by the
20,000 kg take-off mass limit that has been adopted in this study. Nonetheless, it is possible
to summarise two general trends. First, the shape of the DoH functions are either constant,
increasing or a mixture of the two. Secondly, the trade-off between NOx emissions and
burned fuel is directly correlated with the hybridisation of climb or cruise. Finally, the
results indicate that the best parametrisation is the two segments piece-wise linear one,
since it is capable to cover the entire Pareto front with the least number of parameters.
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6. Conclusions

Hybrid-electric vehicles are characterised by providing propulsive power from more
than a single energy source. Finding the optimal energy schedule is a common issue that
affects hybrid-electric aircraft, albeit with the added complexity of take-off mass limitations.
This study presented the problem of finding the optimal energy management scheduling
for a hybrid-electric aircraft combined with its battery sizing. An ATR-42 class aircraft
retrofitted with a hybrid-electric parallel propulsion system was modelled, and a piecewise
linear parametrisation of the degree of hybridisation was introduced for flexibly defining
any energy management strategy. A new design space exploration methodology based on
the principles of Set-Based Design was introduced, enhanced by a probabilistic approach,
which is capable of discarding design subspaces unable to satisfy the requirements set by
the designer. This methodology allowed the optimisation algorithm to focus on areas of
the design space without constraint violations and, when specified, closer to the global
Pareto front. Indeed, the presented test cases had a large portion of the design space unable
to satisfy the constraints. The framework was capable of identifying it and discarding
it, reducing the number of configurations to evaluate by 75% on average. Furthermore,
the optimisation results obtained with this approach allowed us to reveal the behaviour
of the system. Nevertheless, a set of tuning hyperparameters of this framework was
identified, the granularity of the subspaces and the minimum satisfaction probability,
which affect the number of possible results. Tuning studies will be performed to benchmark
the proposed methodology and define best practice hyperparameters. Several experiments
were performed by changing the complexity of the parametrisation and the number of
hybridised mission phases, from which several lessons were learned. The complexity
of the energy management parametrisation has diminishing returns on the objectives.
The piecewise two-segment topology was found to be enough for identifying the Pareto
front. Introducing more phases did not improve the objective significantly to justify the
increased computational cost. Furthermore, points in the same area of the objective space
have similar energy management strategies, regardless of how complex and flexible their
parametrisation is. Indeed, the parametrisation itself was not responsible for the trade-off
between the objectives.

Instead, the length and number of the hybridised mission phases affected the shape
and presence of a Pareto front. The results clearly showed that, while the longest mission
phases contributed the most to the reduction of fuel consumption, if most mission phases
were hybridised, the NOx emissions would go down together with an increment in the
overall propulsive efficiency. Moreover, the maximum take-off mass limit affects how much
trade-off is present between the objectives. These phenomena can be explained in the
limited amount of available electric energy due to the limited amount of battery mass. If
this energy is distributed over more mission phases, on average, less gas turbine power
is used, and therefore, less NOx is emitted as it runs at a lower combustion temperature.
However, the DoH would be lower on the longer mission phases, requiring most fuel
burned. Indeed, if the electric energy is used only on the longest mission phase, cruise, the
mission fuel consumption is minimised.

Lastly, the maximum take-off mass determines how much battery mass is distributed
over the mission phases. While this might suggest increasing this limit indefinitely, the
increment in the battery mass and the higher amount of electric power to manage would
greatly impact the aircraft’s structural and systems mass, increasing the aircraft’s cost and
complexity and ultimately reducing the fuel efficiency benefits.

This aspect was not included in this study but will be included in future work. Fur-
thermore, from this study, the thermal management aspect of the hybrid-electric propulsion
system was ignored, which is one of the current challenges in the design and production of
HEA. Future studies will introduce the sizing of the thermal management system (TMS)
from the electric system lost energy and its effects on aircraft mass and available power.

Finally, a critical aspect in the study and development of HE and Electric propulsion
is the uncertainty of future technology. In this study, a fixed value of battery energy density
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was selected for a 2050 scenario. However, future studies will introduce an uncertainty into
the presented methodology for studying different technological scenarios and their impact
on the design parameters and requirements at the same time.
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Abbreviations
The following abbreviations are used in this manuscript:

C Cruise
CC Climb and Cruise
CCA Climb and Cruise and their respective alternates
Cl-A Climb in Flight to Alternate
Cruise-A Cruise in Flight to Alternate
Desc-A Descent in Flight to Alternate
DP Dynamic Programming
DoH Degree of Hybridisation
EMS Energy Management System
EVE Electrically Variable Engine
FGA Final and Go-Around
FT Free Turbine
ICAO International Civil Aviation Organization
ISA International Standard Atmosphere
SLS Sea Level Static
MOO Multi-Objective Optimisation
MTOM Maximum Take-Off Mass
HE Hybrid-Electric
HEA Hybrid-Electric Aircraft
HEPS Hybrid-Electric Propulsion System
HPC High-Pressure Compressor
HPT High-Pressure Turbine
L Linear DoH Segment
Lnd Land
LPC Low-Pressure Compressor
LPT Low-Pressure Turbine
OEM Operating Empty Mass
OPR Overall Pressure Ratio
RBF Radial Basis Function
TET Turbine Entry Temperature
TOM Take-Off Mass
TCC Take-Off, Climb, Cruise and Landing
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TMS Thermal Management System
TO Take-Off
TOM Take-Off Mass
SBD Set-Based Design
U Uniform DoH Segment
U-NSGA Universal Non-dominated Sorting Genetic Algorithm
2S Two Linear DoH Segments
3S Three Linear DoH Segments
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Figure A1. Objective space of cruise-only hybridised strategies.
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Figure A2. Objective space of Climb and cruise hybridisation strategies.
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Figure A3. Objective space of Uniform strategies with different hybridised mission phases.
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Table A1. Detailed results of the optimal points where Climb and Cruise are hybridised. (Section 5.2).

Point TOM [kg] M f uel [kg] Mbattery [kg] MNOx [kg] ηtotal

Baseline 17,568 1018.22 0 11.179 0.299

CC-U, min(M f ) 19,998 910.63 2537.65 9.978 0.316
CC-U, min(M f , MNOx ) 19,992 924.52 2518.23 9.651 0.319
CC-U, min(MNOx ) 19,999 928.93 2520.33 9.405 0.326

CC-L, min(M f ) 19,981 910.94 2520.08 10.053 0.316
CC-L, min(M f , MNOx ) 19,994 920.12 2524.12 9.594 0.322
CC-L, min(MNOx ) 19,998 928.64 2519.55 9.467 0.326

CC-2S, min(M f ) 19,997 910.63 2536.66 10.112 0.316
CC-2S, min(M f , MNOx ) 19,999 915.15 2590.40 9.588 0.321
CC-3S, min(MNOx ) 19,999 928.46 2520.66 9.464 0.325

CC-3S, min(M f ) 19,997 910.63 2536.66 10.112 0.316
CC-3S, min(M f , MNOx ) 19,999 915.15 2590.40 9.588 0.321
CC-3S, min(MNOx ) 19,999 928.46 2520.66 9.464 0.325
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Figure A5. Optimal energy management strategies of points in Figure 12a.
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Figure A6. Test 4 optimal energy management strategies.
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Figure A7. Optimal energy management strategies for different take-off mass constraint levels.
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