
PDDL Generators

Jendrik Seipp, Álvaro Torralba, Jörg Hoffmann

A collection of PDDL generators, some of which have been used to generate benchmarks for the Inter-
national Planning Competition (IPC).

Contents

1 Agricola 3

2 Assembly 3

3 Barman 4

4 Blocksworld 4

5 Briefcaseworld 5

6 Cavediving 6

7 Childsnack 7

8 Citycar 8

9 Crewplanning 8

10 Data-network 9

11 Depots 9

12 Driverlog 10

13 Elevators 11

14 Ferry 13

15 Floortile 13

16 Freecell 14

17 Fridge 14

18 Goldminer 15

19 Grid 15

20 Gripper 15

21 Grippers 16

22 Hanoi 16

1

23 Hiking 16

24 Logistics 16

25 Maintenance 17

26 Matchcellar 18

27 Miconic 19

28 Miconic-fulladl 19

29 Miconic-simpleadl 20

30 Movie 20

31 Mprime 20

32 Mystery 21

33 Nomystery 22

34 Npuzzle 23

35 Nurikabe 23

36 Openstacks 23

37 Parking 26

38 Pathways 26

39 Pegsol 27

40 Rovers 28

41 Satellite 28

42 Scanalyzer 29

43 Schedule 30

44 Snake 31

45 Sokoban 32

46 Spanner 32

47 Spider 32

48 Storage 33

49 Termes 34

50 Tetris 34

51 Tidybot 35

52 Tpp 37

2

53 Transport 38

54 Trucks 38

55 Tsp 39

56 Turnandopen 39

57 Tyreworld 40

58 Visitall 40

59 Woodworking 41

60 Zenotravel 42

1 Agricola

Instance generator for the Agricola domain

submitted by Tomas de la Rosa <trosa@inf.uc3m.es>

Description: This domain is loosely based on the board game Agricola. The game models a

farm with some workers. The game has a number of rounds and stages, in which the player

must select actions for every worker. Some of this actions will obtain resources, and

others will increase the number of workers. This allows the player to perform more actions

per turn but also increases the amount of food consumed at the end of the turn,

potentially leading into dead ends.

2 Assembly

* Origin: Drew McDermott. Used in the AIPS-1998 competition.

* Adaptions: None.

* Description: Typed ADL domain using complex pre- and

effect-conditions, as well as conditional effects. Assemble one goal

item by repeatedly putting together several items that are part of the

same meta-item. The part-of relation defines a tree, where the root is

the goal item and the leafs are the base items that do not need to be

assembled. Any item can need a resource (like an ofen) during the

process of its being assembled. It may be that a ‘‘transient’’ part

has to be assembled somewhere and removed afterwards, that parts of

the same meta-item need to be assembled in a specified order (obeying

assemble order constraints) and that some other part needs to be

assembled before the transient part is removed again (obeying remove

order constraints).

* Parameters:

* -d depth of part-of tree

* -m maximal number of sons to any node in the tree

* -h probability that a node has any sons

* -n number of distinct resources

* -r probability that a non-base node requires a resource

* -t probability that an item is transient part for any higher-in-tree item

* -a probability that a pair of items has an assemble order constraint

* -o probability that an item has a remove ordering constraint with a transient part

* -s random seed

3

* Generation: Create a tree of depth -d. Nodes have sons with

probability -h. If they do have sons, then a random number between 1

and -m, biased to be lower the deeper the node is in the tree. With

probability -r, the node needs a random resource. An item is assigned

a transient part relation to any item in a higher tree level with

probability -t, parts or transient parts of the same item have an

assemble ordering constraint with probability -a, and for a transient

part relation (A, B) the parts of B are given a remove ordering

constraint to A with probability -o. Cycles in the assemble and remove

order constraints are avoided by arbitrarily ordering the respective

items, and allowing constraints only between pairs A and B with A

3 Barman

Usage: barman-generator.py <num_cocktails> <num_ingredients> <num_shots> [<random_seed>]

num_cocktails (min 1)

num_ingredients (min 2)

num_shots (min max[1,num_cocktails+1])

random_seed (min 1, optional)

IPC’11 OPT

1-4: 3 3 4

5-8: 4 3 5

9-12: 5 3 6

13-16: 6 3 8

17-20: 7 3 9

IPC’14 OPT:

4 3 5

5 3 6

6 3 8

7 3 9

8 3 9

4 Blocksworld

The blocksworld generators use the random bw state generator provided

by John Slaney and Sylvie Thiebaux. This is contained in the bwstates.1

subdirectory. The directories 3ops/2pddl and 4ops/2pddl contain

programs that translate the generator’s output to PDDL. The random

instances can then be generated by running the script

./blocksworld <ops> <num>

which takes as input the number of operators (either 3 or 4) and blocks

in the problem to be generated. This is currently maximal 200 due to

the random state generator. To increase that, edit the Makefile in

bwstates.1 and increase SIZE.

Blocksworld-3ops

4

* Origin: Goes back to the annals of AI, seems to be first mentioned in

Terry Winograd’s PhD thesis 1972. In a 1974 planning paper by Gerald

Sussman. Taken from the [IPP][6] domain collection.

* Adaptions: None.

* Description: Classical untyped STRIPS domain, where stackable blocks

need to be re-assembled on a table with unlimited space.

Representation uses 3 operators, moving a block from the table to

another block, a block from another block to the table, or a block

from a block to another block. Semantically, the representation does

not use a robot arm, in difference to the 4 operator representation

below. The initial state specifies a complete state, the goal state

specifies only the on relations required between any two blocks.

* Parameters: Number of blocks.

* Generation: Uses random blocksworld state generator provided by John

Slaney and Sylvie Thiebaux. Simply translates two such states into

PDDL, and prints them out as the initial state and the goal state,

where the latter state has all facts removed except the on relations

between blocks.

Blocksworld-4ops

* Origin: See above. Used in the AIPS-2000 competition. Taken from the

[IPP][6] domain collection.

* Adaptions: None.

* Description: Like above, but uses a robot arm that can be used for

stacking a block onto a block, unstacking a block from a block,

putting down a block, or picking up a block.

* Parameters: Number of blocks.

* Generation: Like above.

5 Briefcaseworld

Briefcaseworld

* Origin: First mentioned by Edwin Pednault. Taken from the [IPP][6]

domain collection.

* Adaptions: None.

* Description: Typed classical ADL domain, using conditional effects.

Transport a number of objects from their start- to their

goal-locations, using a briefcase. Each location is accessible from

each other location, objects can be put into the briefcase or taken

out of the briefcase. When a move is made between locations, then all

objects inside the briefcase are also moved, which is encoded by a

conditional effect.

* Parameters:

* -o number of objects

* -s random seed

* Generation: randomly distribute the start locations of all objects and

the briefcase over -o %2B 1 locations. Do the same for the goal

locations.

5

6 Cavediving

The cave system is represented by an undirected acyclic graph. Divers have

a single point of entry. Certain leaf nodes of the cave branches are

objectives that the divers must photograph. Swimming and photographing both

consume air tanks. Divers must exit the cave and decompress at the end.

They can therefore only make a single trip into the cave.

Certain divers have no confidence in other divers and will refuse to work

if someone they have no confidence in has already worked. Divers have

hiring costs inversely proportional to how hard they are to work with.

A typical plan involves a diver laying tanks at layer 1 for a diver to use

to lay tanks at level 2, etc.

Anyway, the domain generator and a single problem instance are attached.

The generator comes with a decent help menu and the code is reasonably

commented throughout.

The generator requires python 2.x.

Help is obtained by running: python generator.py --help

Here is how to generate a typical problem:

python generator.py -domain_file ../domain.pddl -problem_file

../problem.pddl -problem_name 01 -neg_link_prob 0.5 -perturb_hiring_costs

0.1 -cave_branches 3:2 -objectives 3:2 -order_tanks True

cave_branches and objectives specify lists of the depths of the branches of

the cave and the objectives, respectively.

-cave_branches 3:2:2 means there will be 1 branch with depth 3, and two

with depth 2. The starting points for these branches is determined

randomly, but their depths correspond to the total depth from the cave

entrance. Objectives must be specified at the ends of cave branches, but

not all branches need to have an objective.

For example, -cave_branches 3:2:2 -objectives 2:2 is valid, but

-cave_branches 3:3:2 -objectives 2:2 is not.

The plan length is exponential in the depths of the caves.

To make increasingly difficult problems, add duplicate caves and objectives

at the same depth, and then increase the depth.

If you are after much harder problems, I suggest setting -order_tanks False

and also possibly -other_action_cost 0

Unsolvable instances can be created by creating negative cycles in the

diver relationships (set this option > 0)

6

7 Childsnack

./child-snack-generator.py pool {seed} {num_children} {num_trays} {gluten_factor} {const_ratio}

const_ratio = 1.3 in all opt and sat instances

trays: 2 or 3

OPT:

child-snack_pfile01-2.pddl:; child-snack task with 6 children and 0.4 gluten factor

child-snack_pfile01.pddl:; child-snack task with 6 children and 0.4 gluten factor

child-snack_pfile02-2.pddl:; child-snack task with 7 children and 0.4 gluten factor

child-snack_pfile02.pddl:; child-snack task with 7 children and 0.4 gluten factor

child-snack_pfile03-2.pddl:; child-snack task with 8 children and 0.4 gluten factor

child-snack_pfile03.pddl:; child-snack task with 8 children and 0.4 gluten factor

child-snack_pfile04-2.pddl:; child-snack task with 9 children and 0.4 gluten factor

child-snack_pfile04.pddl:; child-snack task with 9 children and 0.4 gluten factor

child-snack_pfile05-2.pddl:; child-snack task with 10 children and 0.4 gluten factor

child-snack_pfile05.pddl:; child-snack task with 10 children and 0.4 gluten factor

child-snack_pfile06-2.pddl:; child-snack task with 11 children and 0.4 gluten factor

child-snack_pfile06.pddl:; child-snack task with 11 children and 0.4 gluten factor

child-snack_pfile07-2.pddl:; child-snack task with 12 children and 0.4 gluten factor

child-snack_pfile07.pddl:; child-snack task with 12 children and 0.4 gluten factor

child-snack_pfile08-2.pddl:; child-snack task with 13 children and 0.4 gluten factor

child-snack_pfile08.pddl:; child-snack task with 13 children and 0.4 gluten factor

child-snack_pfile09-2.pddl:; child-snack task with 14 children and 0.4 gluten factor

child-snack_pfile09.pddl:; child-snack task with 14 children and 0.4 gluten factor

child-snack_pfile10-2.pddl:; child-snack task with 15 children and 0.4 gluten factor

child-snack_pfile10.pddl:; child-snack task with 15 children and 0.4 gluten factor

trays: 3 or 4

SAT:

child-snack_pfile05-2.pddl:; child-snack task with 10 children and 0.4 gluten factor

child-snack_pfile05.pddl:; child-snack task with 10 children and 0.4 gluten factor

child-snack_pfile06-2.pddl:; child-snack task with 11 children and 0.4 gluten factor

child-snack_pfile07-2.pddl:; child-snack task with 12 children and 0.4 gluten factor

child-snack_pfile08-2.pddl:; child-snack task with 13 children and 0.4 gluten factor

child-snack_pfile08.pddl:; child-snack task with 13 children and 0.4 gluten factor

child-snack_pfile09-2.pddl:; child-snack task with 14 children and 0.4 gluten factor

child-snack_pfile09.pddl:; child-snack task with 14 children and 0.4 gluten factor

child-snack_pfile10-2.pddl:; child-snack task with 15 children and 0.4 gluten factor

child-snack_pfile10.pddl:; child-snack task with 15 children and 0.4 gluten factor

child-snack_pfile11-2.pddl:; child-snack task with 16 children and 0.4 gluten factor

child-snack_pfile11.pddl:; child-snack task with 16 children and 0.4 gluten factor

child-snack_pfile12.pddl:; child-snack task with 17 children and 0.4 gluten factor

child-snack_pfile13-2.pddl:; child-snack task with 18 children and 0.4 gluten factor

child-snack_pfile13.pddl:; child-snack task with 18 children and 0.4 gluten factor

child-snack_pfile14.pddl:; child-snack task with 19 children and 0.4 gluten factor

child-snack_pfile15-2.pddl:; child-snack task with 20 children and 0.4 gluten factor

child-snack_pfile16-2.pddl:; child-snack task with 21 children and 0.4 gluten factor

7

child-snack_pfile19-2.pddl:; child-snack task with 24 children and 0.4 gluten factor

child-snack_pfile19.pddl:; child-snack task with 24 children and 0.4 gluten factor

8 Citycar

CITYCAR DOMAIN GENERATOR.

IPC 2014

author: Mauro Vallati -- University of Huddersfield

modifed-by: Masataro Asai

usage: generator.py [-h] [--density DENSITY] [--seed SEED] rows columns cars garages

positional arguments:

rows the number of grid rows.

columns the number of grid columns.

cars how many cars have to go through the network

garages the number of starting garages

optional arguments:

-h, --help show this help message and exit

--density DENSITY The ratio of the available roads in the road network

(0.0 <= density <= 1.0). Junctions are randomly set

obstructed/unavailable for passage

--seed SEED random seed

This model aims to simulate the impact of road building / demolition on

traffic flows. A city is represented as an acyclic graph, in which each

node is a junction and edges are "potential" roads. Some cars start from

different positions and have to reach their final destination as soon as

possible. The agent has a finite number of roads available, which can be

built for connecting two junctions and allowing a car to move between

them. Roads can also be removed, and placed somewhere else, if needed.

In order to place roads or to move cars, the destination junction must

be clear, i.e., no cars should be in there.

pddl-generator note:

See README.old for the usage of the original code by Mauro.

In the original version, sparsity was a 0 / 1 flag which,

when enabled, 20% of the roads become unavailable.

In this version, we can specify the sparsity as a probability (default: 1.0).

To achieve the same sparsity as the original, give 0.8 as a --density parameter.

9 Crewplanning

This generator has not been used for IPC 2011.

All the problems in this domain came from IPC 2008.

8

IPC 2011 Organizers

pddl-generators note:

Crewplanning domain is a numeric / temporal domain from ipc-2008 .

This generator requires an ocaml and ocamlbuild, but

the source code seems to be missing Utils module, therefore we cannot build it at the moment.

The only part of Utils module being used is two functions:

* Utils.pf, which I assume is similar to printf

* Utils.str, which I assume is similar to sprintf

Therefore, it is relatively easy to rewrite it with Printf.fprintf and Printf.sprintf

in the modern ocaml standard modules.

The original generator produces several files from the same command line argument.

This is rewritten so that each run produces a single pddl file.

10 Data-network

Author: Manuel Heusner

usage: generator.py [-h] [--seed SEED] data layers scripts module

positional arguments:

data the number of data items

layers the number of layers, must be smaller than the number of data items

scripts the number of scripts, must be larger or equal than [number of data items]-2

module A module describing a network, one of ring-network, small-network, tiny-network.

See example files in the source code directory.

optional arguments:

-h, --help show this help message and exit

--seed SEED random seed

IPC instances are:

* num_layers in range(2, 6)

* num_data_items in range(num_layers + 2, num_layers * 10, num_layers)

* num_scripts in range(num_data_items + 2, num_data_items * 3, num_data_items // 2)

11 Depots

Usage:

depots -e <#depots> -i <#distributors> -t <#trucks> -p <#pallets> -h <#hoists>

9

-c <#crates> [-s <random_seed>]

All numbers are positive integers (minimal 1).

IPC instances:

depots from 1 to 6

distributors from 2 to 6

trucks from 2 to 6

pallets from 3 to 20

crates from 2 to 20

hoists from 3 to 15

12 Driverlog

Usage: dlog [-u|-s|-t|-n|-h] <seed> <#road junctions> <#drivers> <#packages> <#trucks> [distance]

If distance is a positive value then the distances between

locations is set randomly using this value as the bound.

-n: Numeric

-u: Untyped

-t: Timed

-s: Simple time

-h: Hard numeric

IPC instances

DLOG-2-2-2 to DLOG-8-6-25 (drivers-trucks-packages)

DLOG-2-2-2

DLOG-2-2-3

DLOG-2-2-4

DLOG-3-2-4

DLOG-3-2-5

DLOG-3-3-5

DLOG-3-3-6

DLOG-3-3-7

DLOG-2-3-6

DLOG-2-3-6

DLOG-2-3-6

DLOG-2-3-6

DLOG-2-3-6

DLOG-3-3-6

DLOG-4-4-8

DLOG-5-5-10

DLOG-5-5-15

DLOG-5-5-20

DLOG-5-5-25

DLOG-8-6-25

first instance has 5 locations

last instance has 59 locations

10

Some rules that we could enforce are:

drivers, trucks <= packages, locations

drivers = trucks +- 2

So, I suggest to have three linear scalings: one for trucks/drivers, one for packages, and

a final one for locations.

13 Elevators

IPC OPT Instances: All instances have 1 slow elevator

IPC’08 (IPC’11 is a subset)

09/2 floors 3 passengers 1 fast elevator

09/2 floors 3 passengers 2 fast elevators

09/2 floors 4 passengers 1 fast elevator

09/2 floors 4 passengers 2 fast elevators

09/2 floors 5 passengers 1 fast elevator

09/2 floors 5 passengers 2 fast elevators

09/2 floors 6 passengers 1 fast elevator

09/2 floors 6 passengers 2 fast elevators

09/2 floors 7 passengers 1 fast elevator

09/2 floors 7 passengers 2 fast elevators

13/2 floors 3 passengers 1 fast elevator

13/2 floors 3 passengers 2 fast elevators

13/2 floors 4 passengers 1 fast elevator

13/2 floors 4 passengers 2 fast elevators

13/2 floors 5 passengers 1 fast elevator

13/2 floors 5 passengers 2 fast elevators

13/2 floors 6 passengers 1 fast elevator

13/2 floors 6 passengers 2 fast elevators

13/2 floors 7 passengers 1 fast elevator

13/2 floors 7 passengers 2 fast elevators

13/3 floors 3 passengers 1 fast elevator

13/3 floors 3 passengers 2 fast elevators

13/3 floors 4 passengers 1 fast elevator

13/3 floors 4 passengers 2 fast elevators

13/3 floors 5 passengers 1 fast elevator

13/3 floors 5 passengers 2 fast elevators

13/3 floors 6 passengers 1 fast elevator

13/3 floors 6 passengers 2 fast elevators

13/3 floors 7 passengers 1 fast elevator

13/3 floors 7 passengers 2 fast elevators

IPC SAT Instances

3 linear scalings:

passengers: 4-13, 10-26 (+2), 12-39 (+3)

11

floors 08/2, 16/2, 24/3

2 fast elevators

1 slow elevator

capacity 3/2, 4/3, 6/4

There was not Readme.txt in the generator version I have, so this is the way I am using

it. I cannot credit the author as I don’t know who was she/he.

- Change the following variables at generate_data.c

- FLOORS: number of floors

- AREA_SIZE: a divisor of FLOORS (a slow elevator covers this

+ 1 floors) (a fast elevator skips this/2-1 floors)

- FAST_ELEVATORS: number of fast elevators

- SLOW_ELEVATORS: number of slow elevators covering the same area

- FAST_CAPACITY: persons a fast elevators can hold

- SLOW_CAPACITY: persons a slow elevators can hold

- Use generate_data.c to generate a first txt version of the

problems. Parameters are:

- MinPassengers : the number of passengers of the first problem

- MaxPassengers : the number of passengers of the last problem

- Step : the step to go from MinPassengers to MaxPassengers

- MinID : the start number of number problems of the same size

- MaxID : the end number of number problems of the same size

- If you want to change the floors, area size, etc. do again the two

previous steps.

- Decide which version you want to create by putting to 1 the value

of the following variables of file generate_pddl.c:

- int temporal=0;

- int numeric=0;

- int net_benefit=0;

If all are 0, the STRIPS with action-costs version is generated.

- Use generate_pddl.c to create the pddl problems. Parameters are:

- Min number of floors of the problems (first number of problem name)

- Max number of floors of the problems (first number of problem name)

- Floor step: difference of floors from one problem to the next one

- MinPassengers : the number of passengers of the first problem

(second number of problem name)

- MaxPassengers : the number of passengers of the last problem

(second number of problem name)

- Step : the step to go from MinPassengers to MaxPassengers

- MinID : the start number of the first problem of the same size

(third number of the problem name)

- MaxID : the end number of the last problem of the same size

(third number of the problem name)

EXAMPLE

If in generate_data.c we have:

#define FLOORS 25

12

#define AREA_SIZE 6

#define FAST_ELEVATORS 3

#define SLOW_ELEVATORS 2

#define FAST_CAPACITY 6

#define SLOW_CAPACITY 4

and we execute:

generate_data 40 50 3 1 1

we will obtain the following files:

p25_40_1.txt

p25_43_1.txt

p25_46_1.txt

p25_49_1.txt

Then, we can call

generate_pddl 25 25 1 40 49 3 1 1

to obtain files

p25_40_1.pddl p25_43_1.pddl p25_46_1.pddl p25_49_1.pddl

14 Ferry

Ferry

* Origin: ?. Taken from the [IPP][6] domain collection.

* Adaptions: Sail operator modified so that moves can only happen

between different locations.

* Description: Untyped STRIPS domain. Transport a number of cars from

their start- to their goal-locations, using a ferry. Each location is

accessible from each other location, cars can be debarked or boarded,

the ferry can always carry only one car at a time.

* Parameters:

* -l number of locations

* -c number of cars

* Generation: randomly distribute the start and goal locations of all

cars over the locations.

15 Floortile

./floortile-generator.py <name> <num_rows> <num_columns> <num_robots> <mode_flag(seq|time)> [<seed>]

num_robots: 2-4

3x3, 3x4, 4x4, ..., 7x7

13

16 Freecell

Freecell

* Origin: Fahiem Bacchus. Used in the AIPS-2000 competition.

* Adaptions: Domain encoding modified such that cards, freecells, and columns

all have their own natural numbers. This helps avoiding superfluous action

instances.

* Description: Typed STRIPS encoding of a card game (similar to Solitaire)

that comes free with Microsoft Windows. Given a random configuration of cards

across some columns, move all cards in a specified order onto some goal

stacks, obeying a number of stacking rules, and using a number of freecells as

a resource.

* Parameters:

* -f number of freecells (minimal 0)

* -c number of columns (minimal 1)

* -s number of suits (minimal 1, maximal 4)

* -i number of initial stacks (minimal 1)

* -0 .. -3 number of cards in each suite

* -r random seed (optional)

* Generation: As long as there is a card that has not yet been placed somewhere,

choose one such card at random, and place it randomly on one initial stack.

IPC Instances

In the IPC there were two separate sets. All instances have 4 suits.

SET1:

4 suits, 3 to 13 cards per suite, from 4 to 8 columns

SET2: Scales cards from 2 to 13, 4 instances per size.

17 Fridge

Fridge

* Origin: Tony Barrett. Taken from the [IPP][6] domain collection.

* Adaptions: Several adaptions made to allow for a flexible number of

screws on each backplane, and to force a fridge being turned off when

the screws of the backplane are removed.

* Description: Typed ADL domain using comlex ADL preconditions (that

simplify to STRIPS constructs after instantiation). Original was

STRIPS domain, adaption uses quantification over all screws in

precondititions, to allow for a flexible number of those. For a number

of fridges, unfasten the screws holding the backplane, then remove the

backplanes and exchange the broken compressor with a new one, then

re-assemble the fridge and turn it on.

* Parameters:

* -f number of fridges

* -s number of screws per backplane

* -r random seed

* Generation: No randomization. Simply specify all static relations as

well as the initial and goal situations.

14

18 Goldminer

A robot is in a mine and has the goal of reaching a location that

contains gold. The mine is organized as a grid with each cell either

begin hard or soft rock. There is a special location where the robot

can either pickup an endlesssupply of bombs or pickup a laser cannon.

The laser cannon can shoot through both hard and soft rock, whereas the

bomb can only penetrate soft rock. However, the laser cannon also will

destroy the gold if used to uncover the gold location. The bomb will

not destroy the gold. The problem difficulty is scaled by increasing

the size of the grid.

This domain has a simple optimal strategy:

1) get the laser cannon,

2) shoot through the rock until reaching a cell bordering the gold.

3) go and get a bomb.

4) blast away the rock at the gold location.

5) pickup the gold.

19 Grid

Grid

* Origin: Drew McDermott. Used in the AIPS-1998 competition.

* Adaptions: None.

* Description: Untyped STRIPS domain. A robot moves along a rectangular grid

where positions can be locked. Locks can be opened with matching keys, and

the goal is to have some of these keys at specified locations.

* Parameters:

* -x horizontal extension of grid

* -y vertical extension of grid

* -t number of different key and lock types

* -p probability, for any key, to be mentioned in the goal

* -k number of keys vector (one 0 .. 9 entry for each type)

* -l number of locks vector (one 0 .. 9 entry for each type)

* -r random seed (optional)

* Generation: Randomly distribute the robot, lock and key positions over the

grid. No two locks can be at the same location, and the robot must not start

on a locked position. If a key is required to be mentioned in the goal, then

generate a random goal location for it.

One current issue is that locked spots are distributed entirely randomly. It

would be more interesting if we have some kind of "rooms" scenario where is more

likely that one must traverse via some locked places.

IPC instances:

-x 5 -y 5 -t 4 -k 8 -l 8 -p ? -s 0

20 Gripper

Gripper

15

* Origin: Jana Koehler. Used in the AIPS-1998 competition.

* Adaptions: None.

* Description: Untyped STRIPS domain. Given a robot with two gripper

hands, transport a number of balls from a room A to another room B.

* Parameters: -n number of balls.

* Generation: No randomization. Place all balls in room A and require

them to be in B instead.

21 Grippers

Gripper variant with multiple robots and more than two rooms.

22 Hanoi

Hanoi

* Origin: ?. Taken from the [IPP][6] domain collection.

* Adaptions: None.

* Description: Untyped STRIPS encoding of the well-known Towers of Hanoi

problem.

* Parameters: -n number of discs.

* Generation: No randomization.

23 Hiking

Hiking

======

Author: Lee McCluskey.

Imagine you want to walk with your partner a long clockwise circular route over several

days (e.g. in the "Lake District" in NW England), and you do one "leg" each day. You want

to start at a certain point and do the walk in one direction, without ever walking

backwards. You have two cars which you must use to carry your tent/luggage and to carry

you and your partner to the start/end of a leg, if necessary. Driving a car between any

two points is allowed, but walking must be done with your partner and must start from the

place where you left off. As you will be tired when you’ve walked to the end of a leg, you

must have your tent up ready there so you can sleep the night before you set off to do the

next leg the morning.

usage: generator.py <n_couples> <n_cars> <n_places> [<seed>]

for solvability, cars should be at list n_couples + 1.

24 Logistics

Logistics

* Origin: First version by Manuela Veloso, AIPS-1998 version created by Bart Selman

and Henry Kautz. Used in both the AIPS-1998 and AIPS-2000 competitions.

* Adaptions: None.

16

* Description: Classical untyped STRIPS domain. Transport packages within cities via

trucks, and between cities via airplanes. Locations within a city are directly

connected (trucks can move between any two such locations), and so are the

cities. In each city there is exactly one truck, each city has one location

that serves as an airport.

* Parameters:

* -c number of cities

* -s size of each city, i.e. number of locations within cities

* -p number of packages

* -a number of airplanes

* Generation: Place trucks randomly within their cities, place airplanes randomly at

airports. Distribute start and goal locations of packages randomly over all

locations.

OPTIONS DESCRIPTIONS

-a <num> number of airplanes

-c <num> number of cities (minimal 1)

-s <num> city size (minimal 1)

-p <num> number of packages (minimal 1)

-t <num> number of trucks (optional, default and minimal: same as number of cities;

there will be at least one truck per city)

-r <num> random seed (minimal 1, optional)

IPC instances:

IPC00: from 4 to 15 packages, smaller instances have 2 cities, larger ones have 5 cities.

There are instances with 1 or 2 airplanes.

IPC98: cities are scaled linealy, with one more city per instance. There is an outlier

with 47 cities, all others have around 30 something. There are instances with up to 15

airplanes. Packages scale up to 57. Sometimes there is more than one truck per city.

25 Maintenance

Appeared in IPC2014.

Author: Jussi Rintanen.

This is a simple planning/scheduling problem. There are mechanics/equipment who

on any day may work at one of several airports (hubs) where the maintenance

facilities are present. There are airplanes each of which has to be checked or

repaired during the given time period. The airplanes are guaranteed to visit

some of the airports on given days. The problem is to schedule the presence of

the mechanics/equipment so that each plane will get maintenance once during the

time period.

Usage: maintenance <days> <planes> <mechanics> <cities> <visits> [<seed>]

parameters for generating interesting instances

days : 30

17

planes : 3*days

mechanics : 1

hubs : 3

visits : 5

instances : 100

if the number of visits is made smaller, it becomes less likely that

a schedule exists. With sufficiently few visits by the airplanes to

the chosen airports, almost certainly no schedules exist. Also, with

far more planes than 3*days no maintenance visits can be scheduled

for some of the planes, turning the problem not solvable.

Increasing the number of planes past 3*days and simultaneously increasing

the number of visits keeps the problem solvable and probably also

challenging, but we have not investigated the impact of different

parameter combinations on the difficulty of the problem.

./maintenance 60 180 1 3 5 100

./maintenance 80 240 1 3 5 100

./maintenance 100 300 1 3 5 100

./maintenance 120 360 1 3 5 100

./maintenance 140 420 1 3 5 100

./maintenance 160 480 1 3 5 100

./maintenance 180 540 1 3 5 100

./maintenance 200 600 1 3 5 100

26 Matchcellar

Match Cellar (Temporal, Satisficing)

Domain Description

Domain is inspired by [a paper by Long and

Fox](https://www.aaai.org/Papers/ICAPS/2003/ICAPS03-006.pdf). The main feature

of this domain is that a lighted match is concurrently required to fix a fuse.

Authors

Bharat Ranjan Kavuluri

Original File Names

| file | original name |

|------------------|---------------|

| domain.pddl | domain.pddl |

| instance-1.pddl | p15.pddl |

| instance-2.pddl | p16.pddl |

| instance-3.pddl | p17.pddl |

| instance-4.pddl | p18.pddl |

| instance-5.pddl | p19.pddl |

| instance-6.pddl | p20.pddl |

| instance-7.pddl | p21.pddl |

| instance-8.pddl | p22.pddl |

18

| instance-9.pddl | p23.pddl |

| instance-10.pddl | p24.pddl |

| instance-11.pddl | p25.pddl |

| instance-12.pddl | p26.pddl |

| instance-13.pddl | p27.pddl |

| instance-14.pddl | p28.pddl |

| instance-15.pddl | p29.pddl |

| instance-16.pddl | p30.pddl |

| instance-17.pddl | p31.pddl |

| instance-18.pddl | p32.pddl |

| instance-19.pddl | p33.pddl |

| instance-20.pddl | p34.pddl |

27 Miconic

** Miconic-STRIPS **

* Origin: Jana Koehler. Used in the AIPS-2000 competition.

* Adaptions: None.

* Description: Typed STRIPS domain. Like above, but with explicit

control over the passengers that get in or out of the lift.

* Parameters:

* -f number of floors

* -p number of passengers

* Generation: Original generator used in the AIPS-2000 competition.

Simply distribute origin and destination floors at random.

OPTIONS DESCRIPTIONS

-f <num> number of floors (minimal 2)

-p <num> number of passengers (minimal 1)

-r <num> random seed (optional)

IPC instances: linear scaling where passengers go from 1 to 30. Number of floors

is passengers * 2. 5 random instances

28 Miconic-fulladl

Miconic-ADL

* Origin: Jana Koehler. Used in the AIPS-2000 competition.

* Adaptions: None.

* Description: Typed ADL domain using complex preconditions and

conditional effects. Transport a number of passengers with an elevator

from their origin- to their destination floors. Obeye several

restrictions: some passengers must be transported directly, the vips

shall be served first, some must be transported non-stop, some must be

attended by others, some groups of people must not meet each other,

some people do not have access to certain floors. When the lift stops

at some floor, all passengers waiting there get in, and all passengers

wanting to go there get out, by a conditional effect.

19

* Parameters:

* -f number of floors

* -p number of passengers

* -u percentage of passengers with direct transportation

* -v percentage of vips

* -g percentage of non-stop passengers

* -n percentage of passengers that must be attended

* -a percentage of passengers that can attend the above type

* -A percentage of passengers in conflict group A

* -B percentage of passengers in group B, which must not meet the above group

* -N percentage of people with no access to some floors

* -F percentage of of floors not to be accessed by those

* -r random seed

* Generation: Original generator used in the AIPS-2000 competition. Make

sure that the specified percentage values are all met by randomly

assigning types to the passengers (a passenger can have several

types). Randomly assign origin and destination floors to all

passengers, considering several heuristics to help problem becoming

solvable (like not placing conflicting people at the same origin floor

etc.).

29 Miconic-simpleadl

Miconic-SIMPLE

* Origin: Jana Koehler. Used in the AIPS-2000 competition.

* Adaptions: None.

* Description: Typed ADL domain using conditional effects. Like above,

but without any additional constraints. The conditional effects make

sure that all waiting passengers get in or out.

* Parameters:

* -f number of floors

* -p number of passengers

* -r random seed

* Generation: Original generator used in the AIPS-2000 competition.

Simply distribute origin and destination floors at random.

30 Movie

Movie

* Origin: Corin Anderson. Used in the AIPS-1998 competition.

* Adaptions: None.

* Description: Untyped STRIPS domains. Buy one each out of five

types of snacks, then rewind the movie and reset the counter.

* Parameters: -n number of snacks of each type

* Generation: No randomization.

31 Mprime

Mprime

20

* Origin: Drew McDermott. Used in the AIPS-1998 competition.

* Adaptions: Translated all predicate names to get a more intuitive notation.

Also use typing. Operator for passing on fuel from one location to another

could, in the original version, be instantiated with the same location as

origin and destination city, which caused the amount of fuel in that city to

increase one unit. Changed that such that origin and destination cities must

be different. NOTE: in the aibasel benchmarks repo, the reformulated domain

no-mprime does a similar translation of predicate names but doesn’t use

typing. It also doesn’t use the described fix (which the mprime domain of that

repo does, however).

* Description: Typed STRIPS domain; the name results from Mystery’ (see below).

Logistics variant where trucks move on a map of locations. Additionally,

trucks have only limited transportation capacity, and there are constraints on

the amount of fuel. Each location has initially a certain amount of fuel

available. Moving a truck away from a location decreases the amount of fuel at

that location by one. If a location has more than one fuel item, then it can

pass a fuel item over to a different location.

* Parameters:

* -l number of locations

* -f maximal amount of fuel at a location

* -s maximal amount of transportation capacity (space)

* -v number of trucks (vehicles)

* -c number of cargos

* Generation: Create a simple map of -l locations such that location i is linked

to location i%2B1, and location -l is linked to location 1. Randomly assign

transportation capacity between 1 and -s to all vehicles, and fuel between 0

and -f to all locations. Distribute cargo origin and destination locations

randomly over all locations, likewise for the starting locations of the

vehicles.

32 Mystery

Mystery

* Origin: Drew McDermott. Used in the AIPS-1998 competition.

* Adaptions: Translated all predicate names to get a more intuitive

notation. Also use typing. NOTE: in the aibasel benchmarks repo, the

reformulated domain no-mystery does a similar translation of predicate names

but doesn’t use typing. This is not to be confused with the IPC’11 domain

nomystery for which there is also a generator here.

* Description: Typed STRIPS domain; the name is because the original specified

the semantics in a disguised manner by using unintuitive names for the

predicates and constants. The domain is the same like the Mprime domain above,

except that there is no way of passing on fuel between locations.

* Parameters:

* -l number of locations

* -f maximal amount of fuel at a location

* -s maximal amount of transportation capacity (space)

* -v number of trucks (vehicles)

* -c number of cargos

* Generation: Exactly like in Mprime.

21

33 Nomystery

Nomystery is a transportation domain designed to study resource constrained planning

[1,2]. In this domain, a truck moves in a weighted graph; a set of packages must be

transported between nodes; actions move along edges, and load/unload packages; each move

consumes the edge weight in fuel. In brief, Nomystery is a straightforward problem similar

to the ones contained in many IPC benchmarks. Its key feature is that it comes with a

domain-specific optimal solver allowing to control the constrainedness of the

resources. The generator first creates a random connected undirected graph with n nodes,

and it adds k packages with random origins and destinations. The edge weights are

uniformly drawn between 1 and an integer W. The optimal solver computes the minimum

required amount of fuel M, and the initial fuel supply is set to [CÖM], where C >= 1 is a

(float) input parameter of the generator. The parameter C denotes the ratio between the

available fuel vs. the minimum amount required. The problem becomes more constrained when

C approaches 1.

A ubiquitous feature of planning problems is the need to economize limited resources such

as fuel or money. While heuristic search, mostly based on relaxation heuristics, is

currently the superior method for most varieties of planning, its ability to solve

critically resource-constrained problems is limited: relaxation heuristics basically

ignore the resource consumption by actions. Nomystery generator is a nice test domain to

study the behavior of planning algorithms in planning problems with resources.

There are two ways to scale problem difficulty in Nomystery: increasing the number of

packages and locations, and decreasing C. The generator is very fast up to 18 locations

and 18 packages. Two types of encoding can be used for the problems: Hard and

Hard-cost. The only difference is in the action costs. While all actions have a unit cost

in Hard encoding, in Hard-cost version action costs are equal to the amount of fuel

consumed by the action. Therefore, the total cost of a plan for Hard-cost encoding equals

the amount of fuel consumed in the plan. In Hard encoding, problems with 12 locations and

12 packages become quite challenging for state of the art planners when C is close 1

[1]. Hard-cost encoding makes the problems easier for the current planners. The reason is

that the heuristic functions that consider costs are not any more completely ignorant to

the resource consumption of actions. However, this type of encoding is not always feasible

for resource planning; there might be several resources and the cost of the plan might be

different from the amount of the resource consumption. However, our initial experiments

show problems in this encoding with 12 locations and 15 packages become challenging for

current planners when C is close to 1.

From the two versions of the domain we have chosen the non-cost one (cost of the plan and

resource consumption are not related). As the domain creator says, this is the most

difficult one of the two formulations. In addition, it is the less similar to the

Transport domain. According to the domain creator planners find it difficult to solve

problems with more than 12 locations and 12 packages when the constraint on the resource

tends to 1. For the satisficing track, problems 1-10 start with 6 locations and 6 packages

with c=1.5 and each problem increases 1 package and 1 location to the previous one (so

problem 10 has 15 packages and 15 locations). Problems 11-20 also start in 6-6 and

increase parameters by 1, but in this case c=1.1.

For the optimal track, we developed a first version where problems 1-10 start with 2

locations and 1 package with c=1.5 and each problem increases 1 location and 1 package to

the previous one (so problem 10 has 10 packages and 11 locations). Problems 11-20 also

start in 2-1 and increase parameters by 1, but in this case c=1.1. This version resulted

to be quite simple, so we generated a tougher one. We started with 4 locations and 3

22

packages (last problem had 13 locations and 12 packages) with c=1.5 and c=1.1. That

version was also quite simple, so a third one has been generated. From experiments it

seems the lower the constraint the easier the problems are for the optimal planners: the

search space is pruned quickly as the cost limits the number of applicable actions. Taking

that into account we have generated problems with c=1.1, 1.5 and 2.0. Problems 1-6 have

c=1.1 and start in 9 locations and 8 packages till 14-13. From 7-13 c=1.5, starting in 8

locations and 7 packages. Problems 14-20 are like 7-13 but with c=2.0.

34 Npuzzle

N-Puzzle Domain:

This is the classic NxN sliding puzzle domain. It has received a large

amount of attention from search researchers and in particularly has

been studied in the context of macro learning.

35 Nurikabe

Instance Generator for Nurikabe

Alvaro Torralba <torralba@cs.uni-saarland.de>

Florian Pommerening <florian.pommerening@unibas.ch>

This is a version of the Floortile domain where a robot must paint a certain pattern in a

grid and cannot move into locations that have already been painted. The pattern is not

decided in advance, but instead it must fulfill the constraints of a simplified Nurikabe

puzzle. The grid has some positions marked with a number. When the robot is on top of a

cell with a number N on it, it can start the paint action so that the next N cells

(including the current position) will be painted. There is an additional constraint that

two adjacent cells cannot belong to cells of different groups.

36 Openstacks

generate_problems.cpp:

Ioannis’s program for generating the text files that define the

Openstacks instances. The ICAPS benchmark set was created with

something like the following calls:

./generate_problems 5 34 1 1 1 XXX

./generate_problems 5 20 5 1 3 XXX

./generate_problems 30 60 10 1 3 XXX

./generate_problems 80 100 20 1 3 XXX

where XXX is the density parameter which has unfortunately been lost

(20? 25? 30? 40?). For generating additional benchmark instances, the

Python script (below) should be preferred.

Notes on attribute selection:

- A very high-density seems to simplify the problem with blind search.

23

- For OPT in IPC’08 they scaled both products and orders at the same time,

with a linear scaling of +1

- For SAT, in IPC’14 they started at 170 for both. The scaling factor was +20

in both cases.

generate_problems.py:

A Python version of Ioannis’s program which fixes a few issues with

the C++ program:

* When an order is empty, some product is chosen uniformly randomly

to make it nonempty. Due to an off-by-one error, the last product

could never be chosen for this.

* Similarly, unused products would randomly be added to one order.

Due to an off-by-one error, the last order could never be selected

for this.

* The original code shuffled the orders after generating the problem

matrix. However, this shuffling was not completely uniform. To see

this, consider e.g. a 5x5 problem, where the shuffling algorithm

would uniformly compute ten random numbers in the range {0, ...,

4}, which gives 5^10 atomic events with uniform probability. From

this random information, it’s not possible to select between 5! =

120 permutations uniformly since 120 does not divide 5^10.

* More seriously, the original code did not shuffle the products.

Adjacent products are correlated in that they tend to be useful for

the same orders, so this may introduce some bias for planners that

for whatever (tie-breaking) reason process the products in some

kind of sequential order.

generate_pddl.cpp:

Ioannis’s program for generating PDDL code from the text files

generated by generate_problems. Need to change various global

variables (opt, sat, all, ADL, negated, semiground, temporal, numeric,

net_benefit) to affect which problem set is generated.

generator.py:

Combination of generate_problems.py and generate_pddl.cpp in Python. This

generator version can only generate the sequential STRIPS version with

negative preconditions. In contrast to the original generator files, this

script only generates a single task per call.

From IPC’11:

Openstacks

24

From the original domain description: This domain was first used at IPC-2006.

The openstacks domain is based on the "minimum maximum simultaneous open stacks"

combinatorial optimization problem, which can be stated as follows: A

manufacturer has a number of orders, each for a combination of different

products, and can only make one product at a time.

The total required quantity of each product is made at the same time (because

changing from making one product to making another requires a production stop).

From the time that the first product included in an order is made to the time

that all products included in the order have been made, the order is said to be

"open" and during this time it requires a "stack" (a temporary storage space).

The problem is to order the making of the different products so that the maximum

number of stacks that are in use simultaneously, or equivalently the number of

orders that are in simultaneous production, is minimized (because each stack

takes up space in the production area).

The problem is NP-hard and known to be equivalent to several other problems. It

was recently posed as a challenge problem for the constraint programming

community (see http://www.dcs.st-and.ac.uk/~ipg/challenge/).

Note that this is an optimization problem: for any instance of the problem every

ordering of the making of products is a solution, which at worst uses as many

simultaneously open stacks as there are orders. Thus, finding a plan is quite

trivial (in the sense that there exists a domain-specific linear-time algorithm

that solves the problem), but finding a plan of high quality is hard (even for a

domain-specific algorithm).

There are two versions of this domain, STRIPS and ADL. As there are few ADL

compliant planners and in the last IPC there were not too much differences in

results between both versions, we have not generated ADL problems for this IPC.

In the STRIPS version the goal is to minimize the total number of stacks. The

number of stacks is represented using symbols and universally quantified

preconditions have been replaced by multiple semi-ground actions. Note that this

requires a different domain file for each problem.

For the satisficing track, in the 2008 competition, objects ranged from 5 to

100. For the first 12 problems, three versions with the same difficulty were

created and objects were increased by 5 from one triplet to the next (i.e.

problems 1, 2 and 3 were similar, with 5 objects; problems 4, 5 and 6 had 10

objects...). From 13 to 24 objects were increased by 10, while for the last 6,

objects were increased by 20. The density parameter has been lost. For IPC 2011,

as in the other reused domains, we reused the 10 first problems. From 11 to 20,

objects are increased starting from 130 by 30, and 2 problems of the same size

have been created, one with density = 20 and the other with density = 80.

The selected problems are (numbers in parenthesis are number of objects of each

new problem):

problem old best problem old best

p01 p21 6 p11 (130)

p02 p22 16 p12 (130)

p03 p24 19 p13 (160)

p04 p25 19 p14 (160)

25

p05 p26 15 p15 (190)

p06 p27 18 p16 (190)

p07 p20 13 p17 (220)

p08 p28 33 p18 (220)

p09 p29 31 p19 (250)

p10 p30 35 p20 (250)

For the optimal track, in the IPC 2008 a total of 9 problems were not solved by

any planner (problem 20 and from 23 to 30). As in the satisficing version, there

is no record of the density used to generate the problems. The first problem in

IPC 2008 started with 5 objects and each problem had 1 object more than the

previous one. So problem 30 had 34 objects.

Five first problems were quite simple so they have been removed from the

selection. This results in 16 problems previously solved and 4 non solved for

this edition. The selected problems are:

problem old optimal problem old optimal

p01 p6 2 p11 p15 4

p02 p7 5 p12 p16 4

p03 p8 5 p13 p17 4

p04 p9 3 p14 p18 3

p05 p10 3 p15 p19 4

p06 p11 4 p16 p21 3

p07 p12 3 p17 p20 -

p08 p13 4 p18 p23 -

p09 p14 4 p19 p24 -

p10 p22 4 p20 p25 -

37 Parking

This domain involves parking cars on a street with N curb locations where cars can be

double parked but not triple parked. The goal is to move from one configuration of parked

cars to another configuration by driving cars from one curb location to another. The

problems in the competition contain 2*(N-1) cars, which allows one free curb space and

guarantees solvability. The problem difficulty is scaled by increasing the number of curb

locations. This domain is isomorphic to a bounded-table blocks world domain where there

are N table locations and 2*(N-1) blocks and towers are only allowed to contain 2 blocks.

OPT 11: from 7 to 12 curbs, several instances of the same size

OPT 14: from 7 to 11 curbs, several instances of the same size

38 Pathways

Pathways-Propositional Problem file generator

Authors: Yannis Dimopoulos, Alfonso Gerevini and Alessandro Saetti

===

Usage: pathways [options]

Command line options:

-out <file> Set the problem file name

-n <string> Set the problem name (default PathwaysProb)

26

-R <num> Set the min number of reactions used in the reach. analysis

-G <num> Set the number of goals

-L <num> Set the desired number of initial substances (in metric field)

--seed <num> Set the seed for the random number generator

The reactions in the generated problems are based on files

"Pathways-SimpleSubs" and "Pathways-Reactions". The generator selects

reactions and defines goals according to an algorithm that performs a

sort of reachability analysis. The command lines used to generate the

IPC5 problems of Pathways-Propositional are:

pathways --seed 2004 -out pfile01 -R 12 -G 01 -L 3 -n Pathways-01 > domain-dummyAct.pddl

pathways --seed 1146 -out pfile02 -R 24 -G 02 -L 3 -n Pathways-02 > domain-dummyAct.pddl

pathways --seed 126053358 -out pfile03 -R 36 -G 03 -L 3 -n Pathways-03 > domain-dummyAct.pddl

pathways --seed 6800456 -out pfile04 -R 48 -G 04 -L 3 -n Pathways-04 > domain-dummyAct.pddl

pathways --seed 387462 -out pfile05 -R 72 -G 06 -L 7 -n Pathways-05 > domain-dummyAct.pddl

pathways --seed 231459 -out pfile06 -R 96 -G 08 -L 10 -n Pathways-06 > domain-dummyAct.pddl

pathways --seed 2211674 -out pfile07 -R 132 -G 11 -L 10 -n Pathways-07 > domain-dummyAct.pddl

pathways --seed 32908700 -out pfile08 -R 144 -G 12 -L 17 -n Pathways-08 > domain-dummyAct.pddl

pathways --seed 21545433 -out pfile09 -R 156 -G 13 -L 12 -n Pathways-09 > domain-dummyAct.pddl

pathways --seed 3286431 -out pfile10 -R 168 -G 14 -L 14 -n Pathways-10 > domain-dummyAct.pddl

pathways --seed 1276765 -out pfile11 -R 180 -G 15 -L 10 -n Pathways-11 > domain-dummyAct.pddl

pathways --seed 1062006 -out pfile12 -R 192 -G 16 -L 17 -n Pathways-12 > domain-dummyAct.pddl

pathways --seed 428365421 -out pfile13 -R 204 -G 17 -L 19 -n Pathways-13 > domain-dummyAct.pddl

pathways --seed 871235621 -out pfile14 -R 216 -G 18 -L 18 -n Pathways-14 > domain-dummyAct.pddl

pathways --seed 281837981 -out pfile15 -R 228 -G 19 -L 18 -n Pathways-15 > domain-dummyAct.pddl

pathways --seed 78854 -out pfile16 -R 240 -G 20 -L 22 -n Pathways-16 > domain-dummyAct.pddl

pathways --seed 1216 -out pfile17 -R 252 -G 21 -L 20 -n Pathways-17 > domain-dummyAct.pddl

pathways --seed 763451 -out pfile18 -R 288 -G 24 -L 20 -n Pathways-18 > domain-dummyAct.pddl

pathways --seed 432102 -out pfile19 -R 312 -G 26 -L 24 -n Pathways-19 > domain-dummyAct.pddl

pathways --seed 40275209 -out pfile20 -R 324 -G 27 -L 21 -n Pathways-20 > domain-dummyAct.pddl

pathways --seed 8465321 -out pfile21 -R 336 -G 28 -L 22 -n Pathways-21 > domain-dummyAct.pddl

pathways --seed 9347325 -out pfile22 -R 348 -G 29 -L 21 -n Pathways-22 > domain-dummyAct.pddl

pathways --seed 723452 -out pfile23 -R 360 -G 30 -L 25 -n Pathways-23 > domain-dummyAct.pddl

pathways --seed 98766 -out pfile24 -R 372 -G 31 -L 28 -n Pathways-24 > domain-dummyAct.pddl

pathways --seed 276314 -out pfile25 -R 396 -G 33 -L 34 -n Pathways-25 > domain-dummyAct.pddl

pathways --seed 82254 -out pfile26 -R 408 -G 34 -L 29 -n Pathways-26 > domain-dummyAct.pddl

pathways --seed 447198776 -out pfile27 -R 420 -G 35 -L 30 -n Pathways-27 > domain-dummyAct.pddl

pathways --seed 8632 -out pfile28 -R 444 -G 37 -L 35 -n Pathways-28 > domain-dummyAct.pddl

pathways --seed 822562 -out pfile29 -R 468 -G 39 -L 27 -n Pathways-29 > domain-dummyAct.pddl

pathways --seed 37463 -out pfile30 -R 480 -G 40 -L 27 -n Pathways-30 > domain-dummyAct.pddl

The atoms in ":goal" field are dummy. Each of these command line also

outputs a set of dummy operators, whose (disjunctive) preconditions

state the real goals of the planning problem.

NOTE: The generator may produce unsolvable tasks.

39 Pegsol

Peg Solitaire

27

40 Rovers

2021 June fix:

visible_from output was not using the correct data, so all objectives were

visible from waypoint0 to waypoingN. Apart from heavily impacting the

diversity of the generated instances, this could cause some instances to be

unsolvable (e.g. when waypoint0 and 1 are not reachable by the rover).

Inspired by planetary rovers problems, this domain requires that a collection of rovers

navigate a planet surface, finding samples and communicating them back to a lander.

Strips: The Strips version is an interesting challenge in its own right. In addition, a

minor subtlety in the encoding is used to prevent parallel communication between rovers

and the lander: communication actions precondition on the channel to the lander being

free, and then both add and delete this fact. Because deletes occur before adds this has

the over all effect of leaving the channel free, but it makes the fact a "moving target"

which prevents a concurrent action from using the fact. Some planners find this mechanism

difficult to handle.

Useage: rovergen [-s|-t|-n|-u|-f <filename>]

<seed> <#rovers> <#waypoints> <#objectives> <#cameras> <#n-goals>

IPC instances p01: 1 4 2 1 3

p10: 4 7 4 6 11

p20: 8 25 8 7 20

p30: 10 50 8 14 25

p40 14 100 11 15 69

41 Satellite

Fix June 2021:

Added code to make sure that:

- all modes are supported by at least one instrument

- all observations are interesting

This ensures that some observations can be made, so that all instances have at least a goal.

Usage: satgen [-T <d>|-u|-s|-t|-n|-c] <seed> <#s> <#i> <#m> <#t> <#o>

where: #s = number of satellites, #i = max instruments/satellite,

#m = number of modes, #t = number of targets

#o = number of observations

28

IPC instances:

1 1 3 7 3

10 3 5 205 178

Clearly, what we scale is the number of modes, targets, satellites, and observations.

Number of instruments per satellite we may fix to 3.

Targets should be at least 5

sat mod tar obs

p01-pfile1.pddl 1 3 7 3

p02-pfile2.pddl 1 3 8 5

p03-pfile3.pddl 2 3 8 4

p04-pfile4.pddl 2 3 10 7

p05-pfile5.pddl 3 3 10 6

p06-pfile6.pddl 3 4 11 7

p07-pfile7.pddl 4 4 12 7

p08-pfile8.pddl 4 4 15 10

p09-pfile9.pddl 5 5 15 10

p10-pfile10.pddl 5 5 17 11

p11-pfile11.pddl 5 5 20 11

p12-pfile12.pddl 5 5 25 19

p13-pfile13.pddl 5 5 30 24

p14-pfile14.pddl 6 5 25 16

p15-pfile15.pddl 8 5 25 18

p16-pfile16.pddl 10 5 25 19

p17-pfile17.pddl 12 5 25 17

p18-pfile18.pddl 5 5 25 13

p19-pfile19.pddl 5 8 25 27

p20-pfile20.pddl 5 10 25 40

p21-HC-pfile1.pddl 5 3 43 34

p22-HC-pfile2.pddl 5 3 53 43

p23-HC-pfile3.pddl 7 3 53 47

p24-HC-pfile4.pddl 7 3 73 66

p25-HC-pfile5.pddl 8 3 73 60

p26-HC-pfile6.pddl 8 4 74 64

p27-HC-pfile7.pddl 10 4 75 64

p28-HC-pfile8.pddl 10 4 105 93

p29-HC-pfile9.pddl 15 5 105 87

p30-HC-pfile10.pddl 15 5 125 108

p31-HC-pfile11.pddl 15 5 155 130

p32-HC-pfile12.pddl 15 5 205 178

p33-HC-pfile13.pddl 15 5 255 226

p34-HC-pfile14.pddl 5 5 205 140

p35-HC-pfile15.pddl 8 5 205 184

p36-HC-pfile16.pddl 10 5 205 175

42 Scanalyzer

IPC instances:

prob_no = 1

29

for half_segment_ids in [[""], ["a", "b"]]:

for size in xrange(1,11):

for problem_type in [(1,1), (size,1), (1,size), (size,size), "simple"]:

filename = "p%03d.pddl" % prob_no

create_pddl(half_segment_ids, problem_type, size, prob_no, filename)

prob_no += 1

Selection in IPC:

(half_segment_ids, problem_type, size)

11: [’’], (1, 1), 3

12: [’’], (3, 1), 3

14: [’’], (3, 3), 3

16: [’’], (1, 1), 4

17: [’’], (4, 1), 4

19: [’’], (4, 4), 4

21: [’’], (1, 1), 5

22: [’’], (5, 1), 5

24: [’’], (5, 5), 5

26: [’’], (1, 1), 6

27: [’’], (6, 1), 6

29: [’’], (6, 6), 6

31: [’’], (1, 1), 7

32: [’’], (7, 1), 7

34: [’’], (7, 7), 7

36: [’’], (1, 1), 8

37: [’’], (8, 1), 8

39: [’’], (8, 8), 8

41: [’’], (1, 1), 9

42: [’’], (9, 1), 9

44: [’’], (9, 9), 9

51: [’a’, ’b’], (1, 1), 1

52: [’a’, ’b’], (1, 1), 1

54: [’a’, ’b’], (1, 1), 1

56: [’a’, ’b’], (1, 1), 2

57: [’a’, ’b’], (2, 1), 2

59: [’a’, ’b’], (2, 2), 2

61: [’a’, ’b’], (1, 1), 3

62: [’a’, ’b’], (3, 1), 3

64: [’a’, ’b’], (3, 3), 3

43 Schedule

Schedule

* Origin: One variation appears in the Prodigy collection by Manuela

Veloso. Prepared for the AIPS-2000 competition by Fahiem Bacchus.

* Adaptions: None.

* Description: Typed ADL domain using conditional effects. Encodes a

simple Scheduling kind of problem where a number of objects need to be

processed using a collection of machines. Possible actions are

polishing, punching holes, painting etc. All actions need uniform

time, which is modelled by a do-time-step operator. If that operator

30

is applied, then all busy machines are no longer busy, and all

scheduled objects are no longer scheduled - this is also an example of

the kind of conditional effects that are used in the representation.

* Parameters: (without significant changes to the domain, parameters -s

to -o can not be arbitrarily increased)

* -p number of objects (parts)

* -s number of shapes (maximal 3: cylindrical, circular, oblong)

* -c number of colors (maximal 4)

* -w number of different widths of holes (maximal 3)

* -o number of orientations of holes (maximal 2)

* -Q probability that a part needs to be made cylindrical

* -W probability that a part is initially coloured

* -E probability that a part needs to be coloured

* -R probability that a part has a hole initially

* -T probability that a part needs to have a hole

* -Y probability that a part needs to have a specific surface condition

* Generation: All parts are given a random initial shape and surface

condition. With the respective probability, they are given random

colours or holes. In the goal state, they need, with the respective

probabilities, to be cylindrical (which is the only shape that can be

produced by the machines), to be randomly coloured, to have a random

hole, and to have a random goal surface condition.

44 Snake

2021 June bugfix:

- The generator assumed that at least 1 apple will be spawn. Now it is fixed and instances

can be generated where no apples are spawn (you only need to pick the ones that were

already there).

- Reduced the maximum number of apples by 1 when the grid has an odd number of cells, as

they may be hamiltonian paths. This ensures that all instances using an empty grid are

solvable (if other types of grids are used solvability needs to be ensured by other

means).

Instance Generator for Snake

Alvaro Torralba <torralba@cs.uni-saarland.de>

Florian Pommerening <florian.pommerening@unibas.ch>

In the game Snake, a snake moves around a grid. There is a number of apples in some grid

cells and when the snake moves into one of these locations, it eats the apple, extends its

length by one, and a new apple may spawn. In this version uncertainty has been removed by

deciding the location where apples will spawn in advance. Except for the end of the game,

there will be more than one apple on the board at the same time.

Interesting properties: dead-end states

31

45 Sokoban

This generator has not been used for IPC 2011.

All the problems have been taken from IPC 2008.

The IPC 2011 organizers

* pddl-generators note

‘build-program.py‘ converts microban / multiban / hexoban data into PDDL.

‘choose-suite.py‘ analyzes instances in ‘rolling_stone_data.py‘ and

select problem instances for satisficing and optimal track.

From the message above, it seems these problem generators (which are based on

existing microban benchmarks etc.) are not used for IPC2011.

Scripts in ‘random/‘ are randomized generators that are used for generating

instances for IPC2008, which was also used for IPC2011.

usage:

OPTIONS DESCRIPTIONS

-n <num> grid size (minimal 5)

-b <num> number of boxes (minimal 1)

-w <num> number of walls (minimal 0)

-s <num> random seed

46 Spanner

A worker is in a shed, containing a number of spanners, and at a gate some

distance away there are a number of nuts that must be tightened. Crucially, once

the worker has left the shed they cannot return. Also, the spanners are fragile,

so once used to tighten a nut they break, and then cannot be used to tighten

another. The goal is planning to pick-up the spanners and tighten the nuts. This

is an interesting domain for learning, as it has a directed search space, and is

challenging for planners employing an ’ignore delete lists’ relaxation.

Origin: Created for IPC 2011 by Amanda Coles, Andrew Coles, Maria Fox and Derek Long.

47 Spider

In the solitaire game "Spider solitaire" stacks of cards of the same suit can be

moved from a pile to another and cards can be placed on a card with a value that

is higher by one (of any suit). In contrast to the real game, all cards are

face-up from the start, to remove uncertainty. Movement of stacks of cards could

be easily modeled with derived predicates but here we use auxiliary 0-cost

32

actions that update the state.

Origin: IPC 2018

48 Storage

Problem generator for Storage-Propositional

Authors: Alfonso Gerevini and Alessandro Saetti

===

storage [options] file

Command line options:

-h Display this help

-p Set the number of problem (header of the problem file)

-n Set the number of hoists (default 3)

-d Set the number of depots (default 1)

-o Set the number of containers (default 1)

-s Set the number of store-areas (default 9)

-c Set the number of crates (default 5)

-e Set seed for random number generator (must be different from 0)

Constraints:

Number of number of crates <= store-areas

Number of number of depots <= store-areas

Number of number of hoists <= store-areas

3 < Number of crates / Number of containers <= 4

The command lines used to generate the IPC5 problems of Storage-Propositional are:

storage -p 01 -o 1 -e 2005 -c 1 -n 1 -s 1 -d 1 pfile01

storage -p 02 -o 1 -e 2005 -c 1 -n 2 -s 2 -d 1 pfile02

storage -p 03 -o 1 -e 2005 -c 1 -n 3 -s 3 -d 1 pfile03

storage -p 04 -o 1 -e 2005 -c 2 -n 1 -s 4 -d 1 pfile04

storage -p 05 -o 1 -e 2005 -c 2 -n 2 -s 4 -d 1 pfile05

storage -p 06 -o 1 -e 2005 -c 2 -n 3 -s 4 -d 1 pfile06

storage -p 07 -o 1 -e 2005 -c 3 -n 1 -s 6 -d 1 pfile07

storage -p 08 -o 1 -e 2005 -c 3 -n 2 -s 6 -d 1 pfile08

storage -p 09 -o 1 -e 2005 -c 3 -n 3 -s 6 -d 1 pfile09

storage -p 10 -o 1 -e 2005 -c 4 -n 1 -s 8 -d 1 pfile10

storage -p 11 -o 1 -e 2005 -c 4 -n 2 -s 8 -d 1 pfile11

storage -p 12 -o 1 -e 2005 -c 4 -n 3 -s 8 -d 1 pfile12

storage -p 13 -o 2 -e 2005 -c 5 -n 1 -s 10 -d 2 pfile13

storage -p 14 -o 2 -e 2005 -c 5 -n 2 -s 10 -d 2 pfile14

storage -p 15 -o 2 -e 2005 -c 5 -n 3 -s 10 -d 2 pfile15

storage -p 16 -o 2 -e 2005 -c 06 -n 3 -s 12 -d 2 pfile16

storage -p 17 -o 2 -e 2005 -c 07 -n 3 -s 14 -d 2 pfile17

storage -p 18 -o 2 -e 2005 -c 08 -n 3 -s 16 -d 2 pfile18

storage -p 19 -o 3 -e 2005 -c 09 -n 3 -s 18 -d

33

containers 1 crates 1 hoists 1 store_areas 1 depots 1

containers 1 crates 1 hoists 2 store_areas 2 depots 1

containers 1 crates 1 hoists 3 store_areas 3 depots 1

containers 1 crates 2 hoists 1 store_areas 4 depots 1

containers 1 crates 2 hoists 2 store_areas 4 depots 1

containers 1 crates 2 hoists 3 store_areas 4 depots 1

containers 1 crates 3 hoists 1 store_areas 6 depots 1

containers 1 crates 3 hoists 2 store_areas 6 depots 1

containers 1 crates 3 hoists 3 store_areas 6 depots 1

containers 1 crates 4 hoists 1 store_areas 8 depots 1

containers 1 crates 4 hoists 2 store_areas 8 depots 1

containers 1 crates 4 hoists 3 store_areas 8 depots 1

containers 2 crates 5 hoists 1 store_areas 10 depots 2

containers 2 crates 5 hoists 2 store_areas 10 depots 2

containers 2 crates 5 hoists 3 store_areas 10 depots 2

containers 2 crates 6 hoists 3 store_areas 12 depots 2

containers 2 crates 7 hoists 3 store_areas 14 depots 2

containers 2 crates 8 hoists 3 store_areas 16 depots 2

containers 3 crates 9 hoists 3 store_areas 18 depots

49 Termes

Instance Generator and solver for TERMES domain:

Alvaro Torralba <torralba@cs.uni-saarland.de>

Florian Pommerening <florian.pommerening@unibas.ch>

This domain models the Harvard TERMES robots, based on termites. They cannot only carry

blocks but also climb on them so that they can build complex structures. This domain, in

its full generality, is a multi-agent planning benchmark, but here we model only a single

robot.

Domain submitted by Sven Koenig and Satish Kumar:

S. Koenig and S. Kumar. A Case for Collaborative Construction as Testbed for Cooperative

Multi-Agent Planning. In Proceedings of the ICAPS-17 Scheduling and Planning Applications

Workshop (SPARK), 2017.

50 Tetris

TETRIS DOMAIN GENERATOR.

IPC 2014

author: Mauro Vallati -- University of Huddersfield

Usage: generator.py <grid_size> <conf_blocks>

line numbers is used for defining number of lines of the screen.

The number of column is fixed at 4. E.g., 8-> 8x4 grid. Only odd numbers accepted.

conf_blocks:

1 -> only 1x1 square blocks

2 -> only 2x1 blocks

34

3 -> only L-shaped blocks

4 -> mix of blocks

** Take care, generator can return unsolvable instances!! **

51 Tidybot

Tidybot

Author: Bhaskara Marthi

From the original description: The Tidybot domain models a household

cleaning task, in which one or more robots must pick up a set of objects

and put them into goal locations. The world is structured as a 2d grid,

divided into navigable locations and surfaces on which objects may lie.

Robots have a gripper, which moves relative to the robot, up to some

maximum radius. Existing objects block the gripper, so that it may be

necessary to move one object out of the way to put another one down.

Robots can carry one object at a time in the gripper, but may also make

use of a cart, that can hold multiple objects. The instance generator

creates worlds that contain rectangular surfaces ("tables"), as well as

U-shaped enclosures ("cupboards"), which are the goal locations of

objects.

In many real-world problems, the difficulty is due to the large state

space and number of objects, rather than due to complex, "puzzle-like"

combinatorial constraints. Humans are able to quickly find feasible

solutions in such domains, because they seem to be able to decompose the

problem into separate parts and make use of the geometrical structure.

This domain is thus intended to exercise the ability of planners to find

and exploit structure in large but mostly unconstrained problems.

Optimal reasoning in such problems is challenging for humans as well, and

a secondary motivation for the domain is to test the ability to do optimal

reasoning in geometrically structured worlds. The presence of the carts

adds another combinatorial decision: it might be worthwhile to spend some

time fetching the cart to avoid later having to go back and forth with

each object.

The instance generator is provided as a .jar file, together with the

source code (in the Clojure language). To generate an instance: java -cp

tidybot.jar tidybot world-size num-tables num-cupboards table-min-size

table-max-size cupboard-size

The number of objects will be num-cupboards * objects-per-cupboard, where

objects-per-cupboard = (cupboard-size - 2)^2. Thus, num-cupboards should

be >= 1, otherwise there will be no objects. It is recommended to set

cupboard-size = 4. Scaling world-size will then increase the number of

literals/states, while scaling num-cupboards will increase the number of

objects and goals. Scaling num-tables will tend to make the domain more

constrained (since there are more obstacles), and also to increase the

branching factor, since there are more places to set objects down.

Problems with the same size can be quite different in difficulty, so we

35

will generate various problems of the same size. The automatic generator

returns error quite often (9 out of 10 times at least) when the size of

the world is lower than 9. But problems with size 9 are quite challenging

even for the satisficing planners. In addition some of the generated

problems are unsolvable or are equal to other generated problems. This

makes it quite hard to generate problems for this domain.

For the satisficing track, problems with world size=8 are solved quite

easily, but problems with size=9 are challenging. The following table

shows the parameters chosen for the problems at IPC 2011.

problem & size & tables & cupboards & goal positions

p01 & 9x9 & 5 & 1 & 6

p02 & 9x9 & 6 & 1 & 6

p03 & 9x9 & 3 & 1 & 7

p04 & 9x9 & 3 & 1 & 6

p05 & 9x9 & 3 & 1 & 5

p06 & 9x9 & 6 & 1 & 6

p07 & 9x9 & 3 & 1 & 8

p08 & 9x9 & 3 & 1 & 6

p09 & 10x10 & 9 & 1 & 7

p10 & 10x10 & 9 & 1 & 7

p11 & 10x10 & 3 & 1 & 7

p12 & 10x10 & 2 & 1 & 7

p13 & 10x10 & 6 & 1 & 5

p14 & 10x10 & 8 & 1 & 7

p15 & 10x10 & 6 & 1 & 7

p16 & 10x10 & 3 & 1 & 5

p17 & 11x11 & 9 & 1 & 8

p18 & 11x11 & 7 & 1 & 6

p19 & 12x12 & 5 & 3 & 15

p20 & 12x12 & 7 & 2 & 11

problem & size & tables & cupboards & goal positions

p01 & 5 & 0 & 1 & 4

p02 & 6 & 0 & 1 & 4

p03 & 6 & 0 & 1 & 4

p04 & 6 & 0 & 1 & 4

p05 & 7 & 0 & 1 & 4

p06 & 7 & 0 & 1 & 4

p07 & 7 & 0 & 1 & 4

p08 & 7 & 0 & 1 & 4

p09 & 8 & 0 & 1 & 4

p10 & 8 & 0 & 1 & 4

p11 & 8 & 0 & 1 & 4

p12 & 8 & 0 & 1 & 4

p13 & 8 & 0 & 1 & 4

p14 & 9 & 3 & 1 & 6

p15 & 9 & 2 & 1 & 7

p16 & 9 & 5 & 1 & 6

p17 & 9 & 4 & 1 & 6

p18 & 9 & 3 & 1 & 7

36

p19 & 9 & 4 & 1 & 5

p20 & 9 & 5 & 1 & 5

52 Tpp

TPP-Propositional Problem file generator

Authors: Alfonso Gerevini and Alessandro Saetti

===

Usage: gen-TPP [options] file

Command line options:

-h Display this help

-s <num> Set the seed for the random number generator

-p <num> Set the number of product (default 2)

-m <num> Set the number of market (default 4)

-t <num> Set the number of truck (default 2)

-d <num> Set the number of depot (default 2)

-l <num> Set the maximum level of goods (default 10)

The command lines used to generate the IPC5 problems of

TPP-Propositional are:

gen-TPP -s 2006 -m 1 -p 1 -t 1 -d 1 -l 1 pfile01

gen-TPP -s 2006 -m 1 -p 2 -t 1 -d 1 -l 1 pfile02

gen-TPP -s 2006 -m 1 -p 3 -t 1 -d 1 -l 1 pfile03

gen-TPP -s 2006 -m 1 -p 4 -t 1 -d 1 -l 1 pfile04

gen-TPP -s 2006 -m 2 -p 5 -t 2 -d 1 -l 1 pfile05

gen-TPP -s 2006 -m 2 -p 6 -t 2 -d 1 -l 2 pfile06

gen-TPP -s 2006 -m 2 -p 7 -t 2 -d 1 -l 2 pfile07

gen-TPP -s 2006 -m 2 -p 8 -t 2 -d 1 -l 2 pfile08

gen-TPP -s 2006 -m 3 -p 9 -t 3 -d 1 -l 2 pfile09

gen-TPP -s 2006 -m 3 -p 10 -t 3 -d 1 -l 2 pfile10

gen-TPP -s 2006 -m 3 -p 6 -t 3 -d 2 -l 3 pfile11

gen-TPP -s 2006 -m 3 -p 7 -t 3 -d 2 -l 3 pfile12

gen-TPP -s 2006 -m 4 -p 8 -t 4 -d 2 -l 3 pfile13

gen-TPP -s 2006 -m 4 -p 9 -t 4 -d 2 -l 3 pfile14

gen-TPP -s 2006 -m 4 -p 10 -t 4 -d 2 -l 3 pfile15

gen-TPP -s 2006 -m 4 -p 11 -t 4 -d 2 -l 4 pfile16

gen-TPP -s 2006 -m 5 -p 12 -t 5 -d 2 -l 4 pfile17

gen-TPP -s 2006 -m 5 -p 13 -t 5 -d 2 -l 4 pfile18

gen-TPP -s 2006 -m 5 -p 14 -t 5 -d 2 -l 4 pfile19

gen-TPP -s 2006 -m 5 -p 15 -t 5 -d 2 -l 4 pfile20

gen-TPP -s 2006 -m 6 -p 11 -t 6 -d 3 -l 5 pfile21

gen-TPP -s 2006 -m 6 -p 12 -t 6 -d 3 -l 5 pfile22

gen-TPP -s 2006 -m 6 -p 13 -t 6 -d 3 -l 5 pfile23

gen-TPP -s 2006 -m 6 -p 14 -t 6 -d 3 -l 5 pfile24

gen-TPP -s 2006 -m 7 -p 15 -t 7 -d 3 -l 5 pfile25

gen-TPP -s 2006 -m 7 -p 16 -t 7 -d 3 -l 6 pfile26

gen-TPP -s 2006 -m 7 -p 17 -t 7 -d 3 -l 6 pfile27

gen-TPP -s 2006 -m 7 -p 18 -t 7 -d 3 -l 6 pfile28

gen-TPP -s 2006 -m 8 -p 19 -t 8 -d 3 -l 6 pfile29

gen-TPP -s 2006 -m 8 -p 20 -t 8 -d 3 -l 6 pfile30

37

gen-TPP -s 2006 -m 8 -p 16 -t 8 -d 4 -l 10 pfile31

gen-TPP -s 2006 -m 8 -p 17 -t 8 -d 4 -l 10 pfile32

gen-TPP -s 2006 -m 9 -p 18 -t 9 -d 4 -l 10 pfile33

gen-TPP -s 2006 -m 9 -p 19 -t 9 -d 4 -l 10 pfile34

gen-TPP -s 2006 -m 9 -p 20 -t 9 -d 4 -l 10 pfile35

gen-TPP -s 2006 -m 9 -p 21 -t 9 -d 4 -l 15 pfile36

gen-TPP -s 2006 -m 10 -p 22 -t 10 -d 4 -l 15 pfile37

gen-TPP -s 2006 -m 10 -p 23 -t 10 -d 4 -l 15 pfile38

gen-TPP -s 2006 -m 10 -p 24 -t 10 -d 4 -l 15 pfile39

gen-TPP -s 2006 -m 10 -p 25 -t 10 -d 4 -l 15 pfile40

53 Transport

./city-generator.py <nodes> <size^(1/2)> <degree> <mindistance> <trucks> <packages> <seed>

./two-cities-generator.py <nodes> <size^(1/2)> <degree> <mindistance> <trucks> <packages> <seed>

./three-cities-generator.py <nodes> <size^(1/2)> <degree> <mindistance> <trucks> <packages> <seed>

54 Trucks

Problem generator for Trucks-Propositional

Authors: Yannis Dimopoulos, Alfonso Gerevini and Alessandro Saetti

==

trucks [options] file

Command line options:

-t <num> Set the number of trucks

-l <num> Set the number of locations

-p <num> Set the number of packages

-a <num> Set the number of truck areas

-n <num> Set the number of problem

-seed <num> Set the seed for random number generator

The command lines used to generate the IPC5 problems of

Trucks-Propositional are:

gen-Trucks -seed 200416 -t 1 -l 3 -p 3 -a 2 -n 1 > pfile01

gen-Trucks -seed 9764618515 -t 1 -l 3 -p 4 -a 2 -n 2 > pfile02

gen-Trucks -seed 12605335814 -t 1 -l 3 -p 5 -a 2 -n 3 > pfile03

gen-Trucks -seed 680045613 -t 1 -l 3 -p 6 -a 2 -n 4 > pfile04

gen-Trucks -seed 1922597212 -t 1 -l 3 -p 7 -a 2 -n 5 > pfile05

gen-Trucks -seed 3846211 -t 1 -l 3 -p 8 -a 2 -n 6 > pfile06

gen-Trucks -seed 764310 -t 1 -l 4 -p 6 -a 3 -n 7 > pfile07

gen-Trucks -seed 234599 -t 1 -l 4 -p 7 -a 3 -n 8 > pfile08

gen-Trucks -seed 908548 -t 1 -l 4 -p 8 -a 3 -n 9 > pfile09

gen-Trucks -seed 78547 -t 1 -l 4 -p 9 -a 3 -n 10 > pfile10

gen-Trucks -seed 2216746 -t 1 -l 4 -p 10 -a 3 -n 11 > pfile11

gen-Trucks -seed 32087005 -t 1 -l 4 -p 11 -a 3 -n 12 > pfile12

gen-Trucks -seed 21454334 -t 1 -l 5 -p 9 -a 4 -n 13 > pfile13

gen-Trucks -seed 314313 -t 1 -l 5 -p 10 -a 4 -n 14 > pfile14

gen-Trucks -seed 1267652 -t 1 -l 5 -p 11 -a 4 -n 15 > pfile15

gen-Trucks -seed 1020061 -t 1 -l 5 -p 12 -a 4 -n 16 > pfile16

38

gen-Trucks -seed 4287421 -t 1 -l 5 -p 13 -a 4 -n 17 > pfile17

gen-Trucks -seed 871235621 -t 1 -l 5 -p 14 -a 4 -n 18 > pfile18

gen-Trucks -seed 28183798 -t 1 -l 6 -p 12 -a 5 -n 19 > pfile19

gen-Trucks -seed 78854 -t 1 -l 6 -p 13 -a 5 -n 20 > pfile20

gen-Trucks -seed 1216 -t 1 -l 6 -p 14 -a 5 -n 21 > pfile21

gen-Trucks -seed 92349 -t 1 -l 6 -p 15 -a 5 -n 22 > pfile22

gen-Trucks -seed 93543 -t 1 -l 6 -p 16 -a 5 -n 23 > pfile23

gen-Trucks -seed 76345 -t 1 -l 6 -p 17 -a 5 -n 24 > pfile24

gen-Trucks -seed 532323 -t 1 -l 7 -p 15 -a 6 -n 25 > pfile25

gen-Trucks -seed 432102 -t 1 -l 7 -p 16 -a 6 -n 26 > pfile26

gen-Trucks -seed 40275209 -t 1 -l 7 -p 17 -a 6 -n 27 > pfile27

gen-Trucks -seed 8465321 -t 1 -l 7 -p 18 -a 6 -n 28 > pfile28

gen-Trucks -seed 9347325 -t 1 -l 7 -p 19 -a 6 -n 29 > pfile29

gen-Trucks -seed 832250 -t 1 -l 7 -p 20 -a 6 -n 30 > pfile30

55 Tsp

TSP

* Origin: Obtained from Maria Fox and Derek Long.

* Adaptions: None.

* Description: Untyped STRIPS domain. Extremely simple version of TSP.

The locations are connected by a complete graph, i.e. each location is

accessible from each other location. The edges all have equal cost -

one moving operation - and the goal is simply to have all locations

visited. An optimal solution simply visits all locations once in an

arbitrary ordering.

* Parameters: -n number of locations

* Generation: No randomization.

56 Turnandopen

Turn and Open (Temporal, Satisficing)

This is a temporal domain which appeared in ipc2011.

Domain Description

In this domain, there are a number of robots with two gripper hands and a set of

rooms containing balls. The goal is to find a plan to transport balls from a

given room to another. There are doors that must be open to move from one room

to another. In order to open a given door, the robot must turn the doorknob and

open the door at the same time.

Authors

Sergio Jiménez Celorrio

Original File Names

| file | original name |

|------------------|---------------|

| domain.pddl | domain.pddl |

39

| instance-1.pddl | pfile0.pddl |

| instance-2.pddl | pfile1.pddl |

| instance-3.pddl | pfile2.pddl |

| instance-4.pddl | pfile3.pddl |

| instance-5.pddl | pfile4.pddl |

| instance-6.pddl | pfile5.pddl |

| instance-7.pddl | pfile6.pddl |

| instance-8.pddl | pfile7.pddl |

| instance-9.pddl | pfile8.pddl |

| instance-10.pddl | pfile9.pddl |

| instance-11.pddl | pfile10.pddl |

| instance-12.pddl | pfile11.pddl |

| instance-13.pddl | pfile12.pddl |

| instance-14.pddl | pfile13.pddl |

| instance-15.pddl | pfile14.pddl |

| instance-16.pddl | pfile15.pddl |

| instance-17.pddl | pfile16.pddl |

| instance-18.pddl | pfile17.pddl |

| instance-19.pddl | pfile18.pddl |

| instance-20.pddl | pfile19.pddl |

usage:

OPTIONS DESCRIPTIONS

-n <num> number of robots (minimal 1)

-r <num> number of rooms (minimal 1)

-o <num> number of balls (minimal 1)

-s <num> random seed

57 Tyreworld

Tyreworld

* Origin: Stuart Russel. Adaption for multiple tyres by Jana Koehler.

Taken from the [IPP][6] domain collection.

* Adaptions: None.

* Description: Typed STRIPS domain. Replace a flat tyre with a spare

one. This involves fetching the tools (wrench, jack, pump) from the

boot, undoing the nuts on the flat tyre, jacking up the (appropriate)

hub(s), removing the tyre, doing up the spare one, etc. Adapted for

several tyres by simply increasing the number of flat tyres to be

replaced.

* Parameters: -n number of tyres.

* Generation: No randomization.

58 Visitall

usage:

OPTIONS DESCRIPTIONS

-n <num> size of square grid

40

-r <num> ratio of cells in the goal state

-u <num> number of unavailable locations ---which are randomly arranged

-s <num> random seed (optional)

IPC: -u 0 -n x Full (-r 1) and Half (-r 0.5) instances

IPC 14 x from 5 to 18

As in the IPC, we follow two linear scalings: full and half

59 Woodworking

How to use the problem generator:

The problem generator creates X instances for the seq-sat and seq-opt

tracks. It allows to change the available percentages of wood and the

parts.

To change them go to the end of the file and look for the tag tasks:

tasks = [generate_instance(size, wood_factor)

for wood_factor in [1.4, 1.2, 1.0]

for size in range (3, 33, 3)]

The former generates 30 instances, 10 for each wood factor, starting

in 3, ending in 33 and increasing by 3 from one to each other.

By default problems are created in sub-folders named "seq-sat" and

"seq-opt" which have to exist before the script is run.

The default behavior is to generate problems with only one tool of

each type, if more tools want to be created, the _default_machines

constant has to be changed.

In its current form, the script generates the last 4 problems of IPC 2011:

p17-->p17 IPC

p18-->p19 IPC

p19-->p18 IPC

p20-->p20 IPC

wood_factor = float(sys.argv[1])

size = int(sys.argv[2])

num_machines = int(sys.argv[3])

seed = int(sys.argv[4])

tasks = [generate_instance(size, wood_factor)

for wood_factor in [1.4, 1.2, 1.0]

for size in range (3, 33, 3)]

41

60 Zenotravel

Usage: ztravel [-n|-s|-t|-c|-u] <seed> <#cities> <#planes> <#people> [distance]

IPC instances:

planes person cities

p01.pddl: 1 2 3

p02.pddl: 1 3 3

p03.pddl: 2 4 3

p04.pddl: 2 5 3

p05.pddl: 2 4 4

p06.pddl: 2 5 4

p07.pddl: 2 6 4

p08.pddl: 3 6 5

p09.pddl: 3 7 5

p10.pddl: 3 8 5

p11.pddl: 3 7 6

p12.pddl: 3 8 6

p13.pddl: 3 10 6

p14.pddl: 5 10 10

p15.pddl: 5 15 12

p16.pddl: 5 15 14

p17.pddl: 5 20 16

p18.pddl: 5 20 18

p19.pddl: 5 25 20

p20.pddl: 5 25 22

42

	Agricola
	Assembly
	Barman
	Blocksworld
	Briefcaseworld
	Cavediving
	Childsnack
	Citycar
	Crewplanning
	Data-network
	Depots
	Driverlog
	Elevators
	Ferry
	Floortile
	Freecell
	Fridge
	Goldminer
	Grid
	Gripper
	Grippers
	Hanoi
	Hiking
	Logistics
	Maintenance
	Matchcellar
	Miconic
	Miconic-fulladl
	Miconic-simpleadl
	Movie
	Mprime
	Mystery
	Nomystery
	Npuzzle
	Nurikabe
	Openstacks
	Parking
	Pathways
	Pegsol
	Rovers
	Satellite
	Scanalyzer
	Schedule
	Snake
	Sokoban
	Spanner
	Spider
	Storage
	Termes
	Tetris
	Tidybot
	Tpp
	Transport
	Trucks
	Tsp
	Turnandopen
	Tyreworld
	Visitall
	Woodworking
	Zenotravel

