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Abstract

In the framework of geometrical optics, let us study meridional and skew rays, those rays

that we can find in optical fibres. The study is based on the book by  Keigo Iizuka, entitled

Engineering Optics.  
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1. Introduction

Geometrical optics, or ray optics, puts the emphasis on the light paths. A particular focus is in

the calculation of the light path in inhomogeneous media and in the design of optical instru-

ments [1].  Here we will  study in particular two rays that we can find in optical fibers: the

meridional ray and the skew ray. The study is based on the book by  Keigo Iizuja, entitled Engi -

neering  Optics [1].  
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Before the specific study, let us remember some useful calculus.

2. Tangent unit vector and curvature

Some mathematical expressions are necessary for the description of the path of light.

Let us consider the following figure, where the position vector R is given. 

The unit tangent vector is given by:

ŝ=dR
d s

In this formula, the curvilinear co-

ordinate s  is used. This is the

arc length on the curve, given from

a fixed origin on it.

Using rectangular coordinates: R= î x+ ĵ y+ k̂ z ,  the unit tangent vector is:

ŝ= î dx
ds

+ ĵ dy
ds

+k̂ dz
ds

      In cylindrical coordinate: R=r̂ r+ k̂ z , r̂= î cosϕ + ĵ sinϕ , ϕ̂ =− î sinϕ + ĵ cosϕ

ŝ= r̂ dr
ds

+r d r̂
ds

+ k̂ dz
ds

 , where 
d r̂
ds

=(− î sinϕ + ĵ cosϕ ) dϕ
ds

=ϕ̂ d ϕ
ds

.

The tangent expressed in cylindrical coordinates becomes:

ŝ= r̂ dr
ds

+ϕ̂ r dϕ
ds

+k̂ dz
ds

The curvature of a curve is: 
1
ρ
=|d ŝ /ds|  or 

1
ρ
=|d2R /ds2| .
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The inverse of the radius of curvature is the magnitude of the first derivative of the tangent vec-

tor, or the second derivative of the position vector. 

3. Principal unit vector, binormal and torsion

We have seen that the curvature is: 
1
ρ
=|d ŝ/ds|  or 

1
ρ
=|d2 R̂ /ds2| .

Let us consider the time: 
ds
dt
=|d R /dt | . We have that ŝ= d R /dt

|dR /dt |
, and then the curva-

ture turns out to be: 
1
ρ =

|d ŝ /dt |
|d R /dt |

d ŝ
ds

is also called the “curvature vector”.  The Principal Unit Normal is defined as:

N̂= d ŝ /ds
|d ŝ /ds |

= d ŝ /dt
|d ŝ /dt |

, which is orthogonal to ŝ .

A third vector is the “binormal vector”:

B̂=ŝ×N̂

It is another unit vector.
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Altogether, we obtain a frame, which is known as the Frenet frame ŝ , N̂ , B̂ . These vectors

are of unit length and orthogonal to each other.

The Frenet- Serrat formula is: 

d ŝ
ds

=N̂
ρ

, 

where vector N̂ is the unit normal vector to the curve.

About the binormal B̂ , we have that it is a vector parallel to the unit normal N̂ .

Being a unit vector, d B̂ /ds is perpendicular to B̂ .

Moreover, B̂⋅ŝ=0 , therefore:

0=d B̂
ds

⋅ŝ+ B̂⋅d ŝ
ds

=d B̂
ds

⋅ŝ+ B̂⋅1
ρ N̂=

d B̂
ds

⋅ŝ  

Since 
d B̂
ds

⋅B̂=0 and 
d B̂
ds

⋅ŝ=0 , 
d B̂
ds

is a multiple of N̂ .

The multiple is the “torsion”:

d B̂
ds

=−τ N̂    or   τ =−d B̂
ds

⋅ N̂
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4. Level surfaces and gradients

Let us consider a level surface  L(x , y , z)=C . An example is the equipotential function in

electrostatics. Let us move the observation point P so that we have an increment:

Δ L=∂ L
∂ x

Δ x+∂L
∂ y

Δ y+∂L
∂ z

Δ z+ infinitesimals of higher order

The directional derivative ∇sL is:

∇sL= lim
Δ l→0

Δ L
Δ l

=∂L
∂ x

Δ x
Δ l

+∂L
∂ y

Δ y
Δl

+∂L
∂ z

Δ z
Δ l

+infinitesimals of higher order

Δ x /Δ l , Δ y /Δ l , Δ z /Δ l  are the direction cosine cosα , cos β , cosγ of the move-

ment Δ l . 

∇sL=
d L
d l

=∂L
∂ x

cosα+∂L
∂ y

cos β +∂L
∂ z

cosγ

We have also:

∇ L= î∂L
∂ x

+ ĵ∂ L
∂ y

+k̂ ∂L
∂ z

 ,  M̂=î cosα + ĵ cosβ + k̂ cosγ

Then: 

∇s L=(∇ L)⋅M̂  , so we have: Δ L=(∇ L)⋅M̂ d l=(∇ L)⋅d l

∇sL  varies with the choice of the direction of the movement. The change of L becomes

a maximum when the movement is selected in the same direction as that of  ∇ L . Then,

∇ L  is the direction that gives the maximum change in L for a given length of the move-

ment.

The normal N̂ to the equi-level surface is:
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N̂=∇ L
|∇ L|

In optics, this formula is particularly useful because it determines the optical path from the

equi-phase surface.

5. Eikonal equation

Let E( x , y , z ) representing a light wave that needs to satisfy the wave equation:

(∇2+ω 2μϵ )E(x , y , z)=0

In the case of an isotropic medium, Ex , Ey , Ez  equations are identical.

(∇2+ω 2μϵ )u (x , y , z )=0   (*)

where ω 2μ ϵ=[k n(x , y , z)]2 , k is the free space propagation constant and n the re-

fraction index. 

Let us assume the solution: u(x , y , z)=A (x , y , z)exp{ j [k L(x , y , z)−ω t ]} .

Functions A (x , y , z)  and L(x , y , z)  are unknown. They have to be determined in such

a way to satisfy (*). Then:

n2 k2u+∇2u = 

e j(k L−ω t)  {k2 [n2−|∇ L |2 ]A+∇2 A+ j k A∇2 L+ j 2k (∇ A)⋅(∇ L)}=0

|∇ L |2 means the sum of the squares of  i , j , k components of ∇ L .

If the wavelength of light is much shorter that the dimensions of the associated structure:

|∇ L |2=n2 ,  then: (∂L∂ x )
2

+(∂L∂ y )
2

+(∂L∂ z )
2

=n2

This is the eikonal equation of the optical path. The wave front L itself is called the eikonal

or optical path.
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Let us remember that Δ L=(∇ L)⋅d l . Then:

L=∫(∇ L)⋅d l .

If the movement is restricted to the normal of the equi-level surface:

L= ∫
along normal

|∇ L |ds= ∫
along normal

nds  .

The direction of the normal to the equi-phase surface is  ∇ L /|∇ L| . The normal is called

the "wave normal".

6. A glass slab 

Consider a glass slab whose index of refraction is variable in the x-direction but is constant in

both the y- and z- directions, so that n=n(x) . L(x , y , z) is assumed to be separable so

that L(x , y , z)=f (x)+g( y)+h(z ) .

|∇ L |2=n2 , then {[ f ' (x )]2−[n(x )]2}+[g '( y)]2+[h '( z)]2=0

Let us consider:  {[ f '(x )]2−[n(x )]2}=a2 ,   [g ' ( y)]2=b2 ,  [h' (z)]2=c2  ,  so that

a2+b2+c2=0 .

Solutions are: 

f (x)=±∫
0

x

√ [n( x)]2−(b2+c2)  dx , g( y )=±by+m1  , h(z )=±cz+m2

L(x , y , z)=±∫
m

x

√ [n( x)]2−(b2+c2)  dx±by±cz

Constants m1  and m2 are considered in the lower limit of  the integration. b ,  c are 

determined by boundary condition, such as launch position and angle.

The direction of the propagation is the direction of the wave normal: N=∇ L/n . The nor-

mal is in the same direction of the unit tangent vector ŝ to the light path.
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dR
 ds

=∇ L
  n

 then: n
dx
ds

=∂ L
∂ x

, n
dy
ds

=∂L
∂ y

, n
dz
ds

=∂ L
∂ z

Let us consider the optical path of light launched into a medium having n=n(x) .

n(x )dx
ds

=√[n(x)]2−(b2+c2) , n(x )dy
ds

=b , n(x )dz
ds

=c

dy
dx

=b
c

, then y=b
c

 z+d (*)

There exists a unique plane perpendicular to the y-z plane, defined in (*).

A ray entering a medium characterized by an x- dependent refractive index will always remain

in this plane, regardless of launching conditions. The projection of the ray to y-z plane is a

straight line. The constants are determined by the launching point and angle. 

Launching point (0,0 , co) . ϕ o and θ o  as in the figure.

z= y tanϕ o+co  is the projection line.

Moreover:   y=∫      bdx

√[n(x )]2−(b2+c2)
,  z=∫      c dx

√[n(x )]2−(b2+c2)
.
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From the figure, we have that:

ds  sinθ cosϕ o=dy , ds  sinθ sinϕo=dz

n(x )  sinθ cosϕ o=b , n(x )  sinθ sin ϕ o=c

n(x )sinθ=√b2+c2  then n(x )sinθ=constant

This holds true throughout the trajectory. n(x )sinθ=constant is the Snell Law for a one-

dimensional stratified medium.

At x=0 , no sinθ o=√b2+c2 , then: 

y=∫
0

x    no sinθ o cosϕ o

√[n(x )]2−no2 sin2θ o

dx  ,  z−co=∫
0

x    no sinθ osinϕ o

√ [n( x)]2−no2 sin2θ o

dx

Let us introduce:

z '=∫
0

x    nosinθ o sinϕ o

√[n(x )]2−no2 sin2θ o

dx

When the quantity inside the square root becomes negative, we have that z ' becomes nega-
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tive  and  the  light  does  not  propagate.  The  light  will  reflect  at  the  point  where

[n(x)]2−no
2sin2θ o  becomes negative, i.e. n(x )−no sinθ o .

When the refractive index is decreasing monotonically with x,  the light will not propagate be-

yond x=xo , where n(xo)=no sinθ o . The location of the total reflection is a function of

the launching angle θ o .

7. Selfoc fiber

As told in [2],  in November 1968, “the first optical fiber for communication use, named Selfoc,

was press-released. This fiber was initially made by ion-exchange method; a compound glass

rod 1 mm in diameter and 1 m in length was immersed in a dilute nitric salt bath for several

hundreds hours and then drawn to a fiber. This rod itself was just a graded refractive index

(GRIN) lens. This was the first optical fiber for communication use. In 1970, Corning Glass

Works disclosed a low loss silica glass fiber with step index type. This type of Silica fiber was

made by using vapor phase or MOCVD”. About the Selfoc fiber,  see [3].

In [1], it is told that the distribution employed by the Selfoc fiber is:

n2=nc
2(1−α 2 x2)

z '=∫       a dx

√nc2−a2−α 2nc
2 x2

, a=nc sin2θ o

For a launching point at the origin:
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z=
sinθ o

  α ∫       dx

√(cosθ o/α )
2−x2

=
sinθ o

  α sin−1   α x
cosθ o

x=
sinγ o

  α sin
  α x
cosγ o

, γ o=90 °−θ o .

The  optical  path  in  such  a  medium  is  sinusoidal  with  an  oscillating  amplitude  equal  to

sinγ o /α and a one-quarter period π cosγ o /2α .

The distribution of the Selfoc fiber is n2=nc
2(1−α 2r 2) . With this distribution, light is con-

fined inside the fiber and propagates for a long distance with very little loss, so that Selfoc fiber

plays an important role in the fiber-optical communication.

7. Cylindrical symmetric medium  

Let us consider a distribution having a cylindrical symmetry:

∇ L=r̂ ∂L
∂r

+ϕ̂ 1
r
∂L
∂ϕ +k̂ ∂L

∂ z
 

The eikonal equation is:

(∂L∂r )
2

+(1r ∂L∂ϕ )
2

+(∂L∂ z )
2

=n2

Let us separate variables:

L(r ,ϕ , z)=R(r )+Φ(ϕ )+Z(z )

11



Geometrical Optics                           A.C. Sparavigna 

(R ')2+(1r Φ ')
2

+(Z ')2=n2

If n is cylindrical symmetric:

{(R ')2−[n(r )]2}+(1r Φ')
2

+(Z ')2=0  assuming: −a2+a2=0 :

(Z ')2=a2 ,  {(R ' )2−[n(r )]2}+(1r Φ')
2

=−a2

r2{(R ' )2−[n (r)]2+a2}+(Φ ' )2=−a2

Assuming (Φ ')2=c2 , we have: (R ')2=[n(r )]2−a2−c2

r2
.

The eikonal in a cylindrical symmetric medium is:

L(r ,ϕ , z)=∫
m

r

√[n(r )]2−c2/r2−a2  dr+cϕ +az

All integration constants are included in the lower limit of the integral.

The following differential equations are used to derive the path from the eikonal.

n
d r
ds

=∂ L
∂ r

      r̂  component

nr
dϕ
ds

=1
r
∂L
∂ϕ       ϕ̂  component

n
d z
ds

=∂L
∂ z

      k̂  component

n
d r
ds

=√[n(r)]2−c2 /r2−a2 , n
dϕ
 ds

=c
r

, n
d z
ds

=a .

Constants a ,  c are to be determined from initial constants. Then:

ϕ=∫         c dr

r2√[n(r )]2−c2 /r2−a2
,   z=∫         adr

√[n(r )]2−c2/r2−a2

Launching conditions are:  r=r o ,  ϕ=ϕ o ,  z=0 ,  n(r o)=no ,  a=no cosγ o ,
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c=noro cosδ o .

We can simply assume c=0,  δ o=90 ° , that is when the launch path is in the plane con-

taining the z-axis.  ϕ becomes 0 and the path stays in a plane containing the z-axis. Such a

ray is called a "meridional ray", We are back to the one-dimensional case. The ray that does not

stay in this plane, due to a non zero c, rotates around the z-axis and it is called the "skew ray".

As long as the medium is perfectly symmetric, only the initial launch conditions determines

whether the path is meridional or skew. The specific formulas for z and ϕ in the case of

the Selfoc fiber are given in [1].

8.  Quantization 

In [1] it is shown that only those rays that are incident at certain discrete angles can propagate

into the fiber. To simplify the discussion, [1] is using a slab (step-index guide).

If the incident angle is smaller enough, we have the total reflection of the ray. The ray is taking

a zig-zag path, having a length lzz . However, we have also a direct front-wave, moving of
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ldir . The path difference is therefore:

n1 k (lzz−ldir)=n1k 4 d sinθ

d is the thickness of the slab. The angle θ so that:

n1 k 4d sinθ=2N π

where N is an integer. This condition can be turned into:

ϕ x=N π

The phase difference ψ x between the upper and the lower boundaries of the core glass can

take only discrete values of an integer multiple of π . The same result is true for a merid-

ional ray in an optical fiber.

In the case of a skew ray, the phase factor ψ must satisfy some conditions, so that:

β=∂ϕ
∂ z

=nck √1−2α (2μ+ν  nc k )   (*)

where μ and ν  are integers.

When the end of an optical fiber is excited by a light source, those rays which propagate are in-

cident at discrete angles. For these rays, the propagation constant in the z-direction satisfies (*).

The skew ray is designated by the pair of integers μ and ν . The ray is in the (μ ,ν )

mode of propagation.

The condition:

1−2α (2μ+ν  nck )=0

is the cut-off condition. For  (0,0) mode, the cut-off is 0. The cut-off of  (0,1) mode is

2α .  In the case that  k nc<2α ,  only the  (0,0) mode is excited. The optical fiber

where only a mode propagates, is a single-mode fiber.
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