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Graph Laplacian Diffusion Localization of
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Abstract— In this paper, we design distributed multi-modal
localization approaches for Connected and Automated vehicles.
We utilize information diffusion on graphs formed by moving
vehicles, based on Adapt-then-Combine strategies coupled with
the Least-Mean-Squares and the Conjugate Gradient algorithms.
We treat the vehicular network as an undirected graph, where
vehicles communicate with each other by means of Vehicle-to-
Vehicle communication protocols. Connected vehicles perform
cooperative fusion of different measurement modalities, including
location and range measurements, in order to estimate both
their positions and the positions of all other networked vehicles,
by interacting only with their local neighborhood. The trajecto-
ries of vehicles were generated either by a well-known kinematic
model, or by using the CARLA autonomous driving simulator.
The proposed distributed and diffusion localization schemes
significantly reduced the GPS error and do not only converged
to the global solution, but they even outperformed it. Extensive
simulation studies highlight the benefits of the various methods,
which in turn outperform other state of the art approaches. The
impact of the network connections and the network latency are
also investigated.

Index Terms— Connected and automated vehicles, localization,
information diffusion, cooperative awareness, V2V.

I. INTRODUCTION

THE development and growth which has been achieved
towards autonomous driving the past few years, will

contribute to the reduction of road crashes, improve traffic
congestion and fuel consumption and enhance the overall
performance of transportation sector. Scientific community
and automotive industry is working hard to myriads of appli-
cations, such as object detection and tracking, automated
parking, traffic signs detection, path planning, cooperative
path planning etc. Integrated sensors like GPS, LIDAR,
or Camera, to name a few, provide increased perception and
scene analysis ability, improving safety. Moreover, Vehicle-
to-Everything (V2X) wireless communication technologies
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among vehicles or Road Side Units (RSU), i.e. Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructure (V2I), as well as
the prototyping of 5G related protocols, enable smart vehicles
of a Vehicular ad-hoc Network (VANET) to have access
to external and off-board information. Thus, Connected and
Automated Vehicle (CAV) emerges as the type of vehicle of
the future, which provides safety, comfort and efficiency to
related challenges, facilitating the so-called 4D cooperative
awareness (e.g. accurate and timely identification/detection of
occluded/non-occluded pedestrian, cyclists and/or vehicles).

Collaborating CAVs usually exploit heterogeneous data and
extracted information from sensors, such as absolute position,
relative distance, relative angle, velocity, acceleration, etc.,
to achieve their collective or individual tasks. To this end,
Localization, i.e. accurate knowledge of self and other’s road
users/vehicles locations, is considered vital. Although GPS
sensor is the most common sensor providing absolute position,
it’s accuracy is highly degraded in dense urban canyons or tun-
nels [1], even exceeding 10m error, while it is also vulnerable
to cyber-attacks [2]. Several approaches have been developed
for outperforming GPS technology, relying on ground base
stations which are able to achieve localization error in cm level
of accuracy. However, they are also vulnerable to multi-path
effect and signal blockage [3]. The desired localization error
should be lower than 1m (where-in-lane accuracy) [4] to meet
the standards of autonomous driving. For example, if a vehicle
is localized on the curb instead of the road, it may lead to a
serious accident with pedestrians or other vehicles. Therefore,
assisted or cooperative localization (CL) has received extensive
interest as a viable alternative to cope with GPS limitations
and erroneous measurements.

Estimating accurately the location of the ego and also
neighboring vehicles, facilitates several other autonomous
driving functionalities including Path Planning, Control tasks
and platooning [5]. Path Planning and Control module is
responsible for determining and performing the best possible
driving actions, e.g. estimate the proper velocity for main-
taining safety distances among the vehicles, improving safety
and enhancing transportation efficiency. However, distributed
CL approaches [6]–[8] are mainly used only for estimating
ego-vehicle’s location, by utilizing the local neighborhoods.
Moreover, they actually don’t evaluate how accurate the
ego-vehicle computes the position of neighbors. At the same
time, diffusion approaches on graphs [9], [10] provide the
ability to estimate the locations of connected neighbors. To the
best of our knowledge, there is no study up till now about dis-
tributed and diffusion vehicular localization, i.e. each vehicle
relying only to its neighbors to be in place to estimate the
entire common location vector of the VANET which belongs.
Our previous work on non-Bayesian Centralized Laplacian
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TABLE I

NOTATIONS

Localization (CLL) [11]–[13], which linearly correlates via
the graph Laplacian operator the multi-modal measurement
modalities along with the connectivity representation of vehi-
cles, facilitated the design of the proposed approaches. There-
fore, in this work we focus on proposing novel diffusion
localization schemes for CAVs, which aim to converge to
CLL utilizing the graph Laplacian operator. Note that the
proposed approaches can be easily extend to other relevant
multi-agent cooperating localization scenarios, like a fleet of
robots or Unmanned Aerial Vehicles. In summary, the main
contributions of our work are:

• We propose novel distributed multi-modal localiza-
tion approaches for CAVs, utilising Adapt-then-Combine
(ATC) strategies combined with Least-Mean-Squares
(LMS) and Conjugate Gradient (CG) algorithms, outper-
forming state of the art cooperative localization methods.

• More importantly, the proposed diffusion approaches
allow each agent to estimate accurately both its position
but also the position of the neighboring vehicles facilitat-
ing more accurate 4D situational awareness.

• The aforementioned methods are evaluated using both
well known kinematic models [14], as well as realistic
traffic patterns generated by the CARLA autonomous
driving simulator [15].

• Finally, we investigate the possible impact of VANET
size, number of vehicle connections, network delay and
range measurements uncertainty to the performance of
the various diffusion strategies.

Extensive simulation studies verify that: i) Traditional LMS
is always outperformed by the other variants, though it pro-
vides increased robustness in the presence of range mea-
surements uncertainty ii) LMS and CG with measurements
exchanges exhibit similar convergence properties, iii) CG fails
to operate adequately both in the presence of network delay
and increased range measurements noise, thus making LMS
with measurements exchanges the most efficient method.

Outline and Notation: The rest of the paper is organized as
follows: Section II surveys related work to CL and information
diffusion on graphs; Section III describes the preliminaries
about centralized/distributed optimization and system model;
Section IV presents the proposed distributed and diffusion
localization schemes; Section V provides a heuristic approach
to initialize the diffusion schemes during the tracking mode;
Section VI is dedicated to experimental setup and evaluation,
while Section VII concludes our work. The notations used
throughout this paper are summarized on TABLE I.

II. RELATED WORK

Several works have been proposed in literature that study
the benefits and tackle the challenges of CL. An overview of

CL in Wireless Sensor Networks is provided in [16]. The CL
algorithms can be categorized as: Centralized vs Distributed,
One-shot vs Tracking, non-Bayesian vs Bayesian. Usually, dis-
tributed approaches are considered to be more attractive, since
the computations and processing is performed by each individ-
ual vehicle, without any central authority involvement. One-
shot and non-Bayesian methods are mostly rely on Maximum
Likelihood Estimation (MLE), while Tracking/Bayesian utilize
a Minimum Mean Square Error estimator. In [6], a distributed
CL method has been formulated, where each vehicle fuses self
and neighbors’ absolute positions from GPS, motion sensor’s
readings and range measurements by deploying an Extended
Kalman Filter. Round Trip Time is considered as the ranging
technique. The approach mainly focuses on tunnels, when GPS
may not operating due to signal blockage. In [7], a set of
detected non-cooperative features, are used as common noisy
reference points. Both a centralized and distributed scheme
based on Bayesian Gaussian Message Passing have been
developed, improving stand-alone GPS accuracy in different
urban conditions. The two methods exhibited identical per-
formances. A distributed robust cubature Kalman Filter (KF)
enhanced by Huber M-estimation is presented in [17]. The
method is used to tackle the challenges of the data fusion
under the presence of outliers, though considering only a fixed
VANET’s size. Pseudo-range measurements from satellites
were also considered during the fusion process. A distributed
method has been developed in [8], formulating a Bayesian
approach which reduces the location estimation uncertainty.
A KF is employed, fusing absolute self and neighbors’ GPS
positions, motion sensors and V2V range measurements.
Accuracy of inter-vehicular measurements, size of VANET and
communication latency were used to evaluate the effectiveness.
A distributed non-Bayesian method is presented in [18], which
fuses absolute positions, relative distances and angles of only
four vehicles, using MLE. The latter is attractive due to its
consistency, asymptotic optimality and normality properties.

Information diffusion on graphs approaches facilitate the
agents of a network to estimate and learn a common set of
parameters in a distributed manner, i.e. location vector of
a group of vehicles within range. Diffusion and distributed
estimation algorithms based on LMS have originally been
developed in [9]. Authors formulated the two standard frame-
works of ATC and Combine-then-Adapt (CTA) to perform
the distributed processing. As it has been reported, ATC
outperforms CTA. Multi Task Learning (MTL) approaches
for estimating a parameter vector not entirely common across
the nodes, are highlighted in [10]. They mainly utilize the
topology of network graph, in order to create connected
sub-graphs and perform the diffusion. Distributed schemes
based on Recursive-Least-Sqaures (RLS) and Kalman Filtering
have been also proposed in literature [19], [20]. Usually,
diffusion approaches require a large number of iterations
and message exchanges to converge to the optimal solution.
Thus, any communication delay of receiving the necessary
information, may have a strong impact to the learning per-
formance. To address this issue, which is also evident in
any VANET, both LMS and RLS based solutions have been
developed [21], [22]. Although they proved that convergence
to the optimal solution can be achieved, this comes at the cost
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Fig. 1. Network of N nodes.

of larger number of iterations. To tackle the limitations of
LMS (low convergence speed) and RLS (high complexity and
numerical instability) solutions, the authors of [23] formulated
a CG based diffusion scheme, adopting CTA framework. They
focused on distributed spectrum estimation and proved the
efficiency of their approach.

Distributed CL approaches, as mentioned before, do not
evaluate how accurate ego vehicle estimates the location of
neighbors, which is a serious limitation towards efficient coop-
erative awareness. On the other hand, information diffusion
requires a large number of iterations and message exchange
to converge to the optimal solution, which may have a strong
impact on time critical automotive applications.

III. PRELIMINARIES AND SYSTEM MODEL

A. Centralized Optimization

Consider a network graph of N nodes/vehicles (example
depicted on Fig. 1), where each node i (i = 1, . . . N) has
access to a scalar measurement d(t)

i ∈ R and a regression
vector u(t)i ∈ R

N at time instant t (t = 1, . . . T ). Edges
between nodes imply communication connection. It is assumed
that each node follows a linear measurement model according
to:

d(t)
i = u(t)Ti w(t) + n(t)

i (1)

As it will be thoroughly explained in the following Sections,
the general model of (1) lends itself for cooperative localiza-
tion applications, since d(t)

i , u(t)i and w(t) refer to differential
coordinate and V2V neighbors of vehicle i , as well as the
positions of all VANET’s vehicles, respectively. The network’s
objective is to optimally estimate the, common across the
nodes, parameter vector w(t) ∈ R

N . Note that n(t)
i is a zero

mean spatially independent measurement noise term, with
variance σ 2

n . To this end, the following global optimization
problem can be defined:

argmin
w(t)

J (w(t)) = argmin
w(t)

N∑
i=1

(
d(t)

i − u(t)Ti w(t)
)2

(2)

It is proven that the optimal vector at time instant t is equal
to:

w(t) =
(

N∑
i=1

R(t)i

)−1 N∑
i=1

r(t)i , (3)

with positive semi-definite covariance matrix R(t)i = u(t)i u(t)Ti
and cross correlation vector r(t)i = u(t)Ti d(t)i . As it may be
obvious, (3) is actually a centralized (least-squares) implemen-
tation since all nodes have to broadcast their measurements

and regression vectors to an overall fusion center, which in
turn will estimate parameter w(t) and inform nodes about it.
However, it is more robust and cost effective for each node to
estimate w(t) in a distributed manner and on its own, relying
only to its connected neighbors. Distributed implementation
of (2), which the proposed Graph Laplacian methods will be
derived from, is discussed in the following subsection.

B. Distributed Optimization

A gradient descent based solution will be employed to
address the distributed solution of (2). For a total number of
iterations, say K , the optimal vector at each iteration k is given
by:

w
(t,k+1)
i = w

(t,k)
i − μ(t) ∂ J (w(t,k))

∂w(t,k)
, (4)

where ∂ J (w(t,k))

∂w(t,k)
= ∑N

i=1

(
R(t)i w

(t,k)
i − r(t)i

)
and small scalar

step size μ(t) > 0. Thus, (4) is given by:

w
(t,k+1)
i = w

(t,k)
i − μ(t)

N∑
i=1

u(t)Ti

(
d(t)

i − u(t)i w
(t,k)
i

)
(5)

Although (5) is not a distributed implementation since
data across the whole network are required, it motivated the
development of distributed ATC diffusion LMS algorithm [9]:

ψ
(t,k+1)
i = w

(t,k)
i − μ

(t)
i u(t)Ti

(
d(t)

i − u(t)i w
(t,k)
i

)
(6)

w
(t,k+1)
i =

∑
l∈N (t)

i

c(t)
il ψ

(t,k+1)
l (7)

The neighborhood of node i is the set N (t)
i with cardinality

|N (t)
i |, consisting of self and neighbouring nodes. During

the adaptation step of (6), each node i estimates in parallel
the intermediate vector ψ(t,k+1)

i , based on the previously

estimated vector w(t,k)i and the pair {d(t)
i , u(t)i }. During the

combination step of (7), each node i again in parallel, receives
the intermediate vectors from its neighbourhood and convexly
combines them, in order to estimate the common parameter
vector. That last step is critical for feasible estimation of the
parameter vector. Actually without it, the node is unable to
estimate accurately the desired vector. Combination weights
c(t)

il define the combination matrix C(t) ∈ R
N×N . A typical

choice for combination weights is based on the Metropolis
rule [24].

A variant of ATC has also been proposed, where a convex
combination operation is added to the adaptation step, leading
to ATC with measurements exchanges diffusion LMS:
ψ
(t,k+1)
i = w

(t,k)
i − μ

(t)
i

∑
l∈N (t)

i

c(t)
il u(t)Tl

(
d(t)

l − u(t)l w
(t,k)
i

)

(8)

w
(t,k+1)
i =

∑
l∈N (t)

i

c(t)
il ψ

(t,k+1)
l (9)

Notice from (8) that each node receives now the pair
{d(t)

l , u(t)l } from its neighbours, adding one more commu-
nication and exchange step to the diffusion algorithm. The
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Fig. 2. ATC with measurements exchange.

Fig. 3. Vehicular ad-hoc network.

LMS diffusion strategy of ATC with measurements exchanges
for node v1 is describing on Fig. 2. Consequently, each
node estimates the common parameter vector in a distributed
manner, hence avoiding the heavy computational burden of a
centralized processing architecture.

C. System Model

Before we proceed with describing the proposed distributed
and diffusion localization strategies, we will shortly review our
previous work on CLL. The latter, a graph based approach for
CL, performs cooperative multi-modal fusion, exploiting the
spatial coherences and connectivity properties of the vehicles
of a vehicular network. Furthermore, a measurement model
fusing GPS positions, range measurements and the topology of
VANET using the linear Graph Laplacian operator, is utilized.
The main assumption of that approach relies on the feasible
estimation of the so-called differential coordinates, by encod-
ing each vehicle’s position relative to its neighbouring.

Consider a 2-D region where N vehicles of a VANET
(shown in Fig. 3) at an urban environment collect and
exchange measurements using V2V communications. Vehicles
communicate with the other vehicles of VANET only within
a direct communication range rc, according to established
V2V communication standards [25]. That means that vehicles
receive messages from other vehicles if only their distance
is below than rc. Furthermore, we set a maximum number
of closest neighbors Nmax for each vehicle, as in [7]. Thus,
a reduced computational load with permissible localization
accuracy can be achieved, avoiding also extreme cases like two
vehicles of the same VANET are far (even kilometers) away

Fig. 4. Range measurements.

from each other. Vehicles can utilize a multiple access like
communication protocol. As it will be shown in Section VI,
attained localization accuracy is very promising without the
need of all-to-all vehicles connections. Hence, scalability is
another important aspect of the proposed approaches.

The absolute location of i -th vehicle at time instant t is
equal to p(t)i =

[
x (t)

i y(t)
i

]T ∈ R
2, whereas the distance and

azimuth angle between connected vehicles i and l are equal
to z(t)

d,il =
∥∥∥ p(t)i − p(t)l

∥∥∥ and

z(t)
az,il =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

επ + arctan
|x (t)

l − x (t)
i |

|y(t)
l − y(t)

i |
, ε = 0, 1

επ + arctan
|y(t)

l − y(t)
i |

|x (t)
l − x (t)

i |
, ε = 1

2
,

3

2
,

shown in Fig. 4 with ε = 0. These measurements could be
provided by sensors like GPS, LIDAR, RADAR or Camera,
which are integrated to the vehicles, assuming also additive
white Gaussian measurement noise [16]. Hence, we acquire
the following three measurement models for each vehicle:

• Absolute position measurement:
z̃(t)p,i = p(t)i + n(t)p , n(t)p ∼ G(0,� p)

Covariance matrix � p is a diagonal matrix equal to
diag(σ 2

x , σ 2
y ).

• Distance measurement:
z̃(t)

d,il = z(t)
d,il + n(t)

d , n(t)
d ∼ G(0, σ 2

d)

• Azimuth Angle measurement:
z̃(t)

az,il = z(t)
az,il + n(t)

az , n(t)
az ∼ G(0, σ 2

az)

Moreover, we define the Laplacian matrix of VANET graph
L(t) ∈ R

N×N as L(t) = D(t)−V (t), where D(t), V (t) ∈ R
N×N

are the degree and adjacency matrices of VANET graph. The

differential coordinates per vehicle δ(t)i =
[
δ
(t,x)
i δ

(t,y)
i

]T ∈ R
2

are equal to:

δ
(t,x)
i = 1

|N (t)
i | − 1

∑
l∈N (t)

i

(
x (t)

i − x (t)
l

)

= 1

|N (t)
i | − 1

∑
l∈N (t)

i

(
−z̃(t)

d,il sin z̃(t)
az,il

)
,

and

δ
(t,y)
i = 1

|N (t)
i | − 1

∑
l∈N (t)

i

(
y(t)

i − y(t)
l

)
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= 1

|N (t)
i | − 1

∑
l∈N (t)

i

(
−z̃(t)

d,il cos z̃(t)
az,il

)

By creating the vector δ(t,x) ∈ R
N (x-differentials), the x-

coordinates position of vehicles (as vector x(t) ∈ R
N ) follow

the linear measurement model:
L(t)x(t) = D(t)δ(t,x), (10)

However, L(t) is positive semi-definite and non-
invertible [26], and as such (10) is reformulated by creating the

extended Laplacian matrix L̃(t) ∈ R
2N×N as L̃(t) =

[
L(t)

IN

]

and vector s(t,x) ∈ R
2N as s(t,x) =

[
D(t)δ(t,x)

z̃(t,x)p

]
, where

z̃(t,x)p ∈ R
N are the GPS x-positions.The latter act as anchor

points [26]. Therefore, (10) transforms to:
L̃(t)x(t) = s(t,x), (11)

which can be solved in the least-squares sense and estimate
the x-positions of vehicles. Obviously, the same approach is
followed for y-positions y(t) ∈ R

N . Note that we make an
explicit statement about data association, i.e. for every range
measurement (z̃(t)

d,il or z̃(t)
az,il ) of vehicle i , the latter knows

which vehicle l is associated with. Although it is possible to
model the associations by comparing range measurements with
GPS positions of neighbors, we assume that data association
is given to us as part of a pre-processing step. Thus, CLL
assumes that communication and sensing graph are identical.

However, (11) is a centralized implementation, since the
vehicles are required to broadcast and send their ids and
measurements to a central node/fusion center (e.g. 5G cloud),
which in turn will estimate and inform them about their
positions. This is exactly what should be avoided due to
serious limitations and drawbacks of central node operation
like malfunctioning or cyber-attack. CLL will act as a baseline
to the development of fully distributed solutions for CL.

IV. DISTRIBUTED AND DIFFUSION

LOCALIZATION STRATEGIES

In this Section, the proposed distributed and diffusion local-
ization methods based on LMS and CG algorithms will be
derived. All three methods exploit the ATC framework due
to its superiority over CTA, and aim not only to converge to
the global CLL solution, but to outperform it by means of
information diffusion, utilizing the Graph Laplacian operator.

A. Graph Laplacian LMS

It is important to notice the resemblance between (10)
and (1). In both cases, the vector to be estimated is linearly
correlated with measurements and regression vectors. In the
localization framework the differential coordinates, divided by
nodes’ degrees, act as the measurements, while the rows of
Laplacian matrix as the corresponding regression vectors. Sub-
sequently, for each vehicle the following linear measurement
model (for x-coordinates) is defined:

δ
(t,x)
i = L(t)Ti: w

(t)
i,x , (12)

Algorithm 1 Graph Laplacian LMS or GLLMS

Input: N , T , K , z̃(t,x)p , δ
(t,x)
i , L(t)i: , C(t)

Output: w(t,K)
i,x ∈ R

N ,∀i ∈ N
1 for t = 1, . . . T do
2 for each vehicle i in parallel do
3 w

(t,1)
i,x = z̃(t,x)p ;

4 for k = 1, . . . K do
5 μ

(t)
1,i from (19);

6 ψ
(t,k+1)
i,x =

w
(t,k)
i,x − μ

(t)
1,i L(t)Ti:

(
δ
(t,x)
i − L(t)i: w

(t,k)
i,x

)
;

7 w
(t,k+1)
i,x = ∑

l∈N (t)
i

c(t)
il ψ

(t,k+1)
l,x ;

8 end
9 end

10 end

where the unknown vector w(t)i,x ∈ R
N corresponds to the

x-coordinates position of vehicles, estimated by vehicle i .
Apparently, the optimal vector is common across the vehicles
of the network. Based on that local model, each vehicle is
totally unable to estimate its position and all others on its
own. Only by means of cooperation and information diffusion
through V2V and 5G related protocols, the vehicles can learn
the desired vector. As a natural consequence of (6) and (7),
the two steps of the proposed Graph Laplacian LMS or
GLLMS approach are derived:

ψ
(t,k+1)
i,x = w

(t,k)
i,x − μ

(t)
1,i L(t)Ti:

(
δ
(t,x)
i − L(t)i: w

(t,k)
i,x

)
(13)

w
(t,k+1)
i,x =

∑
l∈N (t)

i

c(t)
il ψ

(t,k+1)
l,x (14)

At the adaptation step of (13), each vehicle estimates in
parallel the intermediate vectors, using the pair {δ(t,x)

i , L(t)Ti: },
while in the combination step of (14), receives from and
sends to the neighborhood the intermediate vectors, in order to
estimate the desired vectors. At the end of that procedure, each
vehicle will estimate and converge to the same location vector.
During the initialization stage at time instant t , the desired
vector is set to the GPS positions of the vehicles, as a
rough estimation of the solution vector. Vehicles via, e.g.
TDMA protocol, are in fact informed about the noisy locations
of all VANET’s vehicles (not just neighbors), in order to
successively estimate their positions. The GLLMS approach
for x-coordinates is summarized on Algorithm 1.

It is worth mentioning that each vehicle is interested enough
to not only estimate accurately its own position, but also its
direct neighborhood and all others vehicles of the network.
Since individual vehicles would estimate on its own the entire
location vector, the distributed and diffusion localization will
facilitate the design of an efficient individual path planning and
control mechanism. The latter will determine the best possible
future driving actions, improving the overall performance of
VANET in terms of e.g. reduced traffic accidents and fuel
consumption.
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B. Graph Laplacian CG for Improved Cooperative
Awareness

The previous distributed and diffusion localization method
converges each time instant to the global solution at the
cost of high enough total number of iterations. This is a
serious limitation towards real-time implementation, since the
vehicles are required to estimate their positions before the new
GPS measurement arrive, namely between 100-300 ms. Since
vehicles are connected through V2V, it is expected that an
additional measurement exchange step, will speed up the con-
vergence of diffusion. Usually, CG algorithm is employed to
accelerate LMS type approaches. The acceleration is attained
due to the fact that CG selects the successive direction vectors
towards solution as a conjugate version of the successive
gradients obtained at each step. The conjugate directions are
not specified beforehand, but rather are determined sequen-
tially at each step of the iteration. The directions are based
on the gradients, therefore the process makes good uniform
progress toward the solution at every step. Furthermore, no line
searching is required at any stage as in LMS.

We define matrix U(t)
i ∈ R

|N (t)
i |×N and vector qi ∈ R

|N (t)
i |

by putting together the rows of Laplacian matrix and differ-
ential coordinates, respectively, which belong to the neighbor-
hood Ni . As a matter of fact, neighboring vehicles broadcast
the pair {L(t)Tl: , δ

(t,x)
l }, vehicle i receives them and together

with its own data, defines {U(t)
i , q(t)i }. The first row/element

of the pair corresponds to i -th vehicle. Thus, the following
linear problem can be defined:

U(t)
i w

(t)
i,x = q(t)i (15)

Furthermore, if we utilize the instantaneous positive
semi-definite covariance matrix A(t)i = U(t)T

i U(t)
i , A(t)i ∈

R
N×N and covariance vector b(t)i = U(t)T

i q(t)i , b(t)i ∈ R
N ,

we end up (as a direct sequence of (15)) to the following
linear problem:

A(t)i w
(t)
i,x = b(t)i (16)

The CG optimization method is used to tackle (16), avoiding
the high complexity and unstable performance of RLS-type
methods. Its main idea lies on the fact that a set of direction
vectors conjugate to A(t)i are exploited to estimate the desired
optimal vector w(t)i,x .

However, (16) corresponds also to the minimization of
cost function [27] V

(
w
(t)
i,x

)
= E{(q(t)i )2} − b(t)Ti w

(t)
i,x −

w
(t)T
i,x b(t)i + w

(t)T
i,x A(t)i w

(t)
i,x . The main steps of the pro-

posed Graph Laplacian CG or GLCG are summarized on
Algorithm 2. Optimal step sizes αi are computed as the
minimizing arguments of V , factors βi are to be ensure
A(t)i -orthogonality for the direction vectors ri , while gi is the
negative gradient of V . Factors βi are chosen as the minimum

between the Polak-Ribiere formula β P R
i = (g(k+1)

i −g(k)i )T g(k+1)
i

g(k+1)T
i g(k+1)

i

and Fletcher-Reeves βF R
i = g(k+1)T

i g(k+1)
i

g(k+1)T
i g(k+1)

i

, in order to avoid

anomalous behaviour and numerical instability. A forgetting
factor 0 < λ < 1 is employed to update the instantaneous
covariance vector. We choose λ = 0.2. Note that small

factor 10−7 · IN has been added to A(t)i , since the latter is
in fact an ill-conditioned and low-rank matrix, as a product
of rows of singular Laplacian matrix. This a serious lim-
itation of the optimization method, since the convergence
speed is determined by the condition number κ(A(t)i ) =
κ(U(t)T

i U(t)
i ) = κ(U(t)

i )2: the larger κ(A(t)i ) is, the slower
the improvement towards solution [28]. However, by means
of information diffusion, GLCG finally succeeds to converge
to the optimal solution vector as it is shown in Section VI.
Note that if U(t)

i were chosen to be L(t)i: , i.e. avoiding to use

measurements exchanges, then A(t)i would be rank-one matrix,
almost prohibitive to be used in estimating the location vector.

Algorithm 2 Graph Laplacian CG or GLCG

Input: N , T , K , z̃(t,x)p , U(t)
i , q(t)i C(t), λ

Output: w(t,K)
i,x ∈ R

N ,∀i ∈ N
1 for t = 1, . . . T do
2 for each vehicle i in parallel do
3 w

(t,1)
i,x = z̃(t,x)p ;

4 A(t)i = U(t)T
i U(t)

i + 10−7 · IN ;
5 b(t)i = U(t)T

i q(t)i ;
6 g(1)i = b(t)i − A(t)i w

(t,1)
i,x ;

7 r(2)i = g(1)i ;
8 for k = 1, . . . K do

9 αi = r(k+1)T
i g(k)i

r(k+1)T
i A(t)i r(k+1)

i

;

10 ψ
(t,k+1)
i,x = w

(t,k)
i,x + αi r(k+1)

i ;

11 g̃(k)i = λg(k)i + b(t)i − A(t)i w
(t,k)
i,x ;

12 g(k+1)
i = g̃(k)i + αi r(k+1)

i ;

13 βi = min(
(g(k+1)

i −g(k)i )T g(k+1)
i

g(k+1)T
i g(k+1)

i

,
g(k+1)T

i g(k+1)
i

g(k+1)T
i g(k+1)

i

);

14 r(k+2)
i = g(k+1)

i + βi r(k+1)
i ;

15 w
(t,k+1)
i,x = ∑

l∈N (t)
i

c(t)
il ψ

(t,k+1)
l,x ;

16 end
17 end
18 end

Therefore, a novel distributed localization scheme based
on ATC framework and CG optimization with measure-
ments exchanges has been developed. Each vehicle creates
the matrix/vector {U(t)

i , q(t)i }, by receiving the transmitted
{L(t)Tl: , δ

(t,x)
l } from its neighborhood. Afterwards, it estimates

the intermediate vectors using CG method and exploits its
benefits with contrast to RLS. Finally, it estimates the desired
location vector by a convex combination of neighboring inter-
mediate vectors.

Although the communication burden is now increased, it can
be performed in efficient manner, since each vehicle has
to broadcast only a scalar value and a sparse vector with
non-zero integer entries equal to |N (t)

i |. Laplacian matrix is
actually sparse, since vehicles are connected only to a subset
of operating vehicles. As it will be shown in Section VI,
the measurements exchanges step has a significant impact on
the convergence speed of the proposed schemes.
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C. Graph Laplacian LMS for Improved Cooperative
Awareness

The main limitation of GLCG is related to the ill-
conditioned A(t)i , which may deteriorate the performance of
diffusion, as well as optimal step sizes αi and βi . Since
the latter are estimated directly from available data, they are
also vulnerable to increased noisy data, coming either from
uncertain measurements or network latency (past estimations
treated as current). As such, a variant of GLCG countering
those drawbacks, which in addition will act comparatively,
should be developed. Diffusion LMS solution of (15) derives
exactly from (8) and (9), formulating the proposed method of
Graph Laplacian LMS with measurements exchanges or
GLLME:

ψ
(t,k+1)
i,x

= w
(t,k)
i,x − μ

(t)
2,i

∑
l∈N (t)

i

c(t)
il L(t)Tl:

(
δ
(t,x)
l − L(t)l: w

(t,k)
i,x

)
(17)

w
(t,k+1)
i,x

=
∑

l∈N (t)
i

c(t)
il ψ

(t,k+1)
l,x (18)

During the adaptation step of (17), an extra communication
step has been added, since each vehicle receives from con-
nected neighbors the pair of l-th row of Laplacian matrix and
the l-th differential coordinate, in the form of {δ(t,x)

l , L(t)Tl: }.
At the initialization stage, once again the noisy GPS locations
are utilized as a rough estimation. The GLLME approach is
summarized on Algorithm 3.

Therefore, both GLCG and GLLME are actually address-
ing the same optimization problem of (15), employing CG
and LMS with measurements exchanges algorithms, respec-
tively. They mainly focus on improving cooperative awareness
ability via the integration of additional information, with
respect to GLLMS. However, GLLME doesn’t utilize the
ill-conditioned A(t)i . At the same time, the optimal step size
of the proposed scheme, as well as that of GLLMS, can
be optimally determined according to the best practices, i.e.
exploiting the connectivity topology of vehicles (shown in
the next subsection). Thus, avoiding the impact of highly
contaminated by noise heterogeneous data to the performance
of Laplacian diffusion. Finally, note that the communication
overhead of GLLME is the same as GLCG, since the same
data pair has to be broadcast.

D. Optimal Step Size of Graph Laplacian LMS

The regression vector L(t)i: is a deterministic quantity, since
is referring to i -th row of Laplacian matrix. This property
facilitates the optimal selection of step sizes μ

t)
1,i and μ

(t)
2,i ,

respectively, for convergence in the mean sense [29]: 0 <

μ
(t)
1,i < 2

λmax
1

and 0 < μ
(t)
2,i < 2

λmax
2

. The λmax
1 corresponds to

the maximum eigenvalue of instantaneous covariance matrix
L(t)Ti: L(t)i: , while λmax

2 corresponds to [9] the maximum
eigenvalue of instantaneous covariance positive semi-definite
matrix

∑
l∈N (t)

i
c(t)

il

(
L(t)Tl: L(t)l:

)
. At the same time, maximum

convergence speed is attained when: μ
(t)
1,i = 2

λmax
1 +λmin

1
and

Algorithm 3 Graph Laplacian LMS With Measurements
Exchanges or GLLME

Input: N , T , K , z̃(t,x)p , δ
(t,x)
i , L(t)i: , C(t)

Output: w(t,K)
i,x ∈ R

N ,∀i ∈ N
1 for t = 1, . . . T do
2 for each vehicle i in parallel do
3 w

(t,1)
i,x = z̃(t,x)p ;

4 μ
(t)
2,i from (20);

5 for k = 1, . . . K do
6 ψ

(t,k+1)
i,x = w

(t,k)
i,x −

μ
(t)
2,i

∑
l∈N (t)

i
c(t)

il L(t)Tl:
(
δ
(t,x)
l − L(t)l: w

(t,k)
i,x

)
;

7 w
(t,k+1)
i,x = ∑

l∈N (t)
i

c(t)
il ψ

(t,k+1)
l,x ;

8 end
9 end

10 end

μ
(t)
2,i = 2

λmax
2 +λmin

2
, where λmin

1 , λmin
2 are the minimum eigen-

values of corresponding covariance matrices.
Proposition 1: To ensure fast convergence to the opti-

mal solution and asymptotic unbiasedness of GLLMS and
GLLME, the following must hold:

μ
(t)
1,i = 2/(|N (t)

i | − 1)2 + |N (t)
i | − 1)

μ
(t)
2,i = 2/λmax

2

Proof: See Appendix. �
Furthermore, we set:

μ
(t)
1,i = min(0.1, 2/((|N (t)

i | − 1)2 + |N (t)
i | − 1)) (19)

μ
(t)
2,i = min

(
0.1, 2/λmax

2

)
, (20)

in order to avoid large step sizes which may slower down the
convergence. Finally, the convergence in the mean sense of
GLLME is guaranteed as follows:

Proposition 2: A sufficient condition of asymptotic unbi-
asedness of GLLME is provided by:

0 < μ
(t)
2,i <

2

argmax
l∈N (t)

i

((|N (t)
l | − 1)2 + |N (t)

l | − 1)

Proof: See Appendix. �

E. Discussion

Graph Laplacian localization methods address the case of
highly dynamic topologies, though only inside the specific
VANET. Each vehicle interacts with the members of its
own neighborhood N (t)

i , which doesn’t necessarily remain
always the same. For example, neighboring vehicles (and V2V
connections) to i vary while they are moving. However, when
some vehicles enter or exit the VANET, Graph Laplacian
diffusion schemes should be reset and reinitialized using e.g.
GPS, since up to that moment vehicles were estimating the
positions of vehicles of the “old” VANET. A mechanism which
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is adaptable to those inter-VANETs modifications, without the
need of locations reset, is of future investigation.

Another important issue is about data association (we briefly
commented on that in Section III). Vehicles use LIDAR or
Cameras to extract their distance and angle with respect to
other vehicles. However, a data association step is required in
order to match range measurements with the correct vehicle
id (known from V2V communication). Under the assumption
that vehicles detect (through LIDAR) only those vehicle which
they do have V2V connection, Graph Laplacian localization
features a competitive advantage: no explicit data associa-
tion is necessary, since the differential coordinates (measure-
ment vector) correspond actually to the average of range
measurements.

V. FACILITATING TRACKING VIA EFFICIENT

INITIALIZATION STRATEGIES

Kalman filter is one of the most prominent tracking methods
for realizing multi-modal fusion. It usually treats the different
measurement models independently in order to estimate the
locations. On the contrary, the proposed Graph Laplacian
methods facilitate the compact and unified fusion of pair-wise
measurements in a single and linear way, via the Laplacian
operator, offering some very promising results as shown
in Section VI. In the context of distributed and diffusion
localization, the proposed Graph Laplacian methods could
be potentially part of the measurement model of diffusion
Kalman. However, major limitations of diffusion Kalman filter
are related to the additional and expensive exchange of matri-
ces through the established V2X communication links [20].
Therefore, the exploitation of either a Kalman approach or
even the prediction step of a Kalman filter by utilizing a
realistic kinematic model may be useful, while the proposed
scheme can be deployed as an alternative to the estimation
step of Kalman. The experiments that we provide highlight the
benefits as compared to a traditional least-squares estimation
that is usually deployed. Therefore it is expected that the
proposed approach can improve the efficiency of a traditional
Kalman solution.

An alternative option for the tracking mode of the proposed
diffusion schemes would be their initialization at each time
instant to the estimated location vector of the previous time
instant, instead of GPS measurements. Given the fact that
consecutive locations are quite close to each other, tracking
mode is expected to improve the convergence speed. How-
ever, between consecutive time instances (i.e. 100-300 ms),
distance and angle (in the form of differential coordinates)
measurements rarely modify rapidly. Moreover, it is not highly
probable the topology of the VANET, i.e. which vehicles are
V2V connected, to be changed. As a matter of fact, we claim
that using more or less the same measurement and regression
pair for a number of time instances, the convergence to the
desired solution can’t be achieved, rather than remain to the
already estimated location vector. To overcome that limitation,
we utilize a number of anchor points, i.e. noisy GPS positions,
in order to deliberately degrade the solution vector used in the
initialization stage. These anchor points provide the diffusion
schemes the ability to converge, just like they achieve the
solution to the global problem of (11). To this end, we have

developed a heuristic approach to initialize the proposed
diffusion localization schemes each time instant. Self-position,
as well as non-neighbors, are initialized to their current noisy
GPS measurements. The previously estimated location vector
initializes half of the neighbors. GPS measurements are also
used for the other half of connected vehicles. It is assumed that
each vehicle knows the GPS locations of the rest vehicles of
VANET. The heuristic initialization approach is summarized
on Algorithm 4. Lines 3 and 5 account for the self-vehicle
and its non-neighbors case. Line 9 addresses the case in which
vehicle i is connected to a relatively small (with respect
to VANET’s size) number of vehicles. Clearly, a suitable
choice of threshold depends upon the number of connections,
as well as how erroneous the GPS measurement actually is.
For example, a more accurate GPS position implies a lower
threshold . We choose threshold = 0.8. In Lines 12-13 it
is chosen that the first half of neighbors of i are initialized
to the previous solution, while the other half to their GPS
measurements, in order to achieve greater performance in
terms of location accuracy.

Algorithm 4 Coherent Initialization

Input: N , T , K z̃(t,x)p

Output: w(t,1)i,x ∈ R
N ,∀i ∈ N

1 for t = 1, . . . T do
2 for each vehicle i in parallel do
3 w

(t,1)
ii,x = z̃(t,x)

p,i ;
4 for each vehicle j not connected to i do
5 w

(t,1)
i j,x = z̃(t,x)

p, j ;
6 end

7 if
|N (t)

i |
N < threshold then

8 for each vehicle l connected to i do
9 w

(t,1)
il,x = w

(t−1,K )
il,x ;

10 end
11 else
12 Initialize first half of neighbors to previous

solution w
(t−1,K )
il,x ;

13 Initialize the other half of neighbors to GPS
measurement z̃(t,x)

p,l ;
14 end
15 end
16 end

VI. SIMULATIONS

In this Section, we validate the introduced approaches by
performing computer based simulations using Python and
CARLA simulator. During the experiments a PC Laptop with
8GB RAM and Intel Core i7-1065G7 CPU @ 1.3 GHz was
used.

A. Experimental Setup

CARLA simulator has been employed to extract different
traffic patterns of vehicles moving in an urban city (example
shown in Fig. 12). We generated also the positions of N
vehicles using the bicycle kinematic model [14]. According
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to that, the current and the previous location is employed in
order to generate the trajectories of vehicles:

x́i = xi + (−si/ωi ) sin θi + (si/ωi ) sin (θi + ωiT ),

ýi = yi + (si/ωi ) cos θi + (−si/ωi ) cos (θi + ωiT ),

θ́i = θi + ωiT,

where T is the time step and θi , si , ωi are the heading
angle, the linear and angular velocity of i -th vehicle, respec-
tively. Linear and angular velocity are known also as control
inputs and can be provided by on-board Inertial Measurement
Unit sensor. To evaluate the effectiveness of the introduced
approaches, we assume that vehicles are always members
of VANET, with σx = 3m and σy = 2.5m resulting in
average GPS localization error of 3.4m. Ground truth for
N = 3 vehicles and a VANET graph is shown in Fig. 5. The
simulation horizon was set to T = 500 time instances, with
sampling interval T = 0.1s. GPS updating time was chosen
to coincide with the sampling interval T of simulation.
However, in realistic conditions updating time may be much
higher, and as a matter of fact GPS’s availability for real-time
applications is reduced. For that purpose, the prediction step
of Kalman filter can be utilized in order to provide GPS-like
position [30], until the next true GPS measurement is provided
by the sensor. In any case, instead of GPS, a visual odometry
like solution which meets real-time constraints can also be
used [31]. The communication range was initialized to rc =
20m. We create matrices P(t) = [

x(t) y(t)
] ∈ R

N×2 and

W (t,k)
i =

[
w
(t,k)
i,x w

(t,k)
i,y

]
∈ R

N×2,∀i, k. We measured the
normalized Average Mean Square Deviation (AMSD) [24] of
VANET over T for each iteration:

AM SD(k) = 1

T

T∑
t=1

1

N

N∑
i=1

∥∥∥P(t) − W (t,k)
i

∥∥∥2

∥∥P(t)
∥∥2 ,

and the Localization Mean Square Error (LMSE) at each time
instant:

L M SE(t) = 1

N

N∑
i=1

∥∥∥ p(t)i − W (t,K)
i:

∥∥∥2

Since vehicles utilizing the proposed distributed and diffu-
sion approaches converge to the same location vector, LMSE
has been computed exploiting the estimation of a random vehi-
cle for each associated experiment. Additionally, instead of
noisy GPS initialization, we utilize the coherent initialization
heuristic rule of Algorithm 4. The conducted experiments
were based on: i) the impact of connectivity topology of
involved vehicles, i.e. VANET size N and maximum number
of neighbors Nmax , ii) network delay effect, and iii) range
measurements uncertainty. The latter dictates the feasible
estimation of differential coordinates even in occluded and
highly complex environments, which is considered vital for
the convergence speed and location estimation accuracy of
the proposed methods. Finally, we constructed the Cumulative
Distribution Function (CDF) of LMSE. As it will be shown,
all three proposed approaches outperform in terms of location
estimation accuracy, the distributed low cost variant Distrib-
uted Laplacian Localization (DLL) [11] of CLL and the

Fig. 5. Reference trajectories and VANET graph.

method of [18], named Maximum Likelihood based Local-
ization (MLL). The former estimates only the ego-vehicle
location, using the noisy positions of local neighborhood and
the so-called local Graph Laplacian operator. The latter is
chosen since it exploits exactly the same multi-modal data
as we do, while it utilizes for fusion the, prominent in CL
literature [16], MLE.

B. Evaluation Study

1) Impact of VANET Size: VANET size is a critical factor
for successive Graph Laplacian diffusion localization, due to
the growing size of the common location vector that needs to
be estimated by the vehicles. In Fig. 6, we depict the AMSD
and corresponding CDF’s for N = 3, 13 and 15, with K = 70
and Nmax = 6. More specifically, in Fig. 6-(a) all three diffu-
sion schemes significantly outperformed CLL, requiring only
1 iteration, avoiding constantly receiving and broadcasting
measurements. That superior performance is also present on
the CDF of LMSE. The reduction of GPS LMSE is 84% with
GLLMS, GLLME and GLCG, 65% with CLL, 62% with
DLL and 53% with MLL. The significant location estimation
performance of the proposed approaches has been achieved
since vehicles are more likely to be all-to-all V2V connected.
With a larger VANET size, more iteration are required for
convergence. In Fig. 6-(b) with N = 13, GLLME and GLCG
converged faster than GLLMS, i.e. in around 20 iterations
instead of 35. Clearly, measurements exchanges step enhanced
the convergence speed of diffusion, since additional knowledge
of global solution is utilized. Moreover, all three approaches
outperformed all others in terms of location estimation. The
reduction of GPS LMSE is 90% with GLLMS, GLLME
and GLCG, 87% with CLL and 80% with DLL and MLL.
Finally, in Fig. 6-(c) with N = 15, GLLME and GLCG
converged in around 40 iterations, instead of 60 required by
GLLMS. Moreover, the reduction of GPS LMSE is 87%
with GLLMS, 89% with GLLME and GLCG, 86% with
CLL and 80% with DLL and MLL. Evidently, GLLME
and GLCG are much more efficient in terms of convergence
speed than GLLMS, when VANET size grows. At the same
time, all three methods exhibited superior location estimation
performance over CLL, DLL and MLL.

Step size selection influences the convergence speed of
both GLLMS and GLLME, as demonstrated in Fig. 7. More
specifically, in Fig. 7-(a), GLLMS with step sizes close to
zero, i.e. 0.04 and 0.01, resulted in higher number of required
iterations. GLLMS with optimal step size according to (19),
achieved the fastest convergence of around 20 iterations. The
same behavior is also present with GLLME in Fig. 7-(b). Step
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Fig. 6. Learning curves and CDF with max. neighbors Nmax = 6, σd = 1m and σaz = 4◦.

Fig. 7. Step size selection for VANET size N = 10, max. neighbors Nmax = 6, σd = 1m and σaz = 4◦.

Fig. 8. Impact of connections with VANET size N = 10, σd = 1m and σaz = 4◦.

sizes 0.1 and 0.05 required almost 20 and 30 iterations, while
the optimal selection (20) resulted in the fastest convergence
(∼ 10 iterations). Finally, we depict in Fig. 7-(c) the learning
curves of both GLLMS and GLLME, the latter with step
size according to unbiasedeness sufficient condition. Clearly,
GLLME converges with much slower speed, almost identical
to that of GLLMS. Thus, the benefits of measurements
exchanges are now suppressed.

2) Impact of Vehicle Connections: Vehicles may communi-
cate with a different number of neighbors while they are mov-
ing. Since the Graph Laplacian regression vectors represent in
fact those possible V2V connections, it is straightforward to
study the impact of Nmax to the diffusion schemes. Therefore,
the effect of that parameter in convergence speed and location
estimation accuracy is demonstrated in Fig. 8, with N = 10
and K = 70. For example, in Fig. 8-(a) we depict the AMSD
of GLCG for Nmax = 4, 6 and 10. Clearly, the optimal

CLL solution is achieved when Nmax = 10, since vehicles
integrate greater amount of information. Accordingly, GLCG
with Nmax = 10 converged much faster to the optimal
solution, i.e. in around 10 iterations. Each vehicle is connected
to a large number of neighbors, even to the overall number
of VANET’s vehicles, and thus it is much for efficient to
estimate the entire location vector in a fully distributed manner.
Additionally, GLCG with Nmax = 6 converges in around
20 iterations, while Nmax = 4 requires much more iterations
than K = 70. In Fig. 8-(b), the reduction of GPS LMSE
is 88% with GLLMS, GLLME and GLCG and 83% with
CLL. In Fig. 8-(c), with Nmax = 10, performances have been
improved. For example, the reduction of GPS LMSE is 90%
with GLLMS, GLLME and GLCG and 87% with CLL.
Once again, the proposed distributed and diffusion schemes
outperformed not only the global solution, but also DLL and
MLL. Consequently, the impact of V2V connections, in the
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Fig. 9. Impact of weakly and strongly connectivity.

form of Graph Laplacian regression vectors, is crucial for the
convergence speed.

As a final experiment, we measured the algebraic connec-
tivity of VANET graph with size N = 13, maximum number
of neighbors Nmax = 6 and σd = 1m, σa = 4◦. Algebraic
connectivity [32] equals to the second smallest eigenvalue
of Laplacian matrix (of VANET graph) and indicates the
time-varying topology of VANET. Lower (higher) connectivity
implies weakly (strongly) connected graphs. From Fig. 9-(a),
it is derived that connectivity values range between 0.3 and
0.8 resulting in a rather weakly connected graph. The cor-
responding LMSE attained by GLLMS with K = 70 is
demonstrated in Fig. 9-(b) (magenda color). In addition,
the same VANET was created assuming that all vehicles
communicate with all others (All to All connection), and the
resultant LMSE is shown with red color. In that case, superior
performance has been attained, i.e. maximum LMSE equal to
∼ 6 m2 instead of 8 m2. Therefore, with strongly connected
VANET graphs (i.e. vehicles with many V2V neighbors), it is
expected that localization accuracy can be further increased.
However, restricted communication capabilities or allowed
number of neighbors may be prohibitive for forming those
type of VANET graphs.

3) Impact of Network Delay: The upcoming 5G stan-
dard will include Ultra Reliable Low Latency Communica-
tion (URLLC) services. URLLC is designed for applications
that require stringent latency and reliability requirements in
vehicular communications [33]. Clearly, the network of vehi-
cles must be time synchronized, which means that each vehicle
transmits to neighbors the intermediate vectors before the next
iteration k + 1. However, according to URLLC specifications,
communication delay can be regarded around 10ms for a net-
work of approximately 10 vehicles, with velocities lower than
10m/s. To this end, and based on [21], the location estimation
vector at every iteration is now provided by: w(t,k+1)

i,x =∑
l∈Ni

c(t)
il ψ

(t,k+1−τ)
l,x . Small integer τ > 0 indicates the

delayed version of intermediate vectors received by vehicle
i . Each vehicle broadcasts CAM messages at least every
100ms [25], while the maximum delay introduced by V2V
communication can reach 300ms [34] at heavy traffic density
0.1 vehicles/meter. Therefore, for every iteration of proposed
algorithms we have at most 400 ms delay, which imply that
τ can reach 4, i.e. vehicle i receives vectors ψ(t,k+1−4)

l,x by its
neighbors, estimated 4 iterations before.

Network delay effect in Graph Laplacian diffusion is
demonstrated in Fig. 10, with N = 13 and K = 70. The
GLCG has been omitted from evaluation, since it was verified

during the conducted experiments that totally failed to operate.
That drawback is related to computing the optimal step size
ai and factor βi directly from available data. Due to the
fact that past estimations are actually used, the two main
parameters are significantly deviate from their expected values
and negatively influence the convergence of GLCG. The
“bad” condition number κ(U(t)

i )2 additionally affects GLCG.
In Fig. 10-(a), the network delay parameter, for each vehicle
and iteration number, is randomly chosen (with probability
0.25) to take values from the set τ = [

1, 2, 3, 4
]

in order to
simulate random time-varying delay for each vehicle. Clearly,
GLLME converges much faster than GLLMS. The latter
actually requires more iterations than 70 in order to converge
effectively. However, the convergence speed in general, has
been significantly reduced compared to Fig. 6-(b). GLLME
achieved 90% reduction of LMSE (greater than CLL), while
GLLMS 86%. To further investigate the impact of delay,
we set that each vehicle receives from 80% of its neighbors the
intermediate vectors estimated τ = 4 iterations before. From
Fig. 10-(b), we derive that GLLME attains much higher con-
vergence speed than GLLMS once again, though significantly
increased with respect to previous case. GLLME achieved
86% reduction of LMSE, while GLLMS 82%. Finally, with
τ = 4 for all vehicles and their neighbors, network delay has a
much stronger footprint, as demonstrated in Fig. 10-(c). Once
again GLLME exhibits higher convergence speed, though
it can’t converge during K = 70 iterations. Network delay
impacts also on location estimation accuracy, since GLLME
achieved 83% reduction of LMSE, while GLLMS 77%,
both lower than CLL. Therefore, we conclude that GLLME
seems to be more robust to network delay effect, i.e. time-
varying delay parameters and constant parameter with stronger
footprint, than GLLMS both for the case of convergence and
location accuracy.

4) Impact of Range Measurements Noise: In highly
complex urban environments, vehicles may exhibit non-line-
of-sight conditions, limiting their ability of accurate relative
measurements. The impact of uncertainty in range measure-
ments is depicted in Fig. 11, with N = 15 and K = 70.
Differential coordinates with increased measurement noise
may deteriorate the performance of diffusion schemes. For
example, in Fig. 11-(a) we present the AMSD for GLLME.
The optimal CLL solution has been achieved with the lowest
range noise, i.e. σd = 0.2m and σaz = 0.4◦, since it
facilitates the feasible estimation of differential coordinates.
The GLLME converges in around 30 iterations. However,
when range noise increases, GLLME fails to converge during
K = 70 iterations. Especially in the case of σd = 4m
and σaz = 7◦, GLLME is far from the optimal global
solution. In Fig. 11-(b), the reduction of GPS LMSE is 89%
with GLLMS, 92% with GLLME and GLCG and 88%
with CLL. Evidently, GLLME and GLCG outperformed all
others, including DLL and MLL. However, in Fig. 11-(c),
the reduction of GPS LMSE is 76% with GLLMS, 69%
with GLLME, 64% with GLCG and 66% with CLL. The
GLCG approach exhibits lower performance than all others,
except MLL. The GLLMS approach proves its robustness,
since each vehicle utilizes only its own differential coordinate,
and thus limiting their noisy impact. The two other diffusion
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Fig. 10. Network delay study with VANET size N = 13, max. neighbors Nmax = 6, σd = 1m and σaz = 4◦.

Fig. 11. Range measurements uncertainty study, assuming a VANET with N = 15 vehicles, while the maximum number of neighbors is Nmax = 6.

TABLE II

TOTAL AVERAGE EXECUTION TIME (msec)

schemes are severely degraded, due to their main feature:
receiving the noisy differentials of their connected neighbors.
Thus, range measurements uncertainty is a critical factor of
both convergence and location estimation of Graph Laplacian
diffusion.

Therefore, we conclude that measurements exchanges step
significantly increases the convergence speed towards the
global solution of CLL, by broadcasting only a scalar value
and a sparse vector. At the same time, LMS with mea-
surements exchanges exhibits almost the same convergence
speed and location estimation accuracy with CG, and even
outperform it in the case of network delay and increased range
measurements noise. Thus, it isn’t required to optimally select
the step size as the optimizing argument of the gradient, or to
perform conjugate steps towards the solution as GLCG does.
An LMS based solution, exploiting step sizes according to
Proposition 1 and 2, would be suffices for effective Graph
Laplacian diffusion localization.

5) Execution Time: Vehicles utilizing the proposed
approaches should constantly broadcast and receive informa-
tion for K iterations, in order to converge to the optimal
solution. Furthermore, although measurements exchanges step

Fig. 12. Reference trajectory and clusters at four time instances in CARLA
simulator.

increased convergence speed, it is expected to increase time
complexity, due to the additional exploitation of {δ(t,x)

l , L(t)Tl: }
pair. Instead of iteration time interval for each one of the
vehicles, we measured the total average execution time of the
proposed diffusion schemes over T = 500 and demonstrated
it below in TABLE II, with maximum number of iterations
K = 70, Nmax = 6, σd = 1m and σaz = 4◦. All three methods
seem to be effective in critical real-time vehicular applications,
especially in urban mobility scenarios in which we focus
on, since the total average execution time of all vehicles
to estimate the positions meet the time constraint, which is
around 100-300 ms. Furthermore, timing results can be more
attractive with smaller number of iterations K . Especially for
a small network of 3-7 vehicles, methods converge within
almost 1 iteration. Thus, the impact of a network delay in
the overall time complexity may be smaller, realizing real-
time applications. However, for a larger network of vehicles,
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Fig. 13. Indicative statistical results in CARLA simulator.

Fig. 14. CARLA visualization.

much smaller K is required (at the cost of lower accuracy) in
order to meet time constraints. Clearly, when VANET size
increases, so does the average execution time of all three
methods. Furthermore, GLLMS is proven to be faster than
the other two schemes. Although both methods of GLLME
and GLCG exhibit higher convergence speed and location
accuracy due to the measurements exchanges step, they suffer
from increased execution time, especially GLLME.

C. Experimental Evaluation on CARLA Simulator

The effectiveness of vehicular diffusion localization has
been further validated using random realistic trajectories
generated by CARLA. The latter is a renowned autonomous
driving simulator, extensively used in various automotive
applications, especially in computer vision based CAV per-
ception. Therefore, we extracted the trajectory of a random
objective vehicle (id 131) and those which belong to the same
VANET or cluster as the objective, for T = 448 instances.
We remind that clusters are formed by imposing a fixed
communication range rc = 20m and maximum number of
neighbors Nmax = 6. Objective’s trajectory and associated
clusters at four distinct time instances are depicted in Fig. 12.
Black dot represent the objective vehicle. The size of clusters
ranges between 2 and 26 vehicles. Total number of iterations is
set to K = 70. Learning curves of AMSD have been omitted
from evaluation, due to the fact that clusters don’t contain
the same vehicles as time evolves. Actually, different vehicles
enter or exit the associated cluster during the simulation
horizon.

In Fig. 13-(a), we demonstrate the Localization Error of
objective vehicle, with σd = 1m and σaz = 4◦. The reduction
of GPS Localization Error is 72% with GLLMS, GLLME
and GLCG and 59% with CLL. The overall location accuracy
achieved by the objective vehicle, in terms of estimating
the location vector of its cluster using the three proposed

approaches, is depicted in Fig. 13-(b). We measured the
Average Localization Error of the associated cluster using
the entire location vector estimated by the objective vehicle
each time instant. The reduction of GPS Average Localization
Error is 59% with GLLMS, 60% with GLLME, 59%
with GLCG and 51% with CLL. Finally, in Fig. 13-(c) we
plotted the Average Localization Error of objective vehicle
over 200 iterations, for the first 100 time instances. Clearly, all
three proposed approaches significantly outperformed CLL.
Moreover, the peaks of diffusion towards the global solution
of CLL are due to the fact that at those time instances
the associated cluster of objective vehicle is modified, since
vehicles do constantly enter or exit. As matter of fact, instead
of Algorithm V, noisy GPS initialization is used during
cluster initialization.

Furthermore, we provide in Fig. 14 some indicative CARLA
based results at time instances t = 9 and 18, utilizing
GLLME. In Fig. 14-(a),(b), black vehicle corresponds to the
true position, green one to the estimated by GLLME, while
red vehicle is the actual GPS position. As you may see in
both cases, objective’s location accuracy is much higher than
GPS (1.74m vs 4.8m and 0.63m vs 5.92m, respectively).
The effectiveness of accurately estimating neighbor’s location
is also apparent in Fig. 14-(c). At time instant t = 9,
objective vehicle and its two connected neighbors constitute
the associated cluster. Obviously, GLLME estimates not only
ego’s (1.74m vs 4.8m) but also neighbor’s location (2.33m vs
2.61m and 2.0m vs 6.07m) much more accurate than GPS.
Consequently, all three proposed vehicular diffusion schemes
achieved greater performance than GPS and global centralized
solution of CLL, even in realistic urban traffic conditions
generated by CARLA simulator.

As a final remark from the conducted experiments, we have
to point out that GLCG exhibits serious limitations and
drawbacks as a cooperative localization approach, both in the
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presence of sensing (e.g., range measurements uncertainties)
and communication-network failures, due to its highly vul-
nerability to noisy data. Hence, LMS based solutions seem
to have the potential for efficient localization. The GLLME
achieved higher convergence speed and accuracy, especially
in the presence of a common network delay, while GLLMS
exhibits low execution time and robustness to increased range
measurements noise. The tradeoff between the two LMS
methods is explicitly related to convergence and accuracy: an
increased convergence speed of GLLME implies that a higher
accuracy can be achieved earlier. Although the execution time
of GLLME is higher, it is related to the required number
of iterations K . For instance, if K in the learning curve of
Fig.6-(c) is reduced almost by half, then GLLME converges
(desired localization accuracy is attained) during K iterations
with total execution time almost ∼ 100msec (from Table II),
while GLLMS is far from the optimal solution.

VII. CONCLUSION

In this paper, we treat the VANET as an undirected graph,
encoding the V2V connections of operating vehicles via linear
Graph Laplacian operator. We have formulated three distrib-
uted and diffusion approaches for CAV localization, based on
LMS, LMS with measurements exchanges and CG with mea-
surements exchanges algorithms, utilizing the Graph Laplacian
operator to perform the multi-modal fusion. Each vehicle
by interacting only with its local neighborhood, estimates
the entire location vector of VANET in a fully distributed
manner, adopting the ATC diffusion framework. All three
methods, not only converged to the global CLL solution, but
significantly outperformed it. Extensive simulations verify that
both LMS and CG with measurements exchanges exhibited
higher convergence speed with respect to single LMS. The
latter proves its robustness under increased range measure-
ments uncertainty. In all other experimental cases, LMS with
measurements exchanges achieved the greatest performance in
terms of convergence speed and location estimation accuracy.
Due to the effectiveness of the proposed methods, we conclude
that Graph Laplacian distributed and diffusion localization will
facilitate the design of much more efficient individual Path
Planning and Control mechanisms. Future work will focus
on MTL-based vehicular diffusion localization using realis-
tic trajectories extracted by autonomous driving simulators,
considering varying topologies of a large number of CAVs.

APPENDIX

Covariance matrix L(t)Ti: L(t)i: is in fact a rank-one matrix,
as a product of vector and its transpose. However, rank-one
matrices have only one non-zero eigenvalue. Thus, λmin

1 = 0.
Furthermore, the trace of a matrix is equal to the sum of its
eigenvalues, i.e. to the largest eigenvalue in case of rank-one
matrix. Therefore:
λmax

1 = tr(L(t)Ti: L(t)i: )=
∥∥∥L(t)i:

∥∥∥2 =(|N (t)
i | − 1)2+|N (t)

i | − 1.

By the properties of positive semi-definite matrix (non-
negative eigenvalues and at least one zero eigenvalue),
we derive that λmin

2 = 0. As mentioned in [9], the largest
eigenvalue of a real symmetric matrix is convex in the ele-
ments of that matrix. Thus, and due to the convexity of c(t)

il ,

we have:

λmax

⎛
⎜⎝ ∑

l∈N (t)
i

c(t)
il

(
L(t)Tl: L(t)l:

)⎞
⎟⎠

≤
∑

l∈N (t)
i

c(t)
il λmax

(
L(t)Tl: L(t)l:

)

≤ argmax
l∈N (t)

i

λmax

(
L(t)Tl: L(t)l:

)
= argmax

l∈N (t)
i

tr(L(t)Tl: L(t)l: )

= argmax
l∈N (t)

i

∥∥∥L(t)l:
∥∥∥2 = argmax

l∈N (t)
i

((|N (t)
l | − 1)2 + |N (t)

l | − 1)

⇔ λmax
2 ≤ argmax

l∈N (t)
i

((|N (t)
l | − 1)2 + |N (t)

l | − 1).
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