Phytochemical Investigation on the Leaves of Callicarpa macrophylla Vahl. A. CHAUDHURY, ANJAN BHATTACHARYYA, SANTI

RANJAN MITRA and N. ADITYACHAUDHURI*

Department of Agricultural Chemistry and Soil Science, Bidhan

Chandra Krishi Viswa Vidyalaya, Kalyani, Dist. Nadia, West Bengal, India.

Manuscript received 14 October 1977, revised 18 February 1978, accepted 5 May 1978

The concentrated petroleum ether extract of the leaves of C. macrophylla on chromatographic resolution over silica gel and elution with benzeneethylacetate (9.5:0.5) afforded a yellow solid which crystallised from petrol -benzene as pale yellow needles, m.p. 165-66°, $C_{18}H_{16}O_7$ (M⁺ 344). A positive Shinoda test indicated it to be a flavone. Functional group analysis revealed the presence of three-OMe (one 6H singlet at 3.958 and one 3H singlet at 4.0 δ), an \prec , β -unsaturated ketone (r_{max}^{KBT} 1660, 1600 cm⁻¹), a chelated phenolic -OH (r_{max}^{KBT} 3460 cm⁻¹, 1H singlet at 13.4 δ , exchangeable with D_aO_b , brown colour with FeCl_a), a phenolic -OHgroup (1H singlet at 6.0 δ , exchangeable with D₂O) and a complex aromatic substitution pattern (v_{mux}^{RBr} 1490, 1350, 1210, 1155, 810, 710 cm⁻¹). The presence of five aromatic protons is also discernible in the NMR spectrum. The substitution pattern of this compound is assignable from the NMR spectrum. In the NMR spectrum the-quartet at spectrum. In the runk spectrum the quarter at 6.42 δ (J=3Hz) for 2H is due to the C₆ and C₈ protons⁷. The doublet at 7.04 δ (J=9 Hz) is assigned to the C_{2'} and C_{6'}-protons⁸. An 1H-multiplet at 7.68 δ (J=6 Hz) suggests the presence of C_{6'}-H in the compound. It appears, therefore, that the compound has got two substitutions in both A and B-rings respectively. No bathochromic shift of the longest wave length with AlCl₈ is a clear indication that there is one methoxyl group at C_s -position⁹ [λ_{max}^{BtoH} 255, 357 nm, $\lambda_{max}^{BtoH+A+Ct}$ 268, 360 nm] which is also in agreement with the mass spectral data¹⁰ [m/e 329 (M-CH_s) and m/e 301 (M-COCH_s)]. The UV spectrum remained, however, unaffected in the presence of sodium acetate, indicating thereby that there is a $-OCH_8$ group⁹ at C₇. Based on these evidence, the structure of the flavone may be written as (I) or (II), which is also consistent with the mass spectral fragmentation pattern.

 $[m/e (M^+) 344, m/e 329 (M^+-15), m/e 301 (M^+-43), m/e 258, m/e 243, m/e 215, m/e 267 and m/e 105 (RDA fragments)].$

A flavone having structure (II) has already been isolated from the plant *Larrea cauneifolia*⁷ Cav. The UV and mass spectral data of (II) show close resemblance with the flavone, CMF-1 isolated by us. But we have observed certain differences in respect of the NMR signals of some protons and the UV shifts with AlCl₈ and NaOAc. However, a direct comparison of the properties (m.p., m.m.p., Co-TLC) of CMF-1 with those of the flavone (II)⁷ was found to be similar, thereby proving the identity of CMF-1 as 5. 4'-dihydroxy 3. 7, 3'-trimethoxy flavone.

Experimental

M. p. is uncorrected, UV spectra were recorded in EtOH. For column chromatography silica gel (Gouri Chemicals, Calcutta, 60-100 mesh) was used. NMR spectrum was recorded in CDCl_s with TMS as internal standard. The leaves of C. macrophylla were collected during the month of January, 1976.

Isolation

Air dried powdered leaves of C. macrophylla (1.5 kg) were exhaustively extracted (24 hr) with petroleum ether (60-80°) and the resulting extract was concentrated and chromatographed over silica gel (300 g). The chromatogram was eluted with solvents of increasing polarity. Benzene-ethyl acetate (1 : 1) eluates afforded a yellow oily residue which was further purified by rechromatography over silica gel. Elution of this chromatogram with benzeneethylacetate (9.5 : 0.5) furnished a yellow solid which crystallised from benzene-petrol as yellow needles, m.p. 165-66° (yield 0.002%) TLC: Rf. 0.7. (benzene-ethyl acetate-1 : 1), +ve Shinoda Test, +Ve FeCl_a color reactions.

Acknowledgement

The authors thank C.S.I.R., India, for a fellowship to A.B. and I.C.A.R., India. for a Senior fellowship to S.R.M. We are grateful to Prof. T. J. Mabry, University of Texas, Austin, USA, for supplying us an authentic sample of the flavone.

References

- 1. The Wealth of India, Raw Materials, Vol. II, CSIR, New Delhi, 1950, p. 14.
- R. N. CHOPRA, S. L. NAVAR and I. C. CHOPRA, 'Glossary of Indian Medicinal Plants', CSIR, New Delhi, 1956, p. 45.
- ^{3.} (a) J. R. HANSON and A. F. WHITE. J. Chem. Soc., (C), 1969, 981.
 - (b) B. E. CROSS, R. H. B. GALT and K. NORTON, Tetrahedron, 1968, 24, 281.
 - (c) S. SANKARA SUBRAMANIAN, A. G. RAMCHANDRAN NAIR And T. N. C. VEDANTHAM, Phytochemistry, 1974, 13, 306.
- 4. (Mis) A. CHATTERJEE, S. K. DESMUKH and S. CHANDRASEKHARAN, Tetrahedron, 1972, 28, 4819.

- 5 SHIGEKI HOSOZAWA, NATSUKI KATO and KASTSUSA MUNKATA, Phytochemistry, 1973, 12, 1833.
- 6. (a) K. KAWAZU and T. MITSUI, Tetrahedron Letters, 1966, 3915.
 - (b) K. KAWAZU, M. INABA and T. MITSUI, Agr. Biol. Chem., 1967, 31, 494.
 - (c) C. NISHINO, K. KAWAZU and T. MITSUI, Tetrahedron Letters, 1971, 1541.
- AMALIA G. VALESI, E. RODRIGUEZ, G. VANDER VALDE and T. J. MABRY, *Phytovhemistry*, 1972, 11, 2821.
- KEN R. MARKHAM and T. J. MABRY in The Flavonoids, (Eds) J. B. HARBORNE, T. J. MABRY and HELGA MABRY, Chapman & Hall, London. 1975, p. 66.
- 9. (Mrs) A. CHATTERJEE, D. MALAKAR and (Mrs.) D. GANGULY, Indian J. Chem., 1976, 14B, 233.
- 10. D. C. KINGSTON, Tetrahedron, 1971, 27, 2691.