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MULTITIER APPROACH ON CLUSTER DETECTION 

 
Summary 

Surveillance of foodborne pathogens allows identification and control of outbreaks. Collection of 
good epidemiological information is essential for outbreak investigation and source finding, and the most 
detailed information is collected from the questionnaires the infected subjects are required to fill in. 
However, at the moment of the initiation of the outbreak investigations, this information is likely to be 
missing. It is in only exceptional instances of very well organized surveillance systems and mandatory 
notifiable diseases, that subjects are required to fill in a questionnaire at the moment of sampling and 
diagnostics. Furthermore, the differences in digital competences between age groups and/or social 
categories may limit the use of digital questionnaires. This implies extra time and qualified personnel to 
convert the analogue questionnaires into electronic data that can be readily analysed. Yet another 
obstacle in prompt usage of epidemiological data is the progressive nature of outbreaks, with slowly 
accumulating number of cases in the beginning, and therefore limited use of statistical tests for 
identifying common exposure variables.  

Whole-genome-sequencing (WGS) is being increasingly used as a routine typing tool for foodborne 
pathogens and it has revolutionized the field of molecular epidemiology. The benefits of WGS have been 
highlighted in many occasions (1-4) and include a much greater strain discrimination for bacterial typing, 
and the possibility to infer also phenotypic information (such as serovar, serotype, and antibiotic 
resistance patterns). This allowed an enhanced cluster resolution and an equally enhanced ability to 
detect clusters and to monitor disease trends.  

Cluster detection based on WGS often assumes that the various isolates come from a common 
source and that the source is clonal in nature i.e. the population of the bacterial pathogen at the source 
is genetically homogeneous. Thus, all the isolates pertaining to a cluster can be traced back to a most 
recent common ancestor, which, in epidemiological terms, means that patients that share highly similar 
strains are likely to have contracted these from a common source. However, it should be emphasized 
that this assumption of a common source is a hypothesis that should be falsified with additional 
epidemiological investigation. Usually this involve a case-control study in order to identify this common 
source. The availability of matching food or environmental hypothesis significantly adds weight of 
evidence to the assumed common source of infection. A cautionary note must be struck here, as the 
fact that an isolate belongs to a cluster is indicative of a higher probability that it is related to the other 
isolates in the same cluster, but it cannot exclude the possibility of convergent evolution or random 
identity. Challenges still remain regarding the epidemiological interpretation of WGS. A major point of 
uncertainty is the definition of clusters.  

A major point of uncertainty is the definition of clusters, as exemplified below for the main food-borne 
pathogens: Campylobacter jejuni/coli, Salmonella enterica, Escherichia coli, and Listeria 
monocytogenes (5). There are currently multiple working definitions for cluster delineation that include 
either a cut-off value for genetic dissimilarities either also a time component as the time interval that the 
isolates are being collected. Some of the common definitions for a cluster are: 

- for C. jejuni/coli a genetic distance cut-off value of maximum 14 wg/cgMLST alleles, or 15 SNPs 
(6, 7),  

- for E. coli a genetic distance cut-off value of maximum 10 for both alleles and SNPs (8, 9), but 
outbreaks with as many as 15 SNPs distance among the isolates in the cluster have been 
identified (10). 

- for L. monocytogenes the most common definition is a maximum of 7 cgMLST alleles , or 3 
SNPs (11-14). Additionally, some definitions include a maximum of two year interval between 
the isolates (11, 12). However, research of Food and Drugs Association (FDA), USA has 
identified outbreaks with as many as 23 SNPs distance among the isolates in the cluster (2, 15). 

- for various serovars of S. enterica, a maximum of 10 alleles , where any two isolates are at most 
5 alleles distant (1), and a maximum number of SNPs ranging from 2 for S. enterica 
Typhimurium (16), to 5 for S. enterica Enteritidis (17), and up to 13 for S. enterica Dublin (18) 
are being used. Additionally, the Center for Disease Control, USA (CDC) employs also a time 
interval of maximum 60 days (1). Here there are also exceptions to the rule, as S. Typhimurium 
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outbreaks have been identified with as many as 12 SNPs distance among the isolates in the 
cluster (19). 

In order to provide a basis for a better informed integration of WGS in epidemiological surveillance we 
use an evolutionary view to the diversification of the bacterial isolates coming from a common shared 
source. We propose a multitier algorithm that incorporates concepts of evolutionary biology, and that 
makes use of not only cgMLST profiles but also cgSNPs. 

1. For compatibility with the currently used molecular typing system – cgMLST, Hamming 
distance, and single-linkage hierarchical clustering (sl) – the first step uses these methods.  

 

What is a cluster with a threshold distance? 

One of the most often used distances in clustering genetic information is Hamming, and it can take 
values between 0 and the maximum number of loci used in the typing procedure. 

 
Figure 1. Distance between two isolates with five loci, and two alleles in their allelic profile. 

The total distance between two isolates will be the sum of distances across all loci 
  

One can chose to use the Hamming distances as such, to infer nearest neighbours. 

But can also use single-linkage clustering. What this method entails is, as the name suggests, 
finding a link between all isolates in a dataset, by using an agglomerative process. The process starts 
with two points in the dataset between which the distance is minimal across all possible pairs of points 
in the dataset. These are then linked together to form a first cluster. A next point in the dataset will be 
searched where the distance to this initial cluster is minimal. However, since in the initial cluster there 
are two points, a choice has to be made as to which distance to be used. The single-linkage method 
implies that the minimal distance will be chosen (by contrast, in average-linkage, the average of the 
distances will be taken, and in complete linkage, the maximum of the two will be taken). The distances 
resulting from such an algorithm are called phenetic distances. The following figure illustrates the 
differences between the Hamming and the phenetic distances for a set of 10 isolates. 
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Figure 2. Hamming and single-linkage phenetic distances in a set of ten isolates 

  

Based on the Hamming distances, the pairs of isolates E & B and I & C, both have the smallest 
distance (1). So the clustering will start with these pairs: cluster(B,E) and cluster(C,I). The next smallest 
distance in the remaining pairs of isolates is from A, to isolate E (2); however, because isolate E is 
already in cluster(B,E), the distance from A to E will apply to the whole cluster and its members, thus 
the distance to isolate B becoming also 2. Same holds true for isolates D, F and G and cluster(B,E), all 
having a distance of 2 to one of the isolates in (B,E), thus becoming distance 2 also to the other isolate. 
Simultaneously, D is the nearest isolate also for cluster(C,I), with a distance of 2. And isolates C and E 
have also a distance of 2. At this point we have cluster (A,D,F,G,(B,E),(C,I)), where all the distances 
have been reduced to 2, when the actual distances are as high as 5. The next closest isolate is J, which 
has only a distance of 3 from isolate E; thus the distance to the whole cluster is 3, and the new larger 
cluster becomes (J,(A,D,F,G,(B,E),(C,I))). Finally, isolate H has a distance of 4 to the existing cluster 
and will thus be incorporated last in the clustering process, showing a phenetic distance of 4 to all other 
isolates, when the Hamming distance can be as high as 9. The resulting dendrogram/tree is shown in 
the next figure. 

 
Figure 3. Dendrogram based on single-linkage clustering of ten isolates. Red horizontal line 

corresponds to a random chosen threshold 
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From the dendrogram it is clear that if one would want to see a cluster with a threshold distance of 
3 (red line), all but one isolate will be included in this cluster, although their actual Hamming distances 
are sometimes much higher than that threshold. The phenetic distances are thus not identical to the 
actual Hamming distances. 

The use of single linkage combined with a variable number of missing loci for each isolate allows, 
however, for allelic distances within a cluster much exceeding the predefined threshold of seven alleles. 
Thus, the shape of the distribution of the cgMLST Hamming distances within a cluster can be bimodal, 
indicating the existence of two subclusters. 

Furthermore, since the gene is not the structural unit of DNA, a Hamming distance of one based on 
alleles might be an underestimation of the distances based on nucleotide polymorphisms.  

The use of single linkage combined with a variable number of missing loci for each isolate allows, 
however, for allelic distances within a cluster much exceeding the predefined threshold of allelic 
dissimilarities. Furthermore, the structural unit of DNA is not the gene but the nucleotide, which means 
that allelic distances may be in fact an underestimation of the dissimilarity among isolates.  

 

 
Figure 4. correlation of Hamming distances based on genes/alleles and SNPs within a 

cgMLST s7 defined cluster.  
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2. We thus use a second step involving SNP-calling, pairwise Hamming distances, and Gaussian 
mixture models to split potential multimodal distributions of pairwise dissimilarities, which are 
often indicative of multiple clusters.  

 

 

 

 
B. 

 
Figure5. Distribution of snp distances among the sequences of Lm included in a cluster as 
defined by single-linkage hierarchical clustering at threshold 10 A. density plot of the distances, 
B. split  of the multimodal distribution into several unimodal distributions using Gaussian 
mixture models 
 

Of the pairwise unimodal distributions identified by the Gaussian mixture models we retain the 
distribution with the smallest mode, and the sequences it comprises as a more probable cluster. 

This approach can only be used when the number of sequences is high. However, time is critical for 
outbreak control and, therefore, timely identification of clusters, indicative of a potential outbreak, 
would require the use of a small number of sequences. 
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3. Therefore, in a third step we calculate the expected SNP distances between any two isolates 
based on Kingman’s coalescent model of shared ancestry (20).  

 

The SNP variation is suitable for inferring evolutionary relations among the bacterial isolates, as 
nucleotides are the direct object of the mutational process. The most common source of genetic variation 
is mutation. The mutation rate, defined as the number of mutations per generation time, can be used in 
terms of “molecular clock” in order to refine the previously defined clusters. Thus, the incorporation of 
the time span between any two isolates and the expected mutation rate might act as prior knowledge in 
calculating the maximum possible distance observed among the isolates in the hypothesis of common 
descent. 

Some of the main factors impacting on the perceived genetic distances among the isolates from a 
common source are: 

- mutation rate – number of mutations introduced in the genome per generation 
- generation time (doubling time) – the time necessary for the bacterial cells to divide 
- substitution rate – the product of mutation rate and generation time, but more often expressed 

as number of substitutions per real time unit (e.g. year) 
- effective bacterial population size 

 

The expected distance between any number of bacterial isolates presumed to have originated from the 
same sample is expressed as a distribution resulting from forward-time simulations of bacterial 
evolution. The main assumptions in the simulations are: 

- a homogeneous initial bacterial population 
- constant generation time 
- non-overlapping generations 
- finite-sites model 
- equal transition rate 
- constant population size 
- no selection pressure and no differential fitness 

 

For a hypothetical population with 1000 individuals, a genome of 4.5 Mb, a mutation rate of 7*10-10 per 
site/generation, the distribution of the segregating sites after 1000 generations and 1000 simulations, is 
depicted in Figure 6.   

 
Figure 6. Variation of segregating sites from 1000 simulations. 
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Of each simulation we draw randomly 10000 samples of size equal to the number of individuals in the 
cluster identified in the previous steps, the effect of sampling being tested  by comparing the distributions 
corresponding to different number of samples (Figure 7) by means of Kolmogorov-Smirnov test. 

 
Figure 7. Impact of sampling on the expected number of segregating sites. There were no 
significant differences on the distributions based on 103 to 106 samples. 
 

4. In a fourth step, the comparison of the distribution of observed dissimilarities with the expected 
one is expressed as the probability that the two or n selected isolates come from a common 
ancestor in a given timespan. 
The probability of observing s segregating sites is calculated as the cumulative probability to 
the right of the quantile corresponding to s on the precomputed distributions. For a population 
in the median range of diversification, the expected distribution of segregating sites is given in 
Figure 8. The red vertical line indicates the number of segregating sites observed empirically, 
and the blue area to the cumulative probability of values equal or higher to the observed 
segregating sites. The higher this probability is, the more likely the n sequences come from the 
same homogeneous population. 

 
Figure 8. Distribution of segregating sites in a theoretical population. The observed 
number of segregating sites in the identified cluster is depicted as a vertical line and the 
probability of observing the respective number is the shaded blue area to its right.  

Further testing, sensitivity analyses and validation on epidemiologically confirmed outbreaks are 
currently running. Our preliminary results indicate that in the context of effective disease surveillance a 
two-tier approach could be beneficial, using cgMLST for a first screening of the isolates, followed by 
SNP phylogenetic analyses to refine the clusters and identify relatedness among the isolates at a higher 
resolution. A potential rapid implementation might be based on precomputed distributions for a relatively 
broad range of  

Limitations:  
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The Gaussian mixture models are applicable and reliable for relatively large sets of observations 
(sequences). 
The coalescent model of evolution has numerous assumptions that may not (always) be met in real 
bacterial populations. It is however an approximation that is currently achievable with the population 
parameters described to date in the literature. It can be further improved and extended, as our 
knowledge of the bacterial population dynamics progresses. 
The use of maximum values for the various simulation parameters provide a conservative frame for 
defining related bacterial sequences (isolates), allowing for false-positives, and reducing the probability 
of false-negatives.  
Even a high probability of shared recent descent is not a guarantee for it. Other processes might 
influence the observed distribution of the segregating sites. Identical sequences may occur under natural 
settings either by chance or at the hand of convergent evolution mechanisms. Furthermore, one of the 
major assumptions is that the observed number of segregating sites is an accurate reflection of the real 
one. However, errors may be introduced at a number of steps, be it in vivo (in differential survival of the 
infectious bacteria), in vitro (in culturing the bacterial isolates), or in silico (in calling the nucleotide 
polymorphisms). Advances in methodology and understanding the biological processes can improve 
the models used here. 
For foodborne pathogens, collaboration with the food and animal health sectors are, therefore, key in 
advancing our understanding of the bacterial population dynamics and, consequently, of the data 
generating processes underlying the outbreaks. 
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