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1 Abstract10

In precision livestock farming, technology-based solutions are used to monitor11

and manage livestock and support decisions based on on-farm available data.12

In this study, we developed a methodology to monitor the lying behavior of13

dairy cows using noisy spatial positioning data, thereby combining time-series14

segmentation based on statistical changepoints and a machine-learning classi�-15

cation algorithm using bagged decision trees. Position data (x, y, z -coordinates)16

collected with an ulta-wide band positioning system from 30 dairy cows housed17

in a freestall barn were used. After the data preprocessing and selection, statisti-18

cal changepoints were detected per cow-day (no. included = 331) in normalized19

'distance from the center' and (z ) time series. Accelerometer-based lying bout20

data were used as a practical ground truth. For the segmentation, changepoint21

detection was compared with getting-up or lying-down events as indicated by22

the accelerometers. For the classi�cation of segments into lying or non-lying23

behavior, two data splitting techniques resulting in 2 di�erent training and test24

sets were implemented to train and evaluate performance: one based on the25

data collection day and one based on cow identity. In 85.5% of the lying-down26

or getting-up events a changepoint was detected in a window of 5 minutes. Of27

the events where no detection had taken place, 86.2% could be associated with28

either missing data (large gaps) or a very short lying or non-lying bout. Over-29

all classi�cation and lying behavior prediction performance was above 91% in30

both independent test sets, with a very high consistency across cow-days. This31

resulted in su�cient accuracy for automated quanti�cation of lying behavior in32

dairy cows, for example for health or welfare monitoring purposes.33

34
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2 Introduction37

Precision livestock farming solutions typically aim at supporting monitoring38

and decision taking by farmers using on-farm sensors measuring animal behav-39

ior, performance and production [1]. The raw data used to generate decision40

support are often noisy time series, prone to errors and variation caused not41

only by sensor failure or the harsh and changing farm environments in which42

they operate, but also by the animals' speci�c physiology itself. The resulting43

complexity and magnitude of the raw data render them hard to interpret as44

such by farmers or other end-users. Consequently, these data have little value45

without proper (pre-)processing algorithms that translate the raw measures in46

information informative for the targeted end-users.47

In dairy production, precision technologies are vastly deployed and imple-48

mented [2, 3]. The reason for the dairy sector being pacesetter in this area,49

is groups of animals are typically much less homogeneous compared to other50

livestock species and therefore management at group level is less applicable.51

Additionally, dairy cows are highly valuable but rather vulnerable, rendering52

individual monitoring crucial to optimize production, welfare and sustainabil-53

ity. Because of the physiological stress these animals endure during lactation,54

timely and speci�c interventions obviate animal su�ering and �nancial losses.55

As modern dairy farms grew larger over the past decade, investments in sensor56

technology to guide these interventions became increasingly justi�able [4]. Out57

of the many technologies available, a system monitoring cow position and its58

derived behavioral features not only promises to disclose cow health, but might59

also reveal welfare and social interactions - aspects that become increasingly60

important in the livestock production landscape. Today's commercialized po-61

sitioning systems, however, mainly serve to locate cows for e.g., treatment or62

when they don't go milking. Monitoring speci�c cow behaviors o�ers new paths63

both for research and commercial decision support systems that can help the64

farmer manage their herd, optimize production and quickly act upon disease or65

welfare problems. A continuous and essential step to better unlock the potential66

of cow behavioral analyses is the development of new ways to process data from67

sensor technologies that allow precise and timely interpretation and extraction68

of actionable information [5]. As such, extra value can be created from existing69

technology.70

Lying behavior has been shown to change upon a changing health and wel-71

fare status [6]. For example, lameness will lower the number of times an animal72

gets up or lies down and increases general lying bout duration. Similarly, udder73

infections in which an animal becomes very sick, or metabolic problems a�ect-74

ing rumination time, will alter the lying behavior [7]. Accurate detection and75

monitoring over time of lying thus has potential to reveal health and welfare76

status, contribute to new precision phenotypes, and evaluate e.g., housing situ-77

ations or management practices in an accurate and non-invasive manner. One78

technology to do so is via 3-dimensional spatial data, such as provided via mod-79

ern ultra-wide band (uwb) positioning systems currently being developed and80

commercialized.81

Ultra-wide band technology allows the transmission of high amounts of data82

over small distances with very low energy. In an indoor positioning system,83

Radio-Frequency identi�cation signals are transmitted across a wide bandwidth84

and captured by an antenna. The tags worn by the individual cows allow precise85
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and frequent localization of the animals with low power usage, even in cluttered86

indoor environments [8]. Upon development of appropriate data interpreta-87

tion algorithms, indoor positioning systems allow studying and monitoring cow88

behavior, including general activity, resting, feeding, drinking and social in-89

teractions with a single sensor system, giving it a relative advantage over e.g.90

commercially available accelerometer systems. Similarly, video-based systems91

have the challenge of cow-identi�cation, su�cient spatial covering, and high92

computation power requirements. Despite its continuous development and high93

potential for animal monitoring, uwb-based positioning is yet sparingly adopted94

for livestock applications. As for many new sensor technologies, the main reason95

for this is the lack of algorithms that translate raw data into information valu-96

able to the farmer [9]. In case of indoor positioning systems, data interpretation97

is complicated by the inaccuracy and noise in the time series, missing data, and98

its (unpredictable) heteroscedasticity [10, 11]. The latter partly results from99

di�erences in behavior, but previous research also highlighted dependency on100

the position of the animal in the barn with regard to the antenna and inter-101

actions of the signal with metal (e.g. the feeding rack) and water bodies (e.g.,102

other cows). These aspects hinder straightforward interpretation of the posi-103

tioning data and its derivatives (e.g., distance traveled), also preventing wider104

adoption. Nonetheless, as dedicated processing of these data would tremen-105

dously increase data interpretation potential, for example for the classi�cation106

of behavior, several studies on this topic have been published in the past few107

years [12, 13, 14, 15].108

There is a high need for new methods that elegantly integrate and interpretat109

on-farm collected longitudinal data on which decision support can be based. Ad-110

ditionally, automated, continuous and non-invasive detection of lying behavior111

for health and welfare monitoring based on spatial data has not been described112

in the past. In this study, a two-step methodology to identify lying behavior113

of dairy cows using a uwb-based indoor positioning system was developed and114

validated against the lying bouts returned by a commercial accelerometer-based115

system. The methodology relies on segmentation via the detection of simultane-116

ous changepoints in two position-derived time series, considering both the (x,y)117

and in the (z )-direction, while avoiding �xed thresholds or severe assumptions118

on the statistical properties of the data. The individual segments are in a second119

step classi�ed as 'lying' or 'non-lying' based on a set of statistical properties.120

3 Materials & methods121

3.1 Data collection122

Data were collected at the Dairy Campus research facilities of Wageningen Uni-123

versity and Research in Leeuwarden, the Netherlands, during two periods of �ve124

days in two successive weeks in 2019 (July 3 to 8 and July 10 to 15, both peri-125

ods with normal weather conditions with temperatures between 10 and 20°C).126

Two groups of cows, one housed in a freestall barn with a straw deep litter127

bedding and one in a freestall with synthetic �ooring, were equipped with uwb-128

positioning tags on the upside of a neck collar (Ubisense, Cambridge, UK and129

Noldus, Wageningen, the Netherlands) and accelerometers attached to right130

hind leg (IceQube® pedometers, IceRobotics, Edinburgh, United Kingdom). It131
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is important to note that the Ubisense technology relies on di�erent methods132

to determine (x,y)-position compared to (x )-position. The �rst is calculated133

based on time di�erence of arrival, whereas the latter is derived from the axis134

of arrival, which makes the (z ) more dependent on e.g., orientation of the tags.135

Each group consisted of 16 cows selected based on production level, age and136

lactation stage such that the characteristics were comparable across each group.137

The cows were milked twice daily in a rotary parlor and fed ad libitum with138

a partial mixed ration complemented with concentrates individually rationed139

based on production level.140

3.2 Lying behavior141

As continuous visual observation of the animals' behavior is too laborious over142

a longer period of time, the lying bouts returned by the IceQube accelerometers143

were used as the benchmark 'ground truth' for lying behavior. Despite this is a144

sensor-based measure and not visual observation which would be the true gold145

standard, it allows to include multiple cows simultaneously, with minimal labor146

and for a longer period of time, and it has been shown to have su�cient accuracy147

to detect the actual lying behavior, with r > 0.99 [13]. For each cow, the148

timestamp of each lying down or getting up event was retrieved from the IceQube149

software. These data were visually assessed to verify time synchronization and150

cow identity across the di�erent sensor systems. Only data for which in that151

time period both uwb and IceQube data were available were retained. More152

speci�cally, for each cow, data were kept from the �rst available IceQube lying153

bout onward until the end of the last lying bout registered, such that the analysis154

was carried out on the data for which accelerometers were certainly attached155

to the animals. This prevented that a lack of lying bout registrations was not156

caused by cows not wearing a sensor. Two out of the 32 cows were excluded157

from the study because no ground truth lying bouts were registered due to a158

technical problem with the IceQube sensors.159

3.3 Ultra-wide band data editing160

Raw binary data were extracted from daily Tracklab back-up �les (.tlp) (Noldus,161

Wageningen, the Netherlands) and converted with Python 3.7 into (x,y,z)-162

position time series containing one measurement per second per cow. All further163

data processing was done using Matlab 2018b and 2020b (The MathWorks Inc.,164

Natick, Massachusetts, USA). The (x,y,z)-position was expressed relative to a165

pre-speci�ed origin (x,y,z)=(0,0,0). In the barns at Dairy Campus, the (x)- co-166

ordinate gives the position in the direction of the feeding racks (range 0 to 23m167

in the �rst barn and 23 to 46m in the second barn), whereas the (y)-coordinate168

represents the position perpendicular to the feeding alley (range 0 to 14m). A169

plan of the barn is shown in �gure 1. The (z)-position can be considered the170

height of the tag on the neck collar. When the y was larger than 11.5m, the171

animals were in the slatted �ooring (feeding) area, in which it was considered172

they did not lie down (as formally con�rmed by the IceQube data). To interpret173

the raw position time series and derive cow behavior from them, multiple data174

editing steps were implemented to deal with noise and missing data (missing175

data = on average 43% per day, small gaps and absent data due to milking176

included). First, outliers indicating a position outside the barn edges were re-177
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placed with the edge value when it were single measurements likely caused by178

normal measurement inaccuracy. When multiple successive measurements were179

registered out of the barn edges, they probably resulted from a lost tag that180

was put aside by the animal caretakers (in our dataset, this happened during 11181

cow-days). These measurements were replaced by missing values. Second, based182

on a data exploration step (not further detailed in this paper), a methodology to183

manage missing data was developed and implemented. How we dealt with the184

missing data depended on (1) the gap size and (2) the amount of non-missing185

data in prede�ned window preceding the gap. Missing data always occurred186

at cow-measurement level, i.e., if data were unavailable, both the (x,y)- and187

(z )-position lacked. For gaps smaller than 60 seconds, we assumed that the188

cow's behavior would remain constant, or the error made when this assumption189

was untrue would be negligible. In this case, the missing data were imputed by190

sampling them from a normal distribution with mean and standard deviation191

calculated from the data preceding the gap in a window of twice the gap size192

in each dimension. For gaps between 60 and 180 seconds, making assumptions193

on the consistency of the behavior was more tricky but these gaps could still be194

due to failure of the sensor system or interference with the barn environment.195

For these gaps, we used a simple linear interpolation with added noise based on196

the average standard deviation of the data. Missing data in gaps longer than197

180 seconds were left without data, as these often resulted from the animals not198

being in the barn e.g. during milking. Assumptions on these longer lasting gaps199

could not be made and were not of interest for this study, as in these cases cows200

are not expected to lie down. A third data editing step consisted in smooth-201

ing the (x )-, (y)- and (z )-data with a moving median �lter in a window of 45202

seconds. In order to make sensible assumptions for the settings of the change-203

point analysis, data of each cow-day were analyzed separately (i.e., a separate204

segmentation was implemented per cow-day time series).205

3.4 Changepoint analysis for segmentation206

Changepoints are time instants or samples in which the statistical properties207

(i.e. statistical distribution) of a (time) series abruptly change. In this study,208

we detected and combined the individual changepoints per cow per day in two209

time series of (x,y,z )-coordinate positioning data. Intuitively, one could argue210

to mainly rely on the position in the vertical (z ) direction (height), as a cow211

that lies down is expected to remain in a lower and more stable position com-212

pared to when she is not lying down. However, the (z )-position was found213

(unpublished data exploration step) to be the most unreliable and noisy (range,214

variability,...) of all three coordinates. Its inaccuracy was variable in time and215

space, and depended on e.g., the position in the barn, the behavior and speed216

of the animals, the collar attachment, the calibration settings and individual217

interactions between tags. Similarly, relying on detection of a relatively stable218

position in the (x,y)-direction (which is unmistakably true during lying bouts)219

is imprecise and insu�cient for lying behavior detection as well, as cow activity220

varies over the day, and oftentimes animals stand still for a longer period of221

time apart from their lying bouts, for example when grooming other animals,222

feeding, drinking or ruminating. These periods of 'standing' inactivity might223

additionally depend on accessibility lying places, hierarchy, climate of the barn,224

etc. In this study, we chose to work on a combination of two position-derived225
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Figure 1: Plans of the barns in which the data were recorded

time series. The �rst is the (z )-coordinate (height) of the animals, as this is226

the most straightforward one. The second time series is the `center distance'227

(CD), i.e. the position relative to the center of the barn. The main advantages228

of using CD and not the raw (x,y)-position is that it summarizes position and229

movement of the animals in a single signal, is less dependent on the actual di-230

rection of movement, and has a lower variability and range. Should a cow move231

in a perfect circle around the center of the barn, however, CD remains constant232

(as is the case when a cow stands still or lies down). We assumed that this233

would be extremely rare, and when it would happen for a short period of time,234

this would not impair the analysis because movement as such causes the signal235

to be more variable, which also changes the statistical properties of the time236

series. Before the segmentation, the CD and (z ) time series were normalized237

with a min-max standardization per cow over the entire dataset as follows:238

xi,norm =

[
xi −min(x)

max(x)−min(x)

]
with xi the z or CD values at time i.239

The changepoint analysis relies on a parametric method that partitions both240

time series simultaneously in K segments based on the minimization of the241

following cost function J(K):242
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J(K) =

K−1∑
r=0

kr+1−1∑
i=kr

∆(xi;χ(
[
xkr

· · ·xkr+1−1

]
))

with243

kr+1−1∑
i=kr

∆(xi;χ(
[
xkr

· · ·xkr+1−1

]
)) = ((kr+1−1)−kr+1)∗log(var(

[
xkr+1−1 · · ·xkr

]
))

and

var(
[
xkr+1−1 · · ·xkr

]
) =

1

(kr+1 − 1)− kr + 1

kr∑
i=kr+1−1

(xi−mean([xkr+1−1 · · ·xkr
]))

in which K is the number of changepoints, dividing the time series in K+1244

segments, β is the penalty function, here restrained such that at most 60 change-245

points are found per cow-day, because otherwise the number of changepoints246

would equal the number of data points as this minimizes the total cost. As247

adding changepoints in general lowers the cost function, it is normal that the248

number of changepoints found is equal to the maximum set beforehand. Because249

the variability in the data was high and thereby unpredictable, a mathematical250

penalty function for restricting the number of changepoints detected could not251

be found. xkr
is the rth z or CD value in segment k. Besides in 'number',252

also a restriction was set to the minimum distance between two changepoints:253

they needed to be at least 300 measurements apart (i.e. the lying or non-lying254

duration was at least 5 minutes). Other data-based algorithms (i.e., using vari-255

ability and expected minimal cost reduction) have been explored, but because256

of the heteroscedastic nature of the data, could not be used for this study. The257

changepoint search algorithm used is based on a pruned exact linear time algo-258

rithm using dynamic programming, as proposed by Killick et al. [16], having259

the advantage that it is mathematically exact and has a linear computational260

cost with the number of data points.261

3.5 Data split262

To evaluate the performance of the classi�cation algorithm, its performance was263

evaluated using two di�erent data splits, one based on time and one based on264

cow identity. For both, we chose to use a smaller portion of the data for training265

than for testing (approximately 33-66%), unlike what is usual in machine learn-266

ing practices. However, we preferred this data split as (1) the method described267

here is very robust, so a minimal amount of training data su�ced to achieve268

accurate predictions and adding more data did not improve the accuracy, and269

(2) this situation mimics an on-farm situation where little training data is avail-270

able. The �rst data split (alike the more classical machine learning approach)271

uses data from 10 randomly chosen cows (33%) for the model training, and 20272

animals (66%) as the independent test set. The second approach corresponds273

to a situation on farm in which current and historical data are used for training274

and the algorithm needs to perform well in a future situation. Here, data of the275

3 �rst days of the dataset were assigned to training set, after which classi�cation276
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performance was evaluated on the remaining 9 days of data. One cow's data277

only started at day 4, and was therefore not included in this training set as the278

animal would not have been present in the training period.279

3.6 Segment classi�cation280

To move from segments to lying behavior, we classi�ed each segment as 'lying' or281

'non-lying' based on its (statistical) properties, including the level and variability282

for the normalized data, a categorical variable to indicate whether the cow was283

in the slatted �ooring area, the length of the segment, the number of outliers, the284

gapsize, and the segment range. An overview of these features is given in table285

4. The classi�cation was done using a 'bagged' (i.e., bootstrap-aggregated)286

tree algorithm which consistently performed best on our data independently of287

input data and split. As opposed to individual decision trees (which tend to288

over �t), bagged trees combine (i.e., use an ensemble) the results of many trees,289

improving generalization. The algorithm uses a random subset of predictors290

at each decision split (similar to random forest classi�cation) and minimizes291

the classi�cation error at each split. The model was trained with 5-fold cross-292

validation to determine the optimal hyper parameters for the number of learning293

cycles (i.e., 30) and trees. For the bootstrapping, each time one segment was294

sampled with replacement to grow a new tree. As in some cases a 'true' change295

happened within a segment, a threshold of 50% was applied to calculate the296

binary outcome variable: if more the 50% of the segment's data corresponded297

to a lying bout, it's ground truth was taken as 'lying' and vice versa. The298

features were selected such that there was no multicollinearity across them.299

3.7 Performance evaluation300

Two aspects of the methodology are important to achieve a good performance:301

(1) the segmentation accuracy, i.e. are the true changes from lying to non-302

lying and vice versa accurately detected; and (2) the classi�cation performance303

in terms of accuracy per segment and corresponding total lying duration per304

cow-day. For the �rst, we calculated how many of the true changes have a305

changepoint associated with them within a window of 5 minutes. Given the306

length of the lying bouts, this is considered as an acceptable margin for detec-307

tion. When no detected changepoint was associated with the true change, we308

assessed potential causes, including e.g., missing data. The second was assessed309

using the confusion matrix comparing true and false classi�cations and the to-310

tal accuracy, for the entire dataset as well as at cow and at cow-day level. We311

additionally compared the total lying down duration per cow-day in a similar312

way.313

4 Results314

4.1 Data overview315

A total of 30 cows, with each having between 4 and 12 days of data available316

were included in the study. These cows had parities between 1 and 7, and were317

on average 188 (range 119 to 243) days in lactation. An overview of the cow318

characteristics is given in table 1.319
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Table 1: Overview of cow characteristics

Name average std min max

Parity 2.77 1.50 1.00 7.00
Lactation stage 188.16 43.49 119.00 243
Daily milk yield 26.95 6.01 12.68 41
Fat% 4.72 0.45 4.01 5.44
Protein% 3.38 0.23 2.94 4.06
Lactose% 4.49 0.11 4.23 4.68
SCC*1000c/mL 200.08 212.05 24.75 1035

320

Over the measurement period, in total 2720 lying bouts were detected with321

the IceQube sensors. From these, 97 bouts were shorter than 10 minutes. Per322

cow, an average number of 90.6±24.4 lying bouts per cow were included, with323

an average duration of 85.3±19.8 minutes per bout across cows. Cows had on324

average 8.2±1.8 lying bouts per day (range: 4.5 to 11.3) and spent 8.23 hours325

lying down in total. The within-bout level and standard deviation of the z time326

series, and the standard deviation of the CD across lying and non-lying bouts327

are given in table 2. From this, it is clear that statistical properties of the328

chosen time series di�er across lying and non-lying behavior, which is the basis329

of our analysis.330

Table 2: Statistical properties of the time-series data across lying and non-lying bouts

lying non-lying

average std min max average std min max

average z 0.71 0.10 0.49 0.89 1.21 0.09 1.06 1.34
std z 0.25 0.05 0.14 0.33 0.32 0.03 0.27 0.40
average znorm 0.28 0.04 0.20 0.36 0.48 0.04 0.42 0.53
std znorm 0.10 0.02 0.06 0.13 0.13 0.01 0.11 0.16
std CD 0.45 0.10 0.29 0.73 1.68 0.23 1.23 2.18
std CDnorm 0.04 0.01 0.02 0.06 0.13 0.02 0.10 0.17

4.2 Changepoint detection331

Of all 5443 ground truth changes in the dataset, 85.5% had a changepoint332

detected within 5 minutes. Per cow-day, this corresponds to 2.3 changes not333

identi�ed accurately with the changepoint analysis. From these unidenti�ed334

changes, 50.3% were linked to changes at a moment that there were more than335

15 minutes of missing values in the surrounding hour, and 62.2% of these 50.3%336

were in a segment with at least 20% missing data. Additionally, 23.9% of these337

false negatives were within less than 20 minutes from another ground truth338

change, and thus associated with a very short segment length (table 3). At339

cow level, the performance remained more or less constant, with 14.2% of the340

changes not detected within 5 minutes of the ground truth and up to 93%341

associated with missing data. It is expected that part of the changes not being342
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correctly identi�ed with the changepoint analysis is also due to the ground truth343

not being perfect but this can, with the current dataset, not be veri�ed.344

Table 3: Overview of correctly and incorrectly detected changepoints corresponding
to lying down or getting up

No. %

Ground truth changes 5443 100
Detected changepoints within 5 minutes of ground truth 4654 85.5
Not detected changepoints within 5 minutes of ground truth 789 14.5

with >15' missing values in surrounding hour 397 50.3
with previous/next changepoint within 20' 189 23.9

4.3 Classi�cation performance for cow identity-based data345

split346

The �rst split was based on cow identity, and the training dataset consisted of347

7024 segments (35%) from 10 animals, from which 3206 segments represented348

non-lying behavior (45.64%). The independent test set contained 13002 seg-349

ments. The cross-validation accuracy on the training dataset was 91.7%, and350

the overall prediction accuracy of the test set was 92.8%. The confusion matrix351

is shown in �gure 2. In total, the test set contains 5625 non-lying segments,352

from which 5162 were correctly classi�ed, rendering a non-lying classi�cation353

accuracy of 91.8%. From the 7377 lying segments in the test set, 6901 were354

correctly classi�ed, corresponding to a classi�cation accuracy of 93.5% for the355

lying behavior. In terms of lying duration, the total predicted non-lying time356

was 2480h, being 115h di�erent from the ground truth non-lying time of 2595h357

(percent deviation = 4.4%). The total lying time was estimated as 2327h, which358

is 141h less than the actual lying time of 2468h in the test set (di�erence 5.7%).359

Per cow-day, the average classi�cation accuracy at the segment level was360

92.8% with a minimum accuracy of 78.7% and a maximum accuracy of 100%361

(�gure 3, left panel). This corresponded to an average error of 7.1% in the362

estimation of lying duration at cow-day level (�gure 3, right panel).363

4.4 Classi�cation performance for time-based data split364

In the second split based on time, 5138 segments were included in the training365

dataset of day 0,1 and 2, from 29 cows. The confusion matrix is shown in �gure366

4. In the training set, 2229 (i.e. 43.4%) segments represented 'non-lying' behav-367

ior. The test set contained 14888 segments from 30 cows. The cross-validation368

accuracy on the training set was 92.3%. In the test set, 6102 out of 6602 seg-369

ments were correctly classi�ed as non-lying (accuracy 92.4%), whereas 7634 out370

of 8286 segments were correctly classi�ed as lying (accuracy 92.1%). The total371

predicted non-lying duration over the entire dataset was 2853h, whereas the372

ground truth was a non-lying duration of 2980h, giving a di�erence of 127h373

(4.27% over the entire test set). The predicted and ground truth lying duration374

in the test set were 2612h and 2830h respectively, corresponding to a deviation375

of 217h or 7.7%.376
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Figure 2: Confusion matrix for the split based on cow identity

Per cow-day, the average classi�cation accuracy at the segment level was377

92.3% with a minimum accuracy of 78.3% and a maximum accuracy of 100%378

(�gure 5, left panel). This corresponded to an average error of 7.8% in the379

estimation of lying duration at cow-day level (�gure 5, right panel).380

5 Discussion381

In this study, a methodology was developed to distinguish lying from non-lying382

behavior of dairy cows based on spatial uwb (x,y,z )-positioning data in a freestall383

barn, combining a segmentation and classi�cation step. A high segmentation384

performance overall was reached, with many of the true changes indeed result-385

ing in an alteration of statistical properties and corresponding changepoint in386

the selected time series. Previous (unpublished) results showed that a com-387

bination of time series, and �nding simultaneous changepoints was necessary388

to achieve good results, which supports the general idea that more data inte-389

gration is needed to achieve good performance in on farm situations in which390

data are often noisy and prone to many kinds of errors. This was con�rmed391

by the fact that mainly data-quality issues related to missing data and atypi-392

cal lying behavior (i.e. short lying and non-lying bouts) prevented reaching a393

higher performance in the segmentation step. The overall and at cow-day level394

classi�cation performance was high, with accuracies above 91% independent of395

data split, demonstrating that our methodology is robust and has high practical396

value. We evaluated the performance of the methodology based on a data split397

that contained most data in the independent test set and not in the training set398
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Figure 3: Prediction accuracy at cow-day level for the split based on cow identity

to mimic practical on-farm situation. Robustness of the algorithm is demon-399

strated by the fact that both the cow identity-based split and the time-based400

split performed equally well. Future research can investigate the performance401

of the model when using di�erent position-measuring technologies or in other402

farm settings and over a longer period of time.403

By cross-comparing sensor-based predictions instead of using visual observation,404

we could validate the methodology with quite an extensive dataset in contrast to405

what is usual when visual observations are used (e.g.,[17]). For example Kok et406

al. [18] used a similar approach for validation of the IceQube accelerometers for407

lying behavior, comparing the prediction results of two sensors attached to the408

same cow. Working with spatial data has proven challenging, and e.g., attempts409

to implement data-based penalty functions for restricting the number of change-410

points, failed. This is mainly due to the enormous heteroscedasticity in these411

data, which depends on multiple factors such as the cow, the time of the day, the412

behavior, factors interfering with the sensor system, etc., for which we cannot413

account mathematically. Applying purely black-box approaches generally re-414

sults in insu�cient robustness, interpretability and generalisability [19, 20, 21].415

Therefore, introducing expert knowledge in animal monitoring algorithms, for416

example for the data-preprocessing steps, remains essential to make them useful417

for the end-users. In the current study, expert knowledge was used to pre-process418

and impute the data, to decide how to combine the spatial data into time series419

of interest for lying behavior and set the number and distance of changepoints.420

Other algorithms have been developed to automatically detect lying behavior in421

dairy cows, for example using machine vision solutions [12]. The latter study422

reported a high sensitivity of 92% as well, but this was not based on lying du-423

ration, but on whether there were or weren't animals lying in a cubicle in a424

speci�c frame, ignoring the longitudinal importance of the data and restricting425

its current applicability on farm. Additionally, our algorithm was developed in426

a freestall barn without cubicles. In cubicle barns, position of the cows in the427

lying places could be considered as a variable as well, which allows tailoring the428

12



Figure 4: Confusion matrix for the split based on time

algorithm to di�erent barn circumstances.429

In this study, we demonstrated how correct processing of aspeci�c positioning430

data (i.e., the system is not designed as such for lying behavior only) allows431

to use one system for multiple purposes, maximizing the value of a single in-432

vestment. In a practical setting, the developed methodology shows su�cient433

performance for monitoring lying behavior of dairy cows over time. For exam-434

ple, the algorithm could be used to create time-series data of lying behavior435

(duration, bout length), which can be assessed with additional interpretation436

tools such as individual control charts [22, 23]. Combining these at group or437

at herd level, for example into time budgets allocated to certain behaviors of438

interest, can also indicate cow health and welfare dynamics of the animals [6]439

and allows automated monitoring with little manual labor. We believe that our440

methodology can be generalized to other sensor data sources as well.441

6 Conclusions442

In this study, we developed a methodology to predict certain aspects of the443

lying behavior of dairy cows from spatial data with the use of time-series seg-444

mentation and a subsequent classi�cation algorithm. The methodology relies on445

di�erences in statistical properties across the behavior of interest. The overall446

performance, both when considering a cow-based and a time-based data split447

to train and evaluate the methodology, was above 92%. Missing data pose the448

main challenge to reach even higher accuracies, but this doesn't necessarily im-449

pair the interpretation of the current results and usability of the method in a450

13



Figure 5: Prediction accuracy at cow-day level for the split based on time

practical setting. Generalization of the segmentation-classi�cation method to451

other behaviors and other sensors was identi�ed as a potential route to improve452

on-farm data interpretation for decision support.453
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