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1 Abstract

In precision livestock farming, technology-based solutions are used to monitor
and manage livestock and support decisions based on on-farm available data.
In this study, we developed a methodology to monitor the lying behavior of
dairy cows using noisy spatial positioning data, thereby combining time-series
segmentation based on statistical changepoints and a machine-learning classifi-
cation algorithm using bagged decision trees. Position data (z, y, z-coordinates)
collected with an ulta-wide band positioning system from 30 dairy cows housed
in a freestall barn were used. After the data preprocessing and selection, statisti-
cal changepoints were detected per cow-day (no. included = 331) in normalized
"distance from the center’ and (z) time series. Accelerometer-based lying bout
data were used as a practical ground truth. For the segmentation, changepoint
detection was compared with getting-up or lying-down events as indicated by
the accelerometers. For the classification of segments into lying or non-lying
behavior, two data splitting techniques resulting in 2 different training and test
sets were implemented to train and evaluate performance: one based on the
data collection day and one based on cow identity. In 85.5% of the lying-down
or getting-up events a changepoint was detected in a window of 5 minutes. Of
the events where no detection had taken place, 86.2% could be associated with
either missing data (large gaps) or a very short lying or non-lying bout. Over-
all classification and lying behavior prediction performance was above 91% in
both independent test sets, with a very high consistency across cow-days. This
resulted in sufficient accuracy for automated quantification of lying behavior in
dairy cows, for example for health or welfare monitoring purposes.

Keywords: spatial data; ultra-wide band technology; dairy cow; lying behav-
wor
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2 Introduction

Precision livestock farming solutions typically aim at supporting monitoring
and decision taking by farmers using on-farm sensors measuring animal behav-
ior, performance and production [1]. The raw data used to generate decision
support are often noisy time series, prone to errors and variation caused not
only by sensor failure or the harsh and changing farm environments in which
they operate, but also by the animals’ specific physiology itself. The resulting
complexity and magnitude of the raw data render them hard to interpret as
such by farmers or other end-users. Consequently, these data have little value
without proper (pre-)processing algorithms that translate the raw measures in
information informative for the targeted end-users.

In dairy production, precision technologies are vastly deployed and imple-
mented [2, 3]. The reason for the dairy sector being pacesetter in this area,
is groups of animals are typically much less homogeneous compared to other
livestock species and therefore management at group level is less applicable.
Additionally, dairy cows are highly valuable but rather vulnerable, rendering
individual monitoring crucial to optimize production, welfare and sustainabil-
ity. Because of the physiological stress these animals endure during lactation,
timely and specific interventions obviate animal suffering and financial losses.
As modern dairy farms grew larger over the past decade, investments in sensor
technology to guide these interventions became increasingly justifiable [4]. Out
of the many technologies available, a system monitoring cow position and its
derived behavioral features not only promises to disclose cow health, but might
also reveal welfare and social interactions - aspects that become increasingly
important in the livestock production landscape. Today’s commercialized po-
sitioning systems, however, mainly serve to locate cows for e.g., treatment or
when they don’t go milking. Monitoring specific cow behaviors offers new paths
both for research and commercial decision support systems that can help the
farmer manage their herd, optimize production and quickly act upon disease or
welfare problems. A continuous and essential step to better unlock the potential
of cow behavioral analyses is the development of new ways to process data from
sensor technologies that allow precise and timely interpretation and extraction
of actionable information [5]. As such, extra value can be created from existing
technology.

Lying behavior has been shown to change upon a changing health and wel-
fare status [6]. For example, lameness will lower the number of times an animal
gets up or lies down and increases general lying bout duration. Similarly, udder
infections in which an animal becomes very sick, or metabolic problems affect-
ing rumination time, will alter the lying behavior [7]. Accurate detection and
monitoring over time of lying thus has potential to reveal health and welfare
status, contribute to new precision phenotypes, and evaluate e.g., housing situ-
ations or management practices in an accurate and non-invasive manner. One
technology to do so is via 3-dimensional spatial data, such as provided via mod-
ern ultra-wide band (uwb) positioning systems currently being developed and
commercialized.

Ultra-wide band technology allows the transmission of high amounts of data
over small distances with very low energy. In an indoor positioning system,
Radio-Frequency identification signals are transmitted across a wide bandwidth
and captured by an antenna. The tags worn by the individual cows allow precise
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and frequent localization of the animals with low power usage, even in cluttered
indoor environments [8]. Upon development of appropriate data interpreta-
tion algorithms, indoor positioning systems allow studying and monitoring cow
behavior, including general activity, resting, feeding, drinking and social in-
teractions with a single sensor system, giving it a relative advantage over e.g.
commercially available accelerometer systems. Similarly, video-based systems
have the challenge of cow-identification, sufficient spatial covering, and high
computation power requirements. Despite its continuous development and high
potential for animal monitoring, uwb-based positioning is yet sparingly adopted
for livestock applications. As for many new sensor technologies, the main reason
for this is the lack of algorithms that translate raw data into information valu-
able to the farmer [9]. In case of indoor positioning systems, data interpretation
is complicated by the inaccuracy and noise in the time series, missing data, and
its (unpredictable) heteroscedasticity [10, 11]. The latter partly results from
differences in behavior, but previous research also highlighted dependency on
the position of the animal in the barn with regard to the antenna and inter-
actions of the signal with metal (e.g. the feeding rack) and water bodies (e.g.,
other cows). These aspects hinder straightforward interpretation of the posi-
tioning data and its derivatives (e.g., distance traveled), also preventing wider
adoption. Nonetheless, as dedicated processing of these data would tremen-
dously increase data interpretation potential, for example for the classification
of behavior, several studies on this topic have been published in the past few
years [12, 13, 14, 15].

There is a high need for new methods that elegantly integrate and interpretat
on-farm collected longitudinal data on which decision support can be based. Ad-
ditionally, automated, continuous and non-invasive detection of lying behavior
for health and welfare monitoring based on spatial data has not been described
in the past. In this study, a two-step methodology to identify lying behavior
of dairy cows using a uwb-based indoor positioning system was developed and
validated against the lying bouts returned by a commercial accelerometer-based
system. The methodology relies on segmentation via the detection of simultane-
ous changepoints in two position-derived time series, considering both the (z,y)
and in the (z)-direction, while avoiding fixed thresholds or severe assumptions
on the statistical properties of the data. The individual segments are in a second
step classified as ’lying’ or 'non-lying’ based on a set of statistical properties.

3 Materials & methods

3.1 Data collection

Data were collected at the Dairy Campus research facilities of Wageningen Uni-
versity and Research in Leeuwarden, the Netherlands, during two periods of five
days in two successive weeks in 2019 (July 3 to 8 and July 10 to 15, both peri-
ods with normal weather conditions with temperatures between 10 and 20°C).
Two groups of cows, one housed in a freestall barn with a straw deep litter
bedding and one in a freestall with synthetic flooring, were equipped with uwb-
positioning tags on the upside of a neck collar (Ubisense, Cambridge, UK and
Noldus, Wageningen, the Netherlands) and accelerometers attached to right
hind leg (IceQube® pedometers, IceRobotics, Edinburgh, United Kingdom). It
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is important to note that the Ubisense technology relies on different methods
to determine (z,y)-position compared to (z)-position. The first is calculated
based on time difference of arrival, whereas the latter is derived from the azxis
of arrival, which makes the (z) more dependent on e.g., orientation of the tags.
Each group consisted of 16 cows selected based on production level, age and
lactation stage such that the characteristics were comparable across each group.
The cows were milked twice daily in a rotary parlor and fed ad libitum with
a partial mixed ration complemented with concentrates individually rationed
based on production level.

3.2 Lying behavior

As continuous visual observation of the animals’ behavior is too laborious over
a longer period of time, the lying bouts returned by the IceQube accelerometers
were used as the benchmark ’ground truth’ for lying behavior. Despite this is a
sensor-based measure and not visual observation which would be the true gold
standard, it allows to include multiple cows simultaneously, with minimal labor
and for a longer period of time, and it has been shown to have sufficient accuracy
to detect the actual lying behavior, with r > 0.99 [13]. For each cow, the
timestamp of each lying down or getting up event was retrieved from the IceQube
software. These data were visually assessed to verify time synchronization and
cow identity across the different sensor systems. Only data for which in that
time period both uwb and IceQube data were available were retained. More
specifically, for each cow, data were kept from the first available IceQube lying
bout onward until the end of the last lying bout registered, such that the analysis
was carried out on the data for which accelerometers were certainly attached
to the animals. This prevented that a lack of lying bout registrations was not
caused by cows not wearing a sensor. Two out of the 32 cows were excluded
from the study because no ground truth lying bouts were registered due to a
technical problem with the IceQube sensors.

3.3 Ultra-wide band data editing

Raw binary data were extracted from daily Tracklab back-up files (.tlp) (Noldus,
Wageningen, the Netherlands) and converted with Python 3.7 into (=,y,2)-
position time series containing one measurement per second per cow. All further
data processing was done using Matlab 2018b and 2020b (The MathWorks Inc.,
Natick, Massachusetts, USA). The (z,y,z)-position was expressed relative to a
pre-specified origin (z,y,2)=(0,0,0). In the barns at Dairy Campus, the (z)- co-
ordinate gives the position in the direction of the feeding racks (range 0 to 23m
in the first barn and 23 to 46m in the second barn), whereas the (y)-coordinate
represents the position perpendicular to the feeding alley (range 0 to 14m). A
plan of the barn is shown in figure 1. The (z)-position can be considered the
height of the tag on the neck collar. When the y was larger than 11.5m, the
animals were in the slatted flooring (feeding) area, in which it was considered
they did not lie down (as formally confirmed by the IceQube data). To interpret
the raw position time series and derive cow behavior from them, multiple data
editing steps were implemented to deal with noise and missing data (missing
data = on average 43% per day, small gaps and absent data due to milking
included). First, outliers indicating a position outside the barn edges were re-
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placed with the edge value when it were single measurements likely caused by
normal measurement inaccuracy. When multiple successive measurements were
registered out of the barn edges, they probably resulted from a lost tag that
was put aside by the animal caretakers (in our dataset, this happened during 11
cow-days). These measurements were replaced by missing values. Second, based
on a data exploration step (not further detailed in this paper), a methodology to
manage missing data was developed and implemented. How we dealt with the
missing data depended on (1) the gap size and (2) the amount of non-missing
data in predefined window preceding the gap. Missing data always occurred
at cow-measurement level, i.e., if data were unavailable, both the (z,y)- and
(z)-position lacked. For gaps smaller than 60 seconds, we assumed that the
cow’s behavior would remain constant, or the error made when this assumption
was untrue would be negligible. In this case, the missing data were imputed by
sampling them from a normal distribution with mean and standard deviation
calculated from the data preceding the gap in a window of twice the gap size
in each dimension. For gaps between 60 and 180 seconds, making assumptions
on the consistency of the behavior was more tricky but these gaps could still be
due to failure of the sensor system or interference with the barn environment.
For these gaps, we used a simple linear interpolation with added noise based on
the average standard deviation of the data. Missing data in gaps longer than
180 seconds were left without data, as these often resulted from the animals not
being in the barn e.g. during milking. Assumptions on these longer lasting gaps
could not be made and were not of interest for this study, as in these cases cows
are not expected to lie down. A third data editing step consisted in smooth-
ing the (z)-, (y)- and (z)-data with a moving median filter in a window of 45
seconds. In order to make sensible assumptions for the settings of the change-
point analysis, data of each cow-day were analyzed separately (i.e., a separate
segmentation was implemented per cow-day time series).

3.4 Changepoint analysis for segmentation

Changepoints are time instants or samples in which the statistical properties
(i.e. statistical distribution) of a (time) series abruptly change. In this study,
we detected and combined the individual changepoints per cow per day in two
time series of (z,y,z)-coordinate positioning data. Intuitively, one could argue
to mainly rely on the position in the vertical (z) direction (height), as a cow
that lies down is expected to remain in a lower and more stable position com-
pared to when she is not lying down. However, the (z)-position was found
(unpublished data exploration step) to be the most unreliable and noisy (range,
variability,...) of all three coordinates. Its inaccuracy was variable in time and
space, and depended on e.g., the position in the barn, the behavior and speed
of the animals, the collar attachment, the calibration settings and individual
interactions between tags. Similarly, relying on detection of a relatively stable
position in the (z,y)-direction (which is unmistakably true during lying bouts)
is imprecise and insufficient for lying behavior detection as well, as cow activity
varies over the day, and oftentimes animals stand still for a longer period of
time apart from their lying bouts, for example when grooming other animals,
feeding, drinking or ruminating. These periods of ’standing’ inactivity might
additionally depend on accessibility lying places, hierarchy, climate of the barn,
etc. In this study, we chose to work on a combination of two position-derived



Figure 1: Plans of the barns in which the data were recorded
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time series. The first is the (z)-coordinate (height) of the animals, as this is
the most straightforward one. The second time series is the ‘center distance’
(CD), i.e. the position relative to the center of the barn. The main advantages
of using CD and not the raw (z,y)-position is that it summarizes position and
movement of the animals in a single signal, is less dependent on the actual di-
rection of movement, and has a lower variability and range. Should a cow move
in a perfect circle around the center of the barn, however, CD remains constant
(as is the case when a cow stands still or lies down). We assumed that this
would be extremely rare, and when it would happen for a short period of time,
this would not impair the analysis because movement as such causes the signal
to be more variable, which also changes the statistical properties of the time
series. Before the segmentation, the CD and (z) time series were normalized
with a min-max standardization per cow over the entire dataset as follows:
x; — min(z)

Ti,norm =

maz(x) — min(zx)

with z; the z or CD values at time 4.

The changepoint analysis relies on a parametric method that partitions both
time series simultaneously in K segments based on the minimization of the
following cost function J(K):
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248 in which K is the number of changepoints, dividing the time series in K+1

2as  segments, [ is the penalty function, here restrained such that at most 60 change-
226 points are found per cow-day, because otherwise the number of changepoints
27 would equal the number of data points as this minimizes the total cost. As
248 adding changepoints in general lowers the cost function, it is normal that the
220 number of changepoints found is equal to the maximum set beforehand. Because
250 the variability in the data was high and thereby unpredictable, a mathematical
251 penalty function for restricting the number of changepoints detected could not
2 be found. zy, is the r*h z or CD value in segment k. Besides in 'number’,
263 also a restriction was set to the minimum distance between two changepoints:
2sa  they needed to be at least 300 measurements apart (i.e. the lying or non-lying
255 duration was at least 5 minutes). Other data-based algorithms (i.e., using vari-
2se  ability and expected minimal cost reduction) have been explored, but because
257 of the heteroscedastic nature of the data, could not be used for this study. The
258 changepoint search algorithm used is based on a pruned exact linear time algo-
250 rithm using dynamic programming, as proposed by Killick et al. [16], having
20 the advantage that it is mathematically exact and has a linear computational
261 cost with the number of data points.

262 3.0 Data Split

263 To evaluate the performance of the classification algorithm, its performance was
2ea  evaluated using two different data splits, one based on time and one based on
26s  cow identity. For both, we chose to use a smaller portion of the data for training
266 than for testing (approximately 33-66%), unlike what is usual in machine learn-
267 ing practices. However, we preferred this data split as (1) the method described
268 here is very robust, so a minimal amount of training data sufficed to achieve
260 accurate predictions and adding more data did not improve the accuracy, and
270 (2) this situation mimics an on-farm situation where little training data is avail-
>nn able. The first data split (alike the more classical machine learning approach)
a2 uses data from 10 randomly chosen cows (33%) for the model training, and 20
73 animals (66%) as the independent test set. The second approach corresponds
27a to a situation on farm in which current and historical data are used for training
a7s and the algorithm needs to perform well in a future situation. Here, data of the
27 3 first days of the dataset were assigned to training set, after which classification
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performance was evaluated on the remaining 9 days of data. One cow’s data
only started at day 4, and was therefore not included in this training set as the
animal would not have been present in the training period.

3.6 Segment classification

To move from segments to lying behavior, we classified each segment as ’lying’ or
‘non-lying’ based on its (statistical) properties, including the level and variability
for the normalized data, a categorical variable to indicate whether the cow was
in the slatted flooring area, the length of the segment, the number of outliers, the
gapsize, and the segment range. An overview of these features is given in table
4. The classification was done using a ’bagged’ (i.e., bootstrap-aggregated)
tree algorithm which consistently performed best on our data independently of
input data and split. As opposed to individual decision trees (which tend to
over fit), bagged trees combine (i.e., use an ensemble) the results of many trees,
improving generalization. The algorithm uses a random subset of predictors
at each decision split (similar to random forest classification) and minimizes
the classification error at each split. The model was trained with 5-fold cross-
validation to determine the optimal hyper parameters for the number of learning
cycles (i.e., 30) and trees. For the bootstrapping, each time one segment was
sampled with replacement to grow a new tree. As in some cases a ’true’ change
happened within a segment, a threshold of 50% was applied to calculate the
binary outcome variable: if more the 50% of the segment’s data corresponded
to a lying bout, it’s ground truth was taken as ’lying’ and vice versa. The
features were selected such that there was no multicollinearity across them.

3.7 Performance evaluation

Two aspects of the methodology are important to achieve a good performance:
(1) the segmentation accuracy, i.e. are the true changes from lying to non-
lying and vice versa accurately detected; and (2) the classification performance
in terms of accuracy per segment and corresponding total lying duration per
cow-day. For the first, we calculated how many of the true changes have a
changepoint associated with them within a window of 5 minutes. Given the
length of the lying bouts, this is considered as an acceptable margin for detec-
tion. When no detected changepoint was associated with the true change, we
assessed potential causes, including e.g., missing data. The second was assessed
using the confusion matrix comparing true and false classifications and the to-
tal accuracy, for the entire dataset as well as at cow and at cow-day level. We
additionally compared the total lying down duration per cow-day in a similar
way.

4 Results

4.1 Data overview

A total of 30 cows, with each having between 4 and 12 days of data available
were included in the study. These cows had parities between 1 and 7, and were
on average 188 (range 119 to 243) days in lactation. An overview of the cow
characteristics is given in table 1.



Table 1: Overview of cow characteristics

Name average std min max
Parity 2.77 1.50 1.00 7.00
Lactation stage  188.16 43.49 119.00 243
Daily milk yield 26.95 6.01 12.68 41
Fat% 4.72 0.45 4.01 5.44
Protein% 3.38 0.23 2.94 4.06
Lactose% 4.49 0.11 4.23 4.68

SCC*1000c/mL  200.08 212.05 24.75 1035

Over the measurement period, in total 2720 lying bouts were detected with
the IceQube sensors. From these, 97 bouts were shorter than 10 minutes. Per
cow, an average number of 90.6+24.4 lying bouts per cow were included, with
an average duration of 85.3+19.8 minutes per bout across cows. Cows had on
average 8.2+1.8 lying bouts per day (range: 4.5 to 11.3) and spent 8.23 hours
lying down in total. The within-bout level and standard deviation of the z time
series, and the standard deviation of the CD across lying and non-lying bouts
are given in table 2. From this, it is clear that statistical properties of the
chosen time series differ across lying and non-lying behavior, which is the basis
of our analysis.

Table 2: Statistical properties of the time-series data across lying and non-lying bouts

lying non-lying

average std min max average std min max

average z 0.71 0.10 0.49 0.89 1.21 0.09 1.06 1.34
std z 0.25 0.05 0.14 0.33 0.32 0.03 0.27 0.40
average znorm 0.28 0.04 0.20 0.36 0.48 0.04 042 0.53
std znorm 0.10 0.02 0.06 0.13 0.13 0.01 0.11 0.16
std CD 0.45 0.10 0.29 0.73 1.68 0.23 123 2.18
std CDnorm 0.04 0.01 0.02 0.06 0.13 0.02 0.10 0.17

4.2 Changepoint detection

Of all 5443 ground truth changes in the dataset, 85.5% had a changepoint
detected within 5 minutes. Per cow-day, this corresponds to 2.3 changes not
identified accurately with the changepoint analysis. From these unidentified
changes, 50.3% were linked to changes at a moment that there were more than
15 minutes of missing values in the surrounding hour, and 62.2% of these 50.3%
were in a segment with at least 20% missing data. Additionally, 23.9% of these
false negatives were within less than 20 minutes from another ground truth
change, and thus associated with a very short segment length (table 3). At
cow level, the performance remained more or less constant, with 14.2% of the
changes not detected within 5 minutes of the ground truth and up to 93%
associated with missing data. It is expected that part of the changes not being
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correctly identified with the changepoint analysis is also due to the ground truth
not being perfect but this can, with the current dataset, not be verified.

Table 3: Overview of correctly and incorrectly detected changepoints corresponding
to lying down or getting up

No. %
Ground truth changes 5443 100
Detected changepoints within 5 minutes of ground truth 4654 85.5

Not detected changepoints within 5 minutes of ground truth 789 14.5
with >15" missing values in surrounding hour 397  50.3
with previous/next changepoint within 20° 189  23.9

4.3 Classification performance for cow identity-based data
split

The first split was based on cow identity, and the training dataset consisted of
7024 segments (35%) from 10 animals, from which 3206 segments represented
non-lying behavior (45.64%). The independent test set contained 13002 seg-
ments. The cross-validation accuracy on the training dataset was 91.7%, and
the overall prediction accuracy of the test set was 92.8%. The confusion matrix
is shown in figure 2. In total, the test set contains 5625 non-lying segments,
from which 5162 were correctly classified, rendering a non-lying classification
accuracy of 91.8%. From the 7377 lying segments in the test set, 6901 were
correctly classified, corresponding to a classification accuracy of 93.5% for the
lying behavior. In terms of lying duration, the total predicted non-lying time
was 2480h, being 115h different from the ground truth non-lying time of 2595h
(percent deviation = 4.4%). The total lying time was estimated as 2327h, which
is 141h less than the actual lying time of 2468h in the test set (difference 5.7%).
Per cow-day, the average classification accuracy at the segment level was
92.8% with a minimum accuracy of 78.7% and a maximum accuracy of 100%
(figure 3, left panel). This corresponded to an average error of 7.1% in the
estimation of lying duration at cow-day level (figure 3, right panel).

4.4 Classification performance for time-based data split

In the second split based on time, 5138 segments were included in the training
dataset of day 0,1 and 2, from 29 cows. The confusion matrix is shown in figure
4. In the training set, 2229 (i.e. 43.4%) segments represented 'non-lying’ behav-
ior. The test set contained 14888 segments from 30 cows. The cross-validation
accuracy on the training set was 92.3%. In the test set, 6102 out of 6602 seg-
ments were correctly classified as non-lying (accuracy 92.4%), whereas 7634 out
of 8286 segments were correctly classified as lying (accuracy 92.1%). The total
predicted non-lying duration over the entire dataset was 2853h, whereas the
ground truth was a non-lying duration of 2980h, giving a difference of 127h
(4.27% over the entire test set). The predicted and ground truth lying duration
in the test set were 2612h and 2830h respectively, corresponding to a deviation
of 217h or 7.7%.

10
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Figure 2: Confusion matrix for the split based on cow identity
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Per cow-day, the average classification accuracy at the segment level was
92.3% with a minimum accuracy of 78.3% and a maximum accuracy of 100%
(figure 5, left panel). This corresponded to an average error of 7.8% in the
estimation of lying duration at cow-day level (figure 5, right panel).

5 Discussion

In this study, a methodology was developed to distinguish lying from non-lying
behavior of dairy cows based on spatial uwb (z,y,z)-positioning data in a freestall
barn, combining a segmentation and classification step. A high segmentation
performance overall was reached, with many of the true changes indeed result-
ing in an alteration of statistical properties and corresponding changepoint in
the selected time series. Previous (unpublished) results showed that a com-
bination of time series, and finding simultaneous changepoints was necessary
to achieve good results, which supports the general idea that more data inte-
gration is needed to achieve good performance in on farm situations in which
data are often noisy and prone to many kinds of errors. This was confirmed
by the fact that mainly data-quality issues related to missing data and atypi-
cal lying behavior (i.e. short lying and non-lying bouts) prevented reaching a
higher performance in the segmentation step. The overall and at cow-day level
classification performance was high, with accuracies above 91% independent of
data split, demonstrating that our methodology is robust and has high practical
value. We evaluated the performance of the methodology based on a data split
that contained most data in the independent test set and not in the training set

11



Figure 3: Prediction accuracy at cow-day level for the split based on cow identity
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to mimic practical on-farm situation. Robustness of the algorithm is demon-
strated by the fact that both the cow identity-based split and the time-based
split performed equally well. Future research can investigate the performance
of the model when using different position-measuring technologies or in other
farm settings and over a longer period of time.

By cross-comparing sensor-based predictions instead of using visual observation,
we could validate the methodology with quite an extensive dataset in contrast to
what is usual when visual observations are used (e.g.,[17]). For example Kok et
al. [18] used a similar approach for validation of the IceQube accelerometers for
lying behavior, comparing the prediction results of two sensors attached to the
same cow. Working with spatial data has proven challenging, and e.g., attempts
to implement data-based penalty functions for restricting the number of change-
points, failed. This is mainly due to the enormous heteroscedasticity in these
data, which depends on multiple factors such as the cow, the time of the day, the
behavior, factors interfering with the sensor system, etc., for which we cannot
account mathematically. Applying purely black-box approaches generally re-
sults in insufficient robustness, interpretability and generalisability [19, 20, 21].
Therefore, introducing expert knowledge in animal monitoring algorithms, for
example for the data-preprocessing steps, remains essential to make them useful
for the end-users. In the current study, expert knowledge was used to pre-process
and impute the data, to decide how to combine the spatial data into time series
of interest for lying behavior and set the number and distance of changepoints.
Other algorithms have been developed to automatically detect lying behavior in
dairy cows, for example using machine vision solutions [12]. The latter study
reported a high sensitivity of 92% as well, but this was not based on lying du-
ration, but on whether there were or weren’t animals lying in a cubicle in a
specific frame, ignoring the longitudinal importance of the data and restricting
its current applicability on farm. Additionally, our algorithm was developed in
a freestall barn without cubicles. In cubicle barns, position of the cows in the
lying places could be considered as a variable as well, which allows tailoring the
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Figure 4: Confusion matrix for the split based on time
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algorithm to different barn circumstances.

In this study, we demonstrated how correct processing of aspecific positioning
data (i.e., the system is not designed as such for lying behavior only) allows
to use one system for multiple purposes, maximizing the value of a single in-
vestment. In a practical setting, the developed methodology shows sufficient
performance for monitoring lying behavior of dairy cows over time. For exam-
ple, the algorithm could be used to create time-series data of lying behavior
(duration, bout length), which can be assessed with additional interpretation
tools such as individual control charts [22, 23]. Combining these at group or
at herd level, for example into time budgets allocated to certain behaviors of
interest, can also indicate cow health and welfare dynamics of the animals [6]
and allows automated monitoring with little manual labor. We believe that our
methodology can be generalized to other sensor data sources as well.

6 Conclusions

In this study, we developed a methodology to predict certain aspects of the
lying behavior of dairy cows from spatial data with the use of time-series seg-
mentation and a subsequent classification algorithm. The methodology relies on
differences in statistical properties across the behavior of interest. The overall
performance, both when considering a cow-based and a time-based data split
to train and evaluate the methodology, was above 92%. Missing data pose the
main challenge to reach even higher accuracies, but this doesn’t necessarily im-
pair the interpretation of the current results and usability of the method in a
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Figure 5: Prediction accuracy at cow-day level for the split based on time
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practical setting. Generalization of the segmentation-classification method to
other behaviors and other sensors was identified as a potential route to improve
on-farm data interpretation for decision support.
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