
 

 

 

AI-Sprint - Artificial Intelligence in Secure PRIvacy-preserving computing coNTinuum, 
has received funding from the European Union’s Horizon 2020 research and innovation 
programme under Grant Agreement no. 101016577. 

 

 

Project Title Artificial Intelligence in Secure PRIvacy-preserving computing coNTinuum 
Project Acronym AI-SPRINT 
Project Number 101016577 
Type of project RIA - Research and Innovation action 
Topics ICT-40-2020 - Cloud Computing: towards a smart cloud computing 

continuum (RIA) 
Starting date of Project 01 January 2021 
Duration of the project  36 months 
Website www.ai-sprint-project.eu/ 
 

D4.1 - Initial Release and Evaluation of the Security Tools 
 

Work Package WP4 | Security Tools 
Task T4.1 Data Security, T4.2 Application Execution Security, T4.3  Network 

Security and T4.4 Patch Management and Secure Boot 
Lead author André Martin (TUD), Giacomo Verticale (POLIMI) 
Contributors André Martin (TUD), Mahshid Mehrabi (TUD), Giacomo Verticale 

(POLIMI), Davide Testoni (POLIMI), Elia Battiston (POLIMI) 
Peer reviewers Danilo Ardagna (POLIMI), Francesc Lordan (BSC) 
Version V1.6 
Due Date 31/12/2021 
Submission Date 24/12/2021 

 

Dissemination Level 

X PU: Public 
 CO: Confidential, only for members of the consortium (including the Commission) 
 EU-RES. Classified Information: RESTREINT UE (Commission Decision 2005/444/EC) 
 EU-CON. Classified Information: CONFIDENTIEL UE (Commission Decision 2005/444/EC) 
 EU-SEC. Classified Information: SECRET UE (Commission Decision 2005/444/EC) 

 
 

 

 

  



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

2                                                                                                                                                      www.ai-sprint-project.eu 

 

Versioning History 
Revision Date Editors Comments 
0.1 10/11/2021 André Martin, 

Mahsid Mehrabi 
ToC definition 

0.2 17/11/2021 André Martin Updated ToC based on feedback 
0.3 26/11/2021 André Martin Added content for federated learning 
0.4 29/11/2021 André Martin Added content for SCONE/Runtime security 
0.5 01/12/2021 André Martin Added content for SCONE CAS, network part 
0.6 02/12/2021 André Martin Added content for performance evaluation 
0.7 03/12/2021 Giacomo Verticale Added content for edge network part 
0.8 06/12/2021 André Martin Complete pass over text - homogenization 
0.9 07/12/2021 André Martin Added last missing content items such as sconify 

image, fixed figure labels and renumbering 
1.0 10/12/2021 Giacomo Verticale Added references to the network security 

mechanisms. Fixed captions 
1.1 13/12/2021 Danilo Ardagna Review of the document 
1.2 14/12/2021 Francesc Lordan 

Gomis 
Review of the document 

1.3 15/12/2021 André Martin Incorporating review feedback 
1.4 16/12/2021 André Martin Incorporating review feedback and adding 

architectural figure 
1.5 17/12/2021 André Martin Adding performance measurements for runtime 

security and finalizing 
1.6 20/12/2021 Giacomo Verticale Incorporating review feedback 

 

Glossary of terms 
Item Description 

AI Artificial Intelligence 
CAS Configuration and Attestation Service 
CRD Custom Resource Definitions 
CRR Custom Resource Records 
CVE Common Vulnerabilities and Exposures 
ECDHE Elliptic--curve Diffie-Hellman Ephemeral 
EWMA Exponential Weighted Moving Average 
GPU Graphics Processing Unit 
MEC Mobile Edge Computing 
MPLS Multi Protocol Label Switching 
OS Operating System 
RAN Radio Access Network 
SR-MPLS Segment Routing for MPLS 
TEE Trusted Execution Environment 
TLS Transport Layer Security 
UPF User Plane Function 
 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

3                                                                                                                                                      www.ai-sprint-project.eu 

 

Keywords 
Artificial Intelligence; Edge Computing; Computing Continuum; Security; Runtime management. 

 

Disclaimer 
This document contains confidential information in the form of the AI-SPRINT project findings, work and 
products and its use is strictly regulated by the AI-SPRINT Consortium Agreement and by Contract no. 
101016577. 

Neither the AI-SPRINT Consortium nor any of its officers, employees or agents shall be responsible, liable in 
negligence, or otherwise however in respect of any inaccuracy or omission herein.  

The contents of this document are the sole responsibility of the AI-SPRINT consortium and can in no way be 
taken to reflect the views of the European Commission and the REA. 

 

 
  



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

4                                                                                                                                                      www.ai-sprint-project.eu 

 

Executive Summary 
 

This document describes the first release and evaluation of the security tools developed by the AI-SPRINT 
project, while the second release and evaluation of the security tools are due at M24. 

The focus of this document is to describe the components involved in this first release, which harden the 
continuous deployment and programming framework runtime developed in WP3 with regards to several 
security related aspects, as well as the results of the preliminary tests on the technologies employed that 
support the design decisions. 

In this document, we first describe an example application, i.e., federated learning, which we will reference 
throughout this document in order to describe the different security tools we developed within AI-SPRINT 
and how they ensure confidentiality as well as integrity in this context. 

Although federated learning provides a certain degree of confidentiality by default, as each party is 
performing the learning only locally on premise and sharing only model parameters with its other 
collaborators, there are still many aspects that require tooling around existing federated learning frameworks 
in order to guarantee the privacy constraints we put forth in the AI-SPRINT project. 

After the introduction of the federated learning example application, we review the threat model we 
consider in AI-SPRINT as well as possible attacks and will refer to them later in the policy definitions that 
application developers and users will use to define their requirements. 

Next, the document describes systematically the different protection goals stemming from the previous 
analysis of threats typically found in the context of AI applications running in cloud environments as well as 
on edge devices. For the policy definitions, which are based on the previously defined protection goals, a 
policy language using YAML file syntax is presented. 

The policy language can be used in two ways, i.e., developers and application users can either define the 
requirements with respect to security either by stating their protection goals or by explicitly selecting the 
protection mechanism that should be enabled when the application is being deployed and run on the 
distributed infrastructure. 

In addition to the previously declared policy description representing the protection goals as well as 
protection mechanisms, we then review how security measures can be fine-tuned using the so-called SCONE 
session language. 

After the introduction of the policy language, the document describes the different security tools we 
implemented within the scope of AI-SPRINT starting from the overall objectives in order to provide 
confidential compute following with a thorough description of components that fulfil these objectives. 

The tools we present range from the so-called SCONE runtime, the cross compiler as well as the sconify tool 
that allows developers to turn native applications into confidential ones. We also present the CHIMA 
framework for deploying network functions, in particular security functions, to programmable switches and 
a blockchain-based mechanism for authorizing access to data collected from devices in the field. 

Finally, a few micro benchmarks are being presented evaluating the performance of various aspects of the 
system. The deliverable concludes with a summary of achievements. 

 

  



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

5                                                                                                                                                      www.ai-sprint-project.eu 

 

Table of Contents  
1. Introduction 7 

1.1 Scope of the document 7 
1.2 Target Audience 7 
1.3 Structure of document 7 

2. Example Application: Federated Learning 8 

3. AI-SPRINT Security Overview 11 

3.1. Threat Model 11 
3.2. Attacks In The Context of AI-SPRINT 11 
3.3. Security Policies Introduction and  Overview 13 
3.4. Policy Definitions 13 
3.5. Fine Grained Policy Definitions 15 
3.6. Policy Server and Architecture 17 

4. First Release of the Security Tools 20 

4.1. Security Tools 21 
4.2. Network Security 35 

5. Performance Evaluation 48 

5.1. Runtime Security 48 
5.2. Network Shield Evaluation 51 
5.3. Evaluation of the CHIMA Framework 55 
5.4. Evaluation of the Blockchain Authentication Mechanism 58 

6. Towards the Integrated framework for the Security Tools 60 

6.1. Integration plan for the Security Tools 60 

7. Summary & Conclusions 62 

References 63 

 

List of Tables 
Table 3.1 - Attacks and security mechanisms to mitigate them 13 
Table 3.2 - Protection Goals / Options 14 
Table 4.1 - Intel SGX SDK vs. SCONE 25 
Table 5.1 - Breakout of redeployment times for different topologies. 95% CI 60 
Table 5.2 - Average time to fetch a smart contract from the blockchain 61 
 

  



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

6                                                                                                                                                      www.ai-sprint-project.eu 

 

List of Figures 
Figure 2.1 - Federated Learning Architecture 9 
Figure 3.1 - Security tools architecture 18 
Figure 3.2 - Security tools architecture - left CLI tools, middle runtime with TEE Hardware support, 
right runtime if no TEE hardware support is available. 

19 

Figure 3.3 - 5G Industrial network comprising a private slice and a public slice, a private MEC, a public 
MEC, and a public cloud. The AI-SPRINT Security Gateway is placed between the UPF and the MEC or 
cloud. 

20 

Figure 4.1 - Program arguments as well as environment variables are provided through CAS 28 
Figure 4.2 - Example who one entity is being authenticated using TLS 28 
Figure 4.3 - Example about how two entities authenticate each other using TLS - mutual 
authentication 

29 

Figure 4.4 - Example of transparent network encryption. Connections are terminated inside the 
enclaves 

29 

Figure 4.5 - SCONE file system shield - left volume that is encrypted, an integrity protected but not 
encrypted volume (middle), right no protection at all 

30 

Figure 4.6 - Control flow of transparent encryption system operations 38 
Figure 4.7 - Architectural domains of the blockchain-based authentication, authorization and access 
control mechanism 

42 

Figure 4.8 - User authentication 44 
Figure 4.9 - Authorization of a user query 45 
Figure 4.10 - An heterogeneous service chain addressing both P4 programmable switches and Docker 
containers. 

47 

Figure 4.11 - The components of the CHIMA framework. 48 
Figure 4.12 - Usage of SR-MPLS in CHIMA. 49 
Figure 5.1 - The attestation and keys transferring latency comparison between TensorFlow with the 
traditional way using IAS. 

51 

Figure 5.2 - Comparison between TensorFlow, native versions and the state-of-the-art Graphene 
system in terms of latency with different model sizes, (a) Densenet (42MB), (b) Inception_v3 (91MB), 
and (c) Inception_v4 (163MB). 

52 

Figure 5.3 - The effect of file system shield on the classification latency with different model sizes, (a) 
Densenet (42MB), (b) Inception_v3 (91MB), and (c) Inception_v4 (163MB). 

53 

Figure 5.4 - General evaluation benchmark setup 54 
Figure 5.5 - Network Shield latency/throughput development for native and unshielded SCONE 
HTTP(S) configurations: nginx, 64 KiB payload, hw mode. 

56 

Figure 5.6 - Network Shield latency/throughput development for unprotected, protected and TLS-
over-TLS unwrapped HTTPS configurations: nginx, 64 KiB payload, hw mode. 

57 

Figure 5.7 - Topologies used to evaluate the redeployment times.  
Figure 5.8 - Delay in the detection of an exceeded requirement with different intervals for the polling 
of new measurements from the INT collector. The bars indicate the 95% confidence interval 

58 

Figure 5.9 - Delay in the detection of an exceeded requirement with different coefficients for the 
computation of the EWMA on link measurements. The bars indicate 95% confidence intervals. 

59 

Figure 6.1 - Milestones for components development 63 
 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

7                                                                                                                                                      www.ai-sprint-project.eu 

 

1. Introduction 
1.1 Scope of the document 
The aim of the AI-SPRINT “Artificial intelligence in Secure PRIvacy-preserving computing coNTinuum” project 
is to develop a platform composed of design and runtime management tools to seamlessly design, partition 
and operate Artificial Intelligence (AI) applications among the current plethora of cloud-based solutions and 
AI-based sensor devices (i.e., devices with intelligence and data processing capabilities), providing resource 
efficiency, performance, data privacy, and security guarantees.  This document describes the various security 
tools that ensure confidentiality as well as integrity for services running on the AI-SPRINT plattform. 

 

1.2 Target Audience 
The release and evaluation of the security tools document (first and second) are intended for internal use, 
although it is publicly available. The target audience is the AI-SPRINT technical team including all partners 
involved in the delivery of work packages 2, 3 and 4 but also it serves as reference for the developers of the 
three use cases of the project. 

 

1.3 Structure of document 
This document includes three main parts: 

● An introduction into the federated example application, which will be used throughout the document 
as a running example in order to demonstrate the various security related features we are developing 
within AI-SPRINT. 

● The AI-SPRINT Security Overview provides a summary about potential threats and attacks in the 
context of AI applications as well as presents a policy definition which consists of protection goals as 
well as protection mechanisms in order to address the previously analyzed threats.  

● The First Release of the Security Tools section provides details about the technological components 
involved and how they have been evolved in order to support the security requirements. The section 
is subdivided in runtime security as well as network security addressing different layers of the AI-
SPRINT architecture. 

● In the Conclusion section, we summarize our contributions and outline the ongoing and future work. 

 

  



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

8                                                                                                                                                      www.ai-sprint-project.eu 

 

2. Example Application: Federated Learning 
In this section, we will briefly describe an example application that we will use throughout this document to 
describe the security tools we have implemented within the scope of WP4 for AI-SPRINT. As an example, we 
chose Federated Learning as it demonstrates how multiple parties collaboratively work together without 
having to trust each other as well as using infrastructures such as cloud environments and edge devices which 
are under a third party administrative domain that cannot be trusted. Furthermore, it utilizes AI techniques 
and therefore it is well suited as a demonstrator in the context of AI-SPRINT. 

Federated Learning [12] is an emerging machine learning technique which allows participating clients to 
collaboratively train a joint global machine learning model without sharing their local training data. Federated 
Learning reduces privacy risks for the local training data which may be highly sensitive relating to personal 
finances, political views, health, etc. Thus, it has been widely used in the industry since it helps companies to 
comply with regulations on issues regarding the way in which personal data is handled and processed such 
as EU’s General Data Protection Regulation (GDPR) [28]. 

The core idea of Federated Learning is that each client trains a local model, rather than sharing training data 
to a centralized training system which is deployed in an untrusted environment, e.g., a public cloud. For each 
iteration, the clients send their local training parameters (i.e., local computed gradients) to the central system 
to train a global model which takes benefits from all local training data from clients. Typically, the central 
system aggregates the local training gradients from the clients and sends the aggregated gradients back to 
them. This training process is repeated until it converges or the global model reaches a certain desired 
accuracy. 

An example of Federated Learning in real-life deployment is that several hospitals collaborate to develop a 
shared machine learning model based on their patient data to detect a disease at an early stage. Each hospital 
processes its data locally, shares the local gradients with the central training system, and receives the global 
gradients in each iteration. 

While promising at first glance, the Federated Learning paradigm suffers several vulnerabilities:  

1. An attacker with privileged/root accesses can easily obtain the training models. The attacker can also 
compromise the privacy of individuals in the training data by inferring it from parameters of the 
global model [1]. Therefore, the training models need to be protected at rest, in transit, and in use.  

2. A large number of malicious clients may collude with each other to reveal local data and local models 
of the remaining clients [18].  

3. Malicious clients can tamper their local training data or parameters updates forwarded to the central 
training system to corrupt the global model [8, 29]. 

4. The attacker compromises the sensor on the field and provides tampered data to the client. 

To handle the issues (1) and (2), state-of-the-art solutions rely on a privacy-preserving mechanism such as 
differential privacy or secure multiparty computation (MPC). The disadvantage of the differential privacy 
mechanism is that it reduces the performance of the global training model regarding utility or accuracy. 
Meanwhile, the solutions based on secure multiparty computation incur significant overhead [14, 15]. To 
cope with issue (3), several Byzantine-robust federated learning mechanisms have been proposed [5, 6, 8, 
29]. The core idea behind these mechanisms is to reduce the impact of statistical outliers during model 
updates in the federated learning system. However, recent works [5, 8, 29] show that the mitigation of the 
impact is still not enough to protect the utility of the global model. The malicious clients can still affect the 
accuracy of the global model trained by a Byzantine robust mechanism by carefully tampering with their 
model parameters sent to the central training system [7]. 

In AI-SPRINT, we overcome these limitations by building a confidential federated learning system using TEEs, 
e.g., Intel SGX. Trusted Execution Environment (TEE) technologies, such as Intel Software Guard eXtensions 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

9                                                                                                                                                      www.ai-sprint-project.eu 

 

(SGX) have gained much attention in the industry [9, 11, Signh2021] as well as in academia [3, 4, 5, 13, 15, 
16, 19, 20, 21, 22, 25, 27]. To ensure confidentiality and integrity of applications, TEEs execute their code and 
data inside an encrypted memory region called enclave. Adversaries with privileged access cannot read or 
interfere with the memory region and only the processor can decrypt and execute the application inside an 
enclave. In addition, TEEs such as Intel SGX also provide a mechanism for users to verify that the TEE is 
genuine and that an adversary did not alter their application running inside TEE enclaves. The verification 
process is called Remote Attestation [Costan2016] and allows users to establish trust in their application 
running inside an enclave on a remote host. 

We leverage TEEs to handle issue (1), by providing end-to-end encryption. Also, our solution encrypts input 
training data and code (e.g., Python code) and performs all training computations including local training and 
global training inside TEE enclaves. The secure federated learning enables all gradients updates via Transport 
Layer Security (TLS) connections between the enclave of clients and the enclaves of the central training 
computation. Thus attackers with privileged accesses cannot violate the integrity and confidentiality of the 
input training data, code, and models. We also ensure the freshness of the input training data, models, and, 
by applying an advanced asynchronous monotonic counter service [17].  

We tackle issues (2) and (3) by developing a Security Policy Manager component called CAS (Configuration 
and Attestation Service) based on the remote attestation mechanism supported by TEEs [10, 24]. The 
component ensures the integrity of input data and training code, i.e., it makes sure that training 
computations are running with correct code, correct input data and not modified by anyone, e.g., an attacker 
or malicious client. This component also monitors and attests to the compliance of participated clients with 
the pre-defined agreement before collaborating to train the global machine learning model. In addition, it 
can clone the global training computation and randomly take a sample of clients for the training computation. 
This helps to detect outliers regarding the utility which helps to solve issue (3). Our preliminary evaluation 
shows that we can ensure the confidentiality and integrity of federated learning computations while 
maintaining the same utility/accuracy of the training computations. To handle issue (4) we provide the 
blockchain-based authentication and authorization mechanism, which decouples the local client from the 
device in the field, allowing access to the device only to authorized entities and reducing the risk of an 
attacker compromising the sensor. 

 

 
Figure 2.1 - Federated Learning Architecture 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

10                                                                                                                                                      www.ai-sprint-project.eu 

 

Figure 2.1 shows the architecture of the federated learning application in AI-SPRINT. The main goal of our 
hardened version is not only to ensure the confidentiality, integrity and freshness of input data, code, and 
machine learning models but also to enable multiple clients (who do not necessarily trust each other) to get 
the benefits of collaborative training without revealing their local training data. In the confidential setup, 
each client performs the local training also inside TEE enclaves to make sure that no one tampers with the 
input data or training code during the computations. To govern and coordinate the collaborative machine 
learning training computation among clients, we design a trusted management component, called 
Configuration and Attestation Service which maintains security policies based on the agreement among all 
clients to define the access control over global training computation, the global training model, also the code 
and input data used for local training at each client. The Configuration and Attestation Service automatically 
and transparently performs remote attestation to make sure the local computations are running the correct 
code, correct input data, and on correct platforms as the agreement. It only allows clients to participate in 
the global training after successfully performing the remote attestation process. It also conducts the remote 
attestation on the enclaves that execute the global training in a cloud, to ensure that no one at the cloud 
provider side modifies the global training aggregation computation. In addition to remote attestation, it 
encrypts the training code, and the Configuration and Attestation Service only provides the key to decrypt it 
inside enclaves after the remote attestation. Secrets including keys for encryption/decryption in each policy 
are generated by the Configuration and Attestation Service also running inside Intel SGX enclaves and cannot 
be seen by any human or client. Examples of the policies can be found in [10][26]. 

After receiving the agreed security policies from clients, the Configuration and Attestation Service strictly 
enforces them. It only passes secrets and configuration to applications (i.e., training computations), after 
attesting them. The training computations are executed inside Intel SGX enclaves and associated with policies 
provided and pre-agreed by clients. The training computations are identified by a secure hash and the 
content of the files (input data) they can access. Secrets can be passed to applications as command-line 
arguments, environment variables, or can be injected into files. The files can contain environment variables 
referring to the names of secrets defined in the security policy. The variables are transparently replaced by 
the value of the secret when an application that is permitted to access the secrets reads the file. 

We design the Configuration and Attestation Service in a way that we can delegate the management of it to 
an untrusted party, e.g., a cloud provider, while clients can still trust that their security policies for protecting 
their properties are safely maintained and well protected. In the confidential version of the federated 
learning application, clients can attest to the Configuration and Attestation Service component, i.e., they can 
verify that it runs the expected unmodified code, in a correct platform before uploading security policies. 

We implemented the federated learning prototype using Intel OpenFL [23] - a distributed federated machine 
learning framework. We ran the local and global training computations inside SGX enclaves using SCONE 
[Arnatov2016] - a shielded execution framework to enable unmodified applications to run inside SGX 
enclaves. In the SCONE platform, the source code of an application is recompiled against a modified standard 
C library (SCONE libc) to facilitate the execution of system calls. The address space of the application stays 
within an enclave. In our prototype, the input training data and code are encrypted using the file system 
shield of SCONE, and then decrypted and processed inside SGX enclaves which cannot be accessed even by 
strong attackers with root access. We rely on our previous works [10, 28] to implement the Configuration 
and Attestation Service. 

  



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

11                                                                                                                                                      www.ai-sprint-project.eu 

 

3. AI-SPRINT Security Overview  
In the following, we define the threat model we consider for AI-SPRINT which we will then use to derive 
requirements from as well as to define security policies which are applied for the different stakeholders in 
AI-SPRINT. Besides the security policies, which are high level definition and requirements originating from 
the users, we then introduce the session language used to provide more finegraned configuration options. 
After the introduction of the policies, the architecture of the different components working with those 
policies is being presented. 

3.1. Threat Model  
Edge Computing Systems and Mobile Edge Computing Systems (MEC) systems comprise various resources, 
which are shared among different applications and – in the case of public MECs – users. Therefore, it is 
possible that a compromised device spreads malicious traffic to fingerprint or access resources of other users. 
Given that Edge Computing is a relatively new technology, security mechanisms are less established and 
understood. In addition, in multi-tenant MECs, interactions can cause conflicts in network configurations [2]. 

For the threat model, we assume a potentially malicious environment in which privileged processes such as 
the operating system have full control over system call arguments and their results. In such a compromised 
system, an attacker can not only modify the system data but can also eavesdrop on system activities. Apart 
from that, we assume that access to the hardware is strictly regulated and that an adversary cannot mount 
physical attacks on the otherwise trusted CPU. However, we assume that a malicious privileged software may 
be installed by an attacker with administrator rights. 

In addition, we consider the scenarios of malicious field nodes trying to access other users’ resources and 
malicious remote nodes trying to access data from field IoT devices. The first scenario includes legitimate, 
but compromised, nodes trying to access resources and applications in the edge node or in the cloud for 
which they are not authorized. In the second scenario, an external attacker tries to access data generated by 
devices in the field or even take control of the devices. Also in this scenario, the attacker can be authorized 
to access some data but wants to access data or perform actions for which they have no authorization. 

3.2. Attacks In The Context of AI-SPRINT 
Considering the above listed threats, a malicious user can drive the following attacks in the context of AI 
applications: In order to gain access to sensitive data that is used for training purposes such as radiomics 
imaging data, etc., an infrastructure administrator with root privileges can simply copy the locally stored files 
out of the running VM image. Although this attack can be prevented by using end-to-end encryption, i.e., 
encrypting the files beforehand, the Python processes running the training software such as Pytorch, 
TensorFlow, etc., need to access this data, i.e., require access to the private key used to encrypt the data at 
rest. An attacker can therefore create a memory dump of these processes in order to reveal the key and 
perform the en/decryption him-/herself. 

It is also worth noting that training data is a precious resource that can be monetized and conveyed to 
multiple entities also in real-time directly from the edge. As a variation of the above attack, an external 
malicious user can attempt to access data from the field devices exploiting their low complexity and lack of 
support for fine-grained access control policies. In AI-SPRINT, we tackle this attack by means of a Data 
Provider node, which intermediates any exchange between the devices and the users. The Data Provider uses 
a blockchain-based mechanism to manage fine-grained access policies.  

Besides gaining access to confidential data, another attack vector is the maliciously introduction of wrong 
information in order to tamper training results. This can be achieved by a malicious user by pretending to be 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

12                                                                                                                                                      www.ai-sprint-project.eu 

 

a legitimate collaborator if we consider federated learning. Although this attack seems to be not that easy at 
first as it requires access to certificates as well as keys in order to pass the mutual authentication when 
establishing TCP connections between the collaborator as well as the aggregator, such keys as well as 
certificates can be easily retrieved as described previously. 

Another way of tampering training results is through the modification of the training code itself. This type of 
attack can be prevented through the use of integrity protection mechanisms at the file system level such that 
the code is signed beforehand. 

Another type of attacks are so called rollback attacks: For these attacks, a malicious user provides the 
software with an older version of either the training data or the trained model such that, e.g., classifiers do 
not correctly detect/recognize certain items anymore. This requires, as before, access to the file system as 
well as the capability to stop processes and resume them which is easily achievable by administrators with 
root privileges and hypervisor access. 

We also consider the scenario of lateral movement, in which an attacker, after compromising a legitimate 
node, tries to access additional resources. AI-SPRINT tackles this attack by using the ability of 5G networks to 
authenticate devices and using micro-segmentation.  

 

  



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

13                                                                                                                                                      www.ai-sprint-project.eu 

 

3.3. Security Policies Introduction and  Overview 
Security policies in AI-SPRINT define what level of protection the application user and developer desires for 
their application in order to mitigate the previously described attacks. 

In order to define those policies, we will now list the several attacks and what mechanism mitigates them: 

Attack Mechanism 
● Memory dumps, i.e., stealing secrets and data 

temporarily stored in RAM (confidentiality 
protection for data being processed) 

● Modifications of data structures stored in 
RAM (integrity protection for data being 
processed) 

● Integrity protection for application 

Trusted Execution Environment (TEE) 

● Rollback to old data (rollback protection for 
data at rest) 

Monotonic Counter (MC) 

● Reading & modifying input data for training as 
well as training models (confidentiality 
protection & integrity protection for data at 
rest) 

File system protection shield (FSPS) 

● Reading data exchanged over network during 
training (confidentiality protection & 
integrity protection for data in transit) 

Network protection shield (NPS) 

● Reading & modifying or forging input data for 
training as well as training models 
(confidentiality protection & integrity 
protection, lateral movement, tampering 
with training results for data at rest) 

5G device authentication 

● Reading input data for training as well as 
training models (confidentiality protection for 
data at rest). Reading input data for 
predictions (confidentiality protection for 
data in transit) 

Blockchain-based authentication and 
authorization 

Table 3.1 - Attacks and security mechanisms to mitigate them. 

3.4. Policy Definitions 
In AI-SPRINT, application developers and users can describe their constraints with regards to security policies 
in two ways: Either they choose the attacks they want their application to be protected against as called 
protection goals, or they choose the concrete mechanisms that should be enabled while the application is 
running. In the first case, the policy server will infer what mechanisms need to be enabled in order to achieve 
the desired protection goal expressed by developers as code annotations (see AI-SPRINT deliverable D2.1 
First release and evaluation of the AI-SPRINT design tools, Section 4.4) while, in the second case, the 
protection mechanisms are enabled as chosen by the application developer or user. 

We will now lists the different protections goals that can be chosen by application users or developers and 
their mappings to the respective mechanism provided by the security tools of AI-SPRINT: 

 

 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

14                                                                                                                                                      www.ai-sprint-project.eu 

 

Protection Mechanisms 
Confidentiality for data being processed 
confProc 

Trusted Execution Environment (TEE) or, if not 
available, secure and measured boot 

Integrity for data being processed 
integrityProc 

Trusted Execution Environment (TEE) or, if not 
available, secure and measured boot 

Confidentiality for data at rest 
confRest 

File system protection shield (encrypted volumes) 

Integrity for data at rest 
integrityRest 

File system protection shield (integrity protected 
volumes) 

Confidentiality for data at transit 
confTrans 

Network protection shield (NPS) 

Integrity for data at transit 
integrityTrans 

Network protection shield (NPS) 

Rollback protection 
rollback 

Monotonic Counter (MC) 

Authentication of 5G devices 
authentication 

5G device authentication 

Data access policy 
dataAccess 

Blockchain-based authentication and data access 
control 

Table 3.2 - Protection Goals / Options 

In case the nodes do not provide TEE support such as when using accelerators like GPUs, secure and 
measured boot will be used in order to provide a minimum of security. Secure boot ensures that the BIOS 
configuration is current with regards to the devices the operating system, etc. is booted from while measure 
boot ensures that the operating system is booted correctly by exhibiting signatures for each step during the 
booting processes that can be attested afterwards. 

 

In case the application user or developer is familiar with the mechanism, he or she can also directly specify 
which protection mechanisms should be enabled instead. It is also possible to specify both, i.e., a protection 
mechanism as well as a protection goal. The system will then create an intersection between the chosen 
protection goals and their mappings as well as the explicitly specified protection mechanisms. 

The following definition is an example where an application developer used protection goals as well as 
protection mechanisms to specify his needs from the security tools: 

 

confRest: true 
integrityTrans: true 
rollback: true 
tee: true 

 

As shown in the example above, the user chose as a protection goal to provide confidentiality for the data at 
rest, integrity protection for data exchanged between processes and services, as well as rollback protection. 
Furthermore, he opted that the processes should run within a trusted execution environment. 

Based on the above definitions and protection goals, the application will utilize the file system shield to 
provide confidentiality for all files created, read and written by the application as well as network shield to 
cover the integrity protection goal for data at transit. Furthermore, the processes will also run a TEE as 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

15                                                                                                                                                      www.ai-sprint-project.eu 

 

explicitly specified in the description providing confidentiality as well as integrity protection for data being 
processed although this was not explicitly specified as a protection goal by the user. 

3.5. Fine Grained Policy Definitions 
The previously defined policy definitions can be considered as high-level definitions. Hence, they describe 
the protection goals for an entire application which comprises a set of processes and services. However, it is 
often possible that low-level adjustments are needed such as that not all directories should be encrypted and 
integrity protected due to performance reasons. Another reason is that several protection mechanisms 
cannot be automatically inferred. For example, two services of an application should perform mutual 
authentication using TLS. In order to make this work, it is necessary to define what port a certain service is 
listening on and from what other service that service is granting connections/accesses to.  

Take as an example the federated learning use case. In federated learning, a single aggregator process 
performs communication with a set of collaborator processes. In order to prevent tampering with the 
gradients exchanged during the learning phase, only authenticated collaborator processes are allowed to join 
the federation, i.e., only after a successful TLS handshake as well as authentication by presenting the proper 
certificates. This requires a fine grained configuration of the different entities, i.e., collaborator processes as 
well as the aggregator processes. We therefore merge high-level policy definitions with fine-grained ones in 
order to establish the correct properties. 

We will now present the low level policy definition provided by the different security tools developed within 
AI-SPRINT. The policy definition is carried out as a so-called session language used to create session 
descriptions that entail all security-relevant details of an application. 

An AI application of AI-SPRINT can consist of one or more session descriptions. Each session description 
defines a set of 

● services that are part of the application, 
● secrets that are securely stored and passed to the services, 
● images that define which regions of a container (image) are encrypted or authenticated, 
● volumes which are like Docker volumes but encrypted, and 
● access policy that defines who can read or modify the session description. 

The session language is a subset of YAML, i.e., a session description is valid YAML. It is similar to, and takes 
its bearing from, docker-compose files. As a session description is typically stored in a file, we use session file 
as a somewhat interchangeable synonym for session description. We use the terms session description and 
session policy (or just policy) interchangeably. 

name: $AGGREGATOR_SESSION 
version: "0.3" 
 
access_policy: 
  read: 
   - CREATOR 
  update: 
   - CREATOR 
 
services: 
  - name: aggregator 
    image_name: aggregator_image 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

16                                                                                                                                                      www.ai-sprint-project.eu 

 

    command: /usr/bin/python /root/miniconda/bin/fx aggregator start 
    mrenclaves: ["$MRENCLAVE"] 
    pwd: /workspace-demo 
    environment: 
     PWD: /workspace-demo 
     SCONE_PWD: /workspace-demo 
 
images: 
  - name: aggregator_image 
    injection_files: 
       - path: /workspace-demo/cert/cert_chain.crt 
         content: $$SCONE::aggregator_ca_cert.chain$$ 
       - path: /workspace-demo/cert/server/agg_aggregator.crt 
         content: $$SCONE::aggregator.crt$$ 
       - path: /workspace-demo/cert/server/agg_aggregator.key 
         content: $$SCONE::aggregator.key$$ 
       - path: /workspace-demo/cert/client/col_col1.crt 
         content: $$SCONE::collaborator1_cert.crt$$ 
       - path: /workspace-demo/cert/client/col_col1.key 
         content: $$SCONE::collaborator1_cert.key$$ 
       - path: /workspace-demo/cert/client/col_col2.crt 
         content: $$SCONE::collaborator2_cert.crt$$ 
       - path: /workspace-demo/cert/client/col_col2.key 
         content: $$SCONE::collaborator2_cert.key$$ 
 
secrets: 
  - name: aggregator_key 
    kind: private-key 
  - name: aggregator 
    kind: x509 
    private_key: aggregator_key 
    issuer: aggregator_ca_cert 
    common_name: aggregator 
  - name: aggregator_ca_key 
    kind: private-key 
  - name: aggregator_ca_cert 
    kind: x509-ca 
    private_key: aggregator_ca_key 
    export: 
    - session: $COLLABORATOR1_SESSION 
    - session: $COLLABORATOR2_SESSION 
  - name: collaborator1_key 
    kind: private-key 
    export: 
    - session: $COLLABORATOR1_SESSION 
  - name: collaborator1_cert 
    kind: x509 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

17                                                                                                                                                      www.ai-sprint-project.eu 

 

    issuer: aggregator_ca_cert 
    private_key: collaborator1_key 
    common_name: col1 
    export: 
    - session: $COLLABORATOR1_SESSION 
  - name: collaborator2_key 
    kind: private-key 
    export: 
    - session: $COLLABORATOR2_SESSION 
  - name: collaborator2_cert 
    kind: x509 
    issuer: aggregator_ca_cert 
    private_key: collaborator2_key 
    common_name: col2 
    export: 
    - session: $COLLABORATOR2_SESSION 
 
security: 
  attestation: 
    #mode: None 
    tolerate: [debug-mode, hyperthreading, outdated-tcb] 
    ignore_advisories: "*" 

Listing 3.1 - Policy Session Example for Federated Learning 

The above description shows how the security tools are configured in order to generate and inject the 
certificates and keys necessary in order to perform mutual authentication using TLS. Furthermore, it defines 
the process that should be executed as well as runtime parameters such as the working directory. The 
generated secrets are defined in the secrets section of the policy file while in the injection_files section of 
this configuration the paths to the different files for the injected secrets are defined.  

The above example is taken from the configuration file of the federated learning prototype. The example 
shows how the certificate for a certificate authority is being created (aggregator_ca_cert) and how it is used 
to sign certificates created for two collaborators (collaborator1_cert, collaborator2_cert) and one aggregator 
(aggregator_ca_cert). In addition to the certificates, also the private keys are made accessible to inside of the 
Docker containers through the SCONE runtime so that the Intel OpenFL implementation can use them to 
perform a mutual authentication itself. 

3.6. Policy Server and Architecture 
Figure 3.1 shows the full architecture comprising the security tools developed in AI-SPRINT. The architecture 
comprises three segments. The leftmost part is a SCONE-enabled data center, i.e., a data center that is 
equipped with the proper hardware and drivers, that can run Sconified images, and that provides a 
Configuration and Attestation Service (CAS). We will assume that it is managed by Kubernetes. If present, the 
blockchain-enabled data provider service is sconified and executed in this segment. Additionally, the 
sconified services communicate with one another using SCONE’s Network Shield service. 

An architecture view of the various components of the SCONE-enabled data center is provided in Figure 3.2. 
On the left side, the tools are listed needed to convert a non-confidential application into a confidential one 
using SCONE cross compiler or the SCONE sconify tool. In the middle, the components are displayed which 
are involved at runtime of an application if the provided hardware support the execution of an application in 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

18                                                                                                                                                      www.ai-sprint-project.eu 

 

TEEs. If no such hardware support is available, the mechanisms such as secure boot as well as measured boot 
will provide a minimum level of security, hence, these mechanisms are utilized. 

The second segment is between the data center’s ingress node and the 5G network. This segment is 
responsible for isolating the traffic to and from the devices and blocking lateral movement between devices 
and tenants. The 5G authentication component will be implemented in the second release of the tools and 
will use the authentication mechanisms provided by the 5G network  to configure the isolation mechanisms 
between the 5G network and the Sconified components, where the traffic is protected by the Network Shield. 
The 5G authentication component will be a Network Function running over the CHIMA framework, which is 
also released as part of the AI-SPRINT tools. The CHIMA application has the function of easing scalable 
deployment of Network Functions on high-performance programmable switches, adding performance 
monitoring capabilities, and automatic redeployment of Network Functions in case of performance issues. 
The CHIMA framework can manage multiple authentication functions and can be programmed to use other 
authentication mechanisms if a 5G network is not present.  

A policy server takes care of pushing security configurations both to the SCONE-enabled Data Center and to 
the CHIMA-enabled Network.  

Finally, the 5G network takes care of authenticating the devices and of moving traffic between the Edge Data 
Center and the devices. A more detailed architecture of the 5G network is provided in Figure 3.3. 

 

 

 
Figure 3.1 - Security tools architecture 

The high-level policy definitions described in the previous section will be stored as CRR (custom resource 
records) using CRD (custom resource definitions) in the Kubernetes cluster the application user intends to 
deploy his/her application on. The use of CRD follows the cloud native approach and is the state of the art 
for deployments of modern applications. Note that, the policy session language for CAS is stored in a CAS 
instance rather than in the etcd server of the Kubernetes cluster. 

Besides storing the records in the Kubernetes cluster, we will develop a Kubernetes operator to perform the 
necessary configuration steps needed to deploy an AI application in a confidential manner. The steps the 
Kubernetes operator will perform are the following: 

● Watches for new deployments using the event bus provided in Kubernetes 
● Matches labels and annotations if an application is covered by the policy definitions 
● Sconifies the Docker images, i.e., turns a native Docker image into a confidential one 
● Extracts and converts program arguments and environment variables 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

19                                                                                                                                                      www.ai-sprint-project.eu 

 

● Parses images and Python code for annotations and fine-grained security constraints 
● Generates SCONE sessions and submits them to CAS 
● After the deployment of pods, IP addresses will be propagated to the server instance configuring the 

edge network flows for the protection of collaborating edge devices 

Note that the Kubernetes operator will be based largely on the Kubernetes helm post rendered we will 
present later in this document (see Section 4.1). 

 
Figure 3.2 - Security tools architecture - left CLI tools, middle runtime with TEE Hardware support, right runtime if no TEE hardware 

support is available 

The 5G technology is especially attractive for the AI-SPRINT project, because it makes it possible to provide 
seamless management of various deployments of the Mobile Edge Computing (MEC) resources. 5G also 
provides sophisticated authentication and security mechanisms that can be exploited to improve the security 
of applications operating across multiple layers. There is also a growing interest in private 5G deployments, 
particularly in the industrial context, to use the 5G technology and the 5G radio interface to communicate to 
Industrial IoT devices. Some countries have also licensed spectra for industrial usage to push the transition 
to the fully digital Industry 4.0 paradigm. 

Private 5G networks can be physically isolated, or they can share resources with a public 5G network 
operator. In the context of AI-SPRINT, we consider a deployment scenario in which the Radio Access Network 
(RAN) and the Control Plane are shared between the private and the public network (see Figure 3.3). In this 
scenario, the telecommunications operator manages all the 5G control plane operations and operates two 
(or more) slices. The private slice comprises a portion of the radio spectrum, an on-premises User Plane 
Function (UPF), an on-premises MEC node and the corresponding computing and networking resources. The 
public slice comprises a portion of the spectrum, the public UPFs, the public MEC nodes with the 
corresponding resources, and the exit interface to the Public Data Network and the central cloud services. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

20                                                                                                                                                      www.ai-sprint-project.eu 

 

 

Figure 3.3 - 5G Industrial network comprising a private slice and a public slice, a private MEC, a public MEC, and a public cloud. The 
AI-SPRINT Security Gateway is placed between the UPF and the MEC or cloud 

4. First Release of the Security Tools 
This section describes the components of the runtime environment according to the Software Design 
Specification (SDS) standard (IEEE Standard 1016). Each component is described in terms of its external 
interfaces and dependencies with other components. In particular, this section focuses exclusively on the 
components employed as security tools within the runtime environment.  

The section starts with a description of the runtime, followed by the CAS, the configuration and attestation 
service. Next, several CLI tools are presented necessary to turn a native application into a confidential one. 
Each of those components is thoroughly discussed. 

Template description of components 

The following template is used as the structure to provide the information for each component involved in 
the runtime environment. The template is included here to make this document self-contained. A similar 
description is also reported in AI-SPRINT deliverables D3.1 First release and evaluation of the runtime 
environment, and D4.1 Initial release and evaluation of the security tools. 

Identification The unique name for the component and its location in the system 

Type A module, a subprogram, a data file, a control procedure, a class, etc. 

Purpose Function and performance requirements implemented by the design component, 
including derived requirements. Derived requirements are not explicitly stated in the 
SRS, but are implied or adjunct to formally stated SDS requirements. 

Function What the component does, the transformation process, the specific inputs that are 
processed, the algorithms that are used, the outputs that are produced, where the 
data items are stored, and which data items are modified. 

High level 
Architecture 

The internal structure of the component, its constituents, and the functional 
requirements satisfied by each part. 

Dependencies How the component's function and performance relate to other components. How this 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

21                                                                                                                                                      www.ai-sprint-project.eu 

 

component is used by other components. The other components that use this 
component. Interaction details such as timing, interaction conditions (such as order of 
execution and data sharing), and responsibility for creation, duplication, use, storage, 
and elimination of components. 

Interfaces Detailed descriptions of all external and internal interfaces as well as of any 
mechanisms for communicating through messages, parameters, or common data 
areas. All error messages and error codes should be identified. All screen formats, 
interactive messages, and other user interface components (originally defined in the 
SRS) should be given here. 

Data For the data internal to the component, describe the representation method, initial 
values, use, semantics, and format. This information will probably be recorded in the 
data dictionary. 

Needed 
improvement 

Description of the needed improvements of this tool with regards the AI-SPRINT 
project, in order to fulfil the user requirements and to build the runtime environment 

Implemented 
Improvements 
for the First 
Release 

A description of the implemented improvements in the service to achieve the first 
release of the runtime environment. 

Release Version 
& Repository  

The software version released and the repository from where it can be downloaded. 

 
4.1. Security Tools 
The security tools provide several security and protection mechanisms to guarantee confidentiality, integrity 
as well as freshness for AI application in the context of AI-SPRINT. 

Runtime Security 
In this section, we will present the different security tools we implemented in order to run applications in a 
secure fashion. In order to achieve this, we follow the confidential computing paradigm which focuses on 
the protection of applications. Hence, we require that the mechanisms we implement protect the 
application's: 

1. Confidentiality, i.e., no other entity, like a root user, can read the data, the code, or the secrets of the 
application in memory, on disk or on the network, 

2. Integrity, i.e., no other entity, like the hypervisor, can modify the data, or at least any modifications are 
detected in the memory, on disk or on the network, and 

3. Consistency, i.e., the application always reads the value that was written last - both in memory as well 
as on disk and on the network. 

AI applications such as federated learning often consist of multiple services or processes that communicate 
via the network with each other. These services are often deployed with the help of containers. Hence, our 
focus is on confidential, containerized applications as well as deployments on the edge such that we can 
provide confidentiality for all these instances ranging from cloud to edge. The runtime security furthermore 
targets the mitigation of the threats listed in the previous chapter and we refer the reader to Table 3.1 listing 
in which way the different mechanisms cover the identified threats. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

22                                                                                                                                                      www.ai-sprint-project.eu 

 

Hardware Support 
Currently, there are two classes of hardware support for confidential computing available. The current 
mechanisms can be classified as follows: 

● one can encrypt a VM (Virtual Machine) in which the application is executing, and 
● one can encrypt each individual service, i.e., process inside of an enclave 

One has to be careful regarding the security guarantees because the use of an encrypted VM does not 
necessarily mean that a root user of the host does not have access to the VM. For example, in current AMD 
CPUs without Secure Nested Pages (SNP), the hypervisor could break the confidentiality and integrity of an 
application1. Also, the consistency of memory pages is not protected by AMD CPUs, i.e., one could replace a 
memory page by an older version: this would properly encrypt data but would break consistency. However, 
in Intel SGX enclaves, it is guaranteed that applications always read the most recent data that was written. 
Hence, it is important to review the different guarantees each CPU vendor provides with regards to the 
desired properties when applying the confidential compute paradigm. 

In the following, we will put a focus on enclaves such as those provided through Intel SGX. However, we will 
also discuss our future extension to support vendors other than Intel CPUs such as AMD, ARM etc. 

Encrypted VMs vs. Enclaves 
When running applications in untrusted environments such as public clouds, there are usually multiple 
stakeholders involved. This includes: 

● a host admin that maintains the host OS (operating system) 
● a container/service admin that takes care of the services and the containers. 

In the context of an AI application, an encrypted VM would be used to represent, e.g., a worker node 
performing training or inference. The trusted computing base would not only include the AI application itself 
but we would also need to trust: 

● the operating system and the OS admin and 
● the container/service admin. 

One approach is to execute each container/process in a separate encrypted VM. This would reduce the size 
of the trusted computing base (TCB) since the host admin would not be part of the trusted computing base 
anymore. However, the container/service admin and the operating system within the VM and its OS admin 
would still be part of the TCB. 

In contrast to VMs, enclaves permit us to reduce the size of the trusted computing base to the 
application/process itself: we can remove all admins and all code outside of the application from the trusted 
computing base. Note that our approach will help to protect the files of an AI application and also the network 
if needed, i.e., a service admin will only see encrypted files and will not know any application secrets. 

Isolation and Cooperation 
The advantage of the enclave-based approach is that one can protect services from each other. A service has 
only access to its own enclave and to its files but not to the data/files of other enclaves. 

 
1 https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-
more.pdf  



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

23                                                                                                                                                      www.ai-sprint-project.eu 

 

Using encrypted VMs, one would need to run each service in a separate VM with its own operating system - 
which increases the TCB as explained above. This would also increase the resource usage since each container 
would come with its own operating system which is also impractical in the context of edge devices and their 
limiting processing capacity. 

With the help of CAS, which we will explain more in detail later in this document, services of an application 
can cooperate and implicitly attest each other via TLS: a service can only establish a TLS connection with 
another service of the application if that service executes inside of an enclave, its code was not modified and 
the filesystem is in the correct state. This is an important property as it ensures that only trusted collaborator 
nodes in federated learning can establish connections to the aggregator node and vice versa. 

One of the arguments of using encrypted VMs (instead of enclaves) is that it simplifies the protection of 
existing applications. In reality, this is of course not that simple since a user 

● has to encrypt files of the VM, 
● one has to ensure that the VM learns the filesystem encryption key but only if neither the operating 

system nor the application was not modified and it is executed in an encrypted VM, 
● one has to ensure that the service in the different VMs do attest each other, and 
● one has to provision secrets etc 

Using the enclave based approach, it is possible to transform existing container images into confidential 
container images in a single step (as we will explain in the Sconify section below). The SCONE framework we 
propose provides furthermore a policy language that permits to define on how to provision secrets and how 
to attest applications, i.e., addresses all these issues using a simple, YAML-based policy shown previously. 

SCONE Overview 
In order to use Intel SGX, programmers need to download and install the Intel SGX SDK and extend their 
application to use the new instructions. In its original design, the framework creators only envisioned the use 
of Intel SGX for secret generation, i.e., that only a single function runs within an enclave without any further 
communication to the untrusted outside world. However, running an entire process in an enclave imposes 
the following challenges: 

4. An application running in an enclave cannot perform any system calls such as writing/reading to/from 
files or a network socket, etc. If a system call needs to be executed, the enclave execution must be first 
paused, the system call is then executed and the application resumed afterwards inside the enclave. This 
imposes a huge overhead as applications performing hundreds of system calls per second are constantly 
paused and resumed. 

5. Applications must be instrumented in order to run in an enclave which comprises allocation of enclave 
memory, loading program as well as data code into the enclave memory and launching. This is a 
cumbersome task as it requires modifications of all existing applications. 

In order to avoid these cumbersome tasks, we propose SCONE, a framework that transforms applications in 
confidential applications without any developer’s effort. 

In a nutshell, SCONE consists of a cross compiler which adds all the necessary instrumentation as well as 
starter code etc. to let the process run in a Intel SGX enclave. 

The following tables lists the advantages of SCONE compared to the use of the Intel SGX SDK. 

 

 

 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

24                                                                                                                                                      www.ai-sprint-project.eu 

 

Features Intel SGX SDK SCONE Platform 
Local Attestation (LA): Startup 
times 

Slow Efficient startup/attestation 

SLA: Scheduling - SLA-based scheduling 
SLA: Efficiency Many enclave exits Reduced enclave exits 
Security: CVEs CVE handling by application CVEs addressed by platform 
Security: policy No policy support Advanced-policy support 
Security: platform - Integrated OS and Application 

Security 
Security: Side-channel No protection Side-channel protection 
Monitoring: SLA - SLA-based monitoring 
Monitoring: SGX - SGX-resources and scheduling 
Encryption at rest / in transit Source code changes required No source code changes 
Encryption at use Source code changes required No source code changes 
Attestation Explicit code required Automatic by SCONE 
Key Provisioning Explicit code required Automatic by SCONE 
CI/CD Integration - Modern IDE (Visual Code) 
Languages C/C++ Most modern languages (C/C++, 

Python, Rust, Java, Nodejs, R, ...) 
Portability Intel SGX-specific (eventually other CPUs) 
TCO Higher Lower 

Table 4.1 - Intel SGX SDK vs. SCONE 

In the following, we will present the different SCONE subcomponents, starting with the runtime which will 
be added to the binaries through the cross compiler. We then also present the Sconify tool which automates 
many steps such as the cross compilation in order to convert a non-confidential application into a confidential 
one. The section concludes with the CAS, the Configuration and Attestation service which is a service that is 
used in order to attest services running in enclaves as well as to perform secret provisioning. 

SCONE Runtime 

Identification SCONE Runtime (SCONE) 

Type A service that runs alongside the application. 

Purpose The SCONE runtime ensures that an application runs in a trusted execution 
environment. It performs preparation as well as attestation of code and data to run in 
an enclave. 

Function The runtime manages the complete deployment of an executable/process in a so-
called enclave and performs the following tasks: 

● creation/allocation of enclave memory 
● loading program code and data into enclave memory 
● performing attestation, i.e., creating measurement over code and data and 

verifying if this is correct 
● performing configuration of the application 
● provisioning secrets 
● providing network as well as file system encryption/shielding 

High level The following image describes the high-level architecture of the SCONE Runtime, 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

25                                                                                                                                                      www.ai-sprint-project.eu 

 

Architecture including external dependencies. 

 
The SCONE runtime runs alongside with the actual process, hence it has some start 
code to first allocate enclave memory, load the application code and data into the 
enclave and then connects to CAS (the Configuration and Attestation Service) in order 
to verify if the hash consisting of application code and data matches the expected 
measurement (MREnclave). It furthermore provisions the application with 
configuration files as well as secrets such as certificates and keys. 

Dependencies The SCONE runtime requires access to CAS (the Configuration and Attestation Service) 
in order to perform attestation as well as secret provisioning. 

Interfaces The SCONE runtime provides three modes of execution. HW, where the process runs 
in a TEE and will abort if the hardware support is not given, SW mode which can be 
used for simulation purposes or if only features like network and file system encryption 
are needed. The AUTO mode refers to the mode where the executable will leverage 
TEE support if available but will run in simulation mode rather than aborting the 
process execution. The mode is controlled through environment parameters when the 
application/process is being launched. 

Data The SCONE runtime uses SCONE policies as well as Environment variables to configure 
the application correctly. 

Needed 
improvement 

Support for CPU vendors other than Intel such that the component can run also on 
edge devices such as ARM. This will be achieved through compilation using the SCONE 
Cross compiler which will be also implicitly used by the SCONE Sconify CLI Tool. 

Implemented 
Improvements 
for the First 
Release 

The first release of the SCONE runtime regarding AI-SPRINT includes the following 
improvements: 

● Created first draft/implementation of the network shielding layer 
● Improved performance with regards to system call behavior 
● Integration with latest version of CAS 

Release Version 
& Repository  

The first release version of the SCONE runtime for AI-SPRINT can be downloaded from 
the Docker registry: https://registry.scontain.com:5050/  

 

The objective of SCONE is to build and run applications in a confidential environment with the help of Intel 
SGX (Software Guard eXtensions). Although the first AI-SPRINT prototype is limited to Intel SGX, we plan to 
extend the support to CPU vendors other than Intel within the AI-SPRINT project. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

26                                                                                                                                                      www.ai-sprint-project.eu 

 

In a nutshell, our objective is to run applications such that data is always encrypted, i.e., all data at rest, all 
data on the wire as well as all data in main memory is encrypted. Even the program code can be encrypted 
such as the Python code files typically used for AI-based applications. SCONE helps to protect data, 
computations and code against attackers with root access. 

The aim of SCONE is to make it as easy as possible to secure existing applications such as TensorFlow, 
Pytorch, etc. typically used in the machine learning domain. Hence, switching to SCONE is simple as 
applications do not need to be modified. SCONE supports the most popular programming languages like 
JavaScript, Python - including PyPy, Java, Rust, Go, C, and C++ but also ancient languages such as Fortran. 
Avoiding source code changes helps to ensure that applications can later run on different trusted execution 
environments. Moreover, there is no risk for hardware lock-in nor software lock-in - even into SCONE itself. 

SCONE provides applications with secrets in a secure fashion. This is typically a problem if one wants to run 
TensorFlow and configures an AI application to encrypt its resulting model stored locally. To do so, the Python 
code requires a key to decrypt and encrypt its files. This key can be stored in the Python file itself or some 
configuration file but this configuration file cannot be encrypted since Python would need a key to decrypt 
the file. SCONE helps developers to solve such configuration issues in the following ways: 

● secure configuration files  - SCONE can transparently decrypt encrypted configuration files, i.e., 
without the need to modify the application. It will give access to the plain text only to a given 
program, like Python. No source code changes are needed for this to work. 
 

● secure environment variables - SCONE gives applications access to environment variables that are 
not visible to anybody else - even users with root access or the operating system. This is an 
important feature when considering the Python example from above. The user can pass passwords 
via environment variables like MODEL_PASSWORD to the Python process. We need to protect 
these environment variables to prevent unauthorized access to the secret and the model encrypted 
by this secret. 
 

● secure command line arguments - Some applications might not use environment variables but 
command line arguments to pass secrets to the application. SCONE provides a secure way to pass 
arguments to an application without other privileged parties, like the operating system, being able 
to see the arguments as shown in Figure 4.1. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

27                                                                                                                                                      www.ai-sprint-project.eu 

 

 

Figure 4.1 - Program arguments as well as environment variables are provided through CAS 

SCONE verifies that the correct code is running before passing any configuration info to the application. To 
ensure this, SCONE provides a local attestation and configuration service: this service provides only the code 
with the correct signature (MrEnclave) with its secrets: certificates, arguments, environment variables and 
keys. It also provides the application with a certificate that shows that the application runs inside an enclave 
as depicted in Figure 4.2. Note that, this can be done completely transparently to the application, i.e., no 
application source code changes are required: the encrypted certificate can be stored in the file system where 
the application expects its certificates. Note that, for debugging and development purposes, an end user can 
run code inside of enclaves without attestation. 

 

Figure 4.2 - Example who one entity is being authenticated using TLS 

Two applications can ensure that they run inside enclaves via TLS authentication. In this way, we can ensure 
that the client certificate and the server certificate was issued by the SCONE CAS, i.e., both communication 
partners run inside of enclaves and have the expected MrEnclave as shown in Figure 4.3. We leverage this 
feature in federated learning to attest if collaborators are legitimate to communicate with aggregators and 
vice versa. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

28                                                                                                                                                      www.ai-sprint-project.eu 

 

 
Figure 4.3 - Example about how two entities authenticate each other using TLS - mutual authentication 

An adversary with root access can read the memory content of any process. In this way, an adversary can 
gain access to keys that an application is using, for example, the keys to protect its data at rest such as the 
patient data used in the federated learning example. SCONE helps to protect the main memory: 

● no access by adversaries - even those who have root access, 
● no access by the operating system - even if compromised, 
● no access by the hypervisor - even if compromised,  
● no access by the cloud provider, and 
● no access by evil maids - despite having physical access to the host. 

In order to provide full protection, it is necessary that encryption keys are protected as well. However, in 
many installations, one does not want humans to be able to see these encryption keys. Hence, one can 
generate keys and stores in SCONE CAS. SCONE also supports the integration with keystores like Vault. SCONE 
can run Vault inside of an enclave to protect Vaults secrets in main memory. 

For those applications, e.g., memcached or Zookeeper that do not support TLS out of the box, SCONE can 
transparently add TLS encryption to TCP connections, i.e., the connections are terminated inside of the 
enclave. In this way, the plain text is never seen by the operating system or any adversary as shown in Figure 
4.4. Note that one should not use an external process for TLS termination such as stunnel. 

 
Figure 4.4 - Example of transparent network encryption. Connections are terminated inside the enclaves 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

29                                                                                                                                                      www.ai-sprint-project.eu 

 

SCONE furthermore protects the integrity and confidentiality of files via transparent file protection. This 
protection does not require any source code changes. A file can either be integrity-protected only (i.e., the 
file is stored in plain text but modifications are detected) or confidentiality- and integrity-protected (i.e., the 
file is encrypted and modifications are detected) as shown in Figure 4.5. 

 
Figure 4.5 - SCONE file system shield - left volume that is encrypted, an integrity protected but not encrypted volume (middle), right 

no protection at all 

 

SCONE Cross Compiler 

Identification SCONE Cross Compiler 

Type A CLI tool that compiles source code into a confidential application 

Purpose The SCONE cross compiler allows application developers to compile application source 
code such that the resulting binary contains additional instructions to leverage TEEs 
such as Intel SGX. Besides the additional instructions, it also adds the starter code 
needed to copy application code and data into the enclave memory as well as 
launching the enclave. 

Function The cross compiler performs compilation of source code - several languages are 
supported as to date: 

● C 
● C++ 
● Fortran 
● Go 
● Rust 
● Python* 

*The python interpreter is written in C hence, it is compiled with SCONE's C cross 
compiler. Then we use the file system protection shield to protect the python code 
itself with regards to confidentiality as well as integrity. Hence, there is no cross 
compiler for Python. However, the sconify tool performs those two steps, i.e., 
performing the cross compilation as well as creating the volumes including the 
encryption of the python source files such that everything is protected. 

High level 
Architecture 

The cross compiler is a CLI tool, hence it does not interact with other services. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

30                                                                                                                                                      www.ai-sprint-project.eu 

 

Dependencies The cross compiler is packaged as a Docker image, hence all dependencies are included 
in the Docker image. However, currently the cross compiler supports only compilation 
of applications that depend on musl or glibc as libc implementation. 

Interfaces The cross compiler is launched like a regular compiler on the command line. 

Data No date required. 

Needed 
improvement 

As a next step, we plan to integrate support for other CPU vendors such as ARM. The 
analysis of our current code base reveals that several functions were written in 
Assembly which must be ported to ARM. An alternative is to replace those code parts 
with less performant implementation based on C where applicable. Furthermore, the 
build pipeline must be adjusted. 

Implemented 
Improvements 
for the First 
Release 

The first release of the SCONE cross compiler regarding AI-SPRINT includes the 
following improvements: Go support for codebases which cannot be compiled with 
gccgo natively. Note that Go support is needed in AI-SPRINT to harden the monitoring 
system described in Deliverable D3.2 - First release and evaluation of the monitoring 
system. 

Release Version 
& Repository  

The first release version of the SCONE cross compiler for AI-SPRINT can be downloaded 
from the Docker registry: https://registry.scontain.com:5050/  

 

SCONE supports running applications written in common programming languages inside of Intel SGX enclaves 
without source code changes. These languages include compiled languages like C, Rust, C++, GO, and Fortran 
and interpreted / just-in-time languages like Python and Java. 

For compiled languages, our recommend approach to run an application with SCONE is as follows: 

● Use of precompiled binary: For many common applications like nginx and memcached, we already 
support a curated image image on registry.scontain.com. 

● Cross-compile: developers can cross-compile applications with the help of the SCONE cross-
compilers 

● No Cross-Compilation: users can run native Alpine-Linux applications inside of enclaves without 
recompilation. 

While SCONE supports the execution of programs without recompilations for Alpine Linux, the 
recommended approach is to always cross-compile: In order to benefit from SCONE’s functionality, the 
interface to the operating system needs to be replaced, i.e., libc. Hence, this requires not only to provide the 
same version of libc but also to ensure that all bits are represented in the same way as in the native libc. This 
is difficult to achieve and better left to the compiler. For stability, the recommended approach is to cross-
compile as the compiler checks that all the dependencies have the matching versions, all data types are bit 
compatible and includes the correct libraries statically in the binary. In this way, an application will have a 
unique and known MrEnclave. 

 

 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

31                                                                                                                                                      www.ai-sprint-project.eu 

 

SCONE Sconify Tool 

Identification SCONE Sconify Tool 

Type A CLI tool that turns a native Docker image into a confidential image that uses the 
SCONE runtime 

Purpose The SCONE sconify tool modifies existing Docker images in such a way that the 
applications/processes launched inside the container/image will utilize the SCONE 
runtime, i.e., can run in enclaves and hence benefit from TEE support. 

Function The sconify tool  re-links the SCONE libc. However, several constraints must be first 
met which the tool tries to do automatically: 

● all executables must be compiled with the PIE option (position independent 
code) 

● original images must be either musl or glibc-based 
● language support is enforced by the tool: C, C++, Python, Java, Go and Node.js 
● Go support is currently limited to binaries compiled with gcc-go (this must be 

detected as well) 
● for Node.js, the tool replaces the Node.js interpreter with the one of the 

SCONE curated Node.js (for other interpreter, such as Python, we sconify the 
original interpreter) 

Additional steps the tool performs: 

● It determines which libs the application relies on. Since the tool is built with 
dlopen=1, sconify has a few default places it includes automatically, such as 
/usr/lib, /lib, etc. 

● Encryption of the file system, i.e. for every file needed by the application - 
automatic detection of shared dependencies in order to copy them over 

Last step - Manifest generation: 

● generation of Dockerfiles for the target image  
● generation of SCONE policies and submitting them to an attested CAS 
● generation of helm charts for the application 

High level 
Architecture 

The sconify tool is a CLI tool, hence it does not interact with other services. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

32                                                                                                                                                      www.ai-sprint-project.eu 

 

 

Dependencies The sconify tool is packaged as a Docker image, hence all dependencies are included in 
the Docker image.  

Interfaces The sconify tool is launched like a regular CLI tool on the command line. 

Data No data required. 

Needed 
improvement 

Extend support for Go-compiled programs and libc implementations other than GLibc 
and musl. 

Implemented 
Improvements 
for the First 
Release 

The tool did not exist before and was developed within the AI-SPRINT project. 

Release Version 
& Repository  

The first release version of the sconify tool for AI-SPRINT can be downloaded from the 
Docker registry: https://registry.scontain.com:5050/2  

 
SCONE CAS (Configuration & Attestation Service) 

Identification SCONE CAS (CAS) 

Type A service that provides remote attestation as well as configuration and secret 
provisioning for confidential applications. 

Purpose The SCONE CAS can be envisioned as a database and REST-based service that contains 
secrets as well as provides several services such as code attestation and secret 
provisioning. 

Function The CAS performs the following tasks: 
● code attestation - local or remote 
● configuration provisioning 
● management of SCONE policies 
● perform configuration of the target application 

 
2 This requires registration at https://gitlab.scontain.com in order to obtain a token for accessing the non-public docker 
registry. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

33                                                                                                                                                      www.ai-sprint-project.eu 

 

● provision secrets 
● configure network as well as file system encryption/shielding 

High level 
Architecture 

The following image describes the high-level architecture of the SCONE Runtime as well 
as the interaction of CAS. Note that the SCONE runtime is weaved into the binary code 
of the microserver/application. 
 

 
CAS (the Configuration and Attestation Service) will be contacted by an application 
during the launch procedure in order to verify if the hash consisting of application code 
and data matches the expected measurement (MREnclave). It furthermore provisions 
the application with configuration files as well as secrets such as certificates and keys. 

Dependencies CAS (the Configuration and Attestation Service) needs to be able to establish a 
connection to the Intel Attestation Service (IAS) in order to verify its own legitimacy.  

Interfaces CAS provides a restful interface (REST) for the management of SCONE sessions, i.e., the 
configuration of applications. 

Data CAS uses SCONE policies/sessions provided in YAML syntax. 

Needed 
improvement 

Recompilation/redistribution with ARM, etc. support once the SCONE cross compiler 
supports it. 

Implemented 
Improvements 
for the First 
Release 

The first release of the SCONE CAS regarding AI-SPRINT includes the integration with 
the latest version of the SCONE runtime. 

Release Version 
& Repository  

The first release version of the SCONE runtime for AI-SPRINT can be downloaded from 
the Docker registry: https://registry.scontain.com:5050/  

 
In the following, we will provide more details about SCONE CAS’ functionality as well as its guarantees it 
provides with regards to security. First we quickly present the purpose of CAS followed by the different 
functionalities such as key generation and management, and access control. 

SCONE CAS manages the secrets - in particular, the keys - of an application. The application is in complete 
control of the secrets: only services given explicit permission by the application's policy get access to keys, 
encrypted data, encrypted code and policies. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

34                                                                                                                                                      www.ai-sprint-project.eu 

 

Key generation. SCONE CAS can generate keys on behalf of an application. The generation is performed inside 
of a trusted execution environment. Access to keys is controlled by a security policy controlled by the 
application. Neither root users nor SCONE CAS admins can access the keys nor the security policies. So far, 
SCONE CAS runs inside of SGX enclaves. 

Isolation. Users can run their own instances of SCONE CAS, i.e., one can isolate the secrets of different users 
and the secrets of different applications. 

Secure key and configuration provisioning without the need to change the source code of applications: 
secrets, keys, and configuration parameters are securely provisioned via command line arguments, 
environment variables and via transparently encrypted files. 

Access control. To modify or read a policy, a client needs to prove, via TLS, that it knows the private key 
belonging to a public key specified in the policy. SCONE CAS grants - without any exception - only such clients 
access to this policy. The client's access to a private key is typically also controlled by a policy - possibly, even 
the same policy. Note that, only after a successful attestation, a client can get access to its private keys. 

Management. The management of SCONE CAS can be delegated to a third party. The confidentiality and 
integrity of the policies and their secrets are ensured by CAS itself. Since the entity creating a policy has 
complete control over who can read or modify this policy, no admin managing the CAS can overwrite the 
application's access control to a policy. 

Encrypted Code. One can create images with encrypted Python code or Java or JavaScript or C# or any other 
JIT or interpreted code on a trusted host. Alternatively, this code could als be generated inside of an enclave. 
One can transparently attest and decrypt the code inside of an enclave. This can be done without the need 
to change the Python engine or the Java etc. virtual machine. Note that, SCONE CAS attests both the Python 
engine as well as the Python code. 

  



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

35                                                                                                                                                      www.ai-sprint-project.eu 

 

4.2. Network Security 
In order to guarantee confidentiality of the data processed in AI-SPRINT, it is of paramount importance to 
encrypt all communications channels. Traditionally end-to-end encryption is used where both parties 
exchange keys to verify their identities as well as use a previously agreed encryption scheme for the 
subsequent communication. One way to achieve such end-to-end encryption is the widely known TLS 
protocol which allows to perform mutual authentication in addition to secure communication. 

Unfortunately TLS support requires that the application developer uses the proper libraries as well as 
performs the proper configuration in order to establish the proper communication with encrypted channels. 
However, a huge number of applications do not support encrypted endpoints out of the box. For instance, 
the popular caching server memcached does not provide TLS endpoints, hence, all communication is 
unencrypted. 

Several solutions exist to mitigate this problem. First, one can improve the implementation by adding the 
appropriate libraries such as OpenSSL etc. in order to harden the communication or use third party tools. For 
the third party tools, utilities such as stunnel can be used which essentially is a process that provides TLS 
termination, hence acts as a TLS endpoint that forwards the decrypted traffic to the previously plaintext 
socket. 

Considering the cloud context, an alternative to the tools described previously such as stunnel is service 
meshes. Service meshes such as istio3 are overlay networks used in orchestration layers such as Kubernetes 
which also provide encryption in a similar fashion as when using VPNs. Although it does not require any code 
modifications from the developers side, there are several disadvantages: First, the application does not 
benefit from a full end-to-end encryption. It solely provides protection from malicious users outside of the 
overlay network. Furthermore, so-called inside attackers, i.e., malicious services inside of the network can 
still read and capture the plaintext network. 

A complementary solution to service meshes is network encryption provided by wireless network 
infrastructure such as 5G. The advantage of this approach is that edge devices such as wearables, etc. used 
in the context of AI-SPRINT can benefit from encrypted communications although they are operating outside 
of a cloud environment, hence, where they cannot benefit from mechanisms such as service meshes. 

An alternative to the previously described mechanism is the use of transparent network encryption as offered 
by the network shield by our SCONE framework. 

In the following, we will detail the two approaches we have developed in the context of AI-SPRINT to harden 
network connections. First we will present our network shield provided by SCONE followed by the secure 
mechanisms provided through wireless infrastructure such as 5G we incorporated in AI-SPRINT (Blockchain-
based Authentication and Authorization Mechanism and the CHIMA framework). 

 

Identification SCONE Network shield 

Type Functionality provided by the SCONE Runtime 

Purpose The SCONE network shield intercepts all system calls used to read or write data on a 
TCP socket such that all transmitted data will be transparently encrypted or decrypted. 

Function The network shield performs the following tasks: 
● intercepting connection attempts to perform mutual authentication 

 
3 https://istio.io  



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

36                                                                                                                                                      www.ai-sprint-project.eu 

 

● encryption of written/sent data  
● decryption of read/received data 

High level 
Architecture 

The network shield is part of the SCONE runtime. 

Dependencies The network shield requires access to CAS (the Configuration and Attestation Service) 
in order to receive certificates to perform the mutual authentication. 

Interfaces - 

Data The network shield will use SCONE policies in the near future for its configuration. 
Currently it uses environment variables to configure the network shield correctly. 

Needed 
improvement 

Support for CPU vendors other than Intel such that the component can run also on 
edge devices that for instance are based on an arm64 architecture. This will be 
achieved through compilation of the service using the SCONE Cross compiler which will 
be also implicitly used by the SCONE sconify CLI Tool. 

Implemented 
Improvements 
for the First 
Release 

This is the first release of the SCONE network shield which includes the following basic 
features: 

● Mutual authentication through TLS handshake 
● Encryption of data 
● Decryption of data 

Release Version 
& Repository  

The first release version of the SCONE networkshield for AI-SPRINT can be downloaded 
from the Docker registry as part of the SCONE runtime: 
https://registry.scontain.com:5050/  

 

SCONE Network Shield 
Trusted execution environment (TEE) technologies such as Intel SGX achieve confidentiality and integrity of 
data processed by applications running in otherwise untrusted environments, for example public clouds. 
Frameworks like SCONE facilitate running container-based services in these TEEs. Most services, however, do 
not provide the means to enable secure network communication or authenticate clients or remote services 
with respect to software identity. 

In this section, we will briefly present the network shield, a software layer integrated into the SCONE runtime, 
to (a) transparently apply end-to-end encryption to connections established by protected services, preserving 
confidentiality and integrity of data on the network, (b) mutually authenticate endpoints while taking remote 
attestation into account to ensure that they run an unmodified software in a secure environment, and (c) 
filter connections according to user-supplied communication authorization rules to prevent leaking data to 
unauthorized entities. 

Our design and implementation is based on standard protocols such as TLS, which we integrate by 
intercepting and reprocessing I/O system calls issued by the service application. We furthermore provide a 
X.509 v3 public key infrastructure to couple authentication with the software attestation and secret 
provisioning capabilities of the Configuration and Attestation Service (CAS) and we plan to extend the CAS’ 
configuration interface to allow granting network access permissions on the basis of individual ports, 
including the ability to authorize communication with external services or legacy clients. For applications 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

37                                                                                                                                                      www.ai-sprint-project.eu 

 

such as nginx or Apache httpd, our implementation based on mbedtls4 achieves 76% to 100% of the 
throughput of application-provided TLS for persistent connections at a very small latency increase. 

Most protected application services running inside an enclave will need to securely exchange data with other 
services in order to operate. We propose a system revolving around transparent encryption to ensure the 
confidentiality and integrity of a service’s network communication, while simultaneously enforcing 
controlled access by mutually authenticating authorized remote services. 

The transparent encryption system will be implemented as part of the SCONE runtime. An overview of the 
system’s control flow is shown in Figure 4.6. 

 
Figure 4.6 - Control flow of transparent encryption system operations 

 

(1) The runtime’s configuration is provisioned by CAS - currently through environment variables. This includes 
an initial configuration phase and subsequent, periodic updates. The configuration contains information that 
allows the service to identify itself to remote services, that determine the mode of operation (protected, 
unprotected, opportunistic or refuse based on network addresses of either local or remote peer and 
information to authenticate authorized remote services). 

(2) System calls related to network communication issued by the runtime-enabled application running inside 
the enclave (subsequently referred to as “protected application” or just “application”) will be intercepted 
using the SCONE runtime’s capabilities before they are handled by the kernel. 

(3) The arguments of intercepted system calls will be preprocessed, without imposing additional 
requirements on the protected application. The Network Shield is API-preserving and thread-safe, as the 
system call interface must always be thread-safe. Preprocessing may involve access control mechanisms or 
payload encryption. It may use previously received configuration entries. 

 
4 https://github.com/ARMmbed/mbedtls  



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

38                                                                                                                                                      www.ai-sprint-project.eu 

 

(4a) If preprocessing succeeds, the system call will be forwarded with modified arguments to the untrusted 
OS kernel. 

(4b) If preprocessing fails, the system call will be rejected instead. System calls whose arguments pose a risk 
of leaking confidential information or are incompatible with the system’s implementation are subject to 
rejection. 

(5) The OS kernel will (potentially asynchronously) exchange data with the network based on the previously 
issued system calls. 

(6) The kernel propagates the system call result back to the SCONE runtime. 

(7) The received result will be post-processed. This may involve validation or payload decryption. Post-
processing may also use the runtime’s configuration. 

(8) The postprocessed system call result or rejection error code from (4b) is propagated back to the protected 
application. 

Now that we have established how the network shield’s transparent encryption system is able to process 
system calls, we can use this as a building block to define how socket-based communication can be protected. 

To achieve our data confidentiality and integrity goals, we require an authenticated encryption scheme. 
Additionally, service enclaves must authenticate each other to prevent any unauthorized accesses. For this 
purpose, we use TLS, which offers a standardized and well-researched protocol solution for both problems. 
We utilize its X.509v3 certificate support for mutual authentication.  

Once a protected server application opens a listening socket, the network shield will transparently start a TLS 
server in its place. When a client connects, a TLS handshake will be performed to authenticate the client and 
setup an encrypted session. Connections from unauthorized clients will be terminated immediately, prior to 
being able to interface with the protected application. Data sent by the server to authorized clients will be 
encrypted as part of the preprocessing before being forwarded to the untrusted OS kernel, and data received 
will be decrypted before being provided to the application. A client socket will behave similarly, starting a 
TLS client which connects to the remote TLS server instead. 

This approach works well for sockets of stream- and connection-oriented network protocols such as TCP, but 
it is not applicable to sockets of message-oriented connectionless protocols like UDP. While our primary focus 
lies on TCP as the network protocol most commonly used in service interactions, we propose a modified 
version of the shield for the second use case, using DTLS in place of TLS and grouping sent and received 
messages into virtual connections protected by a single DTLS session based on network address and timing 
information. 

TLS session configuration shall follow cryptography best practices, such as using strong, non-deprecated 
cipher suites with a security level of at least 128 bit, providing forward secrecy by the use of Elliptic--curve 
Diffie-Hellman Ephemeral (ECDHE) key exchanges and disabling features known to cause adverse effects on 
security (such as TLS compression or insecure renegotiation). 

 

 

 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

39                                                                                                                                                      www.ai-sprint-project.eu 

 

Networks Security Mechanism at the Edge 

The AI-SPRINT Blockchain-based Authentication and Authorization Mechanism at the 
Edge 

Identification AI-SPRINT Blockchain-based Authentication 

Type A set of microservices and a smart contracts 

Purpose The Data Provider collects data from IoT devices. When a user wants access to the data, 
it triggers a smart contract indicating the scope of the access. If the data owner 
authorizes access, the access policy is stored on the blockchain. 

Function The Data Provider performs the following tasks: 
● collect data from IoT devices and write them to a database and send them to 

authorized subscribers 
● answer queries for historical data, verifying the authorization 
● enable the streaming or real time data, verifying the authorization 

The Smart contract performs the following tasks: 
● collect requests for authorization (possibly with in-chain payments) 
● store authorized policies 

High level 
Architecture 

 
The architectural domains of the blockchain-based authentication, authorization and 
access control mechanism. The core component is the Data Provider, which collects 
data from the IoT Domain, receives the queries from the Users and verifies them 
against the policies stored in the blockchain.  

Dependencies The component requires read access to the Ethereum blockchain (or a blockchain 
compatible with Ethereum). 
The user and the data owner need write access to the blockchain. 

Interfaces ● Interface to the IoT domain (any protocol compatible with RabbitMQ) 
● Interface to the blockchain 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

40                                                                                                                                                      www.ai-sprint-project.eu 

 

● Interface to the user (HTTP for queries, UDP for streaming) 

Data ● Historical data collected from the field 
● Policies stored in smart contracts on the blockchain 

Needed 
improvement 

This is a novel component which has been fully developed in the context of AI-SPRINT. 

Implemented 
Improvements 
for the First 
Release 

The first release is a working prototype. 

Release Version 
& Repository  

https://gitlab.polimi.it/ai-sprint/BlockchainAuthIoT 

 

Edge computing is particularly relevant for the businesses that operate IoT devices and Industrial IoT devices, 
for example manufacturing industries employing sensors to monitor the energy efficiency or the working 
conditions of pieces of machinery. However, the data collected over time is not only relevant for the business 
operating the device, but for third parties as well, for example the vendor of the equipment could be 
interested in gathering knowledge about how machines perform over long periods of time and how to 
prolong their lifespan. Other third parties could be interested in collecting and aggregating filed data to 
perform market predictions. When the stream of data is subject to constraints that can be checked only at 
the edge or the data are accessed and exchanged between devices that operate in the same geographical 
area, it makes sense that Authentication, Authorization and Access control are performed at the edge. 

The AI-SPRINT mechanism uses blockchain technologies to provide authentication and authorization 
capabilities in a decentralized and transparent way. A smart contract is deployed on a public blockchain, and 
a signer of the contract is appointed. The business that provides the IoT data then adds policies to the 
contract, which are then initialized and finally signed by the customer. The AI-SPRINT mechanism also allows 
the late integration of additional policies by expanding the contract - to allow for a more dynamic access 
control management - and supports  

As shown in Figure 4.7 the proposed mechanism spans multiple domains: the IoT domain, where IoT devices 
reside, the Edge domain, which is the core of the architecture, the Cloud domain and the Distributed domain, 
i.e., where the smart contract can be found on a distributed ledger. In addition, everything outside of these 
domains will be part of the User domain. 

  



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

41                                                                                                                                                      www.ai-sprint-project.eu 

 

 
Figure 4.7 - Architectural domains of the blockchain-based authentication, authorization and access control mechanism 

The IoT domain groups all the IoT devices that periodically generate data. These devices interact exclusively 
with the Service Bus component in the Edge domain in order to write data to the message queues. The 
written data can be of any kind. For the sake of simplicity we only present the mechanism with reference to 
json-serialized strings. The Service Bus should support several protocols, in order to be compatible with as 
many IoT devices as possible. 

The components of the Edge domain need to provide an ingress endpoint where the IoT data comes in, and 
an egress endpoint where the IoT data can be fetched, after being processed and after the authentication 
and access control policies have been applied. The Service Bus is the ingress endpoint; it implements the 
pub/sub design pattern, which splits the connected clients into two categories: the ones that provide data 
(publishers) and the ones that consume the data (subscribers). In this case, the publishers are the IoT devices, 
while the subscribers are the Data Controller and the Data Provider. The Data Controller consumes messages 
from the queues and creates queries to store them in the Data Storage. It needs read access to the Service 
Bus and write access to the Data Storage. This component should be up at all times, and there can be multiple 
replicas of it, since messages can only be consumed by a single Data Controller and are then deleted. The 
Data Storage is where we IoT data is stored over periods of time to allow asynchronous queries. The Data 
Provider is the egress endpoint where IoT data is delivered to customers, according to the specifications of 
the Smart Contracts that they signed. This component comprehends two servers: an asynchronous one for 
answering queries, and a streaming one, which delivers data in real-time. In both cases, authentication and 
access control policies are applied before serving data from the endpoints. 

As previously discussed, the Cloud domain is used to store resources that do not need to be accessed very 
often, due to the high access cost in terms of network delay in real-time applications. We can use this domain 
to store off-chain policies: in fact, since this architecture provides the ability to cache policies, they only need 
to be read and verified once. After being verified, since by design they cannot be modified, we assume the 
cached version is always valid. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

42                                                                                                                                                      www.ai-sprint-project.eu 

 

The Distributed domain is where the blockchain is situated. Nodes that make up the block-chain network 
can be anywhere, as long as they are synchronized with each other. The users and the service provider can 
each run their own node, and refer to that node to process transactions and fetch data from the blockchain. 

The users in the User domain belong to four categories. Owners are special administrators that are able to 
deploy valid contracts to the blockchain. Only contracts that are deployed by addresses that belong to the 
whitelist of owners are to be considered valid, otherwise anyone could forge a contract and deploy it to the 
blockchain, claiming to have purchased the service. Additional administrators can be appointed by any 
existing administrator to manage contracts on their behalf. The third category is made of users who sign the 
smart contracts and pay for the service: we will call them signers. During the signing process, a signer can 
provide the public key of the actual user that will fetch the IoT data from the Data Provider, according to 
what was allowed in the contract that they signed. 

Authentication Example 
Authentication is implemented in the Data Provider module and it is in charge of checking a few 
requirements. First of all, it verifies that the user identity matches their claims. This is done through an 
authentication token that is sent by the user. The token itself is self-signed because the information about 
the identity of the user is stored inside the smart contract and can easily be verified. Alongside that, the 
authentication module checks that the address of the contract is valid, meaning that it is signed and it 
references the user identity. The final step is to check that the contract was deployed by an authorized 
account in the blockchain. This prevents contract forgery attacks, in which a user deploys and signs its own 
contract on the blockchain to get access to IoT data without paying the service provider. The full exchange is 
depicted in Figure 4.8. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

43                                                                                                                                                      www.ai-sprint-project.eu 

 

  
Figure 4.8 - User authentication 

  

Authorization Example 
Authorization is also implemented in the Data Provider. This module validates each query against the policy 
defined in the smart contract. Policies are identified by a resource field, which uniquely identifies the 
endpoint that the user is querying. For example, a query to the following URL 

http://provider.com/temperature/latest 

represents an attempt to retrieve the resource named temperature/latest and a policy bound to the same 
name must be present in the smart contract in order to allow access. In addition to the resource name, users 
can also supply parameters in the query, such as the ones in the following example 

http://provider.com/temperature/latest?count=10&device=Sensor_1 

These parameters will be checked against the ones inside the body of the policy. This mechanism is widely 
known as ABAC (Attribute-Based Access Control) and it provides the highest granularity, since it allows 
providers to have full control on the data that each user can access. The full exchange is given in Figure 4.9. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

44                                                                                                                                                      www.ai-sprint-project.eu 

 

 
Figure 4.9 - Authorization of a user query 

The CHIMA (CHain Installation, Monitoring and Adjustment) framework 

Identification CHIMA (CHain Installation, Monitoring and Adjustment) 

Type A controller/orchestrator for deploying network functions on heterogeneous 
hardware. An extension to network protocols for passive real-time monitoring of 
network delay. 

Purpose The component takes as input a list of service requests, which include a sequence of 
network functions and of performance requirements. The component chooses how to 
deploy the network functions on the available hardware and takes care for routing the 
packets through the correct functions. The monitoring protocol collects delay 
measurements for each packet. In case of an excessive delay, the component moves 
the functions and reroutes the traffic.  

Function ● Choose the path that meets the performance requirements 
● Deploy multiple functions in the same node and deploy the correct routing rules 
● Collect the delay measurements 
● Redeploy the functions in case of performance issues 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

45                                                                                                                                                      www.ai-sprint-project.eu 

 

High level 
Architecture 

 
The CHIMA application orchestrates the deployment of Virtual Network Functions both 
on general purpose hardware, through the CHIMAclient, and on programmable 
hardware using the P4 language. Deployment on P4 hardware is performed through 
ONOS. ONOS also deploys routing information. 

Dependencies The component requires the ONOS controller and hardware and software switches 
supporting the P4 programming language 

Interfaces ● Management interface 

Data ● Performance measurements 

Needed 
improvement 

● Enhancement of redeployment in case of performance issues 
● Extension to support performance monitoring across functions implemented in 

languages different from P4 
● Integration of telemetry with the AI-SPRINT monitoring subsystem 
● Development of the 5G authentication function 

Implemented 
Improvements 
for the First 
Release 

● Redeployment in case of performance issues 
● Support for performance monitoring across functions implemented in languages 

different from P4 

Release Version 
& Repository  

https://gitlab.polimi.it/ai-sprint/CHIMA 

 

The use of Virtual Network Functions (VNFs) for the deployment of security functions such as firewalls and 
deep packet inspection, makes it easier and faster to manage their provisioning. However, this introduces a 
tradeoff between flexibility and performance. Executing packet processing logic on regular CPUs is less 
efficient, both in terms of throughput and power consumption. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

46                                                                                                                                                      www.ai-sprint-project.eu 

 

Recent advancements in the field of Programmable Data Planes, and In-Network Computing in particular, 
showed that offloading sections of these services to programmable switches is a viable way to eliminate the 
tradeoff, bringing back the processing performance to the level that was offered by specialized hardware 
middleboxes. 

In addition, the ability to define arbitrary logic with the P4 language enables the development of other 
features alongside regular forwarding and processing, such as the real time monitoring of flows with In-band 
Network Telemetry (INT). 

Such techniques can be exploited for more than diagnosis or logging, since real time feedback on the 
performance of a service could allow an orchestrator to take immediate action in response to congestion or 
faults. The CHIMA (CHain Installation, Monitoring and Adjustment) framework introduces the possibility of 
specifying the performance requirements, such as the maximum latency and the maximum jitter, either for 
sections of the service or for its entirety. A system based on real time monitoring of the service's 
communications with In-band Network Telemetry is proposed to maintain the requested level of 
performance throughout its entire lifetime. This includes the detection of adverse events and their solution 
through the rerouting or redeploying of affected components. A prototype of CHIMA has been developed 
and used to evaluate the feasibility of the proposed solution. 

The  proposed  framework, shown in the Figure 4.10, is  designed  to  operate  on  a  network  built  with  
programmable  switches  that  can  be  targeted by a P4 compiler, while the computing nodes are capable of  
running  containers.  The ONOS SDN controller is used to manage the forwarding of the packets; the 
computing nodes are configured by using Docker. 

 
Figure 4.10 - An heterogeneous service chain addressing both P4 programmable switches and Docker containers 

The CHIMA framework consists of multiple components, distributed over a supported network as shown in 
Figure 4.11. 

 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

47                                                                                                                                                      www.ai-sprint-project.eu 

 

 
Figure 4.11 - The components of the CHIMA framework 

CHIMAstub is an application running on top of the ONOS controller. It exposes topology information and 
events and allows the interaction with the network devices through an extension of the ONOS REST APIs. 

CHIMAclient is an agent that runs on hosts and applies the header stacks for the correct routing of packets 
of managed services. 

The P4 pipeline is installed on all the switches. In addition to providing basic forwarding, it supports In-band 
Network Telemetry according to the INT v1.0 specification. In a future release, the collected telemetry will 
be integrated with the AI-SPRINT monitoring infrastructure (Deliverable 3.2). The collected measurements 
are used as the base for the inclusion of user provided VNFs targeting the P4 platform. 

The CHIMA module is the central manager of the system. Its tasks are to build and maintain an internal 
representation of the network topology, to collect INT data from the reports delivered by switches, to 
compute a deployment strategy based on the available topology information, and to perform the 
deployment of functions and manage their routing. 

Routing is based on Segment Routing over MPLS (SR-MPLS). In particular, CHIMA uses the approach defined 
by RFC8660, in which Segment Identifiers are represented as MPLS labels. An example topology showing the 
packet headers is shown in Figure 4.12. 

 
Figure 4.12 - Usage of SR-MPLS in CHIMA 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

48                                                                                                                                                      www.ai-sprint-project.eu 

 

5. Performance Evaluation 
In this chapter, we will present various performance evaluations we executed in order to assess the overhead 
introduced through our approach. We will first present the runtime related performance results followed by 
an evaluation of our network shield we introduced in AI-SPRINT.  

5.1. Runtime Security 
In this section, we present the evaluation results of SCONE applied to TensorFlow based on both micro 
benchmarks and macro benchmarks with a real world deployment. 

Experimental Setup 
Cluster setup. We used three servers with SGXv1 support running Ubuntu Linux with a 4.4.0 Linux kernel, 
equipped with an Intel© Xeon© CPU E3-1280 v6 at 3.90GHz with 32 KB L1, 256 KB L2, and 8 MB L3 caches, 
and 64 GB main memory. These machines are connected with each other using a 1 Gb/s switched network. 
The CPUs update the latest microcode patch level. 

In addition, we used a Fujitsu ESPRIMO P957/E90+ desktop machine with an Intel© core i7-6700 CPU with 4 
cores at 3.40GHz and 8 hyper-threads (2 per core). Each core has a private 32KB L1 cache and a 256KB L2 
cache while all cores share an 8MB L3 cache. 

Datasets. We used two real world datasets: (i) Cifar-10 image dataset [30] and (ii) MNIST handwritten digit 
dataset [31]: 

● Cifar-10: This dataset contains a labeled subset of a much larger set of small pictures of size 32x32 
pixels collected from the Internet. It contains a total of 60,000 pictures. Each picture belongs to one 
of ten classes, which are evenly distributed, making a total of 6,000 images per class. All labels were 
manually set by human labelers. Cifar-10 has the distinct advantage that a reasonably good model 
can be trained in a relatively short time. The set is freely available for research purposes and has 
been extensively used for benchmarking machine learning techniques [32,33]. 

● MNIST: The MNIST handwritten digit dataset[31] consists of 60000 28 pixel images for training, and 
10000 examples for testing. 

Methodology. Before the actual measurements, we warmed up the machine by running at full load with IO 
heavy operations that require swapping of EPC pages. We performed measurements for classification and 
training both with and without the file system shield. For full end-to-end protection, the file system shield 
was required. We evaluate TensorFlow with the two modes: (i) hardware mode (HW) which runs with 
activated TEE hardware and (ii) simulation mode (SIM) which runs with simulation without Intel SGX 
hardware activated. We make use of this SIM mode during the evaluation to evaluate the performance 
overhead of the Intel SGX and to evaluate TensorFlow when the EPC size is getting large enough in the future 
CPU hardware devices. 
Micro-benchmark: Remote Attestation and Keys Management 
In TensorFlow, we need to securely transfer certificates and keys to encrypt/decrypt the input data, models 
and the communication among worker nodes (in a distributed training process). To achieve this security goal, 
we make use of the SCONE CAS component which attests TensorFlow processes running inside enclaves, 
before it transparently provides the keys and certificates to encrypt/decrypt input data, models, and TLS 
communications. Note that the advantage of using CAS over the traditional way using IAS (Intel Attestation 
Service) to perform attestation is that the CAS component is deployed on the local cluster where we deploy 
TensorFlow. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

49                                                                                                                                                      www.ai-sprint-project.eu 

 

 
Figure 5.1 The attestation and keys transferring latency comparison between TensorFlow with the traditional way using IAS 

Figure 5.1 shows the break-down latency in attestation and keys transferring of our component CAS and the 
method using IAS. The quote verification process in our CAS takes less than 1ms, whereas in the IAS based 
method is ∼ 280ms. In total, our attestation using CAS (∼ 17ms) is roughly 19× faster than the traditional 
attestation using IAS (∼ 325ms). This is because the attestation using IAS requires providing and verifying the 
measured information contained in the quotes [30] which needs several WAN communications to the IAS 
service. 

Macro-benchmark: Inference Classification Process 
We evaluate the performance of TensorFlow in SCONE in real-world deployments. We present the evaluation 
results of TensorFlow in detecting objects in images and classifying images using pre-trained deep learning 
models. Thereafter, in the next section, we report the performance results of TensorFlow in training deep 
learning models.  

In the first experiment, we analyze the latency of TensorFlow in Sim mode and HW mode, and make a 
comparison with native versions using glibc and musl libc (i.e., running TensorFlow Lite with Ubuntu and 
Alpine linux) and a system provided by Intel using Graphene [34]. Graphene is an open-source SGX 
implementation of the original Graphene library OS. It follows a similar principle to Haven [35], by running a 
complete library OS inside of SGX enclaves. Similar to SCONE, Graphene offers developers the option to run 
their applications with Intel SGX without requiring code modifications. All evaluated systems except the 
Graphene-based system run inside a Docker container. 

To conduct this experiment, we use the Desktop machine to install Ubuntu 16.04 since the Graphene based 
system does not work with Ubuntu 18.04. To have a fair comparison, the evaluated systems run with single 
thread because of the current version of the Graphene-based system does not support multiple threads, i.e., 
to run the classification process, we use the same input arguments for the classification command line: $ 
𝑙𝑎𝑏𝑒𝑙_𝑖𝑚𝑎𝑔𝑒 − 𝑚 𝑚𝑜𝑑.𝑡 𝑓 𝑙𝑖𝑡𝑒 − 𝑖 𝑖𝑛𝑝𝑢 .𝑏𝑚𝑝 − 𝑡 1 . For the latency measurement, we calculate the average 
over 1, 000 runs. We use a single bitmap image from the Cifar-10 dataset as an input of evaluated systems. 

Models. For classifying images, we use several pre-trained deep learning models with different sizes including 
Inception v3 [37] with the size of 91MB, Inception-v4 [36] with the size of 163MB and Densenet [38] with the 
size of 42MB. We manually checked the correctness of a single classification by classifying the image with the 
TensorFlow label_image application involving no self-written code and running directly on the host without 
containerization. We later compared the results to the ones provided by TensorFlow and other evaluated 
systems, we could confirm that indeed the same classifying result was produced by the evaluated systems. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

50                                                                                                                                                      www.ai-sprint-project.eu 

 

 
Figure 5.2 - Comparison between TensorFlow, native versions and the state-of-the-art Graphene system in terms of latency with 

different model sizes, (a) Densenet (42MB), (b) Inception_v3 (91MB), and (c) Inception_v4 (163MB) 

#1: Effect of input model sizes. Figure 5.2 shows the latency comparison between TensorFlow with Sim and 
HW mode, native TensorFlow Lite with glibc, native TensorFlow Lite with musl libc, and Graphene-based 
system. TensorFlow with Sim mode incurs only ∼ 5% overhead compared to the native versions with different 
model sizes which is below the promised overhead concerning the KPIs (<30%). In addition, TensorFlow with 
Sim mode achieves a latency 1.39×, 1.14×, and 1.12× lower than TensorFlow with HW mode with the model 
size of 42MB, 91MB, and 162MB, respectively. This means that operations in the libc of TensorFlow introduce 
a lightweight overhead. 

This is because TensorFlow handles certain system calls inside the enclave and does not need to exit to the 
kernel. In the Sim mode, the execution is not performed inside hardware SGX enclaves, but TensorFlow still 
handles some system calls in userspace, which can positively affect performance. We perform an analysis 
using strace tool to confirm that some of the most costly system calls of TensorFlow are indeed system calls 
that are handled internally by the SCONE runtime. 

Interestingly, the native TensorFlow Lite running with glibc is the same or slightly faster compared to the 
version with musl libc. The reason for this is that both C libraries excel in different areas, but glibc has the 
edge over musl in most areas, according to microbenchmarks, because glibc is tailored for performance, 
whereas musl is geared towards small size. Because of this difference in goals, an application may be faster 
with musl or glibc, depending on the performance bottlenecks that limit the application. Differences in 
performance of both C libraries must therefore be expected. 

In comparison to Graphene-based-system, TensorFlow with HW mode is faster in general, and also faster 
than the Graphene-based-system when we increase the size of input models, especially when it exceeds the 
limit of the Intel SGX EPC size (∼ 94MB). In particular, with the model size of 42MB, TensorFlow with HW 
mode is only 1.03× faster compared to Graphene-based system, however, with the model size of 163MB, 
TensorFlow with HW mode is ∼ 1.4× compared to Graphene-based system. 

The reason for this is that when the application allocates memory size larger than the EPC size limit, the 
performance of reads and writes is severely degraded because it performs encrypting data and paging 
operations which are very costly. To reduce this overhead, we reduce the size of our libraries loaded into SGX 
enclaves. Instead of adding the whole OS libc into SGX enclaves as Graphene did, we make use of SCONE libc 
variant which is a modification of musl libc having much smaller size. In SCONE, system calls are not executed 
directly but instead are forwarded to the outside of an enclave via the asynchronous system call interface. 

This interface together with the user level scheduling allows TensorFlow to mask system call latency by 
switching to other application threads. Thus, we expect this speedup factor of TensorFlow compared to 
Graphene-based-system will increase more when the size of the input model size is increased and when the 
application runs with multiple threads. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

51                                                                                                                                                      www.ai-sprint-project.eu 

 

 
Figure 5.3 - The effect of file system shield on the classification latency with different model sizes, (a) Densenet (42MB), (b) 

Inception_v3 (91MB), and (c) Inception_v4 (163MB) 

#2: Effect of file system shield. One of the real world use cases of TensorFlow is that a user not only wants 
to acquire classifying results but also wants to ensure the confidentiality of the input images since they may 
contain sensitive information, e.g., handwritten document images or concerning the federated learning use 
case, sensitive patient data. At the same time, the user wants to protect her/his machine learning models 
since he/she had to spend a lot of time and cost to train the models. To achieve this level of security, the user 
activates the file system shield of TensorFlow which allows he/she to encrypt the input including images and 
models and decrypt and process them within an SGX enclave. 

In this experiment, we evaluate the effect of this file system shield on the overall performance of TensorFlow. 
As previous experiments, we use the same input Cifar-10 images. Figure 4.3  shows the latency of TensorFlow 
when running with/without activating the file system shield with different models. The file system shield 
incurs significantly small overhead on the performance of the classification process. TensorFlow with Sim 
mode running with the file system shield is 0.12% slower than TensorFlow with Sim mode running without 
the file system shield. Whereas in the TensorFlow with HW mode, the overhead is 0.9%. The lightweight 
overhead comes from the fact that our file system shield uses Intel-CPU-specific hardware instructions to 
perform cryptographic operations and these instructions can reach a throughput of up to 4 GB/s, while the 
model is about 163 MB in size. This leads to a negligible overhead on the startup of the application only. 

Continues Runtime Benchmarks 
The runtime security of SCONE is furthermore continuously evaluated using several standard benchmarks 
such as TPC-C benchmark and MariaDB) where its native performance is compared with when running in 
Intel SGX enclaves using SCONE. The average performance over the last three month revealed that we can 
achieve 4500 Tpmc vs. 6618.000 TpmC when running without SCONE. These numbers are also reported in 
the AI-SPRINT Deliverable D7.5 1st year progress report for the KPI K4.1 Performance overhead of Code 
Execution Security ≤30%.  The current value we achieved at M12 is 47% for our continuous runtime 
benchmark. 

5.2. Network Shield Evaluation 
In this section, we present the results of both performance and functionality evaluation for our network 
shielding implementation. Real-world software service deployments often involve multiple stages of 
interconnected servers (e.g., application and database servers), whose data transfers must be protected. 

We first present the results of latency and throughput performance benchmarks, using the well-known web 
servers nginx and Apache httpd as example applications.  This analysis is relevant for AI applications 
whenever inference or federated learning are performed through Web servers. After establishing a baseline 
by executing the servers both natively and using unshielded SCONE, we observe the impact of enabling the 
Network Shield for connections between them. For the experiments, we solely run in simulation mode as we 
only want to measure the impact of the shield itself. We show that using the AES-GCM implementation built 
into mbedtls incurs a heavy performance penalty, which can be largely mitigated by the help of the optimized 
replacement implementation. In particular, we compare the overhead of the network shield to the one of 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

52                                                                                                                                                      www.ai-sprint-project.eu 

 

application-provided OpenSSL-based TLS encryption, revealing that the Network Shield can achieve up to 
76% of the latter’s throughput in the case of nginx and 93% in the case of Apache httpd which is 
representative considering that collaborative learning application described in Section 2 involved data 
exchange through https channels.  

Most of the time it is possible to use persistent connections between servers, which has been reflected by 
the prior setup. However, when interacting with external servers, this may not be feasible or desirable (in 
the case of infrequent use). Therefore, we also analyze the performance impact of handling non-persistent 
connections. The results show a decreased throughput when compared to persistent connections, which we 
can trace to the overhead introduced by repeated TLS handshakes. In this case, the network shield achieves 
only 17% to 24% of OpenSSL’s throughput. We determine an inefficient implementation of asymmetric 
cryptography in mbedtls as the root cause and propose several options to reduce its performance impact. 
Additionally, we explore the influence of the I/O pattern changes caused by transparent TLS handshakes on 
resource usage. It is observed that, by default, they can cause a severe increase in CPU usage for applications 
employing asynchronous I/O event loops, such as nginx. We demonstrate that this can be averted by applying 
the asynchronous I/O event remapping mechanism which we are currently implementing. 

Benchmark Setup 
The setup of the benchmark is composed of a backend web server, a load generator acting as a client and a 
proxy web server located in between, as shown in Figure 5.4. This setup mimics real-world multi-stage 
deployments while simplifying the architecture to ease the experimentation. All components are started 
within Docker containers, which use the host network. The client always connects to the proxy server using 
HTTP. The connection between proxy and backend server uses HTTP, HTTPS with TLS being performed by the 
OpenSSL library configured through the web servers themselves or HTTP/HTTPS on top of the network shield 
using the mbedtls library, depending on the test case. We make use of wrk25 as a high-performance load 
generator and measurement tool. wrk2 produces a constant-throughput stream of requests and avoids 
coordinated omission effects through the use of HdrHistograms. As a result, we expect a spike in latency once 
the servers’ saturation points are reached. 

 
Figure 5.4 - General evaluation benchmark setup 

Comparisons to multi-host setups have shown that the network becomes the primary bottleneck. 
Consequently, we chose to conduct the experiments on a single host running all three components. We used 
a machine with a 6-core Intel Xeon E-2186G CPU @3.80 GHz and 32 GB of DRAM. The host runs Ubuntu 20.04 
with 64-bit Linux kernel 5.4.0. We use Docker version 20.10.1 and containers based on Alpine Linux 3.7 and 
3.8. To increase benchmark consistency, we disabled Hyperthreading, enabled the Linux performance CPU 
governor, pinned both server and client processes to individual CPU cores using CPU affinity masks and 
favoured their execution by using a nice value of −10 to increase the processes’ scheduling priority. 

The web servers are operated with a minimal configuration. When using built-in HTTPS, the usage of the 
same cipher suites and elliptic curves as designated by the Network Shield (ECDHE-ECDSA-AES256-GCM-

 
5 https://github.com/giltene/wrk2  



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

53                                                                                                                                                      www.ai-sprint-project.eu 

 

SHA384 and secp384r1) has been enforced and a similar certificate hierarchy has been deployed that 
contains 5 certificates, deviating only in key pairs and certificate common names. These certificate 
differences are unavoidable since SCONE benchmarks use regular CAS operations to provision freshly 
generated keys and certificates. Note, however, that no client authentication was performed when utilizing 
built-in HTTPS, as the web server implementations were unable to authenticate clients sending a multi-level 
client certificate hierarchy successfully. The network shield, on the other hand, performs client 
authentication. 

SCONE will be enabled for the backend and proxy servers, wrk2 on the other hand will always be executed 
natively. SCONE will be executed in simulation mode (sim) which does not use Intel SGX enclaves, it rather 
performs all of SCONE’s operations in a normal process environment. SCONE configuration is provisioned by 
a CAS instance allocated for each benchmark run, backend and proxy server configuration reside within the 
same CAS session. Different session configurations will be used, depending on the type of benchmark. 

nginx Throughput/Latency Benchmark 
We use Docker containers based on a single-threaded nginx 1.14.2 as instances of the backend and proxy 
server introduced in the general setup. poll is used as the asynchronous event loop method; other methods 
have shown to yield similar results. 

wrk2 is configured to use 1 thread and 10 connections, which are sufficient to fully saturate the servers. All 
connections are marked as keep-alive connections, i.e., the following measurements do not show any 
connection establishment overhead, as the same connections will be re-used for the entirety of the 
experiments. We perform benchmarks by continuously issuing requests to retrieve a static payload, hosted 
at the backend server, over the proxy server to the wrk2 client, increasing the constant-throughput rate every 
60 seconds. We record the system’s behavior for two different payloads. We observed an inconsistent 
achievable maximum throughput between backend and proxy server restarts for all configurations (including 
native execution). In order to present consistent results, we repeatedly probed different server instances and 
subsequently chose one which yielded results in the top 20% of recorded achievable throughput rates, in an 
automated fashion. 

Baseline 
The first benchmark uses a 64 KiB randomly generated binary file as its static payload. We measure the 
latency/throughput while increasing the induced request rate for each recorded data point. Figure 5.5 shows 
the experiment’s baseline, using either HTTP or HTTPS (with TLS performed by OpenSSL) connections 
between the backend and proxy servers, when executing the servers natively (i.e., without SCONE) and with 
SCONE (unshielded, i.e., without activating the Network Shield). For native HTTP and HTTPS we observe a 
mostly stable latency, averaging 1.25ms and 1.24ms per request respectively, until the servers’ saturation 
points are reached, which happens at 33,400req/s for HTTP and 17,500req/s for HTTPS, at which point the 
latency spikes. We defined the cutoff to be one second. Enabling SCONE naturally entails an overhead as 
system calls will be filtered, processed and exchanged between enclave and kernel using dedicated system 
call threads (s-threads). This overhead is more severe in hardware mode, where Intel SGX enclave memory 
limitations apply. Having SCONE enabled in hardware mode worsens the achievable maximum throughput 
rate to 20,900req/s for HTTP and 12,300req/s for HTTPS. The latency is slightly higher, at an average of 
1.75ms (HTTP) and 1.88ms (HTTPS) considering throughput rates between 2500req/s and their respective 
saturation points. At lower rates, notably 500req/s, 1000req/s and 2000 req/s, the latency experienced with 
SCONE servers is higher than the average – up to 4.1ms. This is most likely caused by the behavior of s-
threads, which tend to enter longer sleep periods upon low rates, although the exception of the regular low 
latency at a rate of 1500req/s remains unclear. As the throughput rate increases towards its maximum, the 
latency of SCONE configurations gradually decreases, getting closer to native latency. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

54                                                                                                                                                      www.ai-sprint-project.eu 

 

 
Figure 5.5 - Network Shield latency/throughput development for native and unshielded SCONE 

HTTP(S) configurations: nginx, 64 KiB payload, hw mode 

 

Network Shield Overhead 
The network shield features different modes of operation – we evaluate both unprotected mode (which does 
not feature any filtering or encryption, i.e., should be equal to unshielded execution) and protected mode 
(which enables mbedtls-based TLS encryption, i.e., should show some overhead). Figure 5.6 shows the 
benchmark results for both modes. We also observe the limitations of the AES-GCM implementation built 
into mbedtls and compare its performance to the optimized alternative we investigated. 

As expected, unprotected mode yields the same performance, both latency- and throughput-wise, as the 
unshielded configuration seen in the previous graph. Enabling the shield’s protected mode using the AES-
GCM implementation built into mbedtls shows a substantial performance loss: Only 1500req/s remain of the 
previously unshielded 20,900req/s, reducing throughput by almost 93% which we also report as KPI K4.4 in 
the AI-SPRINT Deliverable D7.5 1st year progress report. Using the optimized Intel AES-GCM implementation, 
on the other hand, the network shield’s protected mode is able to achieve up to 9350req/s. While this still 
exhibits a higher overhead than unshielded HTTPS (using OpenSSL) at 76% of the latter’s maximum rate, it 
shows a considerable improvement over the implementation provided by mbedtls by default. At an average 
of 2.15ms, the shield’s latency is also higher than the 1.88ms exhibited by the OpenSSL-using variant. 

To show that the throughput discrepancy is still largely dominated by the implementation of mbedtls 
(including the replacement AES-GCM implementation), we repeat the experiment with a modified version of 
the network shield, which features exactly the same code paths as the prior protected mode, but replaces 
the calls to the mbedtls library (mbedtls_ssl_read and mbedtls_ssl_write) with their underlying Basic 
Input/Output (BIO) callbacks (network_shield_mbedtls_unshielded_recv and 
network_shield_mbedtls_unshielded_send), skipping the encryption and decryption provided by mbedtls. 
This is shown as the “protected/no TLS” curve in the same graph. Doing so yields a maximum throughput 
rate of 20,200req/s, which is 96.7% of the same value for unshielded HTTP, at similar latencies. The remaining 
overhead, imposed by the network shield’s system call filtering and re-writing, is therefore much lower than 
the discrepancy between unshielded HTTPS (utilizing OpenSSL integrated into nginx) and protected HTTP 
(utilizing mbedtls). 

 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

55                                                                                                                                                      www.ai-sprint-project.eu 

 

 
Figure 5.6 - Network Shield latency/throughput development for unprotected, protected and 

TLS-over-TLS unwrapped HTTPS configurations: nginx, 64 KiB payload, hw mode 

 

5.3. Evaluation of the CHIMA Framework 
We evaluated the CHIMA framework over the topologies and services shown in Figure 5.7. The test cases 
have been simulated with the FOP4  platform [39], using software switches. To evaluate the detection and 
redeployment performance, the framework has been instrumented to record the timestamps of relevant 
events. All measurements have been performed on a bare-metal installation of Ubuntu 20.04 LTS, running 
on an Intel Core i7-6700 CPU with 64GB of RAM. 

Each experiment starts with the creation of the simulated topology on FOP4, followed by the deployment of 
the related service with CHIMA. After the service is properly set up, the latency of the targeted link is 
artificially increased to a level that causes requirements to be exceeded. The event is detected when one of 
the path-wise measurements reaches the value of the requirement, and causes the redeployment process 
to begin. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

56                                                                                                                                                      www.ai-sprint-project.eu 

 

 
Figure 5.7 - Topologies used to evaluate the redeployment times 

The first set of measurements have the objective of determining how long it takes the framework to detect 
the introduction of a perturbation, depending on the values of user-configurable parameters. 

The detection delay is computed as the time CHIMA takes to detect an exceeded requirement after the first 
packet of a perturbed application is sent. Assuming the properties of topology and service to be constant, we 
can consider the detection delay to be a function of the polling interval and the EWMA coefficient. For this 
reason, all the measurements of this section have been performed on the minimal topology, shown in Figure 
5.7 (a). 

 

 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

57                                                                                                                                                      www.ai-sprint-project.eu 

 

 

Figure 5.8 - Delay in the detection of an exceeded requirement with different intervals for the polling of new measurements from the 
INT collector. The bars indicate the 95% confidence interval 

Figure 5.8 shows the average detection delay versus the rate at which the userspace component of the eBPF 
INT collector polls new EWMA values. For comparison, the Figure also shows with a red line the time taken 
by a request to traverse the function chain end-to-end. As expected, the results present a clear linear trend, 
directly proportional to the polling interval, p. A constant contribution is given by the time needed for the 
EWMA-smoothed measurements to cross the threshold, while the slope of the curve is due to the polling 
frequency. As expected, the mean delay due to the polling latency is about p/2. 

The second parameter is the smoothing coefficient α for the computation of the Exponential Weighted 
Moving Average (EWMA). Larger values of α result in more weight given to recent data rather than the old 
average. This is clearly shown by Figure 5.9, in which smaller coefficients cause the time needed for 
convergence to the new measured values to grow exponentially. This data confirms the effectiveness of α to 
tune the response of the framework in case of short-lived congestion events. Therefore, the optimal value 
for this parameter should be determined based on the intended application. 

 

Figure 5.9 - Delay in the detection of an exceeded requirement with different coefficients for the computation of the EWMA on link 
measurements. The bars indicate 95% confidence intervals 

Another crucial measurement to outline the framework performance is the time needed to complete a 
redeployment. Table 4.2 presents a comparison of the relevant characteristics among the test cases for which 
redeployment times have been measured. 

 

 

 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

58                                                                                                                                                      www.ai-sprint-project.eu 

 

Topology P4 (s) Containers (s) Paths (ms) Metadata (ms) 
mesh - 1.13 54.23 2.68 

data center 5.20 - 288.60 2.79 
unbalanced 5.19 0.97 60.57 2.81 

minimal 6.06 1.50 48.79 3.50 
medium 6.93 2.12 125.89 4.81 

large 8.28 2.54 477.55 6.10 

Table 5.1 - Breakout of redeployment times for different topologies. 95% CI 

Table 5.1 shows the latency of the various tasks contributing to the redeployment delay. Since the 
redeployment of the different components is executed in parallel, the total time will be dominated by the 
slowest one. The installation of P4 functions proves to be the dominant factor, causing the total time to be 
in the order of seconds. The two contributions to this delay are the reconfiguration of the switch’s pipeline 
and the reinstallation of the correct set of rules in the pipeline’s tables. While the former is due to the use of 
software switches and could be reduced to tens of milliseconds with vendor specific features, the latter is 
caused by ONOS management of programmable data planes, which is not structured for time sensitive 
pipeline changes. Improvements to target this specific use case could drastically decrease delays. Times for 
path distribution and metadata adjustment, which can be entirely attributed to the framework logic, are 
much less significant than previous ones, adding minimal overhead. 

With respect to the project KPIs, reported also in the AI-SPRINT Deliverable D7.5 1st year progress, the CHIMA 
framework adds negligible delay except in case of redeployment. Therefore, the impact on KPI K4.3 (Network 
additional latency) can be considered negligible. On the other hand, the framework adds some network 
overhead in terms of additional packet headers to carry the telemetry and the information to route the 
packet to the correct Network Functions. The target value for K4.4 (Traffic overhead due to Network Security 
policies) is 10% or less. The CHIMA framework adds, on average, 52 bytes per packet. Considering an average 
packet of 512 bytes, the resulting overhead is about 11%, which is the current value of the KPI at M12. 

5.4. Evaluation of the Blockchain Authentication Mechanism 
When dealing with blockchain applications, it is important to consider that there is an intrinsic overhead in 
the time domain due to the fact that transactions need to be mined inside a block before being usable. This 
depends on the average time (called block time) necessary to mine a block in the blockchain that is being 
used, and also on the amount of gas offered to the miners. In fact, the more gas is sent, the more willing a 
miner will be to include the transaction in the next block, speeding up its validation. If a low amount of gas is 
sent, there could be a long period of time before the transaction is finally included in a block. Ideally, it would 
be best to wait for one or more confirmations, i.e. blocks added after the one in which the transaction was 
written, to prevent the possibility of using blocks fabricated by malicious actors. The block time, in turn, 
depends on the difficulty of finding a valid hash for the block that is being mined. As of July 11th, 2021, the 
average block time for the Ethereum mainnet is around 15 seconds, while for the Binance Smart Chain 
mainnet it is around 3 seconds. In the proposed solution, transactions only need to be performed in order to 
manage the smart contract (for example by adding policies) and not to validate IoT data, so some delay is 
tolerable. 

In addition to the time needed to write data to the blockchain by performing transactions, the time it takes 
to access data should also be taken into consideration. When there is a need to access data on the blockchain, 
assuming the node is already synchronized with the latest block, the time needed to perform the read 
operation depends on the node and its indexation of blocks. For Ethereum, web3 is the de facto standard for 
interacting with nodes in the blockchain. The web3 provider is in charge of communicating with a node, 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

59                                                                                                                                                      www.ai-sprint-project.eu 

 

through which it fetches trustworthy data from the blockchain. This provider can be deployed autonomously 
on a local node, or can be accessed via a third-party web service. A malicious third-party provider can 
manipulate the data that is read from the blockchain, but when it comes to writing data, a malicious provider 
can only drop a transaction, not alter it, since it is extremely difficult to produce a valid signature for the 
modified data without having access to the private key of the user. 

Table 5.2 shows the average time it takes to fetch the bytecode of a contract from the Kovan test chain for 
the popular third-party web3 provider Infura using a regular consumer-grade internet connection. 

Request Average Time (ms) 
First Request 450 
Other Identical Requests 116 

Table 5.2 - Average time to fetch a smart contract from the blockchain 

Infura automatically caches the responses for identical requests that belong to the same session. Even if we 
don’t consider the first response, it still takes more than 100 ms to get the contract from the blockchain. 
Another important consideration to make is that this request will only retrieve the bytecode of the contract. 
If there is a need to read values stored inside the contract, additional requests are needed. This overhead 
quickly builds up and it might even take a few seconds to fetch all the data from a big contract: this shows 
that caching is very important for this application. Setting up a cache inside the Edge node lets us avoid the 
overhead of fetching the same data from the blockchain every time. 

With respect to the project KPIs, reported also in the AI-SPRINT Deliverable D7.5 1st year progress,  the KPI 
K4.3 (Network additional latency) has a target value of 10% or less. Considering a sensor with a data rate of 
1 sample per second, we have an additional latency of 45% for the first request and of 12% for the following 
ones, which is the current value of the KPI at M12. 

 

 

 

 

 

 
  



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

60                                                                                                                                                      www.ai-sprint-project.eu 

 

 

6. Towards the Integrated framework for the 
Security Tools 

 

6.1. Integration plan for the Security Tools 
The integration plan of AI-SPRINT aims at harmonizing the definition of the requirements with the design and 
development phase and ensuring that scientific and technical activities comply with the use cases definition. 
In WP1, a specific task is devoted to these integration activities and has also a design side, though it is 
confined at the level of architectural design. Figure 5.1 depicts the validation strategy of AI-SPRINT through 
milestones defined in the work plan of the project. 

 

 
Figure 5.1 - Milestones for components development 

This deliverable realizes the Milestone II which releases the first version of the individual components related 
to security and according to the development plan described in D1.2 - Requirements Analysis. In particular, 
this document describes the: 

● Development of the first release of the security tools including the definition of security policies, their 
definition and architecture with regards to the server and entities managing these policies. 

● Initial release of the security tools (this covers the different components we developed within AI-
SPRINT such as improvements with the SCONE cross compiler, the creation of the sconify tool as well 
as the file system and network shielding providing transparent encryption for data at rest and i 
transit). An initial evaluation of the network shielding is provided as well. 

At M18 we will release the integrated framework which will include a first integration of the WP4 
components with the different applications used with AI-SPRINT, in particular it will report on the initial 
integration of SCONE within the federated learning application to over Task 4.1 Data Security as well as other 
components such as the monitoring component carried out through InfluxDB etc. Within the integration, the 
different AI-SPRINT runtime components will be sconified, i.e., such that they can harness TEEs and run in 
enclaves as well as pre-configured such that attestation and secret injection are performed while these 
applications are running. These actions will be executed in the light of Task 4.2 Application Execution 
Security. 

With regards to Task 4.3 Network Security, we will provide configurations in a semi automatic fashion such 
that TCP channels will be transparently encrypted for services deployed on the edge as well as on cloud. 
Furthermore, this approach will be complemented with the use of service meshes. We will aso incorporate 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

61                                                                                                                                                      www.ai-sprint-project.eu 

 

the policy management into the appropriate components starting at the top, i.e., the Kubernetes cluster up 
to the SCONE runtime. 

To ensure continuous delivery as well as harden security for devices that do not offer enclaves, we will 
implement a first version of secure code compilation as part  of Task 4.4 Patch Management and Secure 
Boot. This will also include a first prototype for operating system attestation as part of the secure and 
measured boot mechanisms we plan to integrate. 

  



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

62                                                                                                                                                      www.ai-sprint-project.eu 

 

7. Summary & Conclusions 
This deliverable has provided the initial version of the security tools developed for the AI-SPRINT platform. 
This document is one of the results of the first twelve months of activities that includes the definition of 
policies stemming from the threats and attacks that are relevant for AI applications as well as security tools 
we developed to harden the architecture of AI-SPRINT with regards to security. 

This document has presented the security tools of the AI-SPRINT architecture such as the SCONE runtime, 
the cross compiler, the sconify image tool, the CAS (configuration and attestation service). For each of these 
components the document provides details on their functionality as well as where these components are in 
place referring to the federated learning application as a running example. The document also presented the 
efforts for secure network communications that cover edge communication as well as communication within 
cloud environments through transparent encryption provided by the SCONE runtime. 

The second version of this document will be provided in M24 in D4.2 “Second release and evaluation of the 
security tools”, while the final version will be provided in M30 in D4.3 “Final release and evaluation of the 
security tools”, after completing the different phases of developments that will include the feedback of the 
use cases and other work packages.  

  



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

63                                                                                                                                                      www.ai-sprint-project.eu 

 

 

References 
[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, L. Zhang. 2016. Deep Learning with 
Differential Privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications 
Security (CCS). 

[2] I. Ahmad, T. Kumar, M. Liyanage, J. Okwuibe, M. Ylianttila, A. Gurtov, "Overview of 5G Security Challenges 
and Solutions," in IEEE Communications Standards Magazine, vol. 2, no. 1, pp. 36-43, MARCH 2018, doi: 
10.1109/MCOMSTD.2018.1700063.  

[3] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, 
M. L. Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch, C. Fetzer. 2016. SCONE: Secure Linux Containers 
with Intel SGX. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI). 

[4] M. Bailleu, D. Giantsidi, V. Gavrielatos, D. Le Quoc, V. Nagarajan, P. Bhatotia. 2021. Avocado: A Secure In-
Memory Distributed Storage System. In 2021 USENIX Annual Technical Conference. 

[5] A. N. Bhagoji, S. Chakraborty, P. Mittal, S. Calo. 2019. Analyzing federated learning through an adversarial 
lens. In International Conference on Machine Learning. PMLR. 

[6] P. Blanchard, E. Mahdi, E. Mhamdi, R. Guerraoui, J. Stainer. 2017. Machine learning with adversaries: 
Byzantine tolerant gradient descent. In Proceedings of the 31st International Conference on Neural 
Information Processing Systems. 118–128. 

[7] X. Cao, J. Jia, N. Z. Gong. 2021. Provably Secure Federated Learning against Malicious Clients. In 
Proceedings of the AAAI Conference on Artificial Intelligence.  

[8] V. Costan, S. Devadas. 2016. Intel SGX Explained. IACR Cryptol. ePrint Arch. 

[8] M. Fang, X. Cao, J. Jia, N. Gong. 2020. Local model poisoning attacks to byzantine-robust federated 
learning. In 29th USENIX Security Symposium. 

[9] James C Gordon. [n.d.]. Microsoft Azure Confidential Computing with Intel SGX. 
https://software.intel.com/content/www/us/en/develop/blogs/microsoft-azure-confidential-computing-
with-intel-sgx.html. Accessed: Sept 2021. 

[10] F. Gregor, W. Ozga, S. Vaucher, R. Pires, S. Arnautov, A. Martin, V. Schiavoni, P. Felber, C. Fetzer, et al. 
2020. Trust management as a service: Enabling trusted execution in the face of byzantine stakeholders. In 
2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). 

[11] P. Karnati. 2018. Data-in-use protection on IBM Cloud using Intel SGX. 
https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-using-intel-sgx. Accessed: Sept 2021. 

[12] J. Konečny, H. B. McMahan, F. X Yu, P. Richtárik, A. T. Suresh, D. Bacon. 2016. Federated learning: 
Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492. 

[13] R. Krahn, D. Dragoti, F. Gregor, D. Le Quoc, V. Schiavoni, P. Felber, C. Souza, A. Brito, C. Fetzer. 2020. 
TEEMon: A continuous performance monitoring framework for TEEs. In Proceedings of the 21th International 
Middleware Conference (Middleware). 

[14] R. Kunkel, D. Le Quoc, F. Gregor, S. Arnautov, P. Bhatotia, C. Fetzer. 2019. Tensorscone: A secure 
tensorflow framework using Intel SGX. arXiv preprint arXiv:1902. 

[15] D. Le Quoc, F. Gregor, S. Arnautov, R. Kunkeland, P. Bhatotia, C. Fetzer. 2020. secureTF: A Secure Tensor-
Flow Framework. In Proceedings of the 21th International Middleware Conference (Middleware). 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

64                                                                                                                                                      www.ai-sprint-project.eu 

 

[16] D. Le Quoc, F. Gregor, J. Singh, C. Fetzer. 2019. SGX-PySpark: Secure Distributed Data Analytics. In 
Proceedings of the World Wide Web Conference (WWW). 

[17] A. Martin, C. Lian, F. Gregor, R. Krahn, V. Schiavoni, P. Felber, C. Fetzer. 2021. ADAM-CS: Advanced 
Asynchronous Monotonic Counter Service. In 2021 51st Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN). 

[18] V. Mugunthan, A. Peraire-Bueno, L. Kagal. 2020. PrivacyFL: A simulator for privacy-preserving and secure 
federated learning. In Proceedings of the 29th ACM International Conference on Information & Knowledge 
Management (CIKM). 

[19] W. Ozga, C. Fetzer, et al. 2021. Perun: Confidential Multistakeholder Machine Learning Framework with 
Hardware Acceleration Support. In IFIP Annual Conference on Data and Applications Security and Privacy. 
Springer, 189–208. 

[20] W. Ozga, D. Le Quoc, C. Fetzer. 2020. A practical approach for updating an integrity-enforced operating 
system. In Proceedings of the 21th International Middleware Conference (Middleware). 

[21] W. Ozga, D. Le Quoc, C. Fetzer. 2021. Perun: Secure Multi-Stakeholder Machine Learning Framework 
with GPU Support. arXiv preprint arXiv:2103.16898 (2021). 

[22] W. Ozga, D. Le Quoc, C. Fetzer. 2021. WELES: Policy-driven Runtime Integrity Enforcement of Virtual 
Machines. arXiv preprint arXiv:2104.14862 (2021). 

[23] G. A. Reina, A. Gruzdev, P. Foley, O. Perepelkina, M. Sharma, I. Davidyuk, I. Trushkin, M. Radionov, A. 
Mokrov, D. Agapov, J. Martin, B. Edwards, M. J. Sheller, S. Pati, P. N. Moorthy, S. Wang, P. Shah, S. Bakas. 
2021. OpenFL: An open-source framework for Federated Learning. arXiv:2105.06413 

[24] V. Scarlata, S. Johnson, J. Beaney, P. Zmijewski. 2018. Supporting third party attestation for Intel SGX 
with Intel data center attestation primitives. White paper. 

[25] J. Singh, J. Cobbe, D. Le Quoc, Z. Tarkhani. 2020. Enclaves in the Clouds: Legal considerations and broader 
implications. Queue (2020). 

[26] J. Singh, J. Cobbe, D. Le Quoc, Z. Tarkhani. 2021. Enclaves in the Clouds. Commun. ACM 64, 5 (2021), 42–
51. 

[27] C.-C. Tsai, D. E. Porter, M. Vij. 2017. Graphene-SGX: A Practical Library OS for Unmodified Applications 
on SGX. In USENIX Annual Technical Conference (USENIXATC 17). 

[28] P. Voigt, A. Von dem Bussche. 2017. The EU general data protection regulation (GDPR). A Practical Guide, 
1st Ed., Cham: Springer International Publishing (2017). 

[29] C. Xie, O. Koyejo, I. Gupta. 2020. Fall of empires: Breaking Byzantine-tolerant SGD by inner product 
manipulation. In Uncertainty in Artificial Intelligence. PMLR. 

[30] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical report, 
Citeseer, 2009. 

[31] LeCun and C. Cortes. MNIST handwritten digit database. 2010. 

[32] He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE 
conference on computer vision and pattern recognition, 2016. 

[33] B. Xu, N. Wang, T. Chen, and M. Li. Empirical evaluation of rectified activations in convolutional network. 
arXiv preprint arXiv:1505.00853, 2015. 

[34] C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-SGX: A practical library OS for unmodified applications on 
SGX. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC), 2017. 



 

 
  

D4.1 Initial Release and Evaluation of the Security Tools 
 

65                                                                                                                                                      www.ai-sprint-project.eu 

 

[35] Baumann, M. Peinado, and G. Hunt. Shielding Applications from an Untrusted Cloud with Haven. In 
Proceedings of the USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2014. 

[36] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-resnet and the impact of 
residual connections on learning. In Proceedings of the 31th AAAI Conference on Artificial Intelligence (AAAI), 
2017. 

[37] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for 
computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. 

[38] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional networks. 
In Proceedings of the IEEE conference on computer vision and pattern recognition, 2017 

[39] D. Moro, M. Peuster, H. Karl, and A. Capone, “FOP4: Function offloading prototyping in heterogeneous 
and programmable network scenarios,” in 2019 IEEE Conference on Network Function Virtualization and 
Software Defined Networks (NFV-SDN). IEEE, 2019, pp. 1–6. 

 

 

 


