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Abstract
Objective. Electroencephalography (EEG) is a key tool for non-invasive recording of brain activity
and the diagnosis of epilepsy. EEG monitoring is also widely employed in rodent models to track
epilepsy development and evaluate experimental therapies and interventions. Whereas automated
seizure detection algorithms have been developed for clinical EEG, preclinical versions face
challenges of inter-model differences and lack of EEG standardization, leaving researchers relying
on time-consuming visual annotation of signals. Approach. In this study, a machine learning-based
seizure detection approach, ‘Epi-AI’, which can semi-automate EEG analysis in multiple mouse
models of epilepsy was developed. Twenty-six mice with a total EEG recording duration of 6451 h
were used to develop and test the Epi-AI approach. EEG recordings were obtained from two mouse
models of kainic acid-induced epilepsy (Models I and III), a genetic model of Dravet syndrome
(Model II) and a pilocarpine mouse model of epilepsy (Model IV). The Epi-AI algorithm was
compared against two threshold-based approaches for seizure detection, a local Teager-Kaiser
energy operator (TKEO) approach and a global Teager-Kaiser energy operator-discrete wavelet
transform (TKEO-DWT) combination approach.Main results. Epi-AI demonstrated a superior
sensitivity, 91.4%–98.8%, and specificity, 93.1%–98.8%, in Models I–III, to both of the
threshold-based approaches which performed well on individual mouse models but did not
generalise well across models. The performance of the TKEO approach in Models I–III ranged
from 66.9%–91.3% sensitivity and 60.8%–97.5% specificity to detect spontaneous seizures when
compared with expert annotations. The sensitivity and specificity of the TKEO-DWT approach
were marginally better than the TKEO approach in Models I–III at 73.2%–80.1% and
75.8%–98.1%, respectively. When tested on EEG fromModel IV which was not used in developing
the Epi-AI approach, Epi-AI was able to identify seizures with 76.3% sensitivity and 98.1%
specificity. Significance. Epi-AI has the potential to provide fast, objective and reproducible
semi-automated analysis of multiple types of seizure in long-duration EEG recordings in rodents.

1. Introduction

Epilepsy is a common neurological disease charac-
terized by recurrent seizures that affects up to an

estimated 70 million people worldwide [1]. Epilepsy
is caused by disruption of the fine-tuned inhibitory
and excitatory balance in brain networks, manifesting
clinically as seizures. Electroencephalography (EEG)

© 2021 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1741-2552/ac2ca0
https://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/ac2ca0&domain=pdf&date_stamp=2021-10-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0248-2456
https://orcid.org/0000-0002-7696-1364
mailto:catherine.mooney@ucd.ie


J. Neural Eng. 18 (2021) 056060 L Wei et al

is the main tool used clinically to diagnose seizures
and epilepsy, and is commonly used in rodent dis-
ease models of epilepsy to study disease develop-
ment, understand disease mechanisms and evaluate
the effects of anticonvulsant drugs and experimental
treatments. Increasingly, the field is moving toward
identifying disease-modifying actions of drugs neces-
sitating long-term recordings of EEG in rodents such
as mice [2]. A key bottleneck, however, is that visual
annotation of spontaneous seizures in EEG traces is
time-consuming and subject to low inter-observer
reproducibility and is complicated by different mod-
els and seizure types (duration, morphology). Auto-
mated seizure detection is a powerful approach to
address this problem which, if sufficiently sensit-
ive and specific, would significantly increase the
throughput and reliability of seizure quantification.

One common method is to model chronic tem-
poral lobe epilepsy (TLE) by exposure of mice to an
episode of status epilepticus (SE) triggered by a sys-
temic or focally-applied chemoconvulsant. Within a
few days of SE, animals begin to display regular spon-
taneous recurrent seizures (SRS). One of the leading
models uses intra-amygdala microinjection of kainic
acid (IAKA) to trigger SE. This causes unilateral-onset
seizures and the hallmarks of TLE [3]. It has proven
highly effective as a model of epilepsy and tool for
drug and biomarker discovery [4–6]. The model was
originally developed in C57BL/6 mice but was later
adapted to BALB/c, SJL and 129mice. Each hadmod-
est strain-specific differences in seizure severity, con-
vulsive behaviour or neuropathology. Another lead-
ing model of SE and subsequent SRS is the systemic
administration of the muscarinic agonist pilocarpine
[5, 6].

Rare genetic epileptic encephalopathies can be
modelled using mice in which a disease-causing
genetic mutation has been introduced. Though shar-
ing some features of TLE, such as spontaneous
seizures, the ictogenic mechanisms and electro-
graphic characteristics of seizures in epileptic enceph-
alopathies may have fundamental differences so it is
critical to have relevant models of different epilepsy
syndromes. For example, mutation of the Scn1a gene
in mice—a model of Dravet syndrome—results in
the emergence of temperature-sensitive seizures, fol-
lowed by generalised tonic-clonic SRS within a few
weeks [7, 8].

Very few automatic approaches to detect seizures
in mouse models of epilepsy have been developed.
Threshold based approaches have been applied
with reported sensitivity and accuracy ranging
from 90.0%–100.0% and 87.0%–94.8%, respectively
[9–11]. However, the limitation of these approaches
is that the results are sensitive to the threshold value
and it is not clear whether thresholds apply well to
different data. Machine learning approaches have the
advantage that they can generalize beyond the train-
ing set [12], despite this they have only been applied to

a few mouse models of epilepsy to date. Pan et al [13]
used weighted locally linear embedding and support
vector machine based on three pilocarpine-induced
SE Swiss mice to detect seizures, which achieved an
accuracy between 72.8% and 90.7%. Jang et al [14]
developed dual deep neural networks and simple pre-
and post-processing on 16 non-transgenic C57BL/6
pilocarpine-induced SE mice, and tested on seven
Lin28A cKO and 12 Prox1-eGFP pilocarpine-induced
mice, which achieved 100.0% sensitivity and 98.0%
positive predictive value. A convolutional neural
network method was developed by Li et al [15] to
detect seizures in 20 GnRH-Cre:Ai9 intrahippocam-
pal kainic acid mice, which yielded sensitivity and
specificity of 92.0% and 93.0%, respectively. How-
ever, some of these approaches detect seizures in
EEG fragments rather than long-term continuous
EEG recordings [9, 13], which cannot be used in a
experimental setting. Additionally, they have largely
used EEG recordings from a single mouse model
of epilepsy. It is uncertain whether the proposed
approaches would perform as well on data from other
models or indeed data from the same model gener-
ated by a different researcher.

To address the limitations of earlier approaches,
we sought to develop a seizure detection approach
based on multiple mouse models of epilepsy. A
machine learning-based seizure detection approach,
Epi-AI, was utilised to detect seizures in multiple
mouse models with heterogeneous seizure patterns.
Epi-AI is a XGBoost-based approach, using 19 fea-
tures estimated from each five-second epoch. The
XGBoost classifier was implemented using nine mice
for training and validation (three mouse models,
Models I–III, with 20 513 s seizure and 8258 448 s
non-seizure). Furthermore, an additional 13 mice
(from the three mouse models used for training,
Models I–III) and four mice from a pilocarpine SE
mouse model (Model IV), not used during training
were used as an independent test set to further eval-
uate the Epi-AI approach (Model IV, with 19 566 s
seizure and 14 925 934 s non-seizure). To the best
of our knowledge, no methods have been developed
which detect seizure events inmultiplemousemodels
of epilepsy, making the comparison with the previous
seizure detection methods in mouse models challen-
ging. We developed two threshold-based approaches
for the IAKA (mouse strain: SV129 and C57BL/6,
Models I and III) and Dravet model (Model II): a
local TKEO (Teager-Kaiser energy operator) and a
global TKEO-DWT (Teager-Kaiser energy operator-
Discrete wavelet transform) combination approach
to benchmark Epi-AI. The local TKEO approach and
TKEO-DWT combination approach represent stand-
ard threshold-based approaches which have been
used successfully in the past to mimic how experts
annotate seizures in EEGs [9–11]. These threshold-
based approaches have the disadvantage that they are
time-consuming to develop, and a new algorithm
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Table 1. Number and duration of seizures labelled by experts (Avg: average; SZs: seizures; Dur: duration; IAKA_SV129: intra-amygdala
kainic acid model of epilepsy, adult male SV129 mice; D_SV129_C57BL/6: Dravet syndrome model of epilepsy, SV129_C57BL/6 mice;
IAKA_C57BL/6: intra-amygdala kainic acid model of epilepsy, adult male C57BL/6 mice; NMRI PILO: pilocarpine model of epilepsy,
adult male NMRI mice).

Model I Model II Model III Model IV

Mouse strain IAKA_SV129 D_SV129_C57BL/6 IAKA_C57BL/6 NMRI PILO
Number of mice 4 6 12 4
Number of SZs 55 12 1070 52
Avg SZs Dur(s) 38 35 34 25
SZ Dur(s) 2090 420 36 281 1288
Non-SZs Dur(s) 3997 655 1100 013 13 936 951 4149 763

must be developed for each epilepsy model with dif-
ferent seizure patterns as the algorithms do not gen-
eralize well between models. We show that unlike the
threshold-based approach, the Epi-AI approach can
be used to quantify seizures in several differentmouse
models of epilepsy, including one not used during
training.

Epi-AI has been implemented as a publicly avail-
able web server. The user can submit an EEG file in
a number of different formats (EDF, CSV, Pickle).
Epi-AI returns a list of predicted seizures, including
the start time, end time and duration of each, and
an image of each predicted seizure. Epi-AI, and the
datasets used to train and test Epi-AI, are freely avail-
able for academic users at https://lisda.ucd.ie/Epi-
AI/. The Epi-AI code is available on GitHub (https:/
/github.com/weilan0624/Epi-AI) and an executable
for the local installation of Epi-AI is available on
request from the authors.

2. Methods

The machine learning-based approach, Epi-AI, was
developed and tested across a range of mouse mod-
els. Threemousemodels of epilepsywere used to train
and test Epi-AI. An additional fourth mouse model,
pilocarpine SE, was used as an independent test set.
Two threshold-based approaches, a local TKEO and
a global TKEO-DWT combination approach, were
developed to benchmark Epi-AI. The local TKEO and
global TKEO-DWT represent standard threshold-
based approaches that have been used successfully in
the past [9–11].

2.1. Dataset
Two different mouse models of epilepsy and three
different strains of mouse were used to develop the
approaches in this study (Models I–III). One addi-
tional mouse model of epilepsy was used for fur-
ther independent testing (Model IV) and was com-
pletely naive to training. The number and duration
of seizures for each mouse model are presented in
table 1. At least two experienced researchers inde-
pendently identified seizures in the EEG record-
ings used in this study. Epochs were only labelled
as seizures if they were identified as such by both

researchers. In the few cases where epochs were iden-
tified as seizure by only one researcher, they were
labelled as non-seizure for the purpose of this study.
Examples of the typical seizure patterns in the four
mouse models are shown in figure 1.

2.2. Mouse models of epilepsy
2.2.1. Intra-amygdala kainic acid model of epilepsy
(Models I and III)
Procedures for inducing epilepsy using the IAKA
technique in mice were approved by the Research
Ethics Committee of (removed for review). Adult
male 129 mice (Model I; Harlan, UK) and C57BL/6
mice (Model III; Harlan, UK) were used, based on
the protocol described in [3]. For acute recordings
(Model I), mice were connected to the lead socket of a
swivel commutator, which was connected to an EEG
(Grass TwiN digital EEG). After transmitter-cannula
fitting, mice underwent intra-amygdala microinjec-
tion of kainic acid (IAKA; 0.3 µg in 0.2µl; Sigma-
Aldrich, Ireland) to induce SE followed by intraperi-
toneal lorazepam (8 mg kg−1) after 40 min to reduce
morbidity and mortality. For long term recordings
(Model III), mice were anaesthetised (isoflurane; 5%
induction,∼2%maintenance) and equipped for con-
tinuous EEG and video recordings using implant-
able EEG telemetry devices (Data Systems Inter-
national, DSI). Transmitters (F20-EET for Model I
and HD-X02 for Model III), which record bilat-
eral EEG from screws embedded in the skull, were
implanted in a subcutaneous pocket at the time
of cannula placement (on the dura mater over the
right hemisphere with the following coordinates from
bregma; IA: AP = −0.95 mm, L = +2.85 mm, V
= 3.1 mm). Body temperature was maintained by
feedback-controlled heat blanket (Harvard Appar-
atus Ltd UK). Data were bandpass filtered between
0 and 500 Hz and recorded with a sampling rate
of 500 Hz from mouse Models I and III. Long-
term EEG was recorded for each mouse for more
than 14 d.

2.2.2. Dravet syndrome model of epilepsy (Model II)
All experiments were performed in accordance
with the European Communities Council Directive
(86/609/EEC) and approved by the Research Ethics
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Figure 1. Examples of the typical seizure patterns in the mouse models of epilepsy used in training and testing (the signal in the
red block indicates the presence of seizure event). (a) The amplitude of seizures in Model I mice ranged from−1.0 to 1.0
millivolts (mV); (b) The amplitude of seizures in Model II mice ranged from−10.0 to 10.0 mV; (c) The amplitude of seizures in
Model III mice ranged from−1.0 to 1.0 mV; (d) The amplitude of seizures in Model IV mice ranged from−1.0 to 1.0 mV.

Committee of (removed for review). Food and water
were provided to themice ad libitum. The Scn1atm1Kea

targeted null allele was generated by homologous
recombination in TL1 ES cells (129S6/SvEvTac) and
exon 1 of the mouse Scn1a gene was replaced by a
selection cassette as previously described [16]. Male
Scn1a(+/−)tm1Kea mice on the 129S6/SvEvTac back-
ground (Jackson Laboratory, USA) were crossed with
inbred female mice C57BL/6JOlaHsd (ENVIGO,
UK) resulting in [129 × B6] F1.Scn1a(+/−) off-
spring, referred to herein as F1.Scn1a(+/−)tm1Kea. Both
male and female F1.Scn1a(+/−)tm1Kea or wild-type lit-
termates F1.Scn1a(+/+)tm1Kea were used for experi-
ments. At postnatal day 21 (P21) mice were placed
in an adapted stereotaxic frame under anaesthesia
(isoflurane/oxygen 5% for induction and ∼3% for
maintenance). Body temperature was maintained by
feedback-controlled heat blanket (Harvard Appar-
atus Ltd UK). Following a midline scalp incision,
three screw electrodes were implanted, and the unit
was secured with dental cement. The screw electrodes
were placed bilaterally about the midline over the
cerebral cortex, and the reference electrode posi-
tioned over the nasal sinus. After surgery, animals
were immediately placed in an incubator at 33 ◦C
and monitored. Once fully recovered, mice were con-
nected to the lead socket of a swivel commutator,
which was connected to an EEG amplifier (Xltek, 32
channels, Natus Neurology,WI, USA). EEG data were
recorded from 12:30 pm to 6:30 pm each day from
P21 to P28. Data were bandpass filtered between 0
and 512 Hz and recorded with a sampling rate of
512 Hz from mouse Model II. Two of the six mice
used were additionally treated with an experimental

antisense oligonucleotide, but this had no effect on
any seizure, electrographic or other parameters in the
model.

2.2.3. Pilocarpine model of epilepsy (Model IV)
The pilocarpine model of TLE was performed as
previously described [17]. Adult male NMRI mice
were fitted for DSI telemetry as above. Briefly they
were anesthetised (isoflurane 5% induction followed
by 2% maintenance) and equipped with the DSI
F20-EET telemetry device. During surgery, trans-
mitters were implanted into a subcutaneous pocket
at the level of the peritoneum. Leads run subcu-
taneously to the head of the animal, two to the right
nuchal muscle which serve as EMG electrodes. The
other two were implanted to the surface of the dura
mater via a small craniotomy with the following
coordinates relative to Bregma, AP:+1.7, L:−1.5 and
AP: −2.5, L: +2.0 mm. Following surgery, animals
were placed in Phenotyper® cages (Noldus Inform-
ation Technologies®, Wageningen, the Netherlands)
to recover. Following recovery, animals were given
methylscopolamine (1 mg kg−1) to block peripheral
cholinergic actions and then after 30 min, injected
with pilocarpine IP (300 mg kg−1) and the devel-
opment of SE and SRS was recorded [6]. Data were
bandpass filtered between 0 and 500 Hz and recorded
with a sampling rate of 500 Hz from mouse Model
IV. The EEG recording time of each mouse was no
less than 3 d and up to 26 d.

2.3. Data analysis
EEG signals from mouse Model II were resampled
from 512Hz to 500Hz, for consistency with the other
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Figure 2. Overview of local TKEO and global TKEO-DWT combination seizure detection approaches. (a) Local TKEO seizure
detection approach: The local threshold of each mouse was calculated according to the baseline period after removing the
artefacts by taking the EEG data of single-channel mice as input. The non-baseline signals are then compared with local
thresholds, and the duration of potential seizures was estimated to be higher than 10 s to determine the final seizure event.
(b) The global TKEO-DWT combination seizure detection approach: The global threshold of each mouse model was calculated
according to the baseline period after removing the artefacts by taking the EEG data of single-channel mice as input. The
non-baseline signal was compared with the global threshold, then the relative beta power was compared with greater or less than
0.021, if the TKEO of the signal was greater than the global threshold, and relative beta power was less than 0.021, the duration of
the potential seizure was further checked for greater than 10 s to determine the final seizure event.

EEG recordings. A 50 Hz notch filter was applied to
remove the 50 Hz power line interference from the
EEG recordings, the DC offset was also removed. The
EEG signal was divided into 5 s epochs with 2.5 s
overlap. Signal features were then estimated for each
epoch as described below.

2.4. Threshold-based seizure detection approaches
Two threshold-based seizure detection approaches
were developed to act as a benchmark for themachine
learning-based approach. The local TKEO approach
detects seizure events in long EEG recording inmouse
Model I by checking the amplitude, frequency range,
and signal power which mimics how experts detect
seizures in mouse Model I. The global TKEO-DWT
combination approach analyses the signal in both
time and frequency domains in three mouse models
of epilepsy (Models I–III).

2.4.1. Local TKEO approach
A TKEO was applied to distinguish the seizure from
the non-seizure EEG signal. Due to the simplicity and
ease of implementation of TKEO, it has been shown
to be powerful in identifying changes in signal prop-
erties in applications such as speech processing [18],
seizure detection [19, 20] and the onset of muscle
activity in electromyography (EMG) recordings [21].
This approachmimics how experts detect seizure dur-
ing the EEG recordings by examining changes in sig-
nal amplitude. The TKEO value in each epoch was
defined as:

TKEO[n] = x[n]2 − x[n− 1]x[n+ 1] (1)

where x[n] is the nth sample, x[n− 1] is the (n− 1)th
sample and x[n+ 1] is the (n+ 1)th sample of the pre-
processed EEG signal in the epoch.

The threshold was defined as the twice the mean
TKEO value of the baseline EEG (first 20min) of each
mouse. The TKEO of each five-second epoch from
the non-baseline (EEG signal from 20 min to the end
of the EEG recordings) period was then compared
with the threshold. If the TKEO value in the epoch
was greater than the threshold, the event was labelled
as a potential seizure. The duration of the potential
seizure was checked, and if the duration of the event
was greater than 10 s it was defined as a seizure, if not,
it was labelled as a regular event (figure 2(a)). Figure 6
shows the local TKEO approach applied to a repres-
entative EEG signal.

2.4.2. Global TKEO-DWT combination approach
The discrete wavelet transform (DWT) has been suc-
cessfully used in EEG seizure detection [22–24]. In
this study, DWT with a function Daubechies 4 wave-
let (db4) was used, as the smoothness of db4 wave-
let makes it more suitable for detecting changes of
EEG signals [25]. The DWT has near-optimal time-
frequency localization [26] and was used to decom-
pose the EEG signal into seven different frequency
bands, corresponding to different brain rhythms [27].
The signals were separated into the delta (A7), theta
(D7), alpha (D6), beta (D5), gamma (D4), high
gamma (D3), ripple (D2), and fast ripple (D1) [28]
as defined in table 2.

A global TKEO-DWT combination approach to
seizure detection was developed based on the TKEO
approach and DWT. This approach analyses the sig-
nal in both time and frequency domains. The global
TKEO threshold was defined as the mean value of the
local TKEO threshold for each mouse Models I–III.
A second threshold based on the DWT was then cal-
culated by estimating the mean value of relative beta

5
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Table 2. Seven level of wavelet decomposition.

Decompose
level

Frequency range
(Hz) Signal information

D1 250–500 Fast ripple
D2 125–250 Ripple
D3 63–125 High gamma
D4 32–63 Gamma
D5 16–32 Beta
D6 8–16 Alpha
D7 4–8 Theta
A7 0–4 Delta

power (the ratio of the power in the D7 beta band rel-
ative to the total power in the signal from 0 to 500Hz)
in each epoch frommouseModels I–III. From table 3
we can see that if the relative beta power was smal-
ler than 0.021 in each epoch it was more likely to
be a seizure event. Therefore, we defined the DWT
threshold as relative beta power smaller than 0.021.
For the global TKEO-DWT combination approach,
first, the mean TKEO value of a non-baseline epoch
was compared with the global threshold, if the TKEO
value was greater than the global threshold, the rel-
ative beta power in that epoch was then checked
to see if it was less than 0.021. If the mean TKEO
value of the epoch was greater than the global TKEO
threshold and the relative beta power in that epoch
was less than 0.021, the epoch was defined as a poten-
tial seizure event.Otherwise, the epochwill be defined
as a non-seizure event. Furthermore, the duration of
the potential seizure event was further checked. If the
duration of the potential seizure event lasts longer
than 10 s, it was defined as a final seizure event. Oth-
erwise, the event was finally labelled as a non-seizure
event. Figure 2 (b) presents the structure of the global
TKEO-DWT combination approach.

2.5. XGBoost-based seizure detection approach:
Epi-AI
Nineteen features were estimated to develop the
XGBoost algorithm, including a selection of time and
frequency domain features previously used in seizure
detection [29–32], and features used in manual
seizure detection from EEG in these mouse models
of epilepsy. All features were estimated for each 5 s
epoch. Next, each epoch was predicted to a seizure
or non-seizure event by the XGBoost algorithm. The
duration of seizures is typically defined as at least 10 s
[33], a filter was used to check if the duration of the
potential seizure event detected by the algorithm was
greater than 10 s or not. If higher than 10 s, the poten-
tial seizure event was defined as a seizure event. Oth-
erwise, it was labelled as a non-seizure event. Then we
post-processed the detect seizure events to define the
start and end of the seizure. An overview of Epi-AI is
presented in figure 3.

2.5.1. Feature estimation
Nineteen time and frequency domain features were
estimated for each 5 s epoch for each EEG signal from
Models I to III. The estimated features are: (a) mean
value of TKEO; the absolute power of the (b) delta
(0–4 Hz), (c) theta (4–8 Hz), (d) alpha (8–16 Hz),
(e) beta (16–32 Hz), and (f) gamma (32–64 Hz) fre-
quency bands; the relative power of the (g) delta,
(i) theta, (j) alpha, (k) beta, and (l) gamma fre-
quency bands; (m) total absolute power (0–500 Hz);
(n) mobility; (o) mean; (p) variance; (q) kurtosis; (r)
skewness; (s) mean of the envelope (estimated using
theHilbert transform) and (t) fractal dimension (FD)
of the pre-processed signal. Themobility and FDwere
estimated as:

FD=
logN10

logN10 + logN/(N+0.4δ))
10

(2)

Mobility=

√
Var(ẋ)

Var(x)
(3)

whereN is the number of samples in each epoch; and
δ is the number of sign changes in the signal derivat-
ive in that epoch; ẋ is the time derivative of the pre-
processed EEG signal x, and Var (x) is the variance of
x estimated for that epoch.

2.5.2. Predictive architecture
The XGBoost algorithm is widely used to achieve
state-of-the-art results on many machine learning
challenges [34] and especially has been widely used
to detect seizures in human EEG recordings [35–37].
Moreover, it is generic enough to be applied to
large-scale problems, runs more than ten times
faster than existing popular solutions on a single
machine, and returns a measure of feature import-
ance [34] (figure 4). Furthermore, as the seizure
events in the dataset were much fewer than non-
seizure events, resulting in a class imbalance problem
that can make training a machine learning algorithm
challenging [38], parameter ‘scale pos weight’ in
XGBoost classifier can be adjusted to balance the
events in the training set. In preliminary work,
four other algorithms (naive bayes, K nearest neigh-
bours, decision tree and random forest) were bench-
marked against the XGBoost classifier. The XGBoost
algorithm achieved higher receiver operating char-
acteristics curve (AUROC) and was chosen for this
study (see table A1). The XGBoost was implemen-
ted within the Python 3 environment. Four paramet-
ers were optimized: learning-rate: shrinks the con-
tribution of each tree; n-estimators: the number of
boosting stages to perform; max-depth: the max-
imum depth of the individual regression estimators;
scale-pos-weight: balancing of positive and negative
weights.
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Table 3. Relative beta power in seizure and non-seizure event (RBP: relative beta power; std: standard deviation; Avg: average).

Model Event Mean of RBP Std of RBP Mean+std Mean−std

I Seizure 0.003 0.006 0.009 −0.003
Non-seizure 0.025 0.018 0.043 0.007

II Seizure 0.005 0.007 0.012 −0.002
Non-seizure 0.032 0.006 0.039 0.026

III Seizure 0.026 0.024 0.050 0.002
Non-seizure 0.032 0.008 0.040 0.024

∗Avg Seizure 0.011 0.008 0.020 0.003
Non-seizure 0.028 0.005 0.033 0.022

Figure 3. Overview of Epi-AI. Single-channel mouse EEG data was used to develop the XGBoost-based approach. Features were
estimated after removing artefacts, then the signal was post-processed to estimate the seizure events.

2.5.3. Training and testing
Nine mice were used for training and validation,
and the other 17 mice were used as an independent
test set. The allocation to the training/validation or
independent test sets depended on the duration of
the seizures in each mouse. Mice were allocated to
either the training/validation or independent test sets
so that sum of the seizure duration was approxim-
ately equal between the sets for each mouse model
and between the training/validation or independent
test sets, i.e. the total seizure duration from mouse
Models I–III in the training/validation set is 20 513 s,
and 18 278 s in the independent test set. The train-
ing and validation sets were split so that 80% was
used for training and 20% for validation. The dura-
tion of seizure/non-seizure used in the training/val-
idation and the independent test sets are shown in
table 4. The independent test set was not used in
training. Specifically, no mice of type Model IV was
used in training the models, therefore the models
are completely naive to mice of this type. Four para-
meters (learning-rate, n-estimators, max-depth, and
scale-pos-weight) were optimized based on the per-
formance of the validation set. The best performance
on the validation set was achieved when learning-
rate = 0.01, n-estimators = 100, max-depth = 6 and
scale-pos-weight= 478.

2.5.4. Post-processing: seizure estimation
EEG typically contains artefacts which may interrupt
and mask the seizure trace [39]. To overcome this,
the seizures detected by the XGBoost algorithm with
an interval less than 5 s were grouped together, and
their duration was extended from the start time of
the first component to the end time of the last com-
ponent. As the duration of seizure in the experimental
mousemodels of epilepsy is typically longer than 10 s,
the potential seizures detected by the method with
duration less than 10 s were relabelled as non-seizure
events (figure 3). Since the start time and the end
time of the seizure events are difficult to define and
identify, in order not tomiss seizure events, if the dur-
ation of the potential seizure detected by the method
was greater than 10 s and the final seizure start time
was 7.5 s ahead of the detected potential seizure start
time, the final seizure end time was extended 7.5 s
backward to the detected potential seizure end time
(figure 5).

2.5.5. Implementation
The Epi-AI approach was implemented in Python
3.6.5 (MSC v.1900 64 bit (AMD64)) and IPython
6.4.0 in Jupyter notebook v. 4.4.0 from Anaconda.
The approach was run on a Windows 10 desktop
with Intel(R) Core(TM) i7-7700HQ CPU (4 cores).

7
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Figure 4. A XGBoost feature importance plot of the selected features in the entire training set. Feature importance ranks the
features by their contribution to the prediction of the seizure events.

Table 4. The number of mice and the duration of seizures allocated to the training/validation set and the independent test set for the
XGBoost-based approach.

Model Number of mice Seizure duration(s) Non-seizure duration(s)

Training/ validation set I 1 990 1094 197
II 2 300 308 293
III 6 19 223 6855 958
Total 9 20 513 8258 448

Independent test set I 3 1100 2903 458
II 4 120 791 720
III 6 17 058 7080 993
IV 4 1288 4149 763
Total 17 19 566 14 925 934

Figure 5. Post-processing the start time and end time of each detected seizure event.

It took approximately 15 s to analyse 3600 s data.
Epi-AI has also been implemented as a web server
(https://lisda.ucd.ie/Epi-AI/) which allows users to
upload single-channel EEG data and returns the
start and end times of detected seizure events along
with the corresponding spectrograms. Representat-
ive traces (one hour duration) are also available for

each model (Models I–IV) used in this study for
download through the web server along with sample
code.

2.6. Evaluationmetrics
The area under the receiver operating character-
istics curve (AUROC) was used to estimate the

8
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performance of Epi-AI, along with the accuracy
(Acc), sensitivity (Sens), and specificity (Spec).

Acc=
TP+TN

TP+TN+ FP+ FN
(4)

Sens=
TP

TP+ FN
(5)

Spec=
TN

TN+ FP
(6)

where true positives (TP) is the number of epochs
predicted as seizures that were also identified as
seizures by the expert readers; false positives (FP) is
the number of epochs predicted to be seizures that
were identified as non-seizures by the expert read-
ers; true negatives (TN) is the number of epochs
predicted to be non-seizures that were identified as
non-seizures by the expert readers; false negatives
(FN) is the number of epochs predicted to be non-
seizures that were identified as seizures by the expert
readers.

3. Results

Table 5 compares the performance of the Epi-AI
against the local TKEO, global TKEO-DWT combin-
ation approach on the independent test set across
all mouse models (Models I–V). The local TKEO
approach was developed to mimic the researchers’
examination of seizure events in mouse Model I,
with a sensitivity of 72.1% and a specificity of 97.5%
on mouse Model I. However, when the local TKEO
approach was applied to mouse Models II and III
the sensitivity and specificity was only 66.9%–91.3%
and 60.8%–69.9% respectively. On the independent
test set, mouse Model IV, the sensitivity was fur-
ther reduced to 55.2%. Figure 6 presents an example
of the local TKEO approach applied to a repres-
entative EEG signal. The global TKEO-DWT com-
bination approach detected seizures in mouse Mod-
els I–III at 73.2%–80.1% sensitivity, 75.8%–98.1%
specificity and 75.8%–98.1% accuracy. On the inde-
pendent test set, the global TKEO-DWT combination
approach achieved sensitivity, specificity and accur-
acy of 37.7%, 98.5% and 98.4%, respectively on the
mouse Model IV. Figure 7 presents the global TKEO
threshold applied to a representative EEG signal.

Epi-AI obtained a sensitivity of 91.4%–98.8%, a
specificity of 93.1%–98.8% and accuracy of 93.1%–
98.8% on the independent test set of mouse mod-
els which were used for training (Models I–III) when
compared with expert human annotations. When
tested on an independent test set, Model IV, which
was not used to train the approach, the Epi-AI
algorithm achieved 76.3% sensitivity, 98.1% spe-
cificity and 98.1% accuracy.

4. Discussion

The lack of reliable automated seizure detection
approaches is a major impediment to the study
of epilepsy development and testing of experi-
mental treatments in rodents. We have developed
an XGBoost-based algorithm, Epi-AI, that can gen-
eralise to multiple mouse models of both genetic
and acquired epilepsies (Models I–III, with sensitiv-
ity 91.4%–98.8% on the mouse models used in train-
ing), including one not used in the training of the
algorithm (Model IV, with sensitivity 76.3%). Previ-
ous studies have used only a single model on which to
develop a detection approach [9, 11, 13–15, 40], lim-
iting the translation and generalisation of techniques
between models or individual users.

A key advantage of the Epi-AI approach is
the combination of multiple different mouse mod-
els of epilepsy, with differing underlying epilep-
togenic mechanisms. To the best of our know-
ledge, none of the previously developed approaches
[9, 11, 13–15, 40] have demonstrated that they can
detect seizures in multiple mouse models of epilepsy
in continuous EEG recordings (table 6). In previous
studies, Pan et al [13], Jang et al [14] and Li et al [15]
used machine learning approaches to detect seizure
events in single mouse models of epilepsy, achieving
76.4% to 99.3% accuracy. Tieng et al [11] proposed
a new seizure detection approach based on multiple
features and a simple thresholding technique on pilo-
carpine mouse model which achieved 100% sensitiv-
ity and 72% specificity. However, these approaches
are limited to the training model. Epi-AI can detect
seizures not only for the mouse models used in train-
ing (Models I–III), but also for the independent test
set (mouse Model IV) (table 5). The training mod-
els included an intra-amygdala kainic acid model of
acquired TLE and a genetic model of Dravet syn-
drome, whilst the independent test set used the pilo-
carpine model of TLE. This indicates that Epi-AI
can generalise to detect electrographic seizures with
entirely different pathological mechanisms while also
being able to detect seizures based on electrographic
signatures which are common between models. Epi-
AI could therefore also be applied to seizure detec-
tion in other models or studies where limited dataset
sizes may not permit the development of a dedicated
algorithm for that model.

The difference in datasets and means of evaluat-
ing performancemake a direct comparisonwith other
published seizure detection approaches difficult [41].
We developed the local TKEO approach and TKEO-
DWT combination approach as a benchmark to rep-
resent standard threshold-based approaches that have
been used successfully in the past [9–11]. The local
TKEO approach mimics how experts detect seizures
in mouse Model I by checking the amplitude, fre-
quency range, and signal power. TKEO can determ-
ine the instantaneous energy of the non-stationary
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Table 5. The performance of the threshold-based approaches (local TKEO approach and global TKEO-DWT combination approach),
and the performance of Epi-AI on the independent test set of four mouse models of epilepsy.

Model Acc(±std)(%) Sens(±std)(%) Spec(±std)(%) AUROC(±std)

Local TKEO I (n= 3) 98.0(± 0.7) 72.1(±12.0) 97.5(± 0.1) 0.923(±0.086)
II (n= 4) 69.9(±23.3) 66.9(±23.6) 69.9(±23.3) 0.737(±0.060)
III (n= 6) 60.9(±37.3) 91.3(± 8.0) 60.8(±37.5) 0.753(±0.176)
IV (n= 4) 97.2(± 2.3) 55.2(±35.8) 97.2(± 2.3) 0.683(±0.133)

Global TKEO-DWT I (n= 3) 98.1(± 2.2) 80.1(±30.2) 98.1(± 2.2) 0.891(±0.152)
II (n= 4) 75.8(±18.2) 79.2(±21.7) 75.8(±18.2) 0.775(±0.050)
III (n= 6) 82.9(±18.4) 73.2(±15.1) 82.9(±18.5) 0.781(±0.102)
IV (n= 4) 98.4(± 1.3) 37.7(± 8.9) 98.5(± 1.3) 0.681(±0.043)

Epi-AI I (n= 3) 98.8(± 1.6) 91.4(±24.4) 98.8(± 1.6) 0.952(±0.117)
II (n= 4) 97.2(± 2.1) 98.8(± 2.4) 97.2(± 2.1) 0.980(±0.018)
III (n= 6) 93.1(±13.0) 96.4(± 7.0) 93.1(±13.1) 0.947(±0.067)
IV (n= 4) 98.1(± 3.0) 76.3(±24.0) 98.1(± 2.9) 0.873(±0.129)

Figure 6. The local TKEO threshold calculated from the baseline of one Model I mouse. (a) the original signal (b) the signal after
the TKEO approach was applied (the red line is the local threshold calculated based on the baseline period) (c) the spectrogram of
original signal.

signal. In addition to energy, TKEO can also track
instantaneous amplitude, and frequency of a signal
[42], widely used in events detection in biomedical
signals. As the TKEO approach mimics how experts
detect seizures in mouse Model I, this approach per-
forms well onmouseModel I (table 5). Moreover, the
TKEO approach is easily understood by experts and is
easy to interpret and reproduce. However, it does not
generalise well to mouse Models II, III and IV.

The global TKEO-DWT combination approach
analyse the signal in both time and frequency
domains, which generalises well on the three
mouse models used in training (Models I, II, and
III), which demonstrated that the global TKEO-
DWT combination approach could be used to
detect seizure events in intra-amygdala kainic acid
(IAKA_SV129 and IAKA_C57BL/6) and Dravet
syndrome (D_SV129_C57BL/6) model of epilepsy

(table 5). In addition, the global TKEO-DWT com-
bination approach can also be adjusted to fit the
seizure type of the different mouse models for better
accuracy. However, the global TKEO-DWT combin-
ation approach did not perform well on the inde-
pendent test set (Model IV), which was entirely naive
of training, only achieving a sensitivity of 37.7%.

Because of the large number of false-positive
events, Epi-AI provides a visualisation of the detected
seizure events to assist users to filter out these false-
positive events manually by checking the amplitude
and the spectrogram of the detected events. As Epi-AI
is trained on manual annotation of experts, the pre-
dictions can not be superior to experts, however, after
training, Epi-AI will always assign similar annota-
tions to the seizure events, enabling a more objective
detection of seizure events in EEG recordings thereby
reducing the current variability among experts due
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Figure 7. The global TKEO threshold on the Model II mouse EEG signal (a) the original signal (b) the signal after the TKEO
approach was applied (the orange line is the local threshold, the black line is the global threshold) (c) the spectrogram of the
original signal.

Table 6. The performance of Epi-AI on the independent test set of four mouse model of epilepsy and other proposed work (N: number
of subjects; Dur: duration of EEG recordings; IAKA: intra-amygdala microinjection of kainic acid; DS: Dravet syndrome; GA: genetic
absence seizure model; PL: pilocarpine-induced SE model; IHKA: intrahippocampal kainic acid).

Reference Strain Model N Dur (h) Acc (%) Sens (%) Spec (%)

[40] Male WAG/Rij rat GA 6 — 94.8 — —
[9] F344 rats GA 4 8.0 > 90.0 > 90.0 —
[11] Outbred CD1 mice PL 12 2016.0 — 100.0 72.0
[13] Male Swiss mice PL 1 0.2 76.4 — 23.6
[14] Lin28A cKO&Prox1-eGFP mice PL 19 4272.0 — 100.0 —
[15] GnRH-Cre:Ai9 mice IHKA 20 10.6 93.0 92.0 93.0
Epi-AI Male SV129 IAKA 3 806.8 98.8 91.4 98.8

SV129C57BL/6 DS 4 220.0 97.2 98.8 97.2
Male C57BL/6 IAKA 6 1971.7 93.1 96.4 93.1
NMRI PL 4 1153.1 98.1 76.3 98.1

to human errors, human preferences, label environ-
ments, or the level of vigilance [43].

Another advantage of our approach is that Epi-AI
can provide the relative importance of features used
to train the algorithm. This revealed that the TKEO
is the most critical feature in the Epi-AI approach
(figure 4). In applications such as speech processing
[18] and seizure detection [19, 20], TKEO has shown
strong function in recognizing changes in signal prop-
erties. The local TKEO approach proposed in this
study also achieved high accuracy in the detection
of seizure events in mouse Model I. This finding
suggests that TKEO could represent a key common
electrographic feature of seizure activity in multiple
types of epilepsy. However, our results demonstrate
that seizure detection using TKEO alone does not
generalise well between models, and therefore the
other features used by Epi-AI, whilst individually less

relevant, combine to form amore generalisablemodel
of seizure detection.

A final advantage is that we estimated EEG fea-
tures for Epi-AI from 5 s epochs, with 2.5 s overlap.
The selection of a smaller epoch (5 s) is more com-
putationally expensive but allows us to more accur-
ately define the start and end of seizure events. We
defined the minimum seizure duration to be 10 s
[33]. The epoch size therefore must be shorter than
the minimum seizure duration, to avoid the inevit-
able inclusion of non-seizure periods within epochs
labelled as seizures, and to facilitate a more accurate
readout of seizure timing. In contrast, other studies
divided EEG traces into longer epochs (for example
23.6 s in [44]) for feature estimation. If applied to our
seizure definitions, we could hypothetically label an
entire 23.6 s epoch as seizure activity, whereas it may
in fact be composed of 10 s seizure activity and 13.6 s
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non-seizure activity. Therefore, by using a smaller
epoch size, we can more reliably determine seizure
onset and termination.

A main limitation of this work is that the Epi-AI
did not perform as well on mouse Model IV, which
was not part of the training set, compared to the
other three mouse models (Models I–III). It is prob-
able that Epi-AI learned characteristics of the seizure
events that are specific to Models I–III that do not
generalise to mouse Model IV. However, sensitivity
and specificity greater than 75% and 95% respectively
on Model IV suggests that Epi-AI can still generalise
to a reasonable extent. Another limitation of this
work is that the ‘gold standard’ is also subject to vari-
ability or errors, as expert human reviewers do not
always agree. Some studies examined the kappa scores
of seizure annotation by two to eight experts, with
kappa score ranging from 0.49 to 0.85 [45–47]. How-
ever, in order to make the annotation more convin-
cing, in this study, the EEGs were annotated by seven
experts as the ‘gold standard’ (at least two experts
cross-scored/validated the annotations of each
dataset).

Overall, manual identification of seizure events
in EEG recordings by experts is time consuming and
subject to inter-rater variability. The advantage of
Epi-AI over manual scoring is that the seizure events
in each mouse EEG recording could be estimated in
less than a minute, whereas manually annotation by
experienced experts could take hours. As machine
learning is a ‘black box’ method, users may have
difficulty trusting machine learning-based methods
[48]. We have implemented Epi-AI as a web server,
which allows users to more easily and quickly explore
seizures events. The visualisation of the amplitude
and corresponding spectrogram of each predicted
seizure event provided by the Epi-AI web server will
allow the user to quickly filter out false positives
manually, which will help to gain the user’s trust in
the system and improve overall accuracy. We believe
that this will enhance the potential for Epi-AI to be
used more widely in epilepsy research.

5. Conclusion

In this paper, we describe a novel XGBoost-
based approach, Epi-AI, to detect seizures in EEG
recordings in multiple mouse models of epilepsy.

We benchmarked Epi-AI against a local TKEO and
a global TKEO-DWT combination approach which
represent standard threhsold-based approaches. Epi-
AI demonstrated sensitivity of 76.3% to 98.8%, and
specificity of 93.1% to 98.8% on the independent
test set. We show that Epi-AI generalizes well to sev-
eral different mouse models, including one not used
in the development of the approach. Epi-AI repres-
ents a powerful new approach to automated unbiased
seizure detection from EEG data in multiple rodent
epilepsy models on single channel EEG. Moreover,
Epi-AI has been implemented as a web server, allow-
ing users to submit a single-channel EEG file, which
will be annotated by Epi-AI and returned to the
user in a matter of seconds. Therefore, Epi-AI has
the potential to be beneficial in research by greatly
improving the speed, reliability and reproducibility
of seizure analysis in rodent EEG data.
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Appendix. Preliminary analysis

Figure A1 presents the local TKEO, global TKEO-
DWT combination, and Epi-AI approaches applied
on Model I–IV EEG signal.
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Table A1. Preliminary analysis (without post-processing) of the performance of the XGBoost algorithm for seizure detection compared
to four other algorithms on the validation set (NB: naive bayes; KNN: K nearest neighbors; DT: decision tree; RF: random forest).

Algorithm Acc(%) Sens(%) Spec(%) AUROC

NB 01.7 99.6 01.4 0.505
KNN 99.8 01.9 99.9 0.509
DT 99.9 40.6 99.9 0.703
RF 99.9 81.2 99.9 0.906
XGboost 97.5 90.4 97.5 0.939

Figure A1. The local TKEO, global TKEO-DWT combination, and Epi-AI approaches applied on Models I–IV EEG signal.
(a1) the original EEG signal of Model I; (a2) seizure of Model I annotated by experts; (a3) seizure of Model I identified by local
TKEO approach; (a4) seizure of Model I detected by global TKEO-DWT combination approach; (a5) seizure of Model I estimated
by Epi-AI approach; (b1) the original EEG signal of Model II; (b2) seizure of Model II annotated by experts; (b3) seizure of Model
II identified by local TKEO approach; (b4) seizure of Model II detected by global TKEO-DWT combination approach; (b5)
seizure of Model II estimated by Epi-AI approach; (c1) the original EEG signal of Model III; (c2) seizure of Model III annotated
by experts; (c3) seizure of Model III identified by local TKEO approach; (c4) seizure of Model III detected by global TKEO-DWT
combination approach; (c5) seizure of Model III estimated by Epi-AI approach; (d1) the original EEG signal of Model IV; (d2)
seizure of Model IV annotated by experts; (d3) seizure of Model IV identified by local TKEO approach; (d4) seizure of Model IV
detected by global TKEO-DWT combination approach; (d5) seizure of Model IV estimated by Epi-AI approach;.
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