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Executive Summary 

The aim of the AI-SPRINT project is to implement a design and runtime framework to accelerate the 

development of AI applications whose components are spread across the edge-cloud computing continuum. 

AI-SPRINT tools will allow trading-off application performance (in terms of end-to-end latency or 

throughput), energy efficiency, and AI models accuracy while providing security and privacy guarantees. 

This document, in particular, describes the first release and evaluation of the design tools of the AI-SPRINT 

platform, while the second release and evaluation are due at M24.  

The first release includes programming abstractions that hide the communications across components and 

transparently implement the parallelization of the compute-intensive part of the application; quality 
annotations to enrich applications with constraints on performance and security; performance models to 

support AI components execution time prediction (both for inference and training tasks); AI Models Network 
Architecture Search providing solutions to enable developers with limited Machine Learning (ML) expertise 

to train high-quality models specific to their needs also in terms of Quality of Service (QoS) requirements; 

Applications design space exploration tools to evaluate multiple alternative candidate deployments for 

complex applications involving many components. 

The main results of this release include: 

•    The implementation of a prototype application for the AI-SPRINT Healthcare use case that adopts a 

parallel version of the Cascade Support Vector Machine (CSVM) algorithm to train a model that 

classifies a dataset to identify atrial fibrillations possibly related to the heart stroke. This 

implementation adopts the programming model of AI-SPRINT using PyCOMPSs and the dislib 

distributed ML library, reaching an average f1-score of 0.667 in discriminating atrial fibrillation from 

normal recordings using the time-frequency features of a balanced selection of the PhysioNet CinC 

Challenge 2017 available data with shuffled 80/20 training and test sets splits repeated 10 times. 

•    The design of QoS annotations corresponding to performance and security constraints. The AI-

SPRINT API will include parsing tools which will extract the decorated functions from the code of the 

application and produce semi-automatically
1
 the input required by the AI-SPRINT toolchain (including 

design, deployment and monitoring). 

•    Tools for the definition of performance models and profiling tools based on a ML library, that allows 

to predict the execution time of inference and training jobs, through feature selection, and 

hyperparameter tuning. 

•    A component for automatic neural architecture search (POPNAS) to automate the search for the best 

Deep Neural Network (DNN) architecture for a given classification/regression task. Also leveraging 

the performance models, the algorithm searches for the best network configuration to achieve the 

higher accuracy in the lowest possible time by searching the Pareto front of the time-accuracy trade-

off. 

•    A tool (SPACE4AI-D) for the automatic design space exploration in order to minimize the execution 

cost of the AI application while providing response time guarantees. The output of this tool 

determines the optimal component placement, resource selection and the optimal number of 

nodes/VMs which helps the developer to find the optimal placement. 

For each of the above-mentioned components, an evaluation section is also provided to discuss preliminary 

results on the adopted technologies and to evaluate the integration of the components according to the 

project’s milestones. 

  
 

1 The input files needed to run the AI-SPRINT tools pipeline will require, in some scenarios, some edits by the AI developers/architects 
or sysadmins. 
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1. Introduction 
1.1 Scope of the document 
The aim of the AI-SPRINT “Artificial intelligence in Secure PRIvacy-preserving computing coNTinuum” project 

is to develop a platform composed of design and runtime management tools to seamlessly design, partition 

and operate Artificial Intelligence (AI) applications among the current plethora of cloud-based solutions and 

AI-based sensor devices (i.e., devices with intelligence and data processing capabilities), providing resource 

efficiency, performance, data privacy, and security guarantees. This document provides a detailed 

description of the first release and evaluation of the design tools, including the software assets developed in 

the first year of the project and the description of a prototype application from one of the use cases used to 

evaluate these developments. 

 

1.2 Target Audience 
The release and evaluation of the design tools (initial and final version) is intended for internal use, although 

it is publicly available. The target audience is the AI-SPRINT technical team including all partners involved in 

the delivery of work packages 2,3 and 4, but also it serves as reference for the developers of the three use 

cases of the project. 

 

1.3 Structure of document 
This document includes four main parts: 

• The Example Applications introduce two prototype applications, one developed in the context of the 

healthcare use case, that allows the training of a ML model using the design tools, while the other is 

used to describe the quality annotations. 

• The Architectural Overview of the Design Tools provides a high-level description of the main 

components to design AI applications and to provide quality annotations that will be used by the 

runtime environment. 

• The First release of the Design Tools: Components and Evaluation section provides the details of 

each software component of the Design Tools together with the description of the activities to 

enhance them to fulfil the AI-SPRINT use cases requirements. An evaluation of each component is 

also provided. 

• The Towards the Integrated framework for the Design Time Tools section provides a description of 

the roadmap for the integration of the components of the Design Tools.  
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2. Example applications 
The implementation of the components of this first release of the design tools has been driven by the 

requirements analysis of the use cases, whose implementation plan and evaluation are due at M12 and M24, 

respectively. Anyway, to guide the discussion on the technology choices in this document, we used two 

applications to i) evaluate the implementation of a Personalised Healthcare using the Programming 

Abstractions component and ii) to demonstrate the definition of QoS constraints.  

 

2.1 Parallel CSVM classification 
Motivation 

The AI-SPRINT Personalised Healthcare use case concerns the collection, analysis and modeling of digital data 

and lifestyle information from subjects who suffered a stroke. The digital data will be collected from a 

wearable device (a smartwatch or band) equipped with biometric sensors, namely photoplethysmography 

(PPG) and seismocardiography (ECG). PPG and ECG are generally used to perform heart rate (HR) and heart 

rhythm measurements. In particular, when coupled with PPG, which measures changes in the microvascular 

blood volume reflecting pulse waves, a single-lead ECG, which is produced by placing a contralateral finger 

on a negative electrode on the side of the device while its back serves as a positive electrode, can diagnose 

arrhythmias that are relevant for stroke, such as atrial fibrillation (AF). Given the relevance of ECG in stroke 

monitoring, this example application is focused on AF classification from single-lead ECG recordings. 

 

Dataset and classification approach 

Since, due to COVID-19 pandemic, our supplier delayed the delivery of the wearable device, the first year 

research focussed on the PhysioNet [Goldberger2000] dataset. PhysioNet is a repository of freely-available 

medical research data, managed by the MIT Laboratory for Computational Physiology. Among many freely 

available datasets in PhysioNet, the database of the Computing in Cardiology (CinC) Challenge 2017 on AF 

classification (https://physionet.org/content/challenge-2017/1.0.0/) contains a total of 12,186 single-lead 

ECG recordings donated by AliveCor, an AI company producing ECG hardware. The data, collected from 

individuals at rest, is available as Matlab V4 files (each including a .mat file containing the ECG and a .hea file 

containing the waveform information) and split into training and test data sets. At the time of the challenge, 

the training set contained 8,528 recordings lasting from 9 to 61 seconds and the test set contained 3,658 

recordings of similar lengths. The classes represented in the database are (1) Normal (5154 recordings), (2) 

AF (771 recordings), (3) Other rhythms (2557 recordings), and (4) Nosy recordings (46 recordings). By 

achieving a F1-score of 0.79 in 5-fold cross validation on the AF class [Datta2017], a classifier based on the 

Cascade Support Vector Machines (CSVM) algorithm was among the winners of the CinC Challenge 2017. 

Currently, the test set is unavailable to the public and labels have been updated. As of December 2021 and 

concerning the classes of interest for this example application, the database is composed of 5050 Normal 

and 738 AF recordings. 
CSVM is an algorithm for SVM that can be parallelized efficiently and scales to very large problems. 

Conceptually, CSVM consists in splitting the data into subsets that are optimised separately with multiple 

SVMs, whose partial results are then combined and filtered again into a ‘cascade’ of SVMs until the global 

optimum (minimum of the loss function in the training set) is reached. As the kernel matrices are smaller 

than a regular SVM, CSVM exhibits several computational advantages as it requires less memory and its 

training can be spread over multiple processors with minimal communication overhead. It has been 

demonstrated that a single pass through the ‘cascade’ provides good generalisation, although convergence 

to the global optimum is guaranteed with multiple passes [Graf2004]. 
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Figure 2.1 - Architecture of the healthcare application 

 
 

A binary classifier using the CSVM algorithm is conveniently available in the dislib library 

(https://dislib.bsc.es/en/latest/dislib.classification.csvm.html). Thus, given the scope of the example 

application, we transformed the original multiclass problem of the PhysioNet CinC Challenge 2017 into one 

binary problem, namely the AF class versus a balanced representation of the Normal class. 

 

Time-frequency features extraction 

ECG are commonly analysed in the time-domain by experienced physicians. However, as pathological 

conditions may not always be obvious in the time-domain analysis, frequency-domain techniques, such as 

Fourier transform (FT), have been introduced [Clayton1993]. Nevertheless, ECG signals belong to the family 

of multicomponent nonstationary signals [Wood1996], for which accurate time-varying spectral estimates 

can be extremely difficult to obtain. Thus, combining the time-domain and frequency-domain can improve 

the interpretation of the signals and the detection of complex arrhythmias [Mahmoud2006]. For this reason, 

we implemented a feature extraction procedure to pre-process the PhysioNet CinC Challenge 2017 dataset 

before using it to train the dislib CSVM binary classifier. The features extracted, after uniforming the length 

of the recordings by padding with zeros for a total of 61 seconds, comprise the frequency component, the 

time component, and the amplitude for each wave (data point). 

 

2.2 Mask Detection 
Figure 2.2 depicts the workflow of the mask-detection example application which is considered as a reference 

example in WP3; more details are provided in the AI-SPRINT Deliverable D3.1 - First release and evaluation 
of the runtime environment. The application is composed of two main components: “Anon and split” and 

“Mask detector”. The former is in charge of anonymizing the video frames by blurring the detected faces, 

while the latter performs the detection of the masks. The implementation of the application can be found at:  

examples/mask-detector-workflow · master · AI-SPRINT / SCAR · GitLab (polimi.it). 
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Figure 2.2 - Workflow of the mask detection example application 
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3. Architectural overview of the Design Tools  
The AI-SPRINT architecture overview was described in Deliverable 1.3 Initial design of the architecture. This 

section summarises components of the design time tools. For each individual block, we describe its role and 

relation within the global architecture. An overview of the global architecture is shown in Figure 3.1. 

 

 
Figure 3.1 - AI-SPRINT Architecture Overview 

In this deliverable, we focus on the development and evaluation of Design Tools developed in WP2: 

•    Design and programming abstractions: hide the communications across components and 

transparently implement the parallelization of the compute-intensive part of the application, 

possibly exploiting specialised resources (e.g., GPUs and AI enabled sensors). Applications are also 

enriched with quality annotations (e.g., data flow rates, application latency, energy constraints) to 

express performance, accuracy, privacy, and security constraints. 

•    Performance models: automate the AI application performance profiling and identify the 

performance model (based mainly on Machine Learning) providing the highest performance 

prediction accuracy.  Also, support performance ML model selection and hyper-parameters tuning 

considering the target deployment of AI-based sensors. 

•    AI models network architecture search: provide solutions for developers with limited ML expertise to 

train high-quality models specific to their needs also in terms of Quality of Service (QoS) 

requirements. Also, build a learning as a service solution, that starting from a training set with 

labelled training examples (images or temporal data series which are of interest for use cases) will 

automatically identify the most accurate deep neural network which provides execution time 

guarantees.  

•    Applications design space exploration: perform and automate design space exploration in order to 

minimise the execution cost of the AI application while providing response time QoS guarantees by 

implementing several heuristic algorithms (e.g., random greedy, local search, tabu search, etc.). The 

tool considers AI  applications  with  different  candidate  deployments,  which  include  different  

DNN  partitions  for  each component  and  different  resource  candidates  and  aims  to select  the  

optimal  deployment  and  resource  candidate  while taking into account resource contention. 
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Table 3.1 summarises the WP-level responsibilities of the different components of the Design Tools, the lead 

maintainer and the major contributors. The complete table for the rest of the components is available in AI-
SPRINT Deliverable D1.3 Initial design of the architecture. 

 

Tool WP Task Lead Maintainer Major contributors 
Design and 
Programming 
Abstractions 

2 T2.1 BSC TUD, POLIMI 

Performance 
Models 

2 T2.3 POLIMI BSC, UPV 

AI Neural 
Architecture 
Search 

 

2 T2.2 POLIMI BSC, TUD 

Application 
Design Space 
Exploration 

 

2 T2.4 POLIMI BSC, UPV 

Table 3.1 - WP-level responsibilities for the design tools 
 

The objective of the AI-SPRINT Design Tools is to provide a layer that abstracts the applications from the 

underlying computing resources, being these edge resources or cloud servers in such a way that the 

application developer only needs to focus on the actual algorithm and application logic. On the other hand, 

interfaces for easing the integration of the AI applications with the runtime system will be developed. 

Several software components have been adopted in the AI-SPRINT platform and will be integrated to support 

the requirements identified by the AI-SPRINT use cases and described in deliverable D1.2 Requirements 
analysis. 

 

 
Figure 3.2 - AI-SPRINT Architecture detail of Design Tools relations 

Figure 3.2 describes the main interactions among the components of the Design Tools components. 

The design and composition of ML, DL and AI applications is based on the COMPSs/PyCOMPSs [Lordan2014] 

programming model, that enables the development of complex and dynamic workflows, composed of pure 

computational parts, classical data analytics and ML/DL methods. Several ML algorithms implemented with 

PyCOMPSs are already available as a Distributed Computing Library (dislib) [Alvarez2019] inspired by Scikit-

learn, which eases the task of developing applications providing a common interface in all algorithms. The 

main benefit of the PyCOMPSs programming model together with the dislib library is the reduction of the 

execution time of the training and inference processes by exploiting the inherent data parallelism of the input 
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data. To do so, the input dataset is distributed over the different targeted nodes and each node oversees 

training the model with the assigned dataset part. Later, the different models trained in isolation are 

combined, thus requiring exchanging either the model (parameters) or the parameter’s gradients between 

the nodes. The user (application developer role) can save the trained model and store it in a repository and 

then load it for inference tasks. COMPSs also allows the integration with popular frameworks executing 

PyTorch, TensorFlow and Keras tasks as external processes. 

The developed code in AI-SPRINT is enriched with high-level annotations for QoS constraints and code 

dependencies, with performance parameters for the allocation of tasks to computing continuum resources 

and with security and privacy annotations for data allocation and processing. A code-parsing tool (whose 

implementation will start at M13) parses the code of the application searching for the decorated functions. 

The output of the code parsing is a list of annotations together with the corresponding parameters. 

Additionally, annotations to guide the partitioning of specific components based on Deep Neural Networks 

are also provide. 

Once an AI application is designed, Performance Models can help to anticipate the performance of the 

application components before the production deployment or throughout revision cycles, under different 

configurations and deployment settings at the full computing continuum. The AI-SPRINT performance 

modelling approach is mainly based on ML, in particular on the a-MLLibrary
2
 library enhanced to improve the 

hyperparameters tuning phase. The NAS (Neural Architecture Search) module (aka POPNAS) takes into 

account desired QoS both from a machine learning perspective (e.g., accuracy, precision, recall, etc.) and a 

performance perspective (e.g., latency, memory, power consumption, etc.).  

The SPACE4AI-D tool (System PerformAnce and Cost Evaluation on Cloud for AI applications Design) tackles 

the component placement problem and resource selection in the computing continuum at design time, 

dealing with different AI application requirements in order to effectively orchestrate heterogeneous edge 

and cloud resources.  

Monitoring rules includes a built-in set of metrics which describe statistics of the Kubernetes cluster (for Pod 

and nodes) hosting the target AI applications. More details can be found in the AI-SPRINT deliverable D3.2 
First release and evaluation of the monitoring system. Means for specifying the Pods/nodes to be monitored 

and the metrics time granularity, will be developed. 

 

  

 
2 https://github.com/a-MLLibrary/a-MLLibrary 
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4. First release of the Design Tools: Components 
and Evaluation 

This section describes the components of the Design Tools layer according to the Software Design 

Specification (SDS) standard (IEEE Standard 1016). Each component is described in terms of its external 

interfaces and dependencies with other components.  

First, we provide a description of the methodology in the design of the tools, and the conceptualization of 

the relevant entities shared by multiple AI-SPRINT roles and tools. For each of the components we provide a 

description of the main functionalities and the high level architecture. Then, a more detailed description of 

the actual release is provided, describing the activities around the developments in the first year of the 

project. A specific sub section is dedicated to the analysis of the performance evaluation of the tools. 

4.1 Template description of components 
The following template will be used as the structure to provide the information for each component involved 

in the runtime environment. The template is included here to make this document self-contained. A similar 

description is also reported in AI-SPRINT deliverables D3.1 First release and evaluation of the runtime 
environment, and D4.1 Initial release and evaluation of the security tools. 

 

Identification The unique name for the component and its location in the system 

Type A module, a subprogram, a data file, a control procedure, a class, etc. 

Purpose Function and performance requirements implemented by the design component, 

including derived requirements. Derived requirements are not explicitly stated in the 

SRS, but are implied or adjunct to formally stated SDS requirements. 

Function What the component does, the transformation process, the specific inputs that are 

processed, the algorithms that are used, the outputs that are produced, where the 

data items are stored, and which data items are modified. 

High level 
Architecture 

The internal structure of the component, its constituents, and the functional 

requirements satisfied by each part. 

Dependencies How the component's function and performance relate to other components. How 

this component is used by other components. The other components that use this 

component. Interaction details such as timing, interaction conditions (such as order 

of execution and data sharing), and responsibility for creation, duplication, use, 

storage, and elimination of components. 

Interfaces Detailed descriptions of all external and internal interfaces as well as of any 

mechanisms for communicating through messages, parameters, or common data 

areas. All error messages and error codes should be identified. All screen formats, 

interactive messages, and other user interface components (originally defined in the 

SRS) should be given here. 

Data For the data internal to the component, describes the representation method, initial 

values, use, semantics, and format. This information will probably be recorded in the 

data dictionary. 
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Needed 
improvement 

Description of the needed improvements of this tool with regards the AI-SPRINT 

project, in order to fulfil the user requirements and to build the runtime environment 

Implemented 
Improvements 
for the First 
Release 

A description of the implemented improvements in the service to achieve the first 

release of the runtime environment. 

Release Version 
& Repository  

The software version released and the repository from where it can be downloaded. 

 
4.2 Design methodology and shared concepts 
In this section, we describe the overall approach to the conceptualization of the main entities relevant for 

the project and shared by multiple AI-SPRINT roles and tools. Figure 4.1 describes with a class diagram the 

AI-SPRINT entities, their attributes, and the relationships among them. Here, we cover the design aspects of 

the applications, the design space exploration, the resources definition and the deployment options that are 

then enacted by the runtime tools.
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Figure 4.1 - AI-SPRINT Roles and actions related to the generation and consumption of data 
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The common approach for the usage of the AI-SPRINT toolchain is the definition of YAML files to describe the 

information needed by multiple tools that will be translated by an ad-hoc code parser into the specific input 

files required by individual tools. Examples of YAML files will be reported in the following sections within the 

evaluation section and appendices. To rely on the AI-SPRINT toolchain, AI-SPRINT developers/application 

architects/application managers/AI experts need to define mainly a System YAML file and a Monitoring rule 

YAML file listing the metrics to be gathered at resource level with their time granularity. Most of the 

attributes are self-explanatory. We describe here in detail the attributes requiring a clarification.    

A system is characterised by a set of Network Domains that alternatively includes at least two computational 

layers consisting of one or more candidate resources. Each Network Domain has specific properties related 

to the technology of the underlying connection like bandwidth and access delay.  All the computational layers 

located in the same Network Domain can communicate together under the Network Domain’s connection 

properties. In AI-SPRINT, the components of an application are deployed on different computing layers in a 

hierarchical way, following the OpenFog Reference Architecture (RA) [OpenFog]. As an example, in Figure 4.2 

layer 1 includes IoT and/or AI-enabled sensors, layer 2 includes edge servers, PCs and /or Raspberry Pi 

devices, layer 3 includes the cloud, while layer 4 is a Function as a Service (FaaS). According to the specific 

use case, some devices (e.g., smartphones) can be considered at layer 1 or 2, which usually are identified 

with the term edge.  

 
Figure 4.2 - Example of AI-SPRINT system description 

Base resources include attributes common to every resource in the computing continuum and are then 

classified in Resources (further detailed in VirtualMachines, PhysicalNodes, and EdgeNodes) and FaaS. As an 

example, a COMPSsNode is characterised additionally by the type of processor, the number of cores for each 

processor, the internal cache and other user defined properties. If PyCOMPSs is adopted to implement an 

application, a COMPSs parser transforms the System YAML description into the XML resource representation 

used by the PyCOMPSs runtime scheduler with empty attributes that will be edited by the application 

manager in a second stage (implementing a semi-automatic transformation). 

Furthermore, resources are annotated if they support secure boot, i.e., if the BIOS provides and is enabled 

for secure booting as well as if the operating system image used on the physical or virtual node supports 

measured boot in order to fulfil the security constraints laid out by the application developer or user (see 

also AI-SPRINT Deliverable 4.1 Initial release and evaluation of the security tools). 

Container attributes are intended as requirements for the container. So, for example, if the trustedExecution 

flag is set to true the container can be orchestrated only on a resource providing a processor with SGXFlag 

true (see Figure 4.1) and this information will be passed to the Infrastructure Manager (IM) to deploy a K8s 

cluster with SGX support. 
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Figure 4.3 depicts the actions performed by each role to generate and consume the information required by 

the tools. The AI-SPRINT roles have been defined in deliverable D1.2 Requirements Analysis.  

 

 
Figure 4.3 - AI-SPRINT Roles and actions related to the generation and consumption of data 

Application architect  

• Defines the System YAML that is parsed by SPACE4AI-D to generate a system description for the 

deployment, with the objective of minimising the costs given the constraints; this description will be 

then used by IM to perform the initial deployment. 

• Defines the associations among the Containers, the OSCAR Services and the candidate resources.  

• Defines the dependency Directed Acyclic Graph (DAG) of the containers which indicates the 

sequence of execution of the containers. The nodes of the DAG represent the different components 

which, possibly, are DNNs implemented as Python functions running in containers. The DAG includes 

a single entry point, characterised by the input exogenous workload λ (expressed in terms of 

requests/sec, see also Figure 4.2). Each edge connecting two components is labelled with a pair: 

transition probability and data size transferred by the first component to the other one.  

Application developer 

• Provides quality annotations in the code through Python decorators and PyCOMPSs annotations, 

resource constraints and security constraints.   

• Defines DNN partitions. 

• Provides application level monitored metrics (more details in AI-SPRINT Deliverable D3.2 First release 
and evaluation of the monitoring system). 

AI Expert 

• Contributes to the definition of the DNN partitions.  

Application manager 

• Defines resource level monitoring metrics in a YAML file. 
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• Completes the output System YAML file obtained by SPACE4AI-D to generate an initial version of a 

TOSCA description that will be submitted to the IM for deployment. 

• Completes the security tools input files, automatically generated initially by the SCONE parser from 

code decorators. 

 

4.3 Design and Programming Abstractions 
The objective of the AI-SPRINT Design Tools is to provide a layer that abstracts the applications from the 

underlying computing resources, being these edge resources or cloud servers.  The programming model is 

provided by PyCOMPSs while the quality annotations, which are currently at a definition stage, will be 

supported by decorators and an ad-hoc code parser. 

 

4.3.1 PyCOMPSs 
 

Identification PyCOMPSs 

Type Subprogram 

Purpose Automatic parallelization of the application leveraging the user provided information 

through input dependency annotations in the code. 

Function PyCOMPSs provides a sequential programming model to develop AI/ML applications, 

hiding the complexity of the underlying infrastructure. The programming model 

includes the definition of the tasks and of the constraints (through Python annotations) 

to drive the scheduling phase at execution time. Annotations are extended to allow 

predicating on components performance and to specify constraints on the target 

deployment.  

High level 
Architecture 

PyCOMPSs is part of the design tools layer.  

The application developer provides a sequential Python script whose functions are 

annotated through decorators; these annotations are used by the runtime to run those 

parts of code as asynchronous parallel tasks code. When executed, the user code (the 

annotated part) is intercepted and analysed by the runtime, generating an execution 

graph.  

 

 

 



 

 

  
D2.1 First release and evaluation of the AI-SPRINT design tools 

 

21                                                                                                                                                     www.ai-sprint-project.eu 
 

Dependencies In the programming phase PyCOMPSs has no dependencies on any other component 

of the platform. 

Interfaces The interfaces to the programming model are the annotations provided by the AI 

application developer in the code to describe the type of parameters and constraints 

on the resources. PyCOMPSs also provides a set of APIs to control the flow of the 

applications (fault tolerance and synchronisation points). 

Data PyCOMPSs processes the information provided by the user through Python decorators 

and generates a dependency graph, used by SPACE4AI-D, and a set of log files that can 

be used to produce performance models. 

Needed 
improvement 

Extend the programming interface to include QoS constraints in order to improve the 

scheduling phase of the runtime. 

Implemented 
Improvements 
for the First 
Release 

Support for HTTP tasks to allow calls to external functions published as a service. 

Support for optional parameters and default values in tasks. 

Release Version 
& Repository  

The software is available at https://github.com/bsc-wdc/compss  and in the AI-

SPRINT GitLab repository https://gitlab.polimi.it/ai-sprint/compss with daily updates.  

Detailed Description of Activities for the First Release 

An objective for the development environment for AI-SPRINT user applications is that low-level details are 

hidden from the developer, thus making the programming of edge-cloud applications as simple as possible. 

To this end, we will use the PyCOMPSs programming model, since it prevents the programmer from explicitly 

dealing with distributed computing issues on the heterogeneous resources that conform the AI-SPRINT 

infrastructure. In this way, technical details such as communications, networking, resource management or 

data management are hidden from developers, who can just focus on the functionality they want to 

implement. 

The PyCOMPSs programming model focuses on simplicity and is based on the idea of programming sequential 

and executing distributed and in parallel. Sequential programming is much more simple than 

parallel/distributed programming and enables the application developer to focus on the semantics of the 

problem.  The parallelism in PyCOMPSs is exploited at task level, and for this the syntax provides a simple 

interface to identify tasks. Depending on the programming language (Python, Java or C/C++) tasks are 

identified by the programmers in a slightly different way, but basically the programmer needs to identify 

those methods or functions of the application that should be tasks and executed in parallel and indicate the 

directionality of their parameters. The directionality of the parameters can be “input” when a parameter is 

read, “output” when a parameter is written or “inout” when it is read and written by the task. This 

information is used by the runtime to determine the data dependencies.  

The PyCOMPSs programming model provides a set of Python decorators that allow the user to identify the 

function/methods to be considered as tasks and a small API for synchronisation. PyCOMPSs also features a 

runtime that is able to identify the data dependencies that exist among tasks and to extract the parallelism 

between them building a data dependency graph of tasks. The runtime is also responsible of managing their 

execution across distributed infrastructures (e.g., Grids, Clusters, Clouds, and Container manager clusters) – 

scheduling them and performing the necessary data transfers when needed – guaranteeing that the result is 

the same as if the application was executed sequentially. 
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The main decorator that PyCOMPSs provides to identify that a function/method has to be considered as a 

task is the @task decorator. This decorator can be placed on top of any function, instance method or class 

method and it is used to identify the function’s input/output parameters and return peculiarities. 

Moreover, PyCOMPSs provides a set of decorators to identify that the execution of a binary file is considered 

as a task. PyCOMPSs support the invocation of three types of binaries: simple binaries, MPI binaries, and 

OMPSs3. To this end, the @binary, @mpi, and @ompss decorators respectively must be placed on top of the 

@task decorator. The users must also specify the binary to execute, as well as the specific parameters for 

MPI and OmpSs invocation (i.e., the number of nodes to use).  

Besides, PyCOMPSs also supports the task's constraint definition. To this end, it provides the @constraint 
decorator, which also needs to be placed on top of the stack of decorators. Constraints are also used to let 

the developers provide hints on the fault tolerance at task level thus allowing to discard parts of a workflow 

that do not lead to relevant results or that fail for some reason, without affecting the main application. 

Figure 4.4 provides the complete list of arguments for the constraint decorator. 

 

 
3 https://pm.bsc.es/ompss 
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Figure 4.4 - Arguments of the @constraint decorator in PyCOMPSs 

In the last release of PyCOMPSs, we have extended the parameters and the decorators set with new ones  

that are relevant for the AI-SPRINT design tools. The user can define the timeout of a task within the @task 

decorator with the time_out=<TIME_IN_SECONDS> hint. The runtime will cancel the task if the time to 

execute the task exceeds the time defined by the user.  

The @http decorator (see Figure 4.5) can be used for the tasks to be executed on a remote Web Service via 

HTTP requests. This decorator, together with the definition of the resource(s) in resources and project files 

of the runtime allows it to execute GET/POST requests to the service URL. Moreover, Python parameters can 

be added to the request query as shown in the example (between double curly brackets). 

 

Figure 4.5 – Example of the use of the @http decorator in PyCOMPSs 

For POST requests (Figure 4.6) it is possible to send a parameter as the request body by adding it to the 

payload argument. In this case, the payload type can also be specified (‘application/json’ by default). If the 

parameter is a FILE type, then the content of the file is read at runtime in the PyCOMPSs master node and 

added to the request as request body. 

 
Figure 4.6 - @http decorator with payload arguments 
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For the cases where the response body is a JSON formatted string, PyCOMPSs’ HTTP decorator allows 

response string formatting by defining the return values within the produces parameter. In Figure 4.7, the 

return value of the task would be extracted from ‘length’ key of the JSON response string: 

 
Figure 4.7 - Example of response type for a JSON string 

It is also possible to take advantage of INOUT python dicts within HTTP tasks. In this case, string updates can 

be used to update the INOUT dict (Figure 4.8). 

 
Figure 4.8 - @http decorator with INOUT arguments of the tasks 

 

In the example above, ‘some_key’ key of the INOUT dict param will be updated according to the response. 

Please note that the {{param}} is defined inside produces. In other words, parameters that are defined inside 

produces string can be used to update INOUT dicts. 

 

4.3.2 dislib  
 

Identification dislib - distributed machine learning library 

Type Library 

Purpose Provide parallelised Machine Learning algorithms 

Function The Distributed Computing Library (dislib) is a Python library built on top of PyCOMPSs 

that provides distributed mathematical and machine learning algorithms through an 

easy-to-use interface. dislib abstracts Python developers from all the parallelisation 
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details and allows them to build large-scale machine learning workflows in a 

completely sequential and effortless manner.  

High level 
Architecture 

dislib is a subcomponent of the design tools layer. dislib is a collection of PyCOMPSs 

applications that exposes two main interfaces to developers: 1) a distributed data 

structure called distributed array (ds-array), and 2) an estimator-based API. A ds-array 

is a 2-dimensional matrix divided in blocks that are stored across different computers. 

Ds-arrays offer a similar API to NumPy [Numpy2011], which is one of the most popular 

numerical libraries for Python. The difference between NumPy arrays and ds-arrays is 

that ds-arrays are internally parallelised and use distributed memory. This means that 

ds-arrays can store and process much larger data than NumPy arrays. 

 

 

The typical dislib application consists of the following steps: 

1) Load data into a ds-array 

2) Instantiate an estimator object with parameters 

3) Fit the estimator with the loaded data 

4) Retrieve information from the estimator or make predictions on new data 

Each machine learning model in dislib is enclosed in a class implementing the estimator 

interface, where an estimator is anything that learns from data that implements two 

main methods: fit and predict.  

Dependencies dislib is based on PyCOMPSs  

Interfaces dislib provides a scikit-learn inspired interface for the different algorithms (i.e., fit, 

predict, etc.). This makes dislib's interface easy to learn to users already familiar with 

scikit-learn, and allows a smooth transition of existing codes from scikit-learn to dislib. 

Data dislib processes data through the distributed array abstraction: A built-in 2-

dimensional array (sharded both by row and by column) that can be operated in 
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parallel, and that is used as the main input for the different algorithms.  Distributed 

arrays store samples and labels in a distributed way that works as a regular Python 

object from the user point of view. 

Methods for loading data from files in common formats, such as CSV and LibSVM are 

also provided. 

Needed 
improvement 

Add methods to save a trained model and load it for inference tasks. 

Extend the CSVM algorithm with multi-level classification. 

Include annotations in dislib for QoS scheduling. 

Implemented 
Improvements 
for the First 
Release 

First prototype of save and load mechanisms.  

Release Version 
& Repository  

The software is available at https://github.com/bsc-wdc/dislib and from the AI-

SPRINT GitLab https://gitlab.polimi.it/ai-sprint/dislib 

 

Detailed Description of Activities for the First Release 

Inspired by scikit-learn, dislib provides an estimator-based interface that improves productivity by making 

algorithms easy to use and interchangeable. This interface also makes programming with dislib very easy to 

scientists already familiar with scikit-learn. dislib leverages the distributed data structure (ds-array) that can 

be operated as a regular Python object. The combination of this data structure and the estimator-based 

interface makes dislib a distributed version of scikit-learn, where communications, data transfers, and 

parallelism are automatically handled behind the scenes by the PyCOMPSs runtime. 

In dislib all the ML methods are provided as scikit-learn estimator objects. An estimator is anything that learns 

from data given certain parameters. dislib estimators implement the same API as scikit-learn, which is mainly 

based on the fit and predict operators.  

The typical workflow in dislib consists of the following steps: 

• Reading input data into a ds-array 

• Creating an estimator object 

• Fitting the estimator with the input data 

• Getting information from the model’s estimator or applying the model to new data 

 
Figure 4.9 - dislib training example code 

Figure 4.9 shows an example of use of the dislib to train a K-means model and to print the coordinate of the 

resulting centers. It is worth noting that, although the code of a dislib application looks completely sequential, 

all dislib algorithms and operations are parallelised by using PyCOMPSs. The annotations as tasks definition 

and constraints are already defined in the dislib source code. The QoS and privacy annotations developed by 

the project have to be included in the source code of the library in the next releases.  
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Interface for ds-array management  

Distributed arrays (ds-arrays) are the main data structure used in dislib. In essence, a ds-array is a matrix 

divided into blocks that are stored remotely. Each block of a ds-array is a NumPy array or a SciPy CSR4 matrix, 

depending on the kind of data used to create the ds-array. dislib provides an API similar to NumPy to work 

with ds-arrays in a completely sequential way. However, ds-arrays are not stored in the local memory. This 

means that ds-arrays can store much more data than regular NumPy arrays. The degree of parallelisation 

with PyCOMPSs is controlled using the array’s block size. Block size defines the number of rows and columns 

of each block in a ds-array. Sometimes a ds-array cannot be completely split into uniform blocks of a given 

size. In these cases, some blocks of the ds-array will be slightly smaller than the defined block size. 

dislib provides a set of routines to create ds-arrays from scratch or using existing data. The API reference 

contains the full list of available routines. For example, random_array can be used to create a ds-array with 

random data. Another way of creating a ds-array is by reading data from a file. dislib supports common data 

formats, such as CSV and SVMLight, using load_txt_file and load_svmlight_file. 

In this first release we have implemented a classificator to support the development of the personalised 

healthcare use case. The CascadeSVM estimator implements a version of support vector machines that 

parallelises training by using a cascade structure. The algorithm (Figure 4.10) splits the input data into N 

subsets, trains each subset independently, merges the computed support vectors of each subset two by two, 

and trains again each merged group of support vectors. One iteration of the algorithm finishes when a single 

group of support vectors remains. The final support vectors are then merged with the original subsets, and 

the process is repeated for a fixed number of iterations or until a convergence criterion is met. The fitting 

process of the CascadeSVM estimator creates the first layer of the cascade with the different row blocks of 

the input ds-array. This means that the estimator creates one task per row block at the first layer, and then 

creates the rest of the tasks in the cascade. Each of these tasks use scikit-learn’s SVC internally for training 

and load a row block in memory. The maximum amount of parallelism of the fitting process is thus limited 

by the number of row blocks in the input ds-array. In addition to this, the scalability of the estimator is limited 

by the reduction phase of the cascade. 

 
Figure 4.10 - Cascade Support Vector Machine 

4.4 Quality Annotations  
The aim of the Quality Annotations is to provide the user with a means to specify, through code decorators, 

constraints that could be evaluated at runtime to drive the scheduling and the security policies. 

 
4 https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix 
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Identification Quality Annotations 

Type A set of modules and parsers 

Purpose Provide annotation for application components 

Function The module allows users to annotate application components to specify quality and 

security constraints and a YAML file to describe the system architecture. To this 

purpose, the module makes use of Python decorators, which wrap the functions of 

the components involved in the constraint. Furthermore, decorators compute 

runtime information that is communicated to the Monitoring Subsystem (see AI-
SPRINT Deliverable D3.2 First release and evaluation of the monitoring system).  An 

initial version of the secure policy will be automatically generated by a SCONE parser.  

The YAML system description will be transformed by a SPACE4AI-D parser to generate 

the initial JSON file which will be completed by the Application architect. The module 

provides also an additional annotation to enable users to define a partitionable DNN, 

i.e., a network that can be partitioned across multiple devices. 

High level 
Architecture 

Annotations are implemented as Python decorators, with a structure represented by 

the pseudo-code reported below. The wrapper is the core function of the decorator, 

which is in charge of executing the annotated function (func) together with additional 

AI-SPRINT code for monitoring purpose. The function implementing the decorator, 

i.e., decorator, is returned by the annotation function. This mechanism of nested 

functions allows the use of decorators with arguments. Indeed, the annotation is 

associated with a set of arguments, i.e., the annotation_args, which represent the 

parameters of the corresponding quality constraint.  

 

 

Dependencies A quality annotation depends on functools Python module, that allows to act on or 

return other functions. 

Interfaces The provided interface is the annotation itself, which is used by the developer to 

annotate the desired function through the ‘@annotation’ string placed on top of the 

function definition. 
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Data The annotation takes as input a set of parameters that define specifics about the 

constraint.  

Needed 
improvement 

Quality annotations corresponding to time constraints, i.e., ‘execTime’ annotation 

and security annotations have been designed, but need to be implemented and 

integrated in the SDK, together with the function to communicate to the Monitoring 

Subsystem. 

Implemented 
Improvements 
for the First 
Release 

The initial work focused on the definition of the quality annotations and analysis of 

the dependencies among the different design time and runtime components.  

Decorators and parsers are not yet available but will be implemented by M18 and be 

part of the first integrated release of the AI-SPRINT framework.  The next releases of 

the design tools will also include an annotation (and a tool) for defining partitionable 

DNNs (i.e., DNNs which can be split and executed at multiple layers of the computing 

continuum). 

Release Version 
& Repository  

N.A. 

 
 

4.4.1 Detailed Description of Activities for the First Release 
 

Annotations for QoS constraints 

One of the objectives of the design environment in AI-SPRINT is to provide an abstract layer between the 

developed application to be deployed and the computing continuum, by masking the management of the 

available resources to developers. This translates into a simplification from the perspective of an application 

developer, who can concentrate mainly on the implementation of the algorithm itself rather than on the 

complex mechanism behind the deployment process. At the same time, the goal is to give enough control to 

the developer during the implementation to constrain the allocation of resources in the cloud continuum at 

design time. The idea is to give developers the capability of defining QoS and security constraints that must 

be satisfied by the designed deployment. To this purpose, the AI-SPRINT SDK will be equipped with a set of 

programming abstractions that AI-SPRINT users can exploit to define performance parameters at the 

application level.  

Abstractions in AI-SPRINT will be implemented as Python decorators, which can be used to annotate the 

components composing the developed applications. At design time, each component will be placed on a 

specific resource, selected from the set of candidates, by considering the constraint defined through the 

annotations, if provided by the user. In the specific, quality annotations make it possible to define time 
constraints on the application components, i.e., the user can specify a required execution time of the 

components. The set of candidate resources will be then skimmed, by selecting those that meet the desired 

time requirements. In the following, annotations for time constraints are presented in detail. Figure 2.2 will 

be used as a guideline during the dissertation.  

 

 

Time Constraints Annotations 

As already introduced, AI-SPRINT will give developers the capability of associating a desired execution time 

to the application components. For instance, by looking at the workflow of the example in Figure 2.2, we 

could require that the “Anon and split” component must be executed in a maximum time of 0.5 seconds at 
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runtime. In the proposed AI-SPRINT view, this will translate into annotating the component with a Python 

decorator named execTime, which will take as argument the maximum execution time required by the user. 

The decorator provides a wrapper of the annotated component, allowing executing additional Python code 

each time the component is executed. Specifically, the execTime decorator will extract information about the 

runtime of the component, i.e., it will compute the starting and ending time before and after the execution 

of the component, respectively, and the overall execution time. A possible implementation is given in Figure 

4.11. The func argument is the decorated function and to_monitoring_tool is a function that will be part of 

the AI-SPRINT API that will store the execution time information to InfluxDB5 database, to be used at runtime 

by the monitoring tool (for additional details see D3.2). The arguments of the decorator are time_thr, i.e., 

the required upper bound for the execution time, and prev_components. The role of the latter will be clarified 

later in the document. 

 

 
Figure 4.11 - Example implementation of the execTime decorator 

 

Annotating a component means wrapping the corresponding main function in the user code with the 

decorator. For instance, in the example of putting a time constraint on the execution of the anonymization 

component, it means annotating the main function in the auto_blur_image.py script6. In the following Figure 

4.12, a code snippet shows how the main function of the anonymization component should be annotated in 

the considered example (maximum execution time of 0.5 seconds). 

 
5 https://www.influxdata.com/ 
6 https://gitlab.polimi.it/ai-sprint/scar/-/blob/master/examples/mask-detector-workflow/blurry-
faces/src/auto_blur_image.py 
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Figure 4.12 - Code snippet from the auto_blur_image.py script in which the main function has been decorated with execTime 

decorator to add a time constraint to the function 
 

Time constraints can be categorised into local and global time constraints. Local time constraints refer to 

single components, like the example proposed in Figure 4.12, while global time constraints can be associated 

with a group of consecutive components. Considering again the current mask detection example application, 

the user could require, for instance, that the consecutive execution of both the anonymization and mask 

detector components must take at most 1 second. In order to define a global constraint at the level of the 

code a new strategy is introduced. Defining as path a group of consecutive components involved in a 

constraint, the current proposal for defining a global time constraint is to employ the following annotation 

mechanism: 

1. Decorate all the functions in the path except the last one with the execTime decorator with no 

arguments, i.e., the time_thr is None (default value). These annotations only serve to mark these 

functions as part of the global constraint. 

2. Decorate the last function with the execTime decorator with two arguments: the time_thr, which, in this 

case, does not refer to the required execution time of the single component but it refers to the required 

execution time of the whole path. Finally, an additional argument of the annotation comes into play, 

i.e., the prev_components, which is the list of names of the previous components in the constrained 

path. The last annotated component must have a non-empty  prev_components, otherwise the 

constraint will be considered as a local one.  

In the considered example, in which we supposed a required execution time of 1 second for the whole 

application, the developer must decorate the main function of the auto_blur_image.py script with 

@execTime() with no arguments, since it is involved in the global constraint and it is not the last component 

in the path. Then, the main function in the mask-detector-image.py script7, which is the last component in 

the path, must be annotated by defining both the time_thr and the prev_components. In Figure 4.13, the 

code snippets from the auto_blur_image.py (a) and mask-detector-image.py (b) files are reported, extended 

with the annotations specific for the considered global constraint in the example. 

 

 

  

 
7 https://gitlab.polimi.it/ai-sprint/scar/-/blob/master/examples/mask-detector-workflow/mask-
detector/mask-detector-image.py 
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(a) 

 

 
(b) 

Figure 4.13 - Code snippets from the auto_blur_image.py (a) and mask-detector-image.py (b) scripts in which the main functions 
have been annotated considering a global time constraint of 1 second 

   

Time-constraints decorators can only compute and store the execution time of the function being wrapped. 

Nevertheless, in the case of global constraints we need to compute the execution time of the whole 

constrained path at runtime. The proposed solution is to delegate in OSCAR, which is in charge of 

orchestrating the application components for the inference task, to trace the computation through the paths 

defined by the global constraints. This is done by integrating ad-hoc monitoring services, which are in charge 

of tracing the computation of a specific file, from its upload to the end of the application, and of storing the 

runtime information to InfluxDB for monitoring. Tracing the computation of a specific file through the 

deployed application is not easy due to the asynchronous execution of the components. To this purpose, 

monitoring services are integrated with a mechanism of fingerprinting, through which the file is intercepted 

after the upload, and it is marked with a unique identifier. 

 

Parsing the annotations 

Once the components have been annotated by the application developer, we need to collect and store this 

information for later use in the AI-SPRINT framework. To this purpose, the AI-SPRINT API will include a code-
parsing tool, which will parse the code of the application searching for the decorated functions. The output 

of the code parsing is a list of annotations together with the corresponding parameters. This information will 

be routed to different tools in the AI-SPRINT framework, depending on the kind of annotation, e.g., time 

constraints will be used by OSCAR for monitoring local/global constraints or by the SPACE4AI-D, at design 

time, to place the components on the candidate resources.  

 

Security constraints 

In addition to giving the developer the option to define a desired execution time, developers can furthermore 

annotate tasks to receive certain security guarantees while executing. For this, we define the following 

constraints that can be used to annotate a main function of a Python script: 
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@security(trustedExecution=true,network=true,filesystem=true) 
 
We will now describe the different properties and meaning of the above annotations. 

The trustedExecution translates to the use of trusted execution environments (TEE). Hence, the 

process that is executing the task will run in a TEE such as Intel SGX. This will also lead to the fact that such 

tasks will only be scheduled on processes that run on nodes that provide the necessary hardware support. If 

no such node is available, the task will run on a node that provides at least secure and measured boot 

mechanisms such that the used operating system and kernel can be trusted (for additional details, see AI-
SPRINT Deliverable D4.1 Initial release and evaluation of the security tools). 

The network flag ensures that all TCP connections will be wrapped using SCONE’s network shielding layer. 

Alternatively, service meshes such as Istio8 that provide secure communication will be deployed along the 

processes on a Kubernetes cluster. 

Similar as with network encryption, the filesystem flag ensures that all files written and read by the 

process executing the tasks are encrypted. This is achieved by intercepting the system calls through SCONE 

in a similar fashion as for the network shielding. 

The security annotations are parsed prior to the deployment and execution of the respective process and 

used to establish the appropriate configuration needed to ensure these properties. More details about the 

configuration, such as how these annotations will be used to form security policies is provided in D4.1 “First 
release and evaluation of the AI-SPRINT security tools”. 

 

Deep Neural Network Partitioning Annotation 

SPACE4AI-D (see Section 4.7) provides the optimal components placement among the candidate resources 

in the computing continuum. Additionally, for each component multiple partitions may exist, since one of 

the features offered by the AI-SPRINT is the possibility of partitioning DNNs across different resources. The 

goal of the design tool is also to find the optimal DNN partitioning which guarantees the memory and QoS 

constraints.  

 

AI-SPRINT will enable users to inform SPACE4AI-D if a particular DNN used in the developed application can 

be partitioned. To this purpose an additional annotation is proposed, named ispartitionable, which is 

implemented as a Python decorator, as in the case of the previously introduced annotations. This decorator 

will be used by the developers to annotate directly in the application code any DL model that can be 

partitioned, i.e., whose layers can be deployed on different devices. During the parsing of the application 

code this annotation is recognized and the design tool, i.e., SPACE4AI-D, is informed of the possibility of 

partitioning the corresponding annotated models. Finally, the candidate deployments for the network 

partitions are obtained based on the provided memory and time constraints. 

 

In order to consider an homogeneous representation among the possible implementations of DL models, and 

also among different DL frameworks, we require the developers to represent the partitionable DNNs  through 

the Open Neural Network Exchange (ONNX9) format, which serves as an intermediate model representation 

providing a powerful sharing mechanism among frameworks. The ONNX format allows to directly obtain the 

computational graph of the DL model, where the nodes are the layers of the DNN, thus providing the DAG 

representation required by the SPACE4AI-D tool to define the candidate deployments. In order to obtain the 

needed representation the annotation tool will require the employed DL models to be implemented as 

Python classes exhibiting a simple interface, which allows to read and run the model from an ONNX file. An 

 
8 https://istio.io/ 
9 https://onnx.ai/ 
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example implementation of such a Python class (as pseudo-code) is provided in Figure 4.14, already 

annotated with the ispartitionable decorator. The class provides two methods, i.e., the __init__ function and 

the forward function. The structure of the class is very similar to the standard implementation of models in 

the most common DL frameworks. The __init__ function will take the complete path to the ONNX file as 

input, i.e., onnx_file, representing the entire DNN computation. The model is then read from its ONNX 

representation and saved as an attribute of the class. Finally, the forward function will be executed at runtime 

to compute the model output given the provided input x. In order to exploit the partitioning feature provided 

by AI-SPRINT, the developers are simply required to provide the employed DNNs as instances of the 

PartitionableModel. At design time, the SPACE4AI-D tool is informed of the presence of a partitionable model, 

by parsing the code annotations, and uses the provided ONNX format to compute the partitions and the 

candidate deployments.  
 

 
Figure 4.14 - Example implementation (as pesudo-code) of a partitionable DL model, which is further annotated to signal the design 

tool that the model is partitionable 

 

4.5 Performance Models 
This section introduces performance models based on a-MLLibrary machine learning library that aims to 

predict the execution time of AI application components under different configurations. 

Identification Performance models 

Type Subprogram 

Purpose Provide to the application manager/AI-SPRINT runtime components means to choose 

an appropriate configuration to: 1) avoid applications performance violations, 2) avoid 

under or overestimation of the utilisation of the continuum resources, and 3) predict 

the execution time of Deep Learning components on a target configuration.  The final 

goal is to provide solutions for selecting the most appropriate system configuration for 

executing the required application component/inference pipeline/training job to fulfill 

QoS requirements while minimising operational costs.  

Function Performance models are based on the a-MLLibrary machine learning library initially 

developed within the ATMOSPHERE project and currently maintained and extended by 

the EuroHPC LIGATE project (https://www.ligateproject.eu). This library supports 

feature selection, hyperparameter tuning, and model selection and can generate the 

most accurate regression model for a specific task.  Using the generated regression 

model, the execution time of inference components or pipelines or training jobs can 

be predicted. 

High level 
Architecture 

The tool is a separate component. The current implementation is based on Python 

and relies on standard Python libraries (mainly scikit, pandas and hyperopt).   

Dependencies The tool requires as input the execution time of the inference component/training job 
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under different configurations. This information can be obtained by the AI-SPRINT 

monitoring infrastructure or by code instrumentation.  The tool provides as output the 

machine learning models as pickle10 files.  The other tools relying on the performance 

models are SPACE4AI-D, SPACE4AI-R, the Job scheduler and the POPNAS component. 

Interfaces Command line tool.  Detailed user guide available at https://gitlab.polimi.it/ai-

sprint/a-mllibrary. 

Data The execution time of the inference component/training job under study under 

different configurations are provided as CSV files.  Moreover, an input Python file 

specifies, at high level, the set of methods to be evaluated for identifying the best 

model, the set of hyper-parameters, the set of features and, possibly, how to perform 

features augmentation (e.g., compute the inverse of some features, perform product 

of features up to a given degree). 

The tool provides as output the machine learning models as pickle files and detailed 

information on the accuracy achieved by the candidate performance models, the set 

of features selected and the hyper-parameters setting for the most accurate models.  

Needed 
improvement 

The core of the a-MLLibrary is already available.  Furthermore, a performance profiling 

tool, a-GPUBench, based on TensorFlow 2.0 able to automate the execution of the 

training of the application under study under different configurations has been 

developed to gather the data needed to train the models (see Appendix D). 

Implemented 
Improvements 
for the First 
Release 

Profiling tools for the inference of an application based on OSCAR are under 

development.  Furthermore, for the training, Pytorch will be also supported. 

Release Version 
& Repository  

The software of a-MLLibrary is available at: https://github.com/a-MLLibrary/a-

MLLibrary, and https://gitlab.polimi.it/ai-sprint/a-mllibrary, while the performance 

profiling tool (for the TensorFlow jobs training) a-GPUBench is available at 

https://gitlab.polimi.it/ai-sprint/a-gpubench 

 

 
4.5.1 Detailed Description of Activities for the First Release 
Once an AI application is designed, performance models can help to anticipate the performance of the 

application components before the production deployment or throughout revision cycles. The goal of AI-

SPRINT is to develop, on one side, ML models able to predict AI application components performance under 

different configurations and deployment settings at the full computing continuum stack and, on the other 

side, a set of tools that will automate AI application components profiling to gather the training data required 

by the ML models. Figure 4.15 illustrates the machine learning-based methodology AI-SPRINT is developing 

to identify models able to predict the performance of the analysed applications when executed on different 

hardware (characterised, e.g., by a different number or type of GPUs) or software settings (e.g., different 

number of training iterations or number of inner modules of a ResNet deep learning model). As a first step 

(see Figure 4.15(a)), we must profile the AI component under study on some reference machines and under 

multiple configuration settings.  

 
10 https://docs.python.org/3/library/pickle.html 
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Figure 4.15 - Performance Modeling Methodology based on Machine Learning (model building (a) and prediction (b) step) 

 

 

The aim of the profiling is to measure the AI component execution time by varying some hardware or 

software settings (e.g., the batch size and number of iterations of a training job, or the memory assigned to 

a Function as a Service (FaaS) component). Once the relevant training dataset for the performance regressors 

has been collected, the building of the model is performed by considering a relevant set of features that 

differ according to the target application and deployment.   

As a second step (see Figure 4.15(b)), we use the performance regressor models to predict the AI component 

execution time on unseen configurations. The general aim of ML is to infer the input/output relationships 

that map the AI component and system characteristics onto the target performance indicators through 

statistical models, without requiring knowledge of internal system details. It is noteworthy that ML provides 

good interpolation capabilities, i.e., it can predict values in areas of the features space that have been 

sufficiently observed during the training phase [Didona2014]. In our approach, we also test extrapolation 

capabilities, i.e., we investigate if performance regressor models can predict values in regions of the 

parameters space not sufficiently explored. Testing the performance prediction models’ generalisation 

capabilities is of the utmost importance and has a significant practical implication: generalisable models 

enable accurate performance prediction in conditions that users may not be able, or willing, to empirically 

investigate.  

The AI-SPRINT approach is built on a machine learning library called a-MLLibrary, which was initially 

developed in the ATMOSPHERE project. This high-level library helps us to know how to perform feature 

selection, hyper-parameters tuning, etc., and we can predict the execution time of AI components and feed 

this estimated time to SPACE4AI-D, SPACE4AI-R, the POPNAS component, and the job scheduling tools.  

AI-SPRINT is developing two kinds of models: the first class of models is a gray box per-layer model, which 

aims at predicting the performance of an AI component based on a DNNs, layer by layer. The second class of 

models is a black-box method which aims at modelling the execution time for training and inference of DNNs 

according to the features and historical data. The end-to-end model is usually accurate and allows us to 

predict different configurations also in terms of hardware while the per-layer model cannot be generalised 

on the hardware side, but it is capable of being generalised on the application side which means if we train 

per-layer model on some reference applications, we can predict the execution time of the applications that 

have never seen before without the need of profiling.  

We describe both the models in the following and then compare the end-to-end with the per-layer-model in 

the performance evaluation section for DNN job training. POPNAS, SPACE4AI-D, SPACE4AI-R tools rely on 

per-layer models while the job scheduling tool relies on end-to-end models. Finally, for PyCOMPSs and dislib 
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applications which provide general AI models (not limited to DNN) and mainly rely on CPUs and distributed 

servers, we will develop ad-hoc models whose main feature is the total number of available cores. 

 

Per-layer model 

All Convolutional Neural Networks (CNNs) comprise a number of layers belonging to a limited collection of 

basic categories. Building upon this observation, we propose to learn several regression models, in order to 

characterise common layer types. In this way, it is possible to estimate the performance of a wide range of 

CNNs even without previous experience with the specific structure, just relying on these low-level layer 

models. Our approach is based on two basic assumptions, in order to make the problem easily tractable and 

improve model generality. When working with GPUs, applications attain their best performance when they 

fully leverage the data parallel architecture, hence we expect CNN designers, as well as users, to tune 

networks accordingly. Such a consideration means that, mostly, the execution of different layers will not 

overlap, whence follows that layer running time predictions can just be summed to obtain an estimate of the 

overall execution time: 

!̂!"" = $ ∑#∈% !̂#   (1) 

where, in case of job training, $ is the total number of training iterations. The second aspect to take care of 

is the choice of features to feed into the regression models. A simplistic idea could be using all the various 

hyper-parameters as features, but this would make for a difficult to interpret and hardly generalizable 

formulation. On the other hand, we propose to summarise all the relevant characteristics in a single feature: 

layers computational complexity in terms of simple primitives available on GPGPUs, a good metric for layer 

workload. To exemplify the derivation of computational complexity from network hyper-parameters, here 

we discuss the method for convolutional layers. The convolutional part operates on 3D tensors. Let us denote 

with & the number of channels, ' the number of rows or height, ( the number of columns or width. The 

amount of zero padding on each side of the matrices is ), whilst the stride is *. Subscripts distinguish 

properties of the input, output, and filters, e.g., '&' , '()* , '+. Cardinalities are used as a shorthand for 

index sets, as in + ∈ '&'. 

Some layers just apply predetermined operations, possibly depending on hyper-parameters under users’ 

control. In contrast, convolutional and fully connected layers have a set of learnable weights that evolve 

during the training phase via back propagation. The number of weights depends on their hyper-parameters. 

Each output channel is obtained by convolving a different filter with the input tensor; hence the count of 

learnable parameters is given by: 

('+(+&&' + 1)	&()* 

Convolution entails multiplying filters of size '+(+&&' elementwise with input activations and producing as 

output the sum of all these partial products and an additive bias, hence there are &()* filter-bias pairs that 

contribute all the entries in the tensor plus one coefficient. 

The 3D tensors involved in CNNs contain all the partial values, called activations, obtained via the incremental 

transformations operated by filters. In practice, layers take an input tensor and apply a filter to its entries, 

thus yielding an output tensor with a possibly different layout. It is possible to compute output dimensions 

given layer hyper-parameters, specifically filter sides, padding around the edges, and stride. Tensor sizes are 

relevant because they appear in the formulas for computational complexity, since every output activation 

comes from one of the several applications of the filter to its inputs: it is common to consider complexity per 

pixel, as the overall layer operations count is always directly proportional to '()* (()*. In particular, 

continuing our example, convolutional layers can be formalised as the following expression for all 

(+, 2, 3) ∈ '()* ×(()* × &()*: 



 

 

  
D2.1 First release and evaluation of the AI-SPRINT design tools 

 

38                                                                                                                                                     www.ai-sprint-project.eu 
 

5&,- = 6- + 7
*∈.!

7
)∈/!

7
#∈!"#

8*)#-9&,#  

where : = ;(+, !) and   2 = <(2, =), while 9 and 5 are, respectively, input and output activations. ; and < 

associate output and filter indices to the input needed to convolve each activation and their specific 

functional forms depend on the CNN and its hyper-parameters, in particular padding and stride, but they do 

not affect the derivation of complexity. Overall, you multiply all the weights times the input activations and 

accumulate the products on the bias once per output channel, hence convolutional layers require 

>('+(+&&'&()*) operations per output pixel. Similar considerations enable determining the computational 

complexity for back propagation. Without spelling out the full details for space limitations, note that 

propagating deltas to biases requires one operation per channel, whilst doing so for parameters and inputs 

costs twice as much as the forward pass, because it fundamentally amounts to following the convolution 

backwards once for weights and once for activations. All in all, each output pixel requires >((2'+(+&&' +
1)&()*). 

 

Layer Forward Backward 

Conv !$"$#%&#'() (2!$"$#%& + 1)#'() 

FC !%&"%&#%&#'() 2!%&"%&#%&#'() 

Loss 4#'() − 1  #'() + 1  

Norm 5#'() + #%& − 2 8#'() + #%& − 1 

Pool !$"$#'() (!$"$ + 1)#'() 

ReLU 3#'() 4#'() 
Table 4.1 - Operations per output pixel 

 

Table 4.1 shows formulas for all the kinds of layers, with the computational complexity per output pixel for 

both the forward and backward passes. Now, using these formulas it is possible to build a dataset where the 

operations count is associated with the measured execution times of both passes: given this data, we can 

build a series of models where computational complexity is the only explanatory variable. For every layer 

category and direction we learn, following the theory for linear regression, a model of the form: 

!# = ?0# + ?1#@# + A#  

is considered, where !#  is the execution time, @#  the complexity, and A# ∼ ƝC0, D#
2E random errors. With the 

estimated coefficients ?F  it is possible to predict both forward and back propagation time, then all the relevant 

contributions are added to obtain the time taken for one iteration. Multiplying by the overall number of 

iterations (in case of job training) and summing the terms due to each layer, as in (1), yields a prediction for 

the full run. In particular, it is possible to predict both training and inference execution times, depending on 

whether back propagation terms are included in the sum. 

The choice of using only computational complexity as independent variable confers a lot of generality, 

allowing to learn a set of models on data coming from a limited selection of CNNs and to apply it nonetheless 

to different networks. Anyhow, not adding explicitly any contribution related to hardware in the formulation 

makes every trained model specific to the deployment where data is extracted. 

The experimental setup and result adopted for training the per-layer performance models is presented in 

Section 4.8.2. In the same section, we report the results of an additional analysis, performed by integrating 

this model with the Neural Architecture search presented in the next section. 
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End-to-end model 

The per-layer approach adopts each layer's computational complexity to estimate the layer forward or 

backward pass execution times. This technique is quite general in its applicability, however the prediction 

errors tend to increase as more complex networks are considered, since its generality entails some 

approximations. In the case of a working deployment, it is quite natural to trade off some generality for lower 

prediction errors, whence the end-to-end method laid out in the following. The basic idea is to extract from 

historical data, particularly logs of previous runs or traces collected by the monitoring platform, the execution 

time of the network in its entirety, so as to build a dataset associating these timings to, e.g., batch sizes and 

number of iterations. Then it is possible to apply regression to a sample in order to obtain a model specialised 

for the particular CNN and deployment under consideration, but capable of predicting performance with high 

accuracy. 

Deep learning practice usually involves several alternating phases of CNN training and testing. The former 

iteratively feeds the network with labelled image batches, so that its parameters can change following the 

direction of the back propagated gradient, whilst the latter evaluates the CNN’s evolving quality in terms of 

more human readable metrics, rather than the loss function used for training, but without contributing to 

the learning of weights and biases. For example, generally training is performed minimising a loss function 

that may be SVM-like or based on cross entropy, but the stopping criterion is likely expressed in terms of 

classification accuracy or F-score, for unbalanced datasets. Since training involves back propagation, but 

testing does not, it is necessary to characterize two different models. 

The experimental setup and its validation adopted for training the end-to-end performance models is 

presented in Section 4.8.2.  

PyCOMPSs and OSCAR performance models 

The performance prediction of PyCOMPSs and OSCAR applications, which rely mainly on CPUs rather than 

on GPUs, are currently under development. We consider parallel, distributed systems such that the main 

feature is given by the number of available cores C. 

Models are built by considering the features proposed in [Venkataraman2016] and further analysed in 

[Maros2019]. Specifically, since the input data size was not available, we focused on the number of CPU cores 

C used for the computation. We performed feature augmentation by considering also its logarithm log(C), 

which encodes the cost of reducing operations in parallel frameworks. Moreover, we considered the inverse 

of the number of cores, to capture any contribution that may come in this way. For the PyCOMPSs application 

scenario, the inverse of log(C), as well as the crossover terms of all features, up to the second degree, were 

added when applying Sequential Forward feature Selection (SFS), so as to capture their contribution limiting 

the overall size of the model. For the OSCAR application performance models, we considered instead the 

crossover terms of all features, up to the second degree, without applying SFS due to time constraints. We 

report in Section 4.8.2 the validation performed by focusing on the CSVM and mask detection use cases. 

 

4.6 AI Neural Architecture Search  
 

Identification POPNAS (Pareto Optimal Progressive Neural Architecture Search) 

Type Subprogram 

Purpose Perform an automatic neural architecture search with time-accuracy trade off and 

Pareto efficiency property. 

Function POPNAS receives as input a set of configuration parameters and an annotated 
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dataset, e.g., images with labels. The goal is to look for the best neural network 

architecture for the given classification/regression task. The algorithm searches for 

the best network configuration to achieve the highest accuracy in the lowest possible 

time by searching the Pareto front of the time-accuracy trade-off. Architectures on 

the Pareto front are then proposed as possible candidates to select among. 

High level 
Architecture 

POPNAS is a separate component. The current implementation is based on Python 

and relies on standard Python libraries. POPNAS approach searches for stackable cells 

which can be stacked effectively to solve the assigned task. To achieve this multiple 

cell candidates are generated and evaluated by means of training or by means of 

performance models (to speed up the evaluation process). 

Dependencies In its current implementation, POPNAS depends on the a-MLlibrary models for the 

prediction of performance, and on Keras and Tensorflow2 frameworks for the design 

and the training of the neural architectures.  

Interfaces The software is currently accessible via command line interface. 

Data The input data includes the path to a labelled dataset of images (current 

implementation is tailored to image classification) and a list of training and cells 

hyperparameters. Cell hyperparameters define the search space of the algorithm and 

thus the potential cells which can be generated. 

Needed 
improvement 

The second version of the algorithm is already under development. The major 

improvements of this new version include: 

● Skip connections among networks blocks and cells 

● Time prediction improvements thanks to a new feature set 

● Time prediction improvements through the usage of more complex machine 

learning models and better features encoding 

● Pruning of equivalent blocks and cells from the search space to reduce the 

total search time and improve Pareto variety 

● Exploration steps consisting in training networks with input and operator 

values not used or very rarely used in the Pareto front to exit local minima 

and increase Pareto variety 

● Additional quality dimensions (e.g., memory requirement of the networks) to 

partition the DNN across multiple devices in the computing continuum 

● Implementation and evaluation of early exits to partition the DNN across 

multiple devices in the computing continuum 

Implemented 
Improvements 
for the First 
Release 

The current version of the tool has been developed from scratch within the AI-SPRINT 

project. This is the first release. 

Release Version 
& Repository  

https://gitlab.polimi.it/ai-sprint/popnas 

 
4.6.1 Detailed Description of Activities for the First Release 
Neural Architecture Search (NAS [Zoph2016]) is the process to automate searching for the best Deep Neural 

Network (DNN) architecture for a given task. By exploiting different heuristics and AI techniques, NAS has 
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achieved the state-of-the-art in image classification among other auto machine learning strategies and 

human being handcrafted architectures. 

Almost all the NAS techniques rely on three fundamental steps:  

• Definition of a search space:  the set of all the possible neural networks to build; 

• Search strategy: the algorithm to explore the search space; 

• Evaluation strategy: the criterion to evaluate and rank the explored models. 

While both the evaluation strategy and the search space have essential importance in the performance and 

computational costs of autonomous generated models, the literature is often divided according to the most 

appropriate exploration strategy to adopt, e.g., reinforcement learning, gradient-based optimization, 

evolutionary algorithm, and bayesian optimization. Despite the progress achieved, the computational costs 

of these techniques remain too expensive in most scenarios. Indeed, it is necessary to frequently update 

deep learning architecture in many cases, and the required time can become a fundamental discriminating 

factor.  

Pareto-Optimal Progressive Neural Architecture Search (POPNAS [Lomurno2021]) is a NAS method that, 

starting from the Progressive Neural Architecture Search (PNAS [Liu2018]) technique, manages the trade-off 

between time and accuracy via Pareto efficiency. With this technique, it is possible to obtain competitive 

performance results and massive reductions in model search time with respect to PNAS.  

The goal of POPNAS is to keep all the PNAS algorithm advantages while dealing with time constraints to speed 

up the whole research and to achieve similar accuracy performance. In order to do that, a new time regressor 

is required, which jointly works with the controller. As shown in Figure 4.16, at each iteration, after models 

expansion, one predictor, named controller, has to evaluate the accuracy of children architectures, as it is 

done in PNAS, while another predictor, named regressor, has to predict their training time to achieve the 

Pareto efficiency simultaneously. 

 
Figure 4.16 - POPNAS overall schema 

 

 

The aim of POPNAS is to search for the most accurate cell structure among those with the lowest training 

time, pruning out the cells that take more time but have the same accuracy. A cell is a structure composed 

of blocks as shown in Figure 4.17, i.e., the binary operations searched by the algorithm.  
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Figure 4.17 - Representation of a POPNAS general block 

The list of these operations (as in PNAS) includes: 

• 3x3 Average Pooling 

• 3x3 Max Pooling 

• Identity 

• 3x3 Convolution 

• 3x3 Depthwise Separable Convolution 

• 5x5 Depthwise Separable Convolution 

• 7x7 Depthwise Separable Convolution 

• 1x7 Convolution followed by 7x1 Convolution 

A neural network built via POPNAS is a stack of properly connected cells. In the beginning, all the possible 

cells with only one block are generated. Proceeding with the iterations, the number of blocks is expanded 

and both the accuracy predictor, i.e., the controller, and time predictor, i.e., the regressor, are updated. They 

are used to build the Pareto front for iteration i+1 having the information until iteration i. From the Pareto 

front, only the best K models are selected, trained, used to update the predictors and sent to the next 

expansion step. 

The algorithm is described in detail in [Lomurno2021] while numerical results are reported in Section 4.8.3 

for the CIFAR10 dataset together with examples of the architectures designed with the tool. 

 

4.7 Application Design Space Exploration (SPACE4AI-D)  
In this section, we introduce SPACE4AI-D which is a design time tool and aims to provide an optimal 

component placement and resource selection for AI applications in the computing continuum.   

Identification SPACE4AI-D 

Type Subprogram 

Purpose Perform and automate design space exploration in order to minimise the execution 

cost of the AI application while providing response time guarantees.mplements 

several heuristic algorithms (i.e.., random greedy, local search, tabu search, etc.). 

Function SPACE4AI-D tool receives resource description, performance model, performance 

constraints and application DAG as an input and finds the minimum cost solution for 

component placement and resource selection problem while guaranteeing 

performance requirements (namely, requirements on the maximum admissible 

response times of single components or sequences of components) using, in the 

current release, a random greedy algorithm. The output of this tool determines the 
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optimal component placement, resource selection and the optimal number of 

nodes/VMs which helps the developer to find the optimal placement. 

High level 
Architecture 

SPACE4AI-D tool is a separate component. The current implementation is based on 

Python and relies on standard Python libraries.  Future extensions will consider the 

Solid library (https://github.com/100/Solid) for the implementation of more 

advanced heuristics. 

Dependencies SPACE4AI-D depends on the performance models (a-MLlibrary), and requires 

performance constraints, resource descriptions and the DAG of AI applications that 

will be obtained by parsing the application code. The tool generates the optimal 

solution for the component placement and resource selection.  A parser will be 

developed to transform the output to the TOSCA standard format to be provided as 

input to the virtual infrastructure provision module (IM,  see AI-SPRINT Deliverable 

D3.1  First release and evaluation of the runtime environment). 

Interfaces The software is a command line tool that accepts some input files including the 

performance model and constraints, the candidate resource descriptions and the 

application DAG in JSON format. 

Data The input data includes the performance model (pickle file obtained from the a-

MLlibrary) and constraints, resource descriptions and application DAG. The input 

JSON file will be obtained by an external parser from the YAML descriptions discussed 

in Section 4.4.1. 

Needed 
improvement 

The tool needs to be validated on real systems.  Furthermore, the code parser and 

output file translations into TOSCA format need to be developed.  Additional 

heuristics (on-going work to be included in the next release is evaluating the 

effectiveness of the tabu search algorithm) will be developed and included in the 

M24 release. 

Implemented 
Improvements 
for the First 
Release 

The current version of the tool has been developed from scratch within the AI-SPRINT 

project. A random greedy algorithm has been implemented to find the optimal solution 

for the joint component placement and resource selection problem. At each iteration, 

a solution is generated based on the system description and then the solution 

feasibility is tested. The candidate feasible solution with minimum cost will is provided 

as output. 

Release Version 
& Repository  

The first version released is available at https://gitlab.polimi.it/ai-sprint/space4ai-d  

 

4.7.1 Detailed Description of Activities for the First Release 
In SPACE4AI-D framework, AI applications are modelled as DAGs, see Figure 4.18, whose nodes represent the 

different components. These are DNNs implemented as Python functions running in Docker containers that 

can be deployed in edge devices, cloud Virtual Machines (VMs) or according to the Function as a Service 

(FaaS) paradigm. For the sake of simplicity, we assume that the DAG includes a single entry point, 

characterised by the input exogenous workload λ (expressed in terms of requests/sec), and a single exit point. 

We assume that the inter-arrival time of requests, i.e., 
1
0 is exponentially distributed. We denote the set of 

components by $. The directed edge connecting components i and k is labelled with < H&- , I&- >, where H&- 

is a transition probability, and I&- denotes the size of data sent from i to k.  
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Figure 4.18 - Directed acyclic graph for components 

 

 

Furthermore, components can be characterised by multiple candidate deployments. Each element in a 

candidate deployment is a partition of the corresponding DNN. We denote by &&  the set of all candidate 

deployments for component + ∈ $. Each element @1& ∈ &&  is defined as@1& = KL2
& M2∈.*"

, where L2
&

 denotes the 

DNN partition. The set '1&  is defined as the set of indices ℎ of all the partitions L2
&

 in the candidate deployment 

@1& . An example of an AI application component (denoted by i=1) with its candidate deployments is reported 

in Figure 4.19. Three alternative deployments are available: @1
1
 and @2

1
, characterised by two partitions and 

denoted by @1
1 = {L1

1, L2
1	} and @2

1 = {L3
1, L4

1	}, respectively, and @3
1
, characterised by three partitions and 

denoted by @3
1 = {L5

1, L6
1, L7

1	}. In this setting, we will define '1
1 = {1,2}, '2

1 = {3,4} and '3
1 = {5,6,7}.  

Note that, in some cases, one of the candidate deployments may correspond to the complete DNN identifying 

the component. The corresponding set @1&  would therefore contain a unique partition L2
&

. 

 

 
(a) Component 1 

 
(b) Candidate deployment #11  

(c) Candidate deployment #21 
 

(d) Candidate deployment #31 
Figure 4.19 - Example of AI application component with its candidate deployments 

   

Together with H&-, which is related to the transition from component + to component	3, we introduce an 

additional parameter H23
&

, which defines the probability that partition L3
&
is executed just after partition L2

&
. 

Mechanisms as early stopping [Yao2007] entail that not all component partitions are necessarily executed, 

which dictates the necessity of defining the probability of actually moving from one to the other. Similarly, 

we define I23
&

 as the amount of data transferred from partition L2
&

 to partition L3
&
. Moreover, each L2

&
 is 

characterised by a memory requirement (expressed in MB), and by a total load Q2
&

, which depends on Q and 

on the transition probabilities related to all predecessors of the partition. 

For simplicity, we consider DAGs including only sequential execution and branches, since, as in 

[Ardagna2007], we assume that loops are unfolded (or peeled) while parallel execution is not supported for 

the time being. We define execution paths as sequences of application components from the entry point to 

the exit point of the DAG, while a path ) denotes a set of consecutive components included in an execution 

path. 

The main performance metric we consider in our system is the response time. QoS requirements may be 

imposed on both the response time of single components (local constraints), and on the response time of all 

components included in a path (global constraints), see Section 4.4.1. QoS requirements may be imposed on 

both the response time of single components local constraints, and on the response time of all components 

included in a path global constraints.  
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Resources general model 

Computing continuum resources include edge devices, cloud Virtual Machines (VMs) and Function as a 

Service (FaaS) configurations (OSCAR is considered as the target environment for supporting functions, see 

AI-SPRINT Deliverable D3.1 First release and evaluation of the runtime environment). Each resource is 

characterised by a maximum memory capacity and is included in a different computational layer. In our 

model, the first layer includes local devices generating data (such as drones, in the AI-SPRINT Maintenance 

and Inspection use case). The second layer is often located in the edge and may include smartphones, PC or 

edge servers with a higher computational power. Cloud layers include VMs coming from a single cloud 

provider catalogue (however, our approach can be easily extended to consider multiple cloud providers). The 

VMs selected at a given layer are homogeneous and evenly share the workload due to the execution of one 

or multiple application components. We consider VMs characterised by a single GPU, if available: costs and 

inference performance scale linearly with the number of GPUs [Sivaraman2018], therefore such assumption 

allows to improve the availability of the whole system. Finally, we consider all FaaS configurations to be in 

the same layer because functions run on independent containers. The same component can be associated 

with multiple FaaS configurations characterised by different memory settings. The response time of all the 

executed components is computed as follows: 

• We characterise the demanding time to run a component on edge or cloud resources without 

resource contention (i.e., when a node executes a single request, see [Lazowska1984]).  

• We model edge devices and VM instances as individual M/G/1 (single server multiple class) 

queues [Tadakamalla2021] to cope with resource contention. 

• We compute the average execution time for each component on a given FaaS configuration 

starting from the execution times of hot and cold requests, the expiration threshold and the 

arrival rate of the configuration by relying on the tool proposed in [Mahmoudi2020]. 

• We consider several network domains connecting edge devices with each other and with the 

remote cloud back-end. Resource layers are included in, possibly, multiple network domains, 

associated with a given technology characterised by access time and bandwidth. 

• We include in the global execution time of each path the network delay due to data 

transmissions, depending (see, e.g., [Mahmoudi2020]) on the amount of data transferred, the 

network bandwidth and the access delay of the network domain. We neglect the network delay 

in the cloud since all VMs and FaaS instances are executed in the same data center. 

• Specific components (partition) may also be characterised by an ad-hoc performance model 

identified by the methodology described in Section 4.5.1. 

According to the results reported in [Tadakamalla2021] and [Mahmoudi2020] and the preliminary results 

reported in Section 4.8.2, response times of components deployed at each layer can be estimated with a 

percentage error between 10% and 30%, which is acceptable for design-time purposes [Lazowska1984]. 

Finally, a compatibility matrix R is introduced to show which devices can be used to execute each partition. 

Specifically,  S2,
&

 is 1 if L2
&

 can be executed on device 2, 0 otherwise. 

System costs 

Resources in the computing continuum are characterised by different costs: 

• Costs of edge devices are estimated, for the single run of the target application, amortising the 

investment cost along the lifetime horizon of the device and dividing the yearly management costs 

by the number of times the application is run over a year. 

• Cloud VMs costs are hourly costs [AzureVMpricing], while FaaS costs are expressed in GB-second 

[AWS], and they depend on the memory size, the functions duration, and the total number of 

invocations. 
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• An additional transition cost can be required by FaaS providers (e.g., [AWSStepFunctionsPricing]) to 

account for the message passing and coordination. Some third-party frameworks, e.g., AI-SPRINT 

OSCAR, avoid transition costs by supporting the orchestration through an architectural component. 

A summary of the problem formulation and the proposed random greedy algorithm are reported in Appendix 

B. 

 

4.8 Performance evaluation 
In this section, we provide a description of the activities to evaluate the results of the tests on the software 

components described in the previous sections.  

 

4.8.1 Parallel CSVM classification 
In order to evaluate the performance of the prototype example application, as described in Section 2.1 - 

Parallel CSVM classification, we executed a set of runs in the MareNostrum IV supercomputer.  

The code performs a training of the model using the dislib implementation of the CSVM algorithm and then 

calculates the score returning the mean accuracy on a given test data and labels. The input dataset is loaded 

from the PhysioNet repository files into ds-array objects as training set and labels. The data is split by dislib 

in blocks of 500x500 thus generating 631 tasks managed by PyCOMPSs (Figure 4.20). Figure 4.21 depicts the 

Python script used for the tests, while Figure 4.22 contains a part of the internal implementation of the train() 
and score() functions in dislib, using PyCOMPSs annotations.  

The code to extract the time-frequency features from the PhysioNetc CinC Challenge 2017 dataset and train 

the dislib CSVM binary classifier is available at https://doi.org/10.5281/zenodo.5734309.  
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Figure 4.20 - Script for the execution of CSVM with PyCOMPSs and dislib 
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Figure 4.21 - Internal implementation of the training and score tasks in dislib 
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Figure 4.22 - Execution graph of the CSVM algorithm 
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To conduct the experiment in Marenostrum, a 3,456-node (48 servers of 72 nodes) supercomputer where 
each node has two 24-core Intel Xeon Platinum 8160 and 98 GB of main memory, was used. Each node hosts 
the execution of 6 tasks, each using 8 cores. The logs of these executions are available at: 
https://doi.org/10.5281/zenodo.5734190. Figure 4.23 represents the results of these tests highlighting that, 
for this specific configuration, we can achieve performance improvements thanks to the PyCOMPSs 
parallelisation, up to 192 cores. 

 

 
Figure 4.23 - Results of the execution of CSVM algorithm in the Marenostrum cluster 

 

4.8.2 Performance Models 
In this section, the results obtained in building end-to-end and per-layer performance models for DNN based 
AI applications and for PyCOMPSs will be presented. In all experiments, the accuracy of models is evaluated 
considering their mean absolute percentage error (MAPE) on the test set: 

!"#$ = 100%
! ∑!"#1 '$!%$&!$!

'  (1) 

Where (	is the number of samples in the test set, *" is the execution time measured on the operational 
system and *+" is the predicted execution time from the learned model. It is worth noting that, in order to 
have models suitable to be exploited in what-if performance analyses and capacity planning, their prediction 
error should be small. As from the common practice [Lin2013], we will consider a model accurate if its MAPE 
is lower than 30%. 

End-to-end performance model 

In this section, first we describe the experimental setup and then present the performance evaluation results 
of the end-to-end models with a particular focus on job training. 

The features we considered can be classified in two different classes: 

1) Features parameters describing the deep learning job training process independently from the hardware 
on which it will be run such as the number of performed iterations (,) and the number of training examples 
processed during an iteration (-) i.e., the batch size.  
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2) Features describing the characteristics of the underlying hardware such as:  

• #: The computational power of the used GPUs, measured in single precision GFlops/second. 
• .:	The number of GPUs used. 
• 0:	The number of CPU threads used to load in parallel the training examples of a mini-batch to GPU 

memory. 
• 1:	The disk delay, measured as the time required to load 120 kB files of 192 kB from disk into the 

memory of a GPU. 

To increase the accuracy of the performance regressor at the profiling stage, we use the two following 
approaches to augmenting the feature set: 

• The reciprocals of the features: There are some metrics that more appropriately should appear in 
their reciprocals: for example, . and 0 are likely to produce terms that depend on their inverse 
[Gianniti2018b]. In this deliverable, the feature set is augmented with all the reciprocals of the 
original features, so as to cater both for those parameters that intuitively contribute in this way and 
for possible second-order effects, which may be harder to anticipate. 

• Using interaction terms: In line with this method, the feature set is also extended with crossover 
terms. Each term can contain any combination of original features and reciprocals under the 
constraint that every monomial has at most degree 1 in every variable. This constraint comes from 
the previously mentioned choice of not using any higher degree powers. Additionally, combined 
terms cannot contain both a feature and its reciprocal, so as to avoid adding redundant information 
and/or introducing numerical issues. 

To reduce the model size of the performance regressor and limit the overfitting, feature selection is also 
performed by applying the Sequential Forward feature Selection (SFS) [Ferri1994] and Draper and Smith 
[Draper1966] method, which jointly performs forward and backward feature selection. 

SFS [Ferri1994] is a greedy search algorithm which aims at automatically selecting, among the d available 
features, the k (k < d) that are more relevant for the tackled problem. Applying feature selection allows first 
of all to improve computational efficiency, and, moreover, to reduce the generalisation error by removing 
irrelevant features or noise. The SFS algorithm takes as input the whole feature space (whose dimension is 
d) and the dimension of the target space k. Starting from an empty feature set, it proceeds iteratively by 
adding as a new feature the one that optimises a given criterion function, until the number of features k is 
reached. 

Draper and Smith [Draper1966] outline an approach that tries to merge the basic forward selection and 
backward elimination schemes, thus achieving the best of both worlds with a linear model. On one side, 
backward elimination starts with the full set of features and iteratively drops the least significant term from 
the regression equation, eventually stopping when all the remaining coefficients are significant at a given 
confidence level. In a dual fashion, forward selection starts with an empty model and iteratively adds the 
most promising features one at a time, until the latest addition results to be not significant enough. In both 
cases, the decision is made based on the p-value of single coefficient t-tests, where at each iteration the least 
significant (respectively, last added) feature is compared to a predefined threshold. Since both methods are 
somewhat impaired by their greedy approach, Draper and Smith suggest starting with an empty model and 
proceed in combined steps that try both to add the most promising feature and to remove the least 
significant, until neither succeeds at the preliminarily set up confidence levels. 

For what concern extrapolation analyses, the most obvious scenario we investigated is the extrapolation on 
the number of iterations, ,, which simply corresponds to training an NN for more epochs. Such information 
helps in scheduling jobs on a shared infrastructure or can be used, conversely, to tune the number of epochs 
so as to fit a given time window. Similarly, extrapolating on the number of inner modules of a DNN, 2, allows 
for fine- tuning the network depth of the architectures that can be parametrized in this sense, such as ResNet 
and VGG. Another set of features can have an even higher economic impact, as their interpretation is linked 
with hardware changes in the deployment of interest. For instance, since it is common practice to use the 
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largest batch size that fits on the GPUs at hand, in order to reach the optimal parallelism, extrapolating on - 
corresponds to using different GPUs with larger memory. Along the same lines, extrapolation on 
computational power # means switching to GPUs with a higher nominal speed in GFlops/second. In the end, 
extrapolating on the number of data loading threads 0 or of GPUs . relates to the installation of more, 
respectively, CPUs or graphics cards. 

Here, we describe in detail the experimental setup for collecting data and the set of conducted deep net 
profiling experiments. Experiment data and our scripts source code for models training and testing are 
available at https://doi.org/10.5281/zenodo.5327342, and at https://doi.org/10.5281/zenodo.5735476. To 
enforce the generality of the proposed approach, different open-source frameworks and multiple NNs have 
been considered. The adopted frameworks are PyTorch 0.3.1 [Paszke2017, PyTorch] and TensorFlow 1.8.0 
[Abadi2016, TensorFlow], while the trained CNNs are AlexNet [Krizhevsky2012], ResNet-50 [Krizhevsky2012], 
and VGG-19 [He2015], whose implementations are already available within the considered frameworks. The 
experiments have been run on four different types of machines, whose characteristics are summarised in 
Table 4.2. VGG-19 cannot be trained on the in-house server 1 since its parameters do not fit in GPU memory. 
To test the generalisation capabilities of the performance models when the number of inner modules is 
varied, ResNet has been considered as a reference deep network and the number of inner modules has been 
varied between 1 and 10. 

 

Machine Type (v)CPUs Mem. [GB] GPU type Computational 
Power [GFlops/s] 

N. GPUs 

Azure Standard_NC6  
Azure Standard_NC12  
Azure Standard_NC24  
Azure Standard_NV6  
Azure Standard_NV12  
Azure Standard_NV24 
 In-house server 1  
In-house server 2 

6 
12 
24 
6 
12 
24 
20 
40 

56 
112 
224 
56 
112 
224 
48 
256 

K80  
K80  
K80  
M60  
M60  
M60  
Quadro P600  
GTX 1080Ti 

5591  
5591  
5591  
7365  
7365  
7365  
1195  
11339 

1  
2  
4  
1  
2  
4  
2  
8 

Table 4.2 - Characteristics of the target machines 

The addressed scenario for CNNs is the classification of images belonging to the ImageNet [Deng2009] 
database. The images are cropped to 32x32 pixels when used as input of the ResNet with a variable number 
of inner modules, and to 224x224 in all the other scenarios. To speed up the experimental campaign, the set 
of analysed images is a subset composed of around 120,000 items evenly partitioned into 100 classes.  

As in other research studies, each experiment has been run immediately after preliminary one-epoch-long 
experiments and the execution time of the first 20 iterations has been excluded from each experiment’s total 
time, because they can take significantly longer to complete than the subsequent iterations (see, e.g., 
[Hadjis2016]). It is worth noting that their removal does not affect the significance of the trained performance 
models, since in real scenarios the first 20 iterations are negligible with respect to the full training, which 
runs for several thousands of iterations. To remove other possible “warm-up” effects, each experiment 
performed on cloud VMs has been repeated at least three times and the data about its first run discarded. In 
this type of scenario, indeed, the whole first epoch can have a significant time delay caused by the retrieval 
of the training examples used during training, which may not be immediately available on the VM’s local disk. 
Even in this case, the impossibility of correctly estimating the first epoch of a training procedure is not a 
significant limitation, since this is only a limited fraction of the overall deep net training process. Moreover, 
to reduce the overall execution time of the experimental campaign, the upper bound of the number of 
epochs has been set to three. To verify that the data collected on the first three epochs can be effectively 
used to build general models able to predict the execution time of real training processes with thousands of 
epochs, some ad-hoc long-running experiments have been performed. In particular, for each framework, for 
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each network, and for each type of GPU but the GTX 1080Ti, a long experiment (at least 24 hours) has been 
run. Long runs on GTX 1080Ti could not be performed because of the limited availability of in-house server 
2. 

To increase the number of available samples, for each run on the target system, timing data is also collected 
after the 25%, 50%, and 75% of iterations, respectively. In this way, four data points are extracted from each 
run. Finally, to mitigate the effects of system perturbation (for example, running of operating system 
services) on the collected data and to improve the accuracy of the generated models, all the experiments 
whose execution time is shorter than 10 seconds have been removed from the data sets. 

Different ranges of batch size have been considered for different networks and for different machines, since 
GPU devices with larger memory support training with larger batch sizes. A strong scale approach has been 
adopted: the batch size identifies the overall number of training examples processed, possibly across multiple 
GPUs, during an iteration [PyTorch]. The largest batch size is 8,192 for AlexNet, 512 for ResNet-50, and VGG-
19, when running on 8 GTX 1080Ti. Several values of numbers of CPU threads have been analysed for the 
AlexNet experiments, while only up to 8 CPU threads have been used in the training of ResNet-50, and VGG-
19 since incrementing the thread numbers did not significantly influence the forward or backward times of 
these NNs. The overall number of deep net training runs is about 10400 with an overall execution time of 
more than 5500 hours. For the sake of completeness, the size of the training set for each investigated 
scenario is reported in Appendix A. Note that the reported numbers refer to available samples. The number 
of corresponding runs is roughly one fourth, i.e., for each experiment four samples are generated as 
previously described. Some of the generated samples, however, have been discarded because they are 
shorter than 10 seconds. 

In order to verify that the execution time of individual epochs is stable so that the models built by using data 
on a few epochs can be effectively used to predict performance of long-running deep net training, we 
performed a set of experiments. Table 4.3 presents the difference between the average execution time of an 
iteration in the whole long-running experiment and the average execution time of one iteration computed 
either on the first epoch or on the first three epochs. Because of limited time slots accessibility, results on 
the in-house server 2 could not be collected for multiple day executions. On the in-house server 1 the 
difference between the time of the initial epochs and the average execution time of epochs for long 
experiments is very small (less than 1%). Results obtained on the Azure VMs are characterised by a larger 
difference, but in all the scenarios the difference is below 10%. Moreover, when the number of initial epochs 
is 3, the difference is reduced to less than 8%, so short experiments data can be effectively used to train 
models to predict real scenario deep net training execution times. It is worth noting that possible “warm-up” 
issues have been removed by the preliminary one-epoch-long experiments. 

 

 
Network  
 

 
Framework  

 
N. Initial 
Epochs 

GPU Type 

P600 K80 M60 

AlexNet PyTorch  1 0.73 7.42 9.25 

3 0.18 1.52 1.38 

TensorFlow 1 0.18 7.14 4.76 

3 0.12 7.40 4.80 
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ResNet-50 
 

PyTorch  1 0.08 1.02 0.24 

3 0.49 0.20 0.01 

TensorFlow 1 0.33 0.27 0.62 

3 0.31 0.09 0.82 

VGG-19 PyTorch  1 - 2.71 0.78 

3 - 1.50 0.22 

TensorFlow 1 - 4.00 3.62 

3 - 3.91 3.72 

Table 4.3 - Relative percentage difference between average iteration time of initial epochs and average iteration time over the 
whole long running experiment 

By analysing individual deep nets, it can be noticed that the difference for ResNet-50 and VGG-19 is not larger 
than 4%, while, on the contrary, AlexNet differences are greater, up to 9.25%. These results show how 
AlexNet, despite its smaller complexity (i.e., smaller number of parameters), has a more irregular 
performance behaviour with respect to other networks. This is caused by the impact of data loading on 
AlexNet, which contributes significantly to the overall training time. Since data loading is more subject to 
system perturbation than computation, the larger is its delay contribution, the larger the variance in the 
epochs execution time. 

The performance of the mentioned Deep Learning applications have been evaluated by considering the 
XGBoost Machine Learning model [Chen2016], coupled with Sequential Forward Selection (SFS). 
Hyperparameter selection has been performed by relying on HyperOpt [HyperOptGitHub], an open-source 
Python library based on Bayesian optimization algorithms over awkward search spaces, which may include 
real-valued, discrete, and conditional dimension. The space of the hyperparameters is defined in Table 4.4. 
The maximum number of evaluations performed by HyperOpt has been set to 10. 

 

Parameter Value Type 

min_child_weight 1 Fixed 

gamma loguniform(0.1, 10) Prior probability 

n_estimators 1000 Fixed 

learning_rate loguniform(0.01,1) Prior probability 

max_depth 100 Fixed 
Table 4.4 - Parameters required by the XGBoost method 
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Whenever the performance obtained by XGBoost was not accurate enough, we considered the Draper and 
Smith method, setting the probabilities to add or remove a feature to 0.05 and 0.1, respectively, and the 
maximum number of iterations to 100. 

Feature augmentation has been performed in both cases by including the reciprocal of the available features 
and the crossover terms, in order to capture second-order effects which may be harder to anticipate. 

Experimental result 

The results of the experiments described in the previous section are reported in the following.  

Hold-out models were trained by considering all the samples collected by the previously described 
experiments, with a given network on different numbers and types of GPUs. This set of samples has been 
randomly splitted into a training set, including the 80% of the collected data, and a test set including the 
remaining 20%. A summary of the results obtained when exploiting different ML models is reported in Table 
4.5. In particular, both XGBoost and Draper and Smith methods are tested in two different scenarios: in the 
first one, we let the model include all the relevant features. In the second one, we limit (through SFS, in the 
case of XGBoost) the number of features to 5. 

 

 
Network 

 
Framework 

ML Model (maximum number of used features) 

XGBoost (all) XGBoost + SFS (5) Draper & Smith (all) Draper & Smith (5) 

AlexNet PyTorch 3.90 7.58 10.11 17.15 

TensorFlow 3.69 6.50 11.92 20.35 

ResNet-50 PyTorch 4.99 6.30 10.13 16.56 

TensorFlow 1.43 28.11 9.99 16.94 

VGG-19 PyTorch 2.28 4.47 5.21 14.02 

TensorFlow 2.25 2.98 3.10 8.14 

Table 4.5 - MAPE [%] on test set for different models 

We can notice that the results obtained exploiting PyTorch and TensorFlow are quite similar: estimating the 
training time for the AlexNet network is more difficult than the other, due to the fact that, since it is a very 
simple network, the data loading process is more significant in determining the overall training time. The 
regularity of the ResNet-50 and VGG-19 networks usually results in very accurate performance estimation 
models. The relation between the prediction error and the number of features in the model is characterised 
in a sample scenario, adopting the Draper and Smith method, in Figure 4.24. It is worth noting that there are 
very significant improvements in the accuracy of the model up to the sixth added feature. After that, adding 
more features improves the model accuracy only slightly. Nevertheless, considering all the selected features 
instead of a limited number still results in a significant accuracy improvement. 

As an example, Table 4.6 reports the list of features selected by SFS to build the best XGBoost model for the 
different networks and frameworks under study, together with the corresponding weights. 
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Figure 4.24 - MAPE when varying the number of features 

 

Network Framework Features (corresponding weights) 

AlexNet PyTorch TP (0.434485), IB (0.399988), PI (0.165527) 

TensorFlow ID (0.506602), TD (0.493398) 

ResNet-50 PyTorch I/D (1.0) 

TensorFlow PI (0.508897), TP (0.491103) 

VGG-19 PyTorch ID (0.649914), PG (0.350086) 

TensorFlow PI (1.0) 

Table 4.6 - Relevant features and corresponding weights for the XGBoost model using SFS 
 
Additional tests were performed to measure the extrapolation capability of the produced models. These are 
particularly crucial when building a performance prediction model, since its main goal is to predict an 
application execution time in unforeseen scenarios, for which it is not feasible to collect profiling data. These 
may include both the exploitation of new hardware (e.g., a new VM type in the cloud) and the training of a 
new NN version. The results that will be presented in the following were collected by considering 
performance models built with the aim of predicting the execution time of experiments characterised by a 
feature whose value is larger than all the values of the same feature in the training data. Note that, in all 
scenarios except the extrapolation on the neural network depth (N), the models were built using the Draper 
and Smith method. A comparison with XGBoost has been added when considering the extrapolation on N. 

• Extrapolation on the batch size (B): we considered performance models built through the Draper and 
Smith method, where the overall largest batch size value is twice larger than the largest one included 
in the training test. Considering such a value of B corresponds to predicting the NN training time on 
GPUs whose available memory is twice larger than the already characterised devices. The 
extrapolation accuracy is reported in Table 4.7 and Table 4.8. 
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• Extrapolation on the GPU number (G): the available targets, reported in Table 4.9, consider a 
maximum number of GPUs equal to 4 for K80 and M60, and to 8 for GTX 1080Ti. Therefore, in the 
first two cases the model training has been performed considering experiments with 1, 2 and 3 GPUs, 
and predicting the value when the number of GPUs is equal to 4. In the third case, in turn, the training 
set included experiments with 1, 2 and 4 GPUs, while the 8-GPUs experiments were used as the test 
set. Note that the P600 GPUs were not considered in this scenario, since the only available data 
included 1 or 2 GPUs, which is not enough to perform predictions. The accuracy is reported in Table 
4.9. It can be noticed that the error margin is reasonable in all scenarios, even if it is larger when 
exploiting the TensorFlow framework, showing how the effects of the implemented interactions 
between GPUs are more difficult to model compared to PyTorch. 

• Extrapolation on the computational power (P): in this scenario available data is used to estimate the 
NN performance on more powerful unseen GPUs. In particular, we built the training set with the data 
collected from experiments run on P600, K80, and M60 GPUs, while we evaluated the results on the 
data collected on the GTX 1080Ti. Notice that different architectures are characterised not only by a 
different computational power (P), but also by a different disk speed (D). In these experiments, we 
retrieved its value by performing a short profiling run, measuring the load time. The results, reported 
in Table 4.10, show how the information collected on less powerful GPUs can be effectively used to 
predict NN training time on better performing hardware without requiring expensive experimental 
campaigns. 

• Extrapolation on the neural network depth (N): in this set of experiments, we varied the number of 
inner modules N in a ResNet network between 1 and 10. Specifically, we built the training set by 
including experiments performed with N varying between 1 and n, while the test set is made by 
experiments with N between n+1 and 10. We reported in Table 4.11 the results obtained by 
performance models built by considering n equal to 4, 5, 6, and 8. As expected, the larger the 
maximum number of inner modules in the training set, the better the extrapolation capability of the 
model, and so its accuracy. Nevertheless, even by limiting the training set to the experiments with 
up to 5 inner modules (hence half of the maximum value, like in the other extrapolation scenarios), 
the MAPE of the models is small enough to guarantee that the user can easily evaluate the effect on 
performance of incrementing the number of inner modules in the ResNet. Note that the results 
obtained with the Draper and Smith model at 1 GPU were computed by considering in the feature 
augmentation process crossover terms up to degree 3 (instead of 2 as considered in all the other 
scenarios). 
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Network 

 
 
Framework 

GPU type and number 

P600 K80 

1 2 1 2 3 4 

AlexNet PyTorch 11.12 5.33 1.74 3.33 1.81 0.66 

TensorFlow 9.83 10.04 2.30 2.61 4.28 2.82 

ResNet-50 PyTorch 10.64 11.97 0.76 7.83 3.09 4.53 

TensorFlow 10.64 11.97 10.25 1.27 1.84 6.83 

VGG-19 PyTorch - - 13.88 21.71 27.63 9.65 

TensorFlow - - 18.20 0.92 1.16 10.58 

Table 4.7 - MAPE [%] on test set for batch size (B) extrapolation (P600 and K80 GPUs)  
 

 
Network 

 
Framework 

GPU type and number 

M60 GTX 1080Ti 

1 2 3 4 1 2 4 8 

AlexNet PyTorch 7.53 14.00 6.58 16.73 0.43 1.62 1.15 4.16 

TensorFlow 7.19 6.36 6.91 6.96 4.06 5.36 1.14 1.12 

ResNet-50 PyTorch 3.60 20.04 9.58 4.64 12.62 11.93 20.63 4.29 

TensorFlow 2.08 2.79 3.07 21.49 0.68 6.44 1.43 12.06 

VGG-19 PyTorch 10.85 18.18 13.81 8.01 24.98 17.40 2.93 14.06 

TensorFlow 7.34 5.06 2.74 6.92 22.88 6.37 24.12 23.56 

Table 4.8 - MAPE [%] on test set for batch size (B) extrapolation (M60 and GTX 1080Ti GPUs) 
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Network 

 
Framework 

GPU type 

K80 M60 GTX 1080Ti 

AlexNet PyTorch 7.21  14.45 4.98 

TensorFlow 24.75  17.27 8.77 

ResNet-50 PyTorch 9.13  9.04 11.76 

TensorFlow 24.58  18.29  6.54 

VGG-19 PyTorch 11.78  15.98 24.13 

TensorFlow 8.84  13.52  13.65 

Table 4.9 - MAPE [%] on test set for GPU number (G) extrapolation 
 
 

 
Network 

 
Framework 

Used features 

All 5 

AlexNet PyTorch 7.27  27.10 

TensorFlow 5.08 5.08 

ResNet-50 PyTorch 18.09  20.74 

TensorFlow 20.23  19.82 

Table 4.10 - MAPE [%] on test set for computational power (P) extrapolation 
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Model 

Max number of 
inner modules 

GPU type and number 
M60 

1 2 4 

Draper & Smith 4 21.02 27.95 17.40 

5 19.52 25.11  16.75 

6 31.56  20.40  16.63 

8 22.26  7.93  15.99 

XGBoost 4 - 0.67  0.59 

5 - 0.60  0.55 

6 - 0.53  0.51 

8 - 0.44  0.27 

Table 4.11 -MAPE [%] on test set for network depth (N) extrapolation 
 

According to the results we obtained, since the MAPE is always lower than 30% we have already achieved 
the KPI2.2 (Accuracy of performance estimation models for individual components, evaluated as mean of the 
average absolute percentage error <=30) foreseen at M24.  

Per-layer performance model 

We used our proposed per-layer model (see Section 4.5.1), to predict the inference time of DNN components 
partitioned (see Figure 4.25) on a computing continuum.  As it is shown in Figure 4.26, the Mobile Edge 
acquires an image and starts computation of the first layers of the Convolutional Neural Network. The Cloud 
Server receives through an internet connection the pre-computed results and completes the computation 
returning the image classification. 

Due to the depth and large number of layers in VGG16 and VGG19, they are representatives of complex DNNs 
and an edge device is usually not able to process them locally, hence, they need to be partitioned along the 
computing continua. 
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Figure 4.25 - DNN component partitioning 

The problem we faced is the following: given the computational time required by the first 3 convolutional 
layers in a Deep model predict two different quantities: 

• The time required by the next layer 3 + 1 (we will call it Next-Layer Analysis). 
• The time required by each of the next convolutional layers up to the end of the CNN (we will call it 

All-Layers Analysis). 

These types of predictions aim at profiling the CNN and gaining insights on the accuracy that we can obtain 
on forecasting the computational times. We focused on CNN layers only since, in the preliminary analyses 
we performed, they are responsible for about 90% of the inference execution time in most of the relevant 
architectures proposed for image recognition [Gianniti2018b].  

After next and all layers analyses, we trained our models considering an entire VGG16 network as the training 
set and we considered VGG19 as the test set, investigating the generalisation capabilities of our models (we 
will call it VGG16 to VGG19 Analysis). 

Notice that we will present the analyses in increasing order of difficulty, starting with the single-layer 
prediction, passing through the all-layer one (in which the errors of different layers sum up) and finally 
verifying whether we have enough data to predict a similar, but more complex, CNN, that is, VGG19. 

In order to perform such analyses, we considered various machine learning algorithms (namely, XGBoost, 
Ridge Regression and Draper and Smith), and performed Sequential Forward feature Selection (SFS) and 
feature augmentation (i.e., introducing additional features by combining the initial ones with products and 
inverses). 

Experimental setup 

The data were collected in three different scenarios, listed, in the following, from the one with the lowest 
computational power in the edge device to the most powerful one and reported in Figure 4.26. 
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Figure 4.26 - Experimental scenarios on devices with different computational powers. 

To simulate the cloud, we used in all scenarios a low-end laptop PC. Although this is not representative of 
real-life settings, it simulates quite well the behaviour of a busy high-end cloud server that is experiencing a 
peak of load. Its main features are summarised in Table 4.12, but notice that, since we are only focused on 
the mobile-side performance prediction, this will not affect the data on which we are going to perform 
analyses. 

Feature Details 

Processor  
Memory 
Storage 
OS  
Tensorflow Version 

Intel i5-7300U@2.60GHz  
16GB LPDDR4@2133Hz  
240 GB SSD SATA III  
Ubuntu 18.04 LTS 
Tensorflow 2.0 

Table 4.12 - Main technical features of the laptop pc that simulated the cloud 

Each scenario was evaluated in each possible split between Edge and Cloud (i.e., 22 for VGG16 and 25 for 
VGG19) using as input, for each test, 256 images from the ImageNet test set. 

In the first scenario we tried to simulate a poorly performant video camera connected to a Raspberry Pi 3 
that executes object recognition in order to spot an intruder; it also performs a partial computation of the 
data coming from its sensors before sending them to the cloud, therefore exploiting the computing 
continuum. The device that has been used in such a scenario is a Raspberry Pi 3, whose technical features 
are summarised in Table 4.13. 

 

Device Raspberry Pi 3 Model B 

Processor  
Memory 
Storage 
OS  
Tensorflow Version 

Broadcom BC,2837 (4x Cortex-A53 64-bit SoC@1.4GHz)  
1GB LPDDR2 SDRAM 
32 GB Micro SDHC (R 95MB/s, W 20MB/s) Raspbian Buster Linux Kernel 
v4.20  
Tensorflow Lite Interpreter 2.10 

Table 4.13 - Main technical features of the first edge device 
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The second scenario aims at evaluating the performance of a mid-end mobile device, such as a smartphone, 
that is carrying out face recognition or image processing for some purpose. The employed device is an Odroid 
N2, whose technical features are summarised in Table 4.14. 

 

Device Odroid N2 

Processor  
Memory 
Storage 
OS  
Tensorflow Version 

Amlogic S992X (4x Cortex-A73 CPU@1.8GHz + 2x Cortex-A53@1.9GHz) 
4GB LPDDR4 RAM@1320MHz 
128 GB Micro SDHC (R 95MB/s, W 20MB/s)  
Ubuntu 18.04 Linux Kernel v4.20 
 Tensorflow Lite Interpreter 2.10 

Table 4.14 - Main technical features of the second edge device 
  
The third and last scenario employs an NVIDIA Tegra X2 to simulate the behaviour of a high-performance 
mobile device capable of receiving images from different sources. Its technical features are summarised in 
Table 4.15. 
 

Device NVIDIA Tegra X2 

CPU 
GPU  
Memory 
Storage 
OS  
Tensorflow Version 

Custom 64-bit processor (2x NVIDIA Denver2 ARMv8 + 4x ARMv8 ARM Cortex-A57) 
NVIDIA Pascal architecture with 256 CUDA cores  
8GB LPDDR4 SDRAM 
32 GB eMMC 5.1 (R 250MB/s, W 125MB/s)  
Ubuntu 18.04 Linux Kernel v4.9  
Tensorflow-GPU 1.4 

Table 4.15 - Main technical features of the third edge device 

Experimental results 

In this section, first, we deal with the data preparation and algorithms employed and then we will show the 
actual preliminary results obtained by the regressors in the three analyses performed (namely Next-Layer, 
All-Layers and VGG16 to VGG19 Analysis). Moreover, we will outline the SFS analysis results.  

In the system under test, we instrumented the inference application code and measured the time needed 
0(3) by the Edge device to perform the computation up to layer 3 of image 8 and the time required by the 
Cloud device to complete its processing according to the structure of the reference network. However, we 
are only interested in the former edge device processing time, that breaks down to: 

0(3) = ∑'"#2 90()*+(8:;<=") + 0,-./(>?*@A") + 00(12)(B<=;<=")C  (2) 

where: 

• 0()*+(8:;<=") is the time required to read the input that comes from the D − 1 layer. 
• 0,-./(>?*@A") is the time required for the computation of layer D. 
• 00(12)(B<=;<=") is the time required to write the results of layer D. 

Notice that the sum starts at layer 2 because the first layer represents the raw input. 

Once we have obtained this decomposition, we can say that the time 0(3) depends on the following features: 

• Size of the input; 
• Number of operations performed by the layer, depending on the layer type and computed as 

discussed in Table 4.1 (Section 4.5.1). 
• Size of the output. 
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In particular, since we will only try to predict convolutional layer’s time, the number of operations of a layer 
k is proportional to: 

:-/3(") = G6H6I17I-82 	 ∗ ;8K@>L (3) 

as proposed in [Gianniti2018b], where G6 and H6 are the height and width of the filter respectively, while 
I17 and I-82 are the number of channels in input/output and ;8K@>L is the number of pixels of the analysed 
input. 

Due to the limitations of Tensorflow, which do not allow to profile the time of a single layer of the CNN, 
0,-./(>?*@A") (i.e., the computational time required by each layer) has been calculated as: 

0,-./(>?*@A") = 0(D) − $[0(D − 1)] − 0()*+(8:;<=") − 00(12)(B<=;<=") (4) 

Where $[0(D − 1)] is the empirical mean of the time required by the computation up until the previous 
layer. 

However, we choose as target variable 0O0(D), that is the Total Layer Time, from the following formula: 

0O0(D) = 0,-./(>?*@A") + 0()*+(8:;<=") + 00(12)(B<=;<=") = 0(D) − $[0(D − 1)] (5) 

due to the difficulties in measuring the times required to read/write the memory. The final dataset is 
therefore summarised in Table 4.16. 
 

Feature Description 

Layer Number 
Height  
Width  
Input Channels  
Output Channels 
 FLOPS 
TLT 

Incremental number of the layer (only for technical purposes, not a feature) 
Height of the filter 
Width of the filter 
 Number of channels of the input  
Number of channels of the output  
:-/3  as in Formula (3) 
Total Layer Time as in Formula (5) 

Table 4.16 - Dataset summary 
 

Data Preprocessing 

Unfortunately, the application under study in many cases and across different edge devices settings, 
experienced a cold start and, more importantly, the operating system affected the data with random 
variance, due to its other tasks that were going on in parallel with the experiments. For these reasons, outliers 
filtering was necessary (for example some per layer time computed through Formula (5) were negative). The 
method we used here is a distance-based approach [Ben-Gal2005]: for every layer, a proximity index of every 
point was created, which took into consideration its 5 closest points in the dataset. The closer those points 
were, the higher the index was. 

In particular, every data point xi had such proximity index p(xi) computed as: 

;(K1) = P
'∈:(;")

1
QRK1 , K'T

 

Where 2(K1)is the set of the 5 closest neighbours of K1  and QRK1 , K'T is their euclidean distance. 

Eventually, we kept only the points that contributed the most to the total sum of the indexes ∑1 ;(K1), 
keeping points up until reaching 99% of it. This method allowed us to obtain fairly dense clouds of data points 
for each layer. 
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Another important thing to notice is the optimization issue linked to the batch dimension: due to its non-
homogeneity, we decided to consider only data that came from experiments that had unitary batch size. 

We also performed feature enhancement and Sequential Forward feature Selection (SFS); in particular: 

• each feature was normalised, and we performed feature augmentation by considering also the 
inverse and the crossover terms up to the second degree; 

• SFS kept, at most, the best 8 features. 

We decided to test three different ML algorithms: XGBoost, Ridge Regression (for both of them performing, 
in some scenarios, also SFS), and the Draper and Smith method. In Table 4.17, we summarise the 
hyperparameters explored in the training phase: to select the best ones when a prior probability is specified, 
a 5-fold cross-validation procedure was performed by relying on the HyperOpt framework. The Draper and 
Smith model was defined such that the probability of adding or removing a feature was 0.05 and 0.1, 
respectively. 

 

Algorithm Hyperparameter Name Values Type 

XGBoost min_child_weight 
gamma 
n_estimators 
learning_rate 
 max_depth 

1 
loguniform(0.1, 10) 
1000 
loguniform(0.01,1) 
100 

Fixed 
Prior probability 
Fixed 
Prior probability 
Fixed 

Ridge Regression alpha loguniform(0.01,10) Prior probability 

Table 4.17 - Hyperparameters summary 
 

VGG16: Next-Layer Analysis 

The goal of a next-layer analysis is to predict the time required to run layer j + 1, through a model that was 
trained considering experiments running up to layer j. Specifically, we considered a training set including 
layers between 3 and 9 (the convolutional layers), while the test set includes layer 10. 

We report in the following the results obtained on the cross validation set (Figure 4.27) and the test set 
(Figure 4.28), on the three devices described in the previous section. Note that, in the plots, the different 
colours represent the different ML models we have considered. A cross characterises the best model among 
the alternatives, while results are represented as a triangle if the corresponding MAPE exceeds 100%. 

Note that the Draper and Smith model is always referred to in the following as the Stepwise model. 
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Odroid N2: Cross-validation MAPE without SFS 

 
Odroid N2: Cross-validation MAPE with SFS 

 
Raspberry Pi 3: Cross-validation MAPE without SFS 

 
Raspberry Pi 3: Cross-validation MAPE with SFS 

 
NVIDIA Tegra X2: Cross-validation MAPE without SFS 

 
NVIDIA Tegra X2: Cross-validation MAPE with SFS 

 
Figure 4.27 - Cross validation MAPE with the different models on all the considered devices 
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Odroid N2: MAPE on the test set without SFS 

 
Odroid N2: MAPE on the test set with SFS 

 
Raspberry Pi 3: MAPE on the test set without SFS 

 
Raspberry Pi 3: MAPE on the test set with SFS 

 
NVIDIA Tegra X2: MAPE on the test set without SFS 

 
NVIDIA Tegra X2: MAPE on the test set with SFS 

Figure 4.28 - MAPE on the test set with the different models on all the considered devices 
 
 

When analysing the MAPE on the test set (Figure 4.28), it is relevant to notice that the Raspberry Pi 3 dataset 
was very noisy. This contributed to an overall poor scoring of the different algorithms, with a MAPE 
sometimes above 50%. Since the cross-validation errors are significantly lower (Figure 4.27), this outlines a 
poor generalisation capability for all the considered models. A similar behaviour can be observed for the 
Odroid N2 dataset, while results are generally better for NVIDIA Tegra X2 device, where the MAPE on the 
test set is usually between 10 and 50%. 

VGG16: All Layers Analysis 

The goal of the all-layers analysis is to predict the time required to run all layers from j + 1, through a model 
that was trained considering experiments running up to layer j. Specifically, we considered a training set 
including layers between 3 and 9 (the convolutional layers), while the test set includes layers 10 to 18. 

We report in the following the results obtained on the cross validation set (Figure 4.29) and the test set 
(Figure 4.30), on Odroid N2 and NVIDIA Tegra X2 devices described in the previous section. The Raspberry PI 
3 was not considered because the amount of collected data was not enough to perform the analysis. Note 
that, in the plots, the different colours represent the different ML models we have considered. A cross 
characterises the best model among the alternatives, while results are represented as a triangle if the 
corresponding MAPE exceeds 100%. 

Note that the Draper and Smith model is always referred to in the following as the Stepwise model. 
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Odroid N2: Cross-validation MAPE without SFS 

 
Odroid N2: Cross-validation MAPE with SFS 

 
NVIDIA Tegra X2: Cross-validation MAPE without SFS 

 
NVIDIA Tegra X2: Cross-validation MAPE with SFS 

Figure 4.29 - Cross validation MAPE with the different models on all the considered devices 
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Odroid N2: MAPE on the test set without SFS 

 
Odroid N2: MAPE on the test set with SFS 

 
NVIDIA Tegra X2: MAPE on the test set without SFS 

 
NVIDIA Tegra X2: MAPE on the test set with SFS 

Figure 4.30 - MAPE on the test set with the different models on all the considered devices 
 

The results in Figure 4.30 show that XGBoost performs generally better than the other analysed models, 
obtaining worse results, though, when paired with SFS. It is relevant to notice that the three models, 
however, obtain similar performance, in terms of identifying the best model, when the NVIDIA Tegra X2 
device is considered (without performing SFS). In the considered scenarios, the best model achieves a MAPE 
in the range 20-50%. 

VGG16 to VGG19 Analysis 

The tests described in this section aimed at evaluating how the different ML models were able to predict the 
performance of VGG19 network when trained on experiments performed with the VGG16 network, thus 
testing the generalisation capability of the models on a different (even if similar) CNN. Specifically, a single 
layer of VGG19 was considered as a target for the prediction. 

The extrapolation MAPE obtained when analysing the Raspberry Pi 3 and NVIDIA Tegra X2 devices is reported 
in Figure 4.31.  

Note that the Draper and Smith model is always referred to in the following as the Stepwise model. 
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Raspberry Pi 3: Extrapolation MAPE without SFS 

 
Raspberry Pi 3: Extrapolation MAPE with SFS 

 
NVIDIA Tegra X2: Extrapolation MAPE without SFS 

 
NVIDIA Tegra X2: Extrapolation MAPE with SFS 

Figure 4.31 - Extrapolation MAPE with the different models on all the considered devices 
 

In this scenario, we can observe that the XGBoost model achieves very poor performance when SFS is not 
applied, particularly for the NVIDIA Tegra X2 dataset (for which, instead, the performance of Ridge Regression 
and the Draper and Smith model are almost the same). 

Overall, the adoption of ML based performance models in this scenario is promising, achieving MAPE for the 
best model always lower than 20% on Odroid and NVIDIA Tegra X2. 

The detailed results are available at: https://doi.org/10.5281/zenodo.5735476. 

Per-layer performance model in Neural Architecture Search 

In this section, we present the result of integrating a-MLLibrary ML models with the Neural Architecture 
Search component POPNAS (described in Section 4.6). We have investigated different models through the 
use of the a-MLLibrary. Experiments were conducted on a subset of CIFAR-10. In particular, since CIFAR-10 
has five batches of 10,000 images each, we used a randomly selected single batch, splitting it into a training 
set of 9,000 images and a validation set of 1,000 images.  Experiments were performed on an NVIDIA Tesla 
V100 SXM2, with 16GB VRAM. As a performance model regressor we chose Ridge Regression, XGBoost 
[Chen2016], and NNLS (Non-negative least square). Ridge regressor was trained with U set to 0.1. For NNLS, 
we experimented both with and without the fit_intercept set to True. For XGBoost, we considered 1 and 3 
as child-weight thresholds to stop the tree splitting if exceeded; gamma, that regularises the information 
across the trees, allowing the node addition only if the associated gain is larger or equal to the given value, 
equal to 0 and 1; numbers of tree regressors: 50, 100, 150 and 250. We selected as possible learning rate 
0.01, 0.05, and 0.1. The trees’ maximum depth has been chosen equal to 1, 2, 3, 5, 9, and 13. The a-MLLibrary 
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performed a 5-fold cross-validation to find, through a grid search strategy, the best hyperparameter settings 
for each regressor. In our experiments, we trained time-regressors on data available at iteration b, and 
evaluated them at iteration b+1, before the updating procedure. In the ablation study, we first compared the 
selected methods and then we have progressively pruned the less performing approaches, assessing the 
impact of the proposed optimization strategies: input removal, which removes the information related to 
the block's input, not necessary to solve the problem, and focuses only on the operations type, static re-index 
in which each operator is associated to an integer value ranging from 1 to the size of the operator set, and 
dynamic re-index in which a heuristic re-index method that takes into account the distance between indices, 
is considered. As a reference model, we considered block sum which predicts the training time as the sum of 
the time taken by the cell obtained in the previous iteration.  

In the first plain comparison, it can be deduced from Figure 4.32 that block sum shows better results only at 
the first iteration, while it tends to gradually underestimate the training time from the second iteration 
onwards (each cluster of data points is representative of candidate networks with increasing number of 
blocks with b=2, 3, 4). This consideration allows us to deduce that the training time increase induced by a 
block addition is not entirely linear, but it introduces a bias dependent on the number of blocks.  

 
Figure 4.32 - Performance of time-regressors. The identified clusters are related to the blocks iterations 

 

Static and Dynamic Re-index: In this step, we present the comparison between static and dynamic re-indexes 
on NNLS algorithm which provided better results with respect to XGBoost and Ridge in most of the considered 
scenarios. We trained the POPNAS algorithm according to the previous setup choices. The benefits of 
dynamic re-index can be immediately noticed as shown in Table 4.18. In fact, with this technique we notice 
an overall lower average relative error of 0.2129, compared to static re-index, which instead achieves an 
error of 0.2380. Moreover, NNLS with static re-index has a limited tendency to underestimate the training 
time. In Table 4.18, we can witness the better performance of dynamic re-index through iterations, reaching 
an improvement of 0.05 at the second one, compared to static re-index. Even if the dynamic re-index did not 
grant an almost perfect accuracy, it seems to halve the MAPE, reducing it from 0.6044 to 0.3490, at the 
expense of a lower MAPE increasing from 0.0171 to 0.0813. 

 

 Avg MAPE Max MAPE Min MAPE 

Static 0.2380 0.6043 0.0171 

Dynamic 0.2129 0.3490 0.0813 

Table 4.18 - Average, maximum and minimum MAPE of NNLS, with static re-index and dynamic re-index 
 

The detailed results are discussed in [Lomurno2021]. 
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PyCOMPSs Performance Models Accuracy 

The data collected from the execution of the CSVM PyCOMPSs application (see Section 4.8.1) were used to 
generate and evaluate a set of Machine Learning models (exploiting XGBoost, Ridge Regression, Decision 
Tree, Random Forest and SVR), with and without Sequential Forward feature Selection. The features provided 
to these models are discussed in Section 4.5.1, while the hyperparameters tested for each model are 
reported in Table 4.19. The hyperparameter tuning operations were performed by relying on the HyperOpt 
framework [HyperOptGithub], setting the maximum number of evaluations to 10. The MAPE obtained with 
the different models is reported in Table 4.20. 
Two additional sets of tests have been performed, in order to assess the interpolation and the extrapolation 
capabilities of our models, i.e., to test whether they are able to predict values in areas of the features space 
that have been sufficiently observed during the training phase or, vice versa, in regions of the parameters 
space not sufficiently explored. Specifically, both interpolation and extrapolation are tested with respect to 
the most relevant feature, i.e., the number of available cores. In the first scenario, we considered a training 
set made by the execution times collected at 48, 144, 288, and 768 cores, while we predicted the execution 
time at 96, 192, and 384 cores. In the second scenario, instead, we built the training set considering a number 
of cores going from 48 to 288, and we predicted the execution time when exploiting a higher number of 
cores, namely 384 and 768. The corresponding results are reported in Table 4.21 and Table 4.22, respectively. 
Moreover, we included two plots reporting the real and predicted values when exploiting the interpolation 
and extrapolation best models in Figure 4.33. 
The detailed results are available at: https://doi.org/10.5281/zenodo.5760964. 

 

Algorithm Hyperparameter Name Values Type 

XGBoost min_child_weight 
gamma 
n_estimators 
learning_rate 
 max_depth 

1 
loguniform(0.1, 10) 
1000 
loguniform(0.01,1) 
100 

Fixed 
Prior probability 
Fixed 
Prior probability 
Fixed 

Ridge Regression alpha loguniform(0.01,10) Prior probability 

Decision Tree criterion 
max_depth 
max_features 
min_samples_split 
min_samples_leaf 

mse 
3 
auto 
loguniform(0.01,1) 
loguniform(0.01,0.5) 

Fixed 
Fixed 
Fixed 
Prior probability 
Prior probability 

Random Forest n_estimators 
criterion 
max_depth 
max_features 
min_samples_split 
min_samples_leaf 

5 
mse 
quniform(3,6,1) 
auto 
loguniform(0.01,1) 
1 

Fixed 
Fixed 
Prior probability 
Fixed 
Prior probability 
Fixed 

SVR C 
epsilon 
gamma 
kernel 
degree 

loguniform(0.001,1) 
loguniform(0.01,1) 
1e-7 
linear 
2 

Prior probability 
Prior probability 
Fixed 
Fixed 
Fixed 

Table 4.19 - Hyperparameters summary 
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Algorithm SFS MAPE 

 
XGBoost 

no 0.32 

yes 0.32 

 
Ridge Regression 

no 2.48 

yes 14.71 

 
Decision Tree 

no 6.94 

yes 3.90 

 
Random Forest 

no 2.06 

yes 3.15 

 
SVR 

no 10.99 

yes 13.37 

Table 4.20 - MAPE [%] on the cross validation 
 

Algorithm SFS MAPE 

 
XGBoost 

no 7.29 

yes 7.29 

 
Ridge Regression 

no 4.94 

yes 14.42 

 
Decision Tree 

no 15.04 

yes 10.87 

 
Random Forest 

no 5.90 

yes 4.77 

 
SVR 

no 18.23 

yes 6.84 

Table 4.21 - MAPE [%] on interpolation 
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Algorithm SFS MAPE 

 
XGBoost 

No 0.23 

Yes 0.23 

 
Ridge Regression 

no 205.09 

yes 134.09 

 
Decision Tree 

no 5.28 

yes 1.59 

 
Random Forest 

no 8.16 

yes 1.43 

 
SVR 

no 138.83 

yes 192.45 

Table 4.22 - MAPE [%] on extrapolation 
 

 
Interpolation results (Random Forest - MAPE 4.77%)  

Extrapolation results (XGBoost - MAPE 0.23%) 
Figure 4.33 - Interpolation and extrapolation results with the best models 

 
According to the results we obtained, since the MAPE is always lower than 30% we have already achieved 
the KPI2.2 (Accuracy of performance estimation models for individual components, evaluated as mean of the 
average absolute percentage error <=20) foreseen at M30.  

Mask Detection Application Performance Models Accuracy 

Performance models for the mask detection use case application (see Section 2.2) were generated starting 
from two sets of experiments, involving either the Blurry Faces or the Mask Detector task. Each of them 
required to process a group of 10 videos lasting 15 minutes. The complete processing of this group of videos 
is referred to as a job.  
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The experiments were run first of all on private cloud Virtual Machines configurations, by varying the number 
of nodes between 1 and 5, and by setting the number of containers accordingly, to gather data for 1, 4, 8, 
12, 16, and 20 cores. Each experiment has been repeated three times. Moreover, we measured the total 
runtime of the full application, involving both the Blurry Faces and the Mask Detector task, in order to check 
whether the performance models built for the two separate phases can be used to predict the execution 
time of the full application.  

A similar list of experiments has been performed, for the Blurry Faces task only, by exploiting a cluster of 
Raspberry Pi devices. Specifically, we collected data by varying the number of nodes between 1 and 3, and 
by exploiting 1 or 4 containers per node. This allowed us to generate tests with 1, 2, 3, 4, 8, and 12 cores. 
Each experiment has been repeated twice, and the data set has been enlarged by adding the average runtime 
for each number of cores. Notice that, in this scenario, the K8s master node is co-located with the workers 
in the cluster, which increases the noise of the collected runtimes. 

The data collected from the execution of the Mask Detector use case application were used to generate and 
evaluate a set of Machine Learning models (exploiting XGBoost, Ridge Regression, Decision Tree, Random 
Forest and SVR. The features provided to these models are discussed in Section 4.5.1, while the 
hyperparameters tested for each model are the same considered for the scenario described in the previous 
section and are reported in Table 4.19. The hyperparameter tuning operations were performed by relying on 
the HyperOpt framework [HyperOptGithub], setting the maximum number of evaluations to 10. The MAPE 
obtained with the different models is reported in Table 4.23. 

 

Algorithm MAPE (Blur Faces task) MAPE (Mask Detection task) 

XGBoost 1.3 0.69 

Ridge Regression 3.27 9.29 

Decision Tree 10.21 35.89 

Random Forest 43.36 29.2 

SVR 42.42 61.57 

Table 4.23 - MAPE [%] on the cross validation of Mask Detection application 

Two additional sets of tests have been performed, in order to assess the interpolation and the extrapolation 
capabilities of our models, i.e., to test whether they are able to predict values in areas of the features space 
that have been sufficiently observed during the training phase or, vice versa, in regions of the parameters 
space not sufficiently explored. Specifically, both interpolation and extrapolation are tested with respect to 
the most relevant feature, i.e., the number of available cores. In the interpolation scenario, we considered a 
training set made by the execution times collected at 1, 4, 12, and 20 cores, while we predicted the execution 
time at 8 and 16 cores. In the extrapolation scenario, instead, we built the training set considering a number 
of cores going from 1 to 16, and we predicted the execution time when exploiting a higher number of cores, 
namely 20. The corresponding results are reported in Table 4.24 and Table 4.25, respectively. Moreover, we 
included two plots reporting the real and predicted values when exploiting the interpolation and 
extrapolation best models in Figure 4.34 and Figure 4.35 for the Blurry Faces and Mask Detector tasks 
considering the VM setup, respectively.  
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Algorithm MAPE (Blur Faces task) MAPE (Mask Detection task) 

XGBoost 3.02 21.73 

Ridge Regression 23.45 14.91 

Decision Tree 14.71 30.53 

Random Forest 33.36 65.17 

SVR 70.23 70.14 

Table 4.24 - MAPE [%] on interpolation  
  

Algorithm MAPE (Blur Faces task) MAPE (Mask Detection task) 

XGBoost 1.7 40.1 

Ridge Regression 16.83 267.43 

Decision Tree 72.54 40.06 

Random Forest 37.21 56.45 

SVR 129.52 258.15 

Table 4.25 - MAPE [%] on extrapolation 
 

 
Interpolation results (Random Forest - MAPE 3.02%) 

 
Extrapolation results (XGBoost - MAPE 1.7%) 

Figure 4.34 - Interpolation and extrapolation results with the best models (Blur Faces task) 
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Interpolation results (Ridge Regression - MAPE 14.91%) 

 
Extrapolation results (Decision Tree - MAPE 40.06%) 

Figure 4.35 - Interpolation and extrapolation results with the best models (Mask Detection task) 
 
The interpolation and extrapolation best models have been used to predict the runtime of the whole mask 
detection application, involving both the Blurry Faces and the Mask Detector tasks. Specifically, a MAPE of 
9.46% is obtained when combining the XGBoost model (for Blurry Faces) and Ridge Regression model (for 
Mask Detector) to predict the runtime of the complete application in the interpolation scenario. The MAPE 
of the extrapolation scenario is instead about 40%, in line with the accuracy obtained by the Decision Tree 
model for the Mask Detector task. These results already are in line with the KPI K2.3 (Accuracy of 
performance estimation models for distributed applications, evaluated as mean of the average absolute 
percentage error) foreseen at M24. 
The plots reporting the real and predicted values for interpolation and extrapolation best models are 
reported in Figure 4.36. 

 
Interpolation results (MAPE 9.46%) 

 
Extrapolation results (MAPE 40%) 

Figure 4.36 - Interpolation and extrapolation results when predicting the runtime of the whole application 
 
Finally, an additional set of tests has been performed for the Blurry Faces task executed on a Raspberry Pi 
cluster. Since these experiments required a significant time to run, data were collected only for two instances 
per each number of cores. Therefore, to enlarge the dataset, we performed data augmentation by 
considering the average execution time at each number of cores. 
In this scenario, we considered for interpolation a training set made by the execution times collected at 1, 2, 
3, 4, and 12 cores, while we predicted the execution time at 8 cores. For extrapolation, instead, we built the 
training set considering a number of cores going from 1 to 8, and we predicted the execution time when 
exploiting a higher number of cores, namely 12. The corresponding MAPE values are reported in Table 4.26, 
while two plots reporting the real and predicted values when exploiting the interpolation and extrapolation 
best models are reported in Figure 4.37. 
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It is relevant to notice that our model achieves a good interpolation capability, even if the number of training 
data is quite low. On the other hand, the extrapolation results are negatively affected by the fact that the 
training data are noisy and limited.  Extrapolation capabilities will be investigated during the second year of 
the project considering also the use of accelerators on board of Raspberry Pi devices.  
The detailed results are available at https://doi.org/10.5281/zenodo.5784215. 
  

Algorithm MAPE (cross validation) MAPE (interpolation) MAPE (extrapolation) 

XGBoost 0.35 33.5 50.46 

Ridge Regression 6.17 27.82 223.69 

Decision Tree 12.87 32.04 50.46 

Random Forest 39.99 16.86 73.09 

SVR 34.94 34.3 80.57 

Table 4.26 - MAPE [%] for experiments executed on a Raspberry Pi cluster 
 

 
Interpolation results (Random Forest - MAPE 16.86%) 

 
Extrapolation results (Decision Tree - MAPE 50.46%) 

Figure 4.37 - Interpolation and extrapolation results with the best models (Blur Faces task, RPi’s cluster) 
 

4.8.3 AI Neural Architecture Search 

After several ablation studies, the first POPNAS version has been released with the following characteristics: 

• Number of maximum blocks: 5 
• Number of cells: 8 
• Number of best models per iteration (K): 256 
• Controller algorithm: LSTM neural network (as in PNAS) 
• Regressor algorithm: Non-Negative Least Squares 
• Skip connections: False 
• Learning rate: 0.01 
• Dataset: CIFAR10 (first batch) 
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The experiments have been run on an NVIDIA GeForce GTX1080Ti. From a fair comparison between the same 
run of PNAS and POPNAS, despite an accuracy drop of 9.6%, the algorithm achieved a search boosting of 
204.9% for the whole research, and a training time boosting for the best network of 173.7%. The best cell 
configuration that composes the top-1 found network is shown in Figure 4.38. 

 
Figure 4.38 - Schema of the best cell found by POPNAS to classify CIFAR10 (first batch) 

 

The architecture achieved an average accuracy of 74.33% with 38 minutes of training time, and 10 days, 10 
hours and 1 minute of search time. These results, which in the first version of POPNAS are intended as an 
effective time-accuracy trade-off demonstration, are in line with the research hypothesis. 

In the second version of POPNAS, which is under development with high performance goals, the accuracy 
gap with respect to PNAS is attacked and we plan to fill it almost completely while preserving the time speed 
up as much as possible. 

Detailed results are discussed in [Lomurno2021]. 

 

4.8.4 Application Design Space Exploration 
In order to validate the SPACE4AI-D tool, we consider two scenarios. The first scenario is inspired by the AI-
SPRINT Maintenance and Inspection Use Case and considers an application to support drone inspections of 
wind farms while the second one considers the mask detection application described in WP3. 

Wind farm use case 

 
Figure 4.39 - A use case of identifying wind turbine blade damage 
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In this use case, the identification of damages in wind turbine blades is performed in the computing 
continuum, based on images collected by drones. The application software is characterised by multiple 
components, consisting of DNNs that can be deployed and executed locally (on the drone, or on operators' 
PCs, or on local edge servers in the operators' van) or remotely in the cloud (in a VM or through the FaaS 
paradigm). The set of components is illustrated in Figure 4.39. They can be deployed overall on four layers, 
and the dotted arrows connecting each component to the different resources denote the corresponding 
compatibility (i.e., the dotted arrows correspond to the ones of the compatibility matrix "). 

As an initial step, a drone with an entry level or mid-range computation board (SPACE4AI-D determines which 
configuration should be bought) controlled remotely by a human operator, takes pictures of the wind 
turbine. These are composed of three blades, and pictures must be collected, for each blade, from four 
different angles to account for different types of damages; therefore, a huge amount of data is collected. 

Images are processed in batches which define the incoming workload V. Each batch is subject to an exposure 
check, C1, which determines if the image quality is sufficient for further processing. If not, the component 
triggers the acquisition of new images. This improves the efficiency of the whole inspection process since it 
allows it to immediately react to the need of further data acquisition. 

All well-exposed pictures are inspected by a sequence of two components (C2, C3) which collectively 
implement a complex, computer vision-based application whose goal is to monitor the inspection campaign 
and guarantee that this covers the complete site. They take as inputs the images processed by C1 and a model 
of the wind farm, and, positioning the pictures on the farm itself, guide the operator to identify the next 
element to be examined. In particular, C2 is responsible for the preliminary analysis of the images like 
identifying if it is a part of the blade or not, while C3 identifies the parts and the position of the image elements 
on the blade. 

These components, especially  C3, require a significant amount of computing and storage power. However, 
executing them at the edge may help in reducing the time needed to complete the maintenance and 
inspection process, if further data is needed to better identify the damages. 

Images are then processed by two additional AI modules. C4 is responsible for a damage-free check, i.e., of 
assessing whether the inspected part is damaged or not (this may possibly require the acquisition of new 
images). Depending on the situation, it may happen that a high percentage of the acquired pictures is clear, 
namely it does not show damage. Finally, C5 is responsible for classifying the damage. These last steps are 
characterised by heavy computation requirements, therefore they are always performed in the cloud.  Cloud 
resources are based on VMs and on the FaaS paradigm. FaaS includes different function configurations with 
different memory allocated and only one component can be run on each container with the specified 
function configuration.  

The four aforementioned computational layers, namely the one involving camera drones, the one of edge 
resources, and those including Virtual Machines and FaaS, respectively, belong to three different network 
domains. In particular, drones and all edge resources communicate through a Wi-Fi network. Virtual 
Machines and the FaaS configurations are connected via an optical fiber network, while the information is 
transferred from edge to cloud resources through a 4G or 5G network. 

For what concerns the candidate deployments, C1 has a single one partition deployment, C2, C4 and C5 have 
two deployments with one and two partitions while C3 has three deployments with one, two and three 
partitions. The transition probabilities ;1"and the amount of data W1"transferred between components are 
reported in Figure 4.39.  

This scenario is characterised by both local and global QoS constraints. In particular, we prescribe that 
component C5 must have a maximum response time of 2.5s, while we enforce that the global response time 
of the first four components does not exceed 2s.  
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Mask Detection use case 

As the second use case, we consider the WP3 Mask Detection application described in Section 2.2. The set of 
components is illustrated in Figure 4.40. 

   
Figure 4.40 - Mask detection use case 

 
 

In this small-scale setup, we consider a Raspberry Pi PIs 4 Model B with 4G memory and 4 computational 
units based on ARM64 with overall 4MB internal memory on the edge side, and a private cloud with one VM 
type with 8G memory and 4 computational units based on IntelX86 with 64MB internal memory on the cloud 
side. The application includes two components. The first one, Blurry Faces can run only on Raspberry Pi while 
the second one, Mask Detector, which performs the detection of the masks, can run both on Raspberry Pi 
and private cloud VMs. The System YAML specification and the corresponding JSON file used as the input of 
SPACE4AI-D tool, related to the mask detection use case, are reported and described in Appendix C. 

Experimental results under wind farm inspection use case 

To evaluate the performance of the SPACE4AI-D tool under the wind farm inspection use case, we considered 
5 application components, with the corresponding transition probabilities and amount of transferred data as 
shown in Figure 4.39. The components can be placed across four computational layers, defined as follows: 

• Edge Resources are included in two computational layers. The first hosts a drone with an entry-level 
compute board (cost:  4.55 $/h), and one with a middle-level compute board (cost: 6.82 $/h). The 
second layer includes a PC and a GPU-based edge server (costs: 4.55 $/h and 9.1 $/h, respectively). 
Drones costs have been determined considering initial costs of 1000 $ and 1500 $, amortised over 2 
years, and assuming that the application is executed 110 times per year. The initial costs of PC and 
edge server are of 1500 $ and 3000 $, respectively, amortised over 3 years (and the same number of 
executions on the field). 

• Cloud Resources are all included in the third computational layer. We have considered G3 instances 
selected from the Amazon EC2 catalogue [AmazonPricing], powered by NVIDIA Tesla M60 GPUs 
equipped either with 4 vCPUs and 30.5GB of RAM (with a cost of 0.75 $/h), or with 16 vCPUs and  
122 GB of RAM (with a cost of 1.14 $/h). 

• FaaS Resources are selected from the AWS Lambda catalogue and are all included in the last 
computational layer. Their cost depends on the running component: the first configuration has a 
memory size of 4GB and an hourly cost of 0.06, 0.54, 0.16 and 0.96 $/h when used to run components 
from C2 to C5, respectively. The second configuration has a memory size of 6GB; it is used only to run 
component C5, with a cost of 0.83 $/h. The expiration time is set to 10 minutes, as discussed in 
[Mahmoudi2020]. 
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The first network domain is characterised by an access delay of 10 ms and a bandwidth of 150 Mb/s. For the 
second network domain, we have a fast 5G network, with bandwidth equal to 4 Gb/s and the access delay is 
fixed to 1 ms. The bandwidth of the third network domain has been set to 100 Gb/s, while the access delay 
is 0, according to the results reported in [BenchmarkingAmazon]. 

In order to evaluate SPACE4AI-D performance, two experiments have been performed. In the first 
experiment, we compared our proposed algorithm with an exhaustive search that has only cloud or only 
edge devices to limit the exploration space while in the second experiment, we compared the proposed 
algorithm with an open-source Python library, called HyperOpt [HyperOptGitHub]. In all experiments, we 
consider each application component (which is a Deep Neural Network (DNN)) with some candidate 
deployments of the DNN and each deployment includes one or more partitions as we showed in Figure 4.39. 
The tool should select one of the deployments and also choose a resource to run each partition of the 
deployment by applying a Random Greedy algorithm, in order to minimize the cost while guaranteeing 
response time constraints. The detailed demands of the components and partitions used in both experiments 
(in the comparison with the exhaustive search and HyperOpt) is reported in Appendix B (Table B.1).  

Comparison with exhaustive search 

We have varied λ between 0.1 and 1 req/s, with step 0.01, to account for different workload scenarios. For 
the second network domain, we have tested different settings: a 4G network, with a bandwidth of 20 Mb/s, 
and a slow or fast 5G network, with bandwidth equal to 2 or 4 Gb/s (the access delay is fixed to 1 ms). We 
have imposed a local constraint on component C5, that must have a response time below 2.5 s, and a global 
constraint on path P1 = {C1, C2, C3, C4}, corresponding to a maximum response time of 3 s. Finally, the proposed 
greedy algorithm performs 1000 iterations (MaxIter= 1000). 

The proposed solution (mentioned by RandomGreedy label in the figure, in which the components are free 
to place on edge, cloud and FaaS, according to the compatibility matrix) is compared with the results of an 
exhaustive search, where (to limit the execution time) some components are restricted to run on edge or on 
the remote cloud. In particular, in the OnlyCloud scenario, components C2 and C3 can run only on the cloud 
VMs, while they can run only on the edge in the OnlyEdge scenario. 

The cost analysis, shown in Figure 4.41(a) and Figure 4.41(b), is related to 5G@4Gb/s and it is slightly 
translated under other network settings.  In all scenarios, when the incoming load is low, the best solutions 
use the entry-level compute board drone, Asus Zenbook 13 UX325EA and the G3 4 vCPUs VM, which are 
slower and cheaper than the alternative configurations. Then, as λ increases, the response time along the 
path P1 gets closer to the global constraint threshold incurring in a QoS violation (see Figure 4.41(c)). 
Therefore, the solution selects the G3 VM equipped with 16 vCPUs (and Microsoft Surface Studio 2 LAM-
00005 for OnlyEdge scenario), which reduces the response time (points B in Figure 4.41(c)). If λ is further 
increased, the best solution steps back to G3 equipped with 4 vCPUs but selects the drone with the mid-
range compute board (points C in Figure 4.41(c)).  
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(a): Cost variation of best solutions with increasing λ in 
5G@4Gb/s scenario. 

(b): Cost variation of best solutions with increasing λ for the 
constraints equal to 100s and 5G@4Gb/s scenario. 

 

(c): Response time variation of path P1 with increasing λ in three network scenarios. Performance overlap under the two 5G 
settings. 

Figure 4.41 - Experimental result for the comparison with exhaustive search 
 

Finally, the best solution adopts the faster and more expensive 16 vCPUs VM (and Microsoft Surface Studio 
2 LAM-00005 for OnlyEdge scenario) (points D in Figure 4.41(c)). When λ is about 0.6 req/s in the 4G scenario 
or 0.64 in the 5G scenarios both in RandomGreedy and OnlyCloud (and about 0.48 req/s in the 4G scenario 
or 0.5 in the 5G scenario in OnlyEdge), the response time of the path P1 meets the threshold, and no feasible 
solution can be found. As it can be noticed in Figure 4.41(a) and Figure 4.41(c), our random greedy algorithm 
and OnlyCloud identify the same solutions. The only difference between random greedy and OnlyCloud 
happens when λ is low (points A1 in Figure 4.41(c)), where they select different deployments but the same 
devices (so the costs are the same (points A1 and A2 in Figure 4.41(a))). When λ increases (points A2 in Figure 
4.41(c)), OnlyCloud gets close to the violation and selects the same deployment as random greedy. Indeed, 
according to components demands, resource costs and constraints, the OnlyCloud solution is the optimal 
solution because cloud VMs are both faster and cheaper than the available edge devices. This demonstrates 
that our algorithm converges to the global optimal solution. Vice versa, the OnlyEdge solution is expensive 
and slow and it is not even feasible for λ from 0.15 and 0.26 req/s in 4G and 5G scenarios, respectively (see 
Figure 4.41(a) and Figure 4.41(c)). 

Note that, component C5, which can run only on FaaS, is deployed on the high-end function configurations 
with 6GB of memory. This seems counter-intuitive because such configuration has a higher time-unit cost, 
but this deployment is proved to be more convenient, since the execution time of the component is 
decreased (and so the overall cost). 
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Costs increase linearly when λ ranges between 0.1 and 0.41 req/s, and between 0.42 and 0.62 req/s for the 
calls to AWS Lambda functions.  Finally, in Figure 4.41(b), we increase the maximum response time of both 
local and global constraints to 100s in order to analyse how the cost changes under relaxed QoS 
requirements.  In this scenario, the random greedy solution is equal or cheaper than the OnlyCloud by λ=0.62 
req/s since it has more degrees of freedom and it can execute components C2 , C3 and C4 on the FaaS 
configurations, which are slower but cheaper than VMs. But from λ=0.63 to 1 req/s, the cost of FaaS will be 
greater than clouds because of increasing the load, hence the solution selects the cloud VM and the cost will 
be the same as the OnlyCloud scenario.  

Comparison with HyperOpt 

In this experiment, we compare the cost and performance of the Random Greedy algorithm with the solution 
obtained by HyperOpt [HyperOptGitHub], an open-source Python library. HyperOpt is based on Bayesian 
optimization algorithms over awkward search spaces, which may include real-valued, discrete, and 
conditional dimensions. To make the Random Greedy performance analysis more robust, we consider also a 
Hybrid Method that exploits HyperOpt to improve an initial result provided by the Random Greedy algorithm 
(hence the Hybrid Method always obtains results at least as good as the Random Greedy).  To quantitatively 
evaluate the different approaches, we define the percentage gain (denoted as Cost ratio) as follows: 

IBL=	A?=8B = X
Y=ℎ@A!@=ℎBQIBL= − [?:QB\.A@@Q*IBL=

[?:QB\.A@@Q*IBL= ] × 100 

Where OtherMethodCost can denote the cost of HyperOpt or the Hybrid Method. We performed each 
experiment twice with MaxIter = 1000 and MaxIter = 5000. Note that, in each setting HyperOpt and the 
Hybrid Method always perform the same number of iterations of the Random Greedy.  

Note that the demanding time table is the same as the one used for comparison with exhaustive search 
(Appendix D). We run the experiments for both light constraints (local and global constraints are equal to 
20s) and strict constraints (the local constraint is equal to 2.4s and the global constraint is equal to 2.9s), with 
λ ranging in  [0.1, 1] req/s with step 0.01 req/s. The methods cannot find any feasible solution for λ > 0.63 
req/s in the strict constraints scenario and λ > 0.98 req/s in the light constraints scenario.  

The cost comparison under light constraints is reported in Figure 4.42(a) and Figure 4.42(b), while Figure 
4.42(c) shows the average running time of each method varying the number of iterations. The same is 
reported for the strict constraints setting in Figure 4.42(d), Figure 4.42(e) and Figure 4.42(f), respectively.  

In order to fairly compare the performance, we run both Random Greedy and HyperOpt on one single core.  
However, note that SPACE4AI-D is based on a multi-threaded implementation that can leverage multi-cores. 
Unfortunately, HyperOpt is not able to exploit multiprocessing because it is a Bayesian sequential model-
based optimizer. It can benefit from multi-cores only if run within Spark but in our single machine 40-cores 
setting it was not possible to improve its performance. 
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(a): Cost ratio of random greedy with respect to HyperOpt for 
light constraints. 

(b): Cost ratio of Random Greedy with respect to the Hybrid 
Method for light constraints. 

  

(c): Average running time of methods for light constraints. (d): Cost ratio of random greedy with respect to HyperOpt for 
strict constraints. 

  
 

(e): Cost ratio of Random Greedy with respect to the Hybrid 
Method for strict constraints. 

(f): Average running time of methods for strict constraints. 

Figure 4.42 - Experimental result for the comparison with HyperOpt 
 

As it can be observed in Figure 4.42(a), Random Greedy costs are up to 10% lower than those obtained by 
HyperOpt, while losses are infrequent about up to 3% only for the 1,000 iterations scenario. The Hybrid 
Method (Figure 4.42(b)) improves Random Greedy less than 0.2% only in a few points for 5,000 iterations, 



 

 
  

D2.1 First release and evaluation of the AI-SPRINT design tools 
 

86                                                                                                                                                     www.ai-sprint-project.eu 
 

and it obtains small gains (lower than 1.5%) at 1000 iterations. Under strict constraints, Random Greedy 
method always finds a feasible solution for λ ≤ 0.63 req/s, this does not hold for HyperOpt which, even when 
running for 5000 iterations, it cannot find any feasible solution for about 20% of scenarios (disconnected 
points in Figure 4.42(d)). However, it can be noticed that 5000 iterations are barely enough for Random 
Greedy, since in one case it loses about 6% against HyperOpt (Figure 4.42(d)) and the Hybrid Method (Figure 
4.42(e)). 

Note that, as reported in Figure 4.42(c) and Figure 4.42(f), even if we run Random Greedy for 5,000 iterations, 
the required time is at least one order of magnitude lower than the other methods running for 1,000 
iterations. 

The scalability analysis result is presented in Appendix D. The data set relative to all the wind farm use  case 
analyses is available at https://doi.org/10.5281/zenodo.5789377. 
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5. Towards the Integrated framework for the 
Design Time Tools 

 

The integration plan of AI-SPRINT aims at harmonising the definition of the requirements with the design and 
development phase and ensuring that scientific and technical activities comply with the use cases definition. 
In WP1, a specific task is devoted to these integration activities and has also a design side, though it is 
confined at the level of architectural design. Figure 5.1 depicts the validation strategy of AI-SPRINT through 
milestones defined in the work plan of the project. 

 

 
Figure 5.1 - Milestones for components development 

 

This deliverable realises the Milestone II which releases the first version of the individual components, 
according to the development plan described in AI-SPRINT Deliverable D1.2 Requirements Analysis. In 
particular, this document describes the: 

•    Development of the first release of the programming models including the definition of quality 
annotations to specify security policy and performance constraints. 

•    Initial release of the Performance modelling tools (profiling of inference on edge devices and training 
on GPU clusters). Initial evaluation of the accuracy of performance models on benchmarking 
applications. 

At M18 we will release the integrated framework which will include the integration of WP2 components with 
the runtime environment, in particular it will report on the initial integration of design abstractions and 
quality annotations with the runtime environment and on the mapping of the quality annotations related to 
performance constraints to monitoring rules. 
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6. Conclusions 
This document has provided the description of the activities for the development of the components that 
build the first release of the design tools of the AI-SPRINT platform, allowing to reach the Milestone II at M12. 

The document describes in detail the functionalities of each component and the activities to enhance the 
software to enable the integration of the components and to fulfil the use cases requirements. These 
activities have been also verified through the presentation of example applications that will be part of the 
use cases implementations. 

The second version of this deliverable will be provided at M24 in D2.3 Second release and evaluation of the 
AI-SPRINT design tools. Another deliverable, D2.2 Initial AI-SPRINT design and runtime tools integration at 
M18 will provide further details on the integration of the design tools components with the runtime 
environment and with the security tools. The final release will be provided at M30 in D2.4 - Final release and 
evaluation of the AI-SPRINT design tools and in D2.5Final AI-SPRINT design and runtime tools integration



 

 
  

D2.1 First release and evaluation of the AI-SPRINT design tools 
 

89                                                                                                                                                     www.ai-sprint-project.eu 
 

Appendix A -  Samples description 
This appendix presents the number of samples that have been used to train each of the models presented in 
Section 4.8.2. Table A.1 reports the data about the hold-out scenario, while the remaining tables details the 
size of the training dataset for extrapolation experiments. For example, Table A.2 shows how the number of 
samples of the training set of the extrapolation experiment on the batch AlexNet implemented on PyTorch 
considering 1 and 2 P600 is 72 and 204 respectively. The number of samples in training data used in GPU 
number extrapolation models, computational power extrapolation models and Network depth extrapolation 
models are reported in Table A.3, Table A.4 and Table A.5, respectively. 

Network Framework Training set size 

AlexNet PyTorch 1147 

TensorFlow 1147 

ResNet-50 PyTorch 1152 

TensorFlow 1152 

VGG-19 PyTorch 1152 

TensorFlow 1152 

Table A.1 - Number of samples in training data used in interpolation models 

 
Network 

 
Framework 

GPU Type  and Number 

P600 K80 

1 2 1 2 3 4 

AlexNet PyTorch 72 204 24 20 24 24 

TensorFlow 48 48 24 24 16 24 

ResNet-50 PyTorch 28 44 24 24 24 24 

TensorFlow 28 44 48 24 24 16 

VGG-19 PyTorch - - 16 64 48 24 

TensorFlow - - 16 32 24 24 

Table A.2 - Number of samples in training data used in batch size extrapolation models  
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Network 

 
Framework 

GPU Type  and Number 

M60 GTX 1080Ti 

1 2 3 4 1 2 4 8 

AlexNet PyTorch 39  21 36 21 11 16 17 47 

TensorFlow 18 36 18 18 12 12 12 12 

ResNet-50 PyTorch 12 24 48 72 24 24 24 24 

TensorFlow 48 72 48 72 12 12 12 12 

VGG-19 PyTorch 20 32 24 29 24 24 24 24 

TensorFlow 20 30 24 28 12 12 12 12 

 

 
Network 

 
Framework 

GPU Type   

K800 M60 GTX 1080Ti 

AlexNet PyTorch 384 543 947 

TensorFlow 288 744 231 

ResNet-50 PyTorch 192 96 96 

TensorFlow 312 768 144 

VGG-19 PyTorch 216 144 84 

TensorFlow 288 288 96 

Table A.3 - Number of samples in training data used in GPU number extrapolation models 
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Network Framework Training set size 

AlexNet PyTorch 58 

TensorFlow 52 

ResNet-50 PyTorch 65 

TensorFlow 52 

Table A.4 - Number of samples in training data used in computational power extrapolation models 
 

  

 
Network 

 
Framework 

 
Max N 

GPU Type and Number   
M60 

1 2 4 

ResNet PyTorch 4 680 131 181 

ResNet TensorFlow 5 935 182 233 

ResNet PyTorch 6 1200 240 289 

ResNet TensorFlow 8 1757 360 407 

Table A.5 - Number of samples in training data used in Network depth extrapolation models 
 

Appendix B -  SPACE4AI-D Optimization, 
implementation and scalability 

SPACE4AI-D Optimization Problem Formulation and Random Greedy Algorithm implementation 

In this section, we provide an overview of how we modelled the applications component placement and 
resource selection problem on heterogeneous edge and cloud resources within the SPACE4AI-D tool and its 
corresponding randomised greedy solution.  

We developed a Mixed Integer Non-Linear Programming (MINLP) optimization formulation, aiming at 
minimizing the deployment cost at design time, while satisfying local and global QoS requirements. For space 
limits, we focus here only on the objective function of our model, while the complete formulation is available 
as an unpublished technical report at [TechnicalReport].  

The main goal of SPACE4AI-D is to determine which kind of resource we should select at each computational 
layer (that includes which hardware to buy on the edge or, e.g., which type/flavour of VM  to use in the 
cloud), whether each component's partition(s) should be deployed on the given resource, and, in this case, 
if the assignment is compatible with: 1) memory constraints, used to determine the maximum number of 
components' partitions that can be co-located in each device, and 2) QoS requirements. 
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We denote by _ the set of all resources in the computing continuum. To define the assignment decisions, 
namely, to characterise which resources we are selecting at each computational layer and how components 
are assigned to the available devices, we introduce the following variables: 

● *<'1 , which, for all 8 ∈ ,, for all a31 ∈ I1  and for each ℎ ∈ G31  and 3 ∈ _, is equal to 1 if partition b<1 is 
deployed on device 3, 

● K' , which is 1 if device 3 ∈ _, is used in the final deployment, 
● *+<'1 , which, for cloud resources, denotes the number of VMs of type 3 assigned to any partition b<1 . 

Edge devices are characterised by the estimated amortised costs for the single run of the target application, 
cloud VMs are characterised by hourly costs, and FaaS configurations costs are expressed in GB-second. In 
order to compute them, we denote with 0the overall time an application is active for a single run and we 
assume that 0 is equal or less than one hour.  

If we denote by _ℇthe subset of _	storing all the available edge devices, the corresponding execution cost can 
be defined as follows: 

I> = P
'∈?ℇ

a'>K'  

where a'>  is the amortised cost of the edge device 3 ∈ _ℇ  .  

The total execution cost on cloud VMs, whose set will be denoted by _, ⊂ _ , can instead be computed as: 

I@ = P
'∈?$

a'@ 	*'  

 

Where a'@  and *' = \?K(1,<)*+<'1  denote the hourly cost and the maximum number of running VMs of type 
3 ∈ _,, respectively. 

Finally, _B  denote the set of all FaaS configurations, and let a<'
B,1  be the GB-second unit cost for executing b<1 on 

the function configuration 3 ∈ _B. FaaS total costs depend on the memory size, the functions 

duration, and the total number of invocations. The execution cost of the function layer will be as follows: 

IB =P
1∈C

P
3:,%"∈@"

P
<∈E%"

P
'∈?&

a<'
B,1Q<'

1,<-2	*<'1 V<1 0 

where Q<'
1,<-2denotes the execution time of a hot request of partition b<1 on function configuration3 ∈ _B. 

Note that the cost of the used memory is embedded in a<'
B,1. Indeed, Q<'

1,<-2 is inversely proportional to the 
memory \<

1  allocated to the partition b<1 (see [Lin2021]). 

According to some FaaS providers (see, e.g., AWS Step Functions [AWSStepFunctionsPricing] and Azure Logic 
Apps [AzureLogicApps]), we need to introduce a state transition cost, denoted here with aF, to model the 
additional charge for the message passing and coordination between two successive functions. If, however, 
the orchestration is supported by an architectural component (see, e.g., SCAR and OSCAR [Risco2021]), the 
state transition cost is set to aF = 0. Without loss of generality, we can thus formulate the transition cost as: 

IF =P
1∈C

P
3:,%"∈@"

P
<∈E%"

P
'∈?&

aF*<'1 V<1 0 
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Therefore, the objective function of our problem, which corresponds to the minimization of all these 
operational costs, is as follows: 

 \8:		I> + I@ + IB + IF  

subject to assignment compatibility, memory and QoS constraints and to the selection of a single device at 
each layer. 

Due to the M/G/1 models that we used, the problem becomes a NP-hard MINLP problem. In the following, 
we describe the heuristic algorithm, based on a randomised greedy method, we developed to solve it (see 
Figure B.1).  

The algorithm receives as input the compatibility matrix ", the application DAG description with the 
performance demand, candidate device costs, local and global constraints, and the maximum number of 
iterations to be performed. First, we initialize the best solution and corresponding cost to infinity. At each 
iteration, we set matrices K, * and *+ to zero (line 4), we randomly pick a device at each layer (line 5) and a 
deployment for each component, and we randomly assign each partition of the selected deployment to the 
selected devices according to the compatibility matrix " (lines 6-11). For each VM type 3, we randomly chose 
the number of nodes between 1 and :', i.e., the maximum number of instances (line 12). This generates a 
solution < K, *, *+ > that satisfies the compatibility constraints. Then, we check the feasibility of memory 
constraints (line 13), and QoS constraints (line 14). If possible, we reduce the maximum number of selected 
VMs (line 15), preserving the feasibility of the current solution. At line 18, we check if the current solution 
improves the BestSolution, which is updated accordingly (lines 19-21). The best solution found, if any, is 
returned at lines 23-27. 

 

 
Figure B.1 - Randomized greedy algorithm implemented in SPACE4AI-D 
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The detailed demands of the components and partitions on the compatible resources used in the 
experiments, is reported in Table B.1. 

 

Resource Type Demands[s] 

C1 C2 C3 C4 C5 

h1 h1                  h2                h3   h1            h2            h3             h4             h5           h6 h1              h2              h3 h1              h2              h3  

Drone (Low-
end Board) 

1.260 1.200   0.700  0.650     _         _          _           _            _         _  _            _         _  _            _         _ 

Drone (Mid-
range Board) 

1.000 0.790   0.420  0.410   _         _          _           _            _         _ 
 

 _            _         _  _            _         _ 

PC    _ 1.000   0.550   0.530 5.000  2.800  2.700  2.000  1.900  1.800  _            _         _  _            _         _ 

 Edge Server    _ 0.050   0.030   0.028 0.500  0.270  0.260  0.200  0.190  0.180  _            _         _  _            _         _ 

G3 - 4vCPUs 
VM 

   _ 0.012   0.007   0.006 0.112  0.560  0.550  0.040  0.040  0.040 0.033  0.021  0.020  _            _         _ 

G3 - 16vCPUs 
VM 

   _ 0.010   0.006   0.005 0.090  0.050  0.045  0.032  0.031  0.030 0.027  0.017  0.013  _            _         _ 

FaaS - 4Gb 
(warm) 

   _ 0.25    0.200   0.190 2.250  1.500  1.250  1.100  1.000  1.000 0.675  0.400  0.370 4.000  2.200  2.000  

FaaS - 4Gb 
(cold) 

    _ 0.400  0.300   0.290 2.700  2.000  2.000  2.000  2.000  2.000 1.000  0.800  0.800 4.800  2.800  2.800 

FaaS - 6Gb 
(warm) 

   _  _            _         _  _            _         _          _            _         _  _            _         _ 2.300  1.300  1.100 

FaaS - 6Gb 
(cold) 

   _  _            _         _  _            _         _         _            _         _  _            _         _ 2.760  2.000  2.000 

Table B.1 - Demands of components and partitions on the compatible resources 
 
Scalability Analysis 
To evaluate the scalability of our approach, we considered four different scenarios at different scales as 
reported in Table B.2. In the following, we report the average achieved by considering 10 random instances 
for each scenario. We randomly selected between 1 and 3 deployments for each component and between 1 
and 4 partitions for each deployment. We also selected randomly, between 3 and 5, the maximum number 
of VMs of each type, while service demands were generated randomly in the range of [1, 2]s for drones, [1, 
5]s for edge resources, [0.5, 2]s for VMs (as in [Elgamal2018]), and [2, 5]s for cold and warm FaaS requests 
(as in [Manner2018]). The iteration running time depends on the solution feasibility. For example in the 
largest case (15 components), the total time of an iteration that found a feasible solution is about 366 ms, 
where 2% of the total time is spent in creating the new solution and 98% in checking its feasibility, while the 
total time of an iteration that could not find a feasible solution is about 5 ms, where only 26% of the total 
time is spent in checking the feasibility of the solution (the iteration terminates as soon as any constraint is 
violated). Hence, in the following scalability analysis, in order to consider the worst case in terms of average 
running time, we set the local and global constraint thresholds to random larger numbers in the intervals 
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shown in Table B.2 for all instances of the scenarios. Indeed, since each iteration terminates as soon as any 
constraint is violated, strict thresholds imply more frequent violations and also entail lower running times on 
average.  

 

Scenario #Components Local constraints  Global constraints 

1 5 [120, 150] [200, 250] 

2 7 [150, 200] [350, 400] 

3 10 [300, 350] [350, 400] 

4 15 [350, 400] [450, 500] 

Table B.2 - The range of constraints in scalability analysis 
 

As it is shown in Table B.3(a), we considered problem instances including up to 15 components, 31 candidate 
nodes, 4 local and 4 global constraints. We set λ = 0.11 req/s and we replicated the experiment twice for 
MaxIter = 500 and MaxIter = 5000. The average execution time and feasibility percentage across 10 instances 
is reported in Table B.3(b).  

Note that the maximum execution times (in the worst case as we said above) for the Random Greedy are 
about 19s and 4 min with 500 and 5000 iterations, while HyperOpt takes about 3.2 min and 3 hours, 
respectively. Moreover, HyperOpt cannot find a feasible solution for all instances even for very slight 
constraints (feasibility percentage about 97% for 500 iterations) while as we saw in the use case analysis, the 
feasibility percentage is about 60% for 5000 iterations. 

Our approach can thus obtain significant improvements (with a factor of 51 and 46 for small and large scale, 
respectively) compared with HyperOpt in terms of average running time, which makes it suitable to tackle 
the component placement problem at design time. 

(a): Scalability parameters 

Scenario #Components #Nodes  in  Computational  Layers  (CL) 
  CL1               CL2                CL3               CL4         CL5                CL6               CL7              CL8 

#Local, global  
constraints  

1 5 Drone:2 Edge: 4 VMs: 4 VMs: 4 FaaS: 2 - - - 1, 1 

2 7 Drone:2 Edge: 4 Edge: 4 VMs: 4 VMs: 4 FaaS: 5 - - 2,2 

3 10 Drone:2 Edge: 4 Edge: 4 VMs: 4 VMs: 4 VMs: 4 FaaS: 5 - 3,3 

4 15 Drone:2 Edge: 4 Edge: 4 VMs: 4 VMs: 4 VMs: 4 VMs: 4 FaaS: 5 4,4 

     (b): Scalability performance evaluation 

Scenario Avg.  Exec.  time  for  500  iterations  (s), feasibility 
percentage 
RandomGreedy          HyperOpt          HybridMethod 

Avg.  Exec.  time  for  5000  iterations  (s),  feasibility 
percentage 
RandomGreedy             HyperOpt          HybridMethod 

1 6.8, 100                    107.4, 100       132.4, 100   69.2, 100                   3584.9, 100           11258.0, 100 

2 19.5, 100                  114.0, 100      139.1, 100   200.9, 100                  5279.3, 100         14071.1, 100 

3 21.9, 100                  148.9, 100      157.8, 100   239.1, 100                  7205.0, 100         15767.4, 100 

4 19.3, 100                  192.0, 90        193.9, 100   241.4, 100                   11057.8, 100       16602.1, 100 

Table B.3 - Scalability analysis 
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Appendix C -  YAML files description 
Here, we report the initial YAML file describing the mask detection use case (Section 2.2) that will be 
processed by the SPACE4AI-D tool. A parser will convert the YAML file to the input json file required by 
SPACE4AI-D. 
Our system is described, in this file, in two main sections. The first section is denoted as NetworkDomains and 
it defines several network domains with different network communication properties connecting devices 
with each other. Resource computational layers are included in, possibly, multiple network domains, 
associated with a given technology characterised by the access time (AccessDelay) and bandwidth (Bandwidth). 
Indeed, each computational layer (an item in ComputationalLayers) includes a list of candidate resources 
(Resources) such that one of them can be selected to run the application components. Each candidate resource 
is characterised by some properties, such as name, description, a list of processors (processors), etc. 
The second section defines a list of containers (Containers). Each partition (or component) runs on the available 
resources as a container characterised by some properties like memorySize, computingUnits, and so on. The 
candidateExecutionLayers field shows the computational layers which include the compatible resources for each 
container. In the mask detection use case, we defined two containers c1 and c2. 
The unit of measurement for some parameters such as storage, memory, cost, time (delay) and bandwidth 
are Giga Byte, Mega Byte, dollar per hour ($/h), hour and Megabits per second (Mbps), respectively, in the 
YAML file. 
 
 
YAML input file 
System: 
  name: Mask Detection Application 
  NetworkDomains: 
    ND1: 
      name: Network Domain 1 
      AccessDelay: 0.00000277 
      Bandwidth: 10000 
      ComputationalLayers:  
        - computationalLayer1: 
            name: Edge Layer 
            number: 1 
            Resources:  
              - resource1: 
                  name: RaspPi 
                  description: Raspberry PIs 4 Model B 
                  cost: 0.0375 
                  memorySize: 4096 
                  operatingSystemDistribution: Raspbian 
                  operatingSystemType: Linux 
                  operatingSystemVersion: 10 
                  secureBoot: string 
                  measureBoot: string 
                  storageSize: 64GB 
                  storageType: flash 
                  processors: 
                    - processor1: 
                        name: BCM2711 
                        type: Cortex-A72 
                        architecture: ARM64 
                        computingUnits: 4 
                        internalMemory: 4 
                        SGXFlag: False 
        - computationalLayer2: 
            name: Cloud Layer 
            number: 2 
            Resources:  
              - resource1: 
                  name: VM1 
                  description: AWS g3s.xlarge 
                  cost: 0.75 
                  memorySize: 8192 
                  storageSize: 44 
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                  storageType: SSD 
                  operatingSystemDistribution: Ubuntu 
                  operatingSystemType: Linux 
                  operatingSystemVersion: 20.04 
                  secureBoot: False 
                  measureBoot: False 
                  onSpot: False 
                  processors: 
                    - processor1: 
                        name: Xeon 
                        type: SkyLake 
                        architecture: IntelX86 
                        computingUnits: 4 
                        internalMemory: 64 
                        SGXFlag: False 
 
  Containers: 
    - container1: 
        name: c1 
        memorySize: 1024 
        computingUnits: 1 
        trustedExecution: False 
        networkProtection: False 
        fileSystemProtection: False 
        GPURequirement: False 
        candidateExecutionLayers: [1] 
    - container2: 
        name: c2 
        memorySize: 2048 
        computingUnits: 1 
        trustedExecution: False 
        networkProtection: False 
        fileSystemProtection: False 
        GPURequirement: False 
        candidateExecutionLayers: [1, 2] 
 

 
 

JSON file description   
As already mentioned, the SPACE4AI-D tool requires an input file in JSON format. This will contain some 
information provided in the YAML file (such as the resources and system descriptions), which will be 
converted into the JSON format by a suitable parser. However, additional information is required, e.g., the 
application DAG, etc., and these should be provided by the Application Architect. In the following, we provide 
and describe a sample JSON file, where all data that are not provided within the YAML file and need to be 
added are in bold.  
Each partition sends a certain amount of data (denoted by data_size in the JSON file) to its successor in the 
application DAG. This, denoted by next in the JSON file. The early_exit_probability field denotes the probability of 
early stopping described in Section 4.7.1.  
We define the CompatibilityMatrix as a matrix that shows which devices can be used to run each partition. It can 
be derived by the field candidateExecutionLayers from the YAML file. For example "c1":{ "h1":["RasPi"] means that 
container c1 can run on computationalLayer1, which includes RasPi.  Vice versa "c2":{ "h1":["RasPi","VM1"] } indicates 
that the mask detection container can run both on computationalLayer1 and computationalLayer2. supported by the 
RasPi and VM1, respectively. Moreover, the DemandMatrix field represents the demanding time to run a partition 
on the compatible resources; this needs to be provided by the Application Architect after performing the 
application profiling. 
We denote local and global constraints by LocalConstraints and GlobalConstraints, respectively. The former are used 
to specify the maximum response time of single components, through the local_res_time field, while the latter 
set a name for a sequence of components, namely a path (denoted, e.g., by p1 in the JSON file), and fix a 
response time threshold for the path by global_res_time. This information can be obtained by parsing the code 
decorators (see Section 4.4.1). 
The application DAG specified in the DirectedAcyclicGraph field, includes the name of the components, a list with 
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the names of all the successive components (if we have a branch in the DAG, the list length will be greater 
than one), and a list of transition probabilities (transition_probability) between the current component and its 
successors. Finally, the Lambda field denotes the exogenous input workload. 
 
JSON input file: 

{ 
   "Components":{ "c1":{ "s1":{ "h1":{ "memory":1024, "next":"c2", "early_exit_probability":0,"data_size":4500} 
                              } 
                      }, 
                  "c2":{ "s1":{ "h1":{ "memory":2048, "next":"", "early_exit_probability":0, "data_size":0} 
                             }                       } 
                 }, 
   "EdgeResources":{ "computationallayer1":{ "RasPi":{ "description":"Raspberry PIs 4 Model B","number":1,  
                                                       "cost":0.0375, "memory":4096} 
                                          } 
                   }, 
   "CloudResources":{ "computationallayer2":{ "VM1":{ "description":"AWS g3s.xlarge", "number":1,   
                                                      "cost":0.75, "memory":8192} 
                                             } 
                     }, 
   "CompatibilityMatrix":{ "c1":{ "h1":["RasPi"]}, 
                           "c2":{ "h1":["RasPi","VM1"] } 
                                   }, 
   "DemandMatrix":{ "c1":{ "h1":{ "RasPi": 17474.5 } 
                         }, 
                    "c2":{ "h1":{ "RasPi": 13900, "VM1": 4242.3} 
                            } 
                  }, 
   "Lambda": 0.000046, 
   "LocalConstraints":{ "c1":{ "local_res_time": 89100 } 
                      }, 
   "GlobalConstraints":{ "p1":{ "components":["c1","c2"], "global_res_time": 94350} 
                        }, 
   "NetworkTechnology":{ "ND1":{ "computationallayers":["computationallayer1","computationallayer2"],  
                                 "AccessDelay":0.00000277, "Bandwidth":10000} 
                        }, 
   "DirectedAcyclicGraph":{ "c1":{ "next":["c2"], "transition_probability":[1]} 
                           }, 
   "Time":1 
} 

 

YAML output file 
After executing SPACE4AI-D an output YAML file according to the format reported below (where the 
container to resource assignment is performed) will be generated.  In this specific case, according to the 
workload and constraints reported in the input JSON file, container 1 is associated with the Raspberry Pi 
(the only choice) while container c2 is assigned to VM1 to avoid the global constraint violation. In this 
scenario, the search space is small and the tool could find the best solution even with 5 iterations (0.002 s).   
 
System: 
  name: Mask Detection Application 
  NetworkDomains: 
    ND1: 
      name: Network Domain 1 
      AccessDelay: 0.00000277 
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      Bandwidth: 10000 
      ComputationalLayers:  
        - computationalLayer1: 
            name: Edge Layer 
            number: 1 
            Resources:  
              - resource1: 
                  name: RaspPi 
                  description: Raspberry PIs 4 Model B 
                  cost: 0.0375 
                  memorySize: 4096 
                  operatingSystemDistribution: Raspbian 
                  operatingSystemType: Linux 
                  operatingSystemVersion: 10 
                  secureBoot: string 
                  measureBoot: string 
                  storageSize: 64GB 
                  storageType: flash 
                  processors: 
                    - processor1: 
                        name: BCM2711 
                        type: Cortex-A72 
                        architecture: ARM64 
                        computingUnits: 4 
                        internalMemory: 4 
                        SGXFlag: False 
        - computationalLayer2: 
            name: Cloud Layer 
            number: 2 
            Resources:  
              - resource1: 
                  name: VM1 
                  description: AWS g3s.xlarge 
                  cost: 0.75 
                  memorySize: 8192 
                  storageSize: 44 
                  storageType: SSD 
                  operatingSystemDistribution: Ubuntu 
                  operatingSystemType: Linux 
                  operatingSystemVersion: 20.04 
                  secureBoot: False 
                  measureBoot: False 
                  onSpot: False 
                  processors: 
                    - processor1: 
                        name: Xeon 
                        type: SkyLake 
                        architecture: IntelX86 
                        computingUnits: 4 
                        internalMemory: 64 
                        SGXFlag: False 
 
  Containers: 
    - container1: 
        name: c1 
        memorySize: 1024 
        computingUnits: 1 
        trustedExecution: False 
        networkProtection: False 
        fileSystemProtection: False 
        GPURequirement: False 
        deploymentLayer: 1 
    - container2: 
        name: c2 
        memorySize: 2048 
        computingUnits: 1 
        trustedExecution: False 
        networkProtection: False 
        fileSystemProtection: False 
        GPURequirement: False 
        deploymentLayer: 2 
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Appendix D -  Performance benchmarking of 
Deep Learning training applications 

Predicting the execution time of DL training applications is important in order to effectively estimate the 
operational costs (energy cost in private clouds and resources-renting cost in public clouds) of inference or 
training tasks. As the results reported in the previous sections demonstrated, performance model regressors 
allow us to achieve accurate results but require an initial profiling of the target application. To reduce the 
profiling effort, we have evolved the initial version of the a-GPUBench framework initially developed within 
the ATMOSPHERE project11, to automatically train several Deep Neural Networks (e.g., Convolutional Neural 
Networks or Recurrent Neural Networks) and evaluate their performance varying the model 
hyperparameters, pursuing the following objectives: 

• Migrating the existing framework from Tensorflow 1 to Tensorflow 2, 
• Integrate the new version in a containerized run-time environment. 

The deployment diagram of the new, containerized version is reported in Figure D.1. It relies on two, possibly 
different, machines, denoted as host machine and target machine, respectively, such that the latter can be 
reached from the former through a ssh connection (note that, if the host and the target machine coincide, 
the connection is performed via localhost).  

 
Figure D.1 - Deployment diagram 

 

Each machine hosts a Docker container, which supports the execution of all modules in the host subsystem 
or the target subsystem, as described in the following. Specifically, the host subsystem is used first of all to 
set the parameters to be sent to the target machine, such as the configuration file related to the specific 
application that will be executed (reporting, e.g., the path to the training dataset, the maximum number of 
epochs, the batch size and other hyperparameters). The available modules are: 

• Experiment Frontend: it checks the parameters that are passed and calls the provider where the 
training session is executed, setting the application that we are interested in benchmarking. The 
current version only supports Tensorflow applications, while the extension to PyTorch applications 
is ongoing. 

• Provider Controller: it contains all the available providers on which the training phase can be 
executed. So far, it is possible to run the training phase on a local provider, which identifies a scenario 
where the host machine and the target machine coincide, and an inhouse provider, meaning that the 
training is executed on a remote machine in a private cloud. 

 
11 https://github.com/eubr-atmosphere/a-GPUBench 
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• Post-training Analysis: it contains all the scripts used to process the data retrieved from the training 
session. In particular, these produce a report concerning the execution time of the different phases 
and the CPU or GPU load. 

The target subsystem is responsible for building and executing the training pipeline. It contains the following 
modules: 

• Local Experiment Frontend: it prepares the directories necessary to output all the training logs, 
configures parameters such as the requested application and the hardware to be profiled (GPU 
and/or CPU), and starts the training session. When this ends, it optionally sends an email to inform 
that the training session is concluded and sends the training information to a log server. 

• Training Frontend: it contains the scripts that the Local Experiment Frontend uses in order to start 
the training. In particular, it loads the configuration file where all the relevant information is specified 
(network type, dataset, training hyperparameters, etc.). Then, it calls the script that executes the 
training. 

• Nets Controller: it contains the definition of the trainable Neural Networks (NNs) and a factory class 
that is used as an interface to set some hyperparameters and eventually modify the NN structure. 
This component can be extended with all the possible NNs. So far, AlexNet V2 [Krizhevsky2014], 
Vgg16 and Vgg19 [Simonyan2015], ResNet50 [He2015] and VQA [Agrawal2016] networks are 
available. 

• Dataset Controller: it is composed by two main parts: 
• Dataset Factory: it contains the modules that build the training and validation datasets, using 

the files available in the file system. 
• Dataset Setup: it contains the script used during the setup phase of the target machine. In 

particular, this script downloads the dataset from the web, performs a preprocessing to build 
the validation set used for model evaluation, and converts the dataset into TFRecords files. 

• Preprocessing Controller: it contains the preprocessing function used on the dataset. These are 
specific for the different NNs and are used to perform some image transformation (e.g., rescaling, 
subtracting the mean from the pixels, etc.). 

• Internet Service Interface: it represents the Internet interface used by the Dataset Setup module and 
by the Local Experiment Frontend when it is required to copy the training files to a logserver. 

• Mail Service Interface: it represents the mail interface used by the Training Frontend to notify the 
user about the training completion (if required). 

A user guide with all the relevant information for executing the training and application profiling is reported 
in the README.md file of the framework, which is available at [a-GPUBench2021] as mentioned in Section 
4.5. 
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