

AI-Sprint - Artificial Intelligence in Secure PRIvacy-preserving computing coNTinuum,
has received funding from the European Union’s Horizon 2020 research and innovation
programme under Grant Agreement no. 101016577.

Project Title Artificial Intelligence in Secure PRIvacy-preserving computing coNTinuum
Project Acronym AI-SPRINT
Project Number 101016577
Type of project RIA - Research and Innovation action
Topics ICT-40-2020 - Cloud Computing: towards a smart cloud computing

continuum (RIA)
Starting date of Project 01 January 2021
Duration of the project 36 months
Website www.ai-sprint-project.eu/

D1.3 - Initial Architecture Design

Work Package WP1 | Requirements & Architecture Definition
Task T1.3| Architecture Definition
Lead author Daniele Lezzi (BSC)
Contributors Hamta Sedghani (Polimi), Matteo Matteucci (Polimi), Andrei Popa

(BECK), German Moltò (UPV), Giacomo Verticale (Polimi), Federica
Filippini (Polimi), André Martin (TUD), Patrick Thiem (C&H)

Peer reviewers Danilo Ardagna (Polimi), Enrico Abate-Daga (BECK)
Version V1.0
Due Date 30/06/2021
Submission Date 30/06/2021

Dissemination Level

X PU: Public

 CO: Confidential, only for members of the consortium (including the Commission)

 EU-RES. Classified Information: RESTREINT UE (Commission Decision 2005/444/EC)

 EU-CON. Classified Information: CONFIDENTIEL UE (Commission Decision 2005/444/EC)

 EU-SEC. Classified Information: SECRET UE (Commission Decision 2005/444/EC)

D1.3 Initial Architecture Design

2 www.ai-sprint-project.eu

Versioning History
Revision Date Editors Comments
0.1 05/05/2021 Daniele Lezzi ToC definition
0.2 04/06/2021 Daniele Lezzi,

Federica Filippini
Sections 1, 2 added, initial version of Scheduling for
accelerated devices

0.3 07/06/2021 Germán Moltó Included section 2.1, A.5. Contributed to 2.3
0.4 10/06/2021 Daniele Lezzi, Executive summary
0.5 17/06/2021 Federica Filippini,

Hamta Sedghani
Review of design space exploration, GPU scheduler
and runtime configuration tools sections

0.6 24/06/2021 Federica Filippini,
Hamta Sedghani,
André Martin,
Patrick Thiem

Added section A.2 and review of performance
models description
Added section 2.4

0.7 25/06/2021 André Martin Added section A.12
0.8 27/06/2021 Giacomo Verticale Added section A.13
 27/06/2021 Patrick Thiem Added section A.14
 27/06/2021 Danilo Ardagna Review sections 1-2, 3.2, A.1, A.2, A.4
 28/06/2021 Danilo Ardagna Review sections A.5-7, A.9, A.11-14
 28/06/2021 Matteo Matteucci Reviewed sections 1.x, 2.x, 3.x, A.X

Contributions to 2.2, 2.3
Added sections A.3, A.8, A.10

0.9 28/06/2021 Daniele Lezzi Section 3 edited
 28/06/2021 Danilo Ardagna Review of sections 2.2, 2.3, A.3, A.8, A.10
 29/06/2021 Danilo Ardagna Review of sections 1 and 3.
 29/06/2021 Enrico Abate-Daga Review of the whole document
1.0 29/06/2021 Daniele Lezzi Final formatting

Glossary of terms
Item Description
AI Artificial Intelligence
CMP Cloud Management Platform
DevOps Software development (Dev) and IT operations (Ops)
EDDL European Distributed Deep Learning library
FaaS Functions as a Service
GPU Graphics Processing Unit
IaaS Infrastructure as a Service
MEC Mobile Edge Computing
OS Operating System
TEE Trusted Execution Environment
TOSCA Topology and Orchestration Specification for Cloud Applications
UE User Equipment
TPM Trusted Platform Module

D1.3 Initial Architecture Design

3 www.ai-sprint-project.eu

Keywords
Artificial Intelligence; Edge Computing; Computing Continuum; Programming Models; Runtime
management;

Disclaimer
This document contains confidential information in the form of the AI-SPRINT project findings, work and
products and its use is strictly regulated by the AI-SPRINT Consortium Agreement and by Contract no.
101016577.

Neither the AI-SPRINT Consortium nor any of its officers, employees or agents shall be responsible, liable in
negligence, or otherwise however in respect of any inaccuracy or omission herein.

The contents of this document are the sole responsibility of the AI-SPRINT consortium and can in no way be
taken to reflect the views of the European Commission and the REA.

D1.3 Initial Architecture Design

4 www.ai-sprint-project.eu

Executive Summary

This document, developed by the AI-SPRINT project, represents an initial version of the platform Architecture
deliverable (the final due at M24) that offers an overview of the architectural design.

The focus of this document is the identification of different components and interfaces within the AI-SPRINT
architectural building blocks, as well as the different strategies necessary for a successful deployment. The
role of each of the blocks is defined, as well as the required interfaces for the communication between blocks.

The architectural choices are built taking into account the different types of requirements imposed by the
applications and services running in the framework through the analysis of the three use cases specified in
the project proposal and detailed in AI-SPRINT Deliverable D1.2 - Requirements Analysis.

D1.3 Initial Architecture Design

5 www.ai-sprint-project.eu

Table of Contents

1. Introduction 7

1.1 Scope of the document 7

1.2 Target Audience 7

1.3 Structure of document 7

3. AI-SPRINT Architectural Overview 8

3.1 Deployable Infrastructure 10

3.2 Design Tools 11

3.3 Runtime Framework 15

3.4 Security and Privacy 21

4. Integrated framework 25

4.1 Detailed architecture 25

4.2 Integration plan 28

5. Conclusions 29

6. Appendix A 30
A.1 Roles in AI Design and Operations 30
A.2 Design and Programming Abstractions 30
A.3 Performance Models 32
A.4 AI Models Architecture Search 34
A.5 Application Design Space Exploration 35
A.6 Deployment tools 37
A.7 Monitoring tools 40
A.8 Programming framework runtime 41
A.9 Federated Learning 44
A.10 Scheduling for accelerated devices 46
A.11 Privacy preserving continuous training 50
A.12 Application reconfiguration 53
A.13 Trusted Execution Environments 54
A.14 Secure Networks 57
A.15 Secure Boot 59

D1.3 Initial Architecture Design

6 www.ai-sprint-project.eu

List of Figures

Figure 2.1 - AI-SPRINT Architecture Overview 8
Figure 3.1 - AI-SPRINT Detailed Architecture 27
Figure 3.2 - Milestones for components development 28

List of Tables
Table 2.1 - AI-SPRINT WP Level Architecture 10
Table 2.2 - Design Tools: motivations and innovations 13
Table 2.3 - Runtime Framework: motivations and innovations 20
Table 2.4 - Security Policies: motivations and innovations 24

D1.3 Initial Architecture Design

7 www.ai-sprint-project.eu

1. Introduction
1.1 Scope of the document
The aim of the AI-SPRINT “Artificial intelligence in Secure PRIvacy-preserving computing coNTinuum” project
is to develop a platform composed of design and runtime management tools to seamlessly design, partition
and operate Artificial Intelligence (AI)I applications among the current plethora of cloud-based solutions and
AI-based sensor devices (i.e., devices with intelligence and data processing capabilities), providing resource
efficiency, performance, data privacy, and security guarantees. This document overviews the AI-SPRINT
architectural framework introducing the main project assets that will be developed and evolved during the
project.

1.2 Target Audience
The Architecture Design Document (initial and final version) is intended for internal use, although it is publicly
available. The target audience is the AI-SPRINT technical team including all partners involved in the delivery
of work packages 2,3 and 4 but also it serves as reference for the developers of the three use cases of the
project.

1.3 Structure of document
This document includes three main parts:

● The AI-SPRINT Architectural Overview that provides the description of the main components of the
platform including the design tools, the runtime framework, the deployable infrastructure and the
security mechanisms amongst all the components.

● The Integrated Framework details how the components interact and the different deployment options
to support scenarios required by the AI-SPRINT use cases.

● In the Appendix, we provide the details of those possible interaction scenarios and the sequence
diagrams with the explanation of the data exchanged.

D1.3 Initial Architecture Design

8 www.ai-sprint-project.eu

3. AI-SPRINT Architectural Overview

This section shows the global design of the AI-SPRINT framework, indicating which main functionalities the
AI-SPRINT platform will provide for the first iteration of the tools development. For each individual block of
the system, we describe its role and relation within the global architecture, as well as, the required interfaces
for the communication with other modules.

Figure 3.1 - AI-SPRINT Architecture Overview

AI-SPRINT will overcome current technological challenges for the design and efficient execution of AI
applications exploiting resources in the edge-to-cloud continuum such as flexibility, scalability,
interoperability, security and privacy. Figure 2.1 depicts the high level view of the AI-SPRINT architecture. An
AI-SPRINT application is mostly written in Python and it makes intensive use of AI technologies. An
application usually comprises multiple components which run across a computing continuum with some
components allocated on the cloud, some on edge servers some on AI-enabled sensors (i.e., devices with
intelligence and data processing capabilities).

In particular, the AI-SPRINT use cases (see also the AI-SPRINT Deliverable D1.2 - Requirements analysis) will
be implemented by using the AI-SPRINT design and development tools. The design environment includes
Programming Abstractions to hide the communications across components and to transparently implement
the parallelization of the compute-intensive part of the application, possibly exploiting specialized resources
(e.g., GPUs and AI enabled sensors). Applications are also enriched with quality annotations (e.g., data flow
rates, application latency, energy constraints) to express performance, accuracy, privacy, and security
constraints. Performance Models tools automate the AI application performance profiling and identify the

D1.3 Initial Architecture Design

9 www.ai-sprint-project.eu

performance model (based mainly on Machine Learning) providing the highest performance prediction
accuracy. In particular, Performance Models tools will support performance ML model selection and hyper-
parameters tuning also considering for the target deployment AI-based sensors. Deep networks might be
deployed across computing continua by considering also multiple partitioning options. AI Models Network
Architecture Search provides solutions to enable developers with limited ML expertise to train high-quality
models specific to their needs also in terms of Quality of Service (QoS) requirements. These tools help
developers to build a learning as a service solution, that, starting from a training set with labelled training
examples (images or temporal data series which are of interest for use cases) will automatically identify the
most accurate deep neural network which provides execution time guarantees. Furthemore, for complex
applications involving many components, multiple alternative candidate deployments will be evaluated
through the Applications design space exploration tools maximizing resource efficiency while minimizing the
cloud usage cost.

AI-SPRINT applications will be deployed and executed transparently on a heterogeneous architecture,
through a set of runtime tools which manage the different components and data of the applications and
reacts to system perturbations and requirement changes. The AI-SPRINT runtime environment will include
tools to: i) support the continuous deployment of AI applications; ii) support application components
concurrent execution reacting to node failures and identifying their optimal placement and resource
capacity; iii) trigger automated model retraining, leveraging on solutions for training and retraining at the
edge; iv) optimize the scheduling and assignment of accelerator devices among competing training jobs.
Deployment Tools provide automatic mechanisms to guide the process of configuring computing resources
across the computing continuum and provide a cloud-edge orchestration enabling the automatic deployment
of AI application models and components, without manual provisioning. The Programming Framework
Runtime is in charge of supporting concurrent code execution, automatically detecting and enforcing the
data dependencies among components and spawning parallel tasks to the available resources, which can be
nodes in an edge cluster or clouds. Privacy preserving continuous training allows AI applications to update
models in order to capture changes just in weight matrices and internal state initialization of the model, or
in the model structure because of retriggering of the AI model architecture search. Edge training and
retraining in AI-SPRINT will leverage Federated Learning algorithms where different learners exchange only
part of the information which can be extracted from the data in order to improve a model globally, but
without making explicit the data used to train it. The efficient use of GPUs for the training of neural networks
will be addressed by proposing advanced techniques of Scheduling for accelerator devices to solve the joint
resource planning (i.e., how many GPUs to assign to a training job) both for private and public clouds.
Application components will be continuously monitored by a Monitoring Platform which will be able to
gather metrics at every layer of the cloud-edge stack.

AI-SPRINT will provide tools for the deployment of compute instances enabled with Trusted Execution
Environments (TEEs), that allows application entities to be orchestrated in a way that only trusted parties
are allowed to establish communication channels with each other through end-to-end encryption, and code
attestation and verification mechanisms to ensure that only the correct code/binary is being executed. The
framework will also integrate Secure Booting mechanisms to ensure that the OS where applications are
running can be attested to provide an extra level of security. The AI-SPRINT Secure Networks component will
leverage network programmability to manage the setup of virtual networks, to steer secure tunnels through
them, and will ensure that the network paths comply with the security policies defined at design time
including when traffic is rerouted in case of failure.

Table 1. 2 summarizes the WP-level responsibilities of the different components of the architecture, the lead
maintainer and the major contributors.

D1.3 Initial Architecture Design

10 www.ai-sprint-project.eu

Tool WP Task Lead Maintainer Major contributors
Design and
Programming
Abstractions

2 T2.1 BSC BSC, POLIMI, TUD,UPV

Performance
Models

2 T2.3 POLIMI POLIMI, UPV, BSC

AI Models
Network
Architecture
Search

2 T2.2 POLIMI POLIMI, BSC, TUD

Application
Design Space
Exploration

2 T2.4 POLIMI BSC, UPV

Deployment
Tools

3 T3.1 UPV UPV, TUD, POLIMI, BSC, BECK,
C&H, 7BULLS

Monitoring Tools 3 T3.3 7BULLS 7BULLS, TUD, BSC, UPV
Federated
Learning

3 T3.4 POLIMI POLIMI, BSC, TUD, BSC, UPV,
7BULLS

Scheduling for
Accelerated
Devices

3 T3.5 UPV UPV, POLIMI, 7BULLS, TUD

Privacy
Preserving
Continuous
Training

3 T3.4 POLIMI POLIMI, TUD, BSC, UPV, 7BULLS

Programming
Framework
Runtime

3 T3.2 BSC BSC, POLIMI, UPV

Application
Reconfiguration

3 T3.2 C&H C&H, POLIMI, TUD

TEE & Code
Attestation

4 T4.2 TUD TUD, UPV

Secure Boot 4 T4.4 TUD TUD, C&H, POLIMI, UPV
Secure Networks 4 T4.3 POLIMI POLIMI, TUD

Table 3.1 - AI-SPRINT WP Level Architecture

3.1 Deployable Infrastructure
The AI-SPRINT architecture is built upon a flexible computing substrate provided by cloud and edge-based
technologies.

Concerning the former, cloud computing allows the on-demand provision of virtualized resources to support
both the computing and storage requirements from the use cases. Different cloud service models will be
adopted. First, Infrastructure as Service (IaaS) provides the ability to deploy custom Virtual Machines (VMs)
that are specifically configured with the Operating System (OS), libraries, runtimes and applications that use
cases require. This is achieved through the use of Cloud Management Platforms (CMPs) such as OpenStack
and OpenNebula, which provide resource management capabilities featuring both API-based and web-based
access mechanisms for programmatic and end-user access respectively.

D1.3 Initial Architecture Design

11 www.ai-sprint-project.eu

In order to facilitate deterministic repeatability of virtual infrastructure deployments, we are adopting an
Infrastructure as Code (IaC) approach that is being widely adopted by the industry. IaC allows to define
application architecture using high-level recipes and resort to automated procedures both for virtual
computing resources provision and automated configuration of said resources. A DevOps approach will be
adopted in order to achieve deterministic virtual infrastructure deployments across multiple cloud back-
ends. This is exemplified by open-source tools such as Ansible, Puppet and Chef, which allow the definition
of templates that describe the desired state of the virtual infrastructure and provide means to enact its
automated configuration for the sake of compliance. Second, Functions as a Service (FaaS) allows to create
functions coded in a certain programming language and which are triggered in response to certain events
(such as an HTTP request to an API endpoint or a file upload to an object-storage system). These function
invocations are executed on computing resources that are automatically managed by the provider so that
elasticity no longer becomes the main concern of the application developer. These functions also use a fine-
grained cost model, typically in the order of milliseconds of execution, as exemplified by public cloud services
such as AWS Lambda. The FaaS computing model has experienced tremendous growth in the last years
leading to the surge of different open source FaaS platforms that aim to replicate the functionality provided
by their public cloud FaaS services counterparts, but on a Container Management Platform (CMP) such as
Kubernetes.

Regarding edge computing, the computing infrastructure requires to be built on low-powered devices that
prioritize energy efficiency over high-end computing capabilities. Examples of these devices include
Raspberry Pis, which are single-board computers that were initially targeted to promote computer science in
developing countries but that have found important niches in the field of edge computing. We plan to adopt
these boards, possibly adopting accelerators, to create portable computing devices with varying computing
capabilities (from Raspberry Pis to even small clusters) that can satisfy the computing mobility requirements
of some use cases (e.g., agricultural). In AI-SPRINT we assume that these edge devices support the execution
of containers in order to bootstrap the virtualized infrastructure and configuration through automated
means. To this aim, we are adopting efficient strategies of resource allocation on these devices, such as those
provided by minified Kubernetes distributions, exemplified by K3S1 and MicroK8s2.

AI-SPRINT builds on these foundational blocks to support a flexible and customizable deployable
infrastructure that spans across the computing continuum including edge devices, on-premises Clouds and
public Clouds. This flexibility, combined with the adoption of open standards, well-known tools from the
community and best practices in infrastructure deployment, will facilitate the support of the Use Cases.

3.2 Design Tools
The objective of the AI-SPRINT Design Tools is to provide a layer that abstracts the applications from the
underlying computing resources, being these edge resources or cloud servers in such a way that the
application developer only needs to focus on the actual algorithm and application logic. On the other hand,
interfaces for easing the integration of developed applications with the runtime system will be developed.

In particular, the AI-SPRINT developer is provided with a framework to design AI applications using
abstractions to specify quality parameters and to express the resource requirements of the components of
AI distributed applications. Performance models are used to predict execution times for the different parts
of AI applications in a given deployment and to drive the mapping of components on processing elements.

1 K3S. https://k3s.io/

2 MicroK8s. https://microk8s.io/

D1.3 Initial Architecture Design

12 www.ai-sprint-project.eu

Security policies are available in the definition of AI applications to run on different deployments as edge
resources or cloud premises.

Tool Motivation Innovation
Design and
Programming
Abstractions

AI applications considered in AI-
SPRINT are composed of different
components that combine
different approaches adopting
popular frameworks such as
PyTorch, Tensorflow, Scikit-learn.
These components have to be
executed on the edge-cloud
continuum considered by the
project, with a combination of
CPUs and GPUs based distributed
nodes.
On top of this, users have to deal
with big datasets on distributed
resources.
Furthermore, applications must
be configured using policies that
define which services are allowed
to communicate with each other
as well as what files and
communications channels should
be encrypted using TLS. Besides
configuring the encryption and
access policies, the secure policies
definition also provides means of
coordinating secret sharing and
provision as well as attestation of
applications to ensure that an
application is indeed genuine and
running on trusted hardware.

● Offer high level interfaces to several
AI/ML algorithms based on
PyCOMPSs and standard frameworks.

● Concentrate on the application
development and rely on the runtime.

● Automatic parallelization of the code.
● Partition the data, and possibly the

deep network models, to optimize the
execution.

● Introduce performance parameters
for the allocation of tasks to
computing continuum resources and
security & privacy annotations for
data allocation and processing.

● Define applications following a FaaS
model.

Performance Models Once an AI application is designed,
performance models can help to
anticipate the performance of the
application components before
the production deployment or
throughout revision cycles.
Example of questions that can be
answered by performance models
include: how many resources
(GPUs, memory, CPU threads,
etc.) will be required to achieve a
given performance target (e.g.,
training job will end within a due
date? the inference time of an AI

● Support profiling, given multiple
allocations at the computing
continuum.

● Provide novel performance models
based mainly on machine learning,
experiment design methods and,
possibly, queueing networks.

● Automate components performance
models training.

D1.3 Initial Architecture Design

13 www.ai-sprint-project.eu

component will be lower than a
given threshold ?). Solutions to
predict AI application components
performance under different
configurations and deployment
settings at the full computing
continuum stack will be
developed.

AI Models Architecture
Search

The scarcity of AI experts, the
need for the design of customized
network architectures, the need
for a long and tedious
hyperparameter tuning, make the
development of novel AI models a
time and resource consuming
effort. To reduce the time to
market of novel models
customized for the specific use
case and for the specific
computing continuum under
evaluation, we wil design a tool to
identify and automate the search
of the most accurate deep
network which complies with QoS
constraints starting from labelled
data. The possibility of specifying a
QoS is what makes AI-SPRINT
neural architecture search
different from the competitors
and it is a unique feature of the AI-
SPRINT framework.

● Include runtime performance and
QoS as optimization criteria in the
search of the best neural architecture.

● Consider the multiple layers of the
computing continuum when
optimizing and searching for an
optimal architecture which it will be
possible to deploy on the design
target.

● Integrate architecture search with
cloud-edge model partitioning by
allowing the search algorithm to be
aware of the network partitioning
when optimizing its architecture.

● Multi-objective space exploration
and Pareto optimal solutions.

● Performance estimation as a driver of
search process.

● Model pruning.

Application Design
Space Exploration
(SPACE4AI-D)

Once an AI application approaches
the final deployment stage, it
becomes increasingly important
to tune its performance. This is a
time-consuming task, since the
number of different
configurations can grow very
large. Tools are needed to guide
this phase. The ultimate goal of
the Application Design Space
Exploration tool is to explore
automatically multiple candidate
deployments for the AI
application components to
identify an optimal initial
deployment which satisfies
performance constraints.

● Define ad-hoc algorithms (based on
random greedy, local search and
other meta-heuristic methods)
tailoring the peculiarities of AI
applications (e.g., multiple versions
corresponding to different partitions
of the same deep network deployable
on edge resources or cloud) to quickly
find good designs given QoS
constraints.

Table 3.2 - Design Tools: motivations and innovations

D1.3 Initial Architecture Design

14 www.ai-sprint-project.eu

The design framework will also provide means to define applications components as microservices and
event-driven functions that can be dynamically orchestrated at runtime, according to the FaaS model. The
aim of the design abstractions is to provide high-level annotations to specify QoS constraints and code
dependencies and to introduce performance parameters for the allocation of tasks to computing continuum
resources and security & privacy annotations for data allocation and processing.

The design time framework will support the composition of ML, DL and AI applications primarily adopting the
PyCOMPSs programming model and tools (e.g., dislib library), enabling the development of complex and
dynamic workflows, composed of pure computational parts, classical data analytic runs and ML/DL methods.
At the same time, the adoption of popular AI/ML frameworks will be guaranteed and in all the cases
applications will be enriched with annotations to specify non-functional properties constraints, security and
privacy policies, and application candidate target deployments. A number of ML algorithms implemented
with PyCOMPSs are already available as a Distributed Computing Library (dislib3) inspired by Scikit-learn,
which eases the task of developing applications providing a common interface in all algorithms.

Furthermore, as a parallel framework, COMPSs exploits inter-node and intra-node parallelism and executes
TensorFlow tasks as external processes. The design layer will be based on the PyCOMPSs programming
framework, but integration with popular frameworks as PyTorch, TensorFlow, Keras will be also provided.
The main benefit of the integration of the AI-SPRINT programming model is the reduction of the execution
time of the training and inference processes by exploiting the inherent data parallelism of input data. To do
so, the input dataset is distributed over the different targeted nodes and each node is in charge of training
the model with the assigned dataset part. Later, the different models trained in isolation are combined thus
requiring to exchange either the model (parameters) or the parameter’s gradients between the nodes.

Furthermore, AI-SPRINT will develop novel solutions to model the performance of AI applications running at
the full computing continuum stack. Performance models can serve as a fundamental building block for
cloud service providers hosting AI services in the cloud. Indeed, performance modeling enables cloud
providers to estimate applications performance based on provisioned resources and to possibly manage
effectively data center infrastructures at runtime. Moreover, based on the performance modeling feature,
cloud providers can offer what-if analysis for customers to perform trade-off analyses between cost and
application execution time. For example, customers might be willing to pay an additional 10% to speed up
their application by two if there is such a choice but choose not to do so if they have to pay twice more for
10% performance improvement. Without performance modeling and prediction tools, it is hard to obtain
such information. The AI-SPRINT performance modelling approach will be mainly based on ML. ML-based
performance models will be developed to predict the execution time of AI applications running on
heterogeneous multi-devices systems composed of IoT & AI enabled sensors, edge and cloud resources. The
tools will provide support and automate AI applications performance profiling. Solutions to identify the ML
model providing the highest performance prediction accuracy supporting model selection and
hyperparameters tuning will be also developed. AI-SPRINT solutions will be based on the aMLLib library
(https://github.com/eubr-atmosphere/a-MLLibrary) which will be enhanced to improve the
hyperparameters tuning phase.

To allow a fast development of targeted AI models also to non AI Expert people, but also to support AI Experts
in their work, a module for model search via Neural Architecture search (NAS), will be implemented. The AI-
SPRINT NAS module will take into account desired QoS both from a machine learning perspective (e.g.,
accuracy, precision, recall, etc.) and a performance perspective (e.g., latency, memory, power consumption,
etc.). To allow for this, performance models will be used in order to predict the future performance of a given
architecture even before deploying it and running it on the real platform. By the use of performance models,

3https://dislib.bsc.es/en/stable/

D1.3 Initial Architecture Design

15 www.ai-sprint-project.eu

it becomes possible to speed-up the search of Pareto optimal solutions disregarding those architectures
which are not considered as suitable with respect to the AI model requirements.

Application design space exploration will leverage the SPACE4AI-D tool (System PerformAnce and Cost
Evaluation on Cloud for AI applications Design). SPACE4AI-D tackles the component placement problem and
resource selection in the computing continuum at design time, dealing with different AI application
requirements in order to effectively orchestrate heterogeneous edge and cloud resources. The tool will
leverage some efficient meta-heuristic algorithms such as random greedy, local search, tabu search and so
on, in order to explore automatically multiple candidate deployments for the AI application components to
identify the placement of minimum cost across heterogeneous resources including edge devices, cloud GPU-
based Virtual Machines and FaaS solutions, under QoS response time constraints.

3.3 Runtime Framework
The objective of the AI-SPRINT Runtime Framework is to support the automated deployment and monitoring
of customized virtualized resources across the computing continuum infrastructure. This includes the
orchestration of computations on that provisioned infrastructure in order to support the training of AI models
and also exposing the trained models as a service using a FaaS paradigm for inference. Moreover, load
variations may induce resource saturation or underutilization, which have a possibly strong impact on
components response times and execution costs. The Runtime Framework has therefore the goal of adapting
the component placement to account for such events, by migrating components from edge to cloud and vice
versa, by scaling the amount of cloud resources and/or by changing DNN models partitions configuration.

Our flagship product in this area is the Infrastructure Manager (IM)4, an open-source tool to deploy
customized configurable application architectures described using the TOSCA (Topology and Orchestration
Specification for Cloud Applications)5 standard on multiple Cloud back-ends. These includes widely used on-
premises CMPs such as OpenNebula and OpenStack; public Cloud providers such as Amazon Web Services,
Microsoft Azure and Google Cloud Platform; European Cloud infrastructures such as the EGI Federated Cloud
and commercial providers such as Open Telekom Cloud and Orange.

Two previous developments have been onboarded in AI-SPRINT to support the FaaS requirements from use
cases. On the one hand, SCAR6 (Serverless Container-aware ARchitectures) supports compute-intensive
functions packaged as Docker images on top of AWS Lambda, allowing automated delegation of function
execution into AWS Batch, a service that deploys elastic clusters on top of Amazon EC2, the IaaS managed
service provided by Amazon Web Services (AWS). This approach combines the benefits of high elasticity
provided by AWS Lambda with the unbounded computing capacity provided by AWS Batch, allowing to
create data-driven serverless workflows typically aimed at file processing.

On the other hand, OSCAR7 (Open-source Serverless Computing for Data-processing Applications) supports
the very same computing model offered by SCAR but within an on-premises CMP. OSCAR consists of an elastic
Kubernetes cluster, which is dynamically deployed on all the Cloud providers supported by the IM. The cluster
can grow and shrink in terms of the number of nodes, thanks to the CLUES8 elasticity system, which inspects
the status of the Kubernetes cluster to instruct the IM to provision or terminate the nodes in order to self-
adapt to the current and expected workload. The use of a minified Kubernetes distribution running on Arm-

4 Infrastructure Manager (IM). https://www.grycap.upv.es/im

5 OASIS Topology and Orchestration Specification for Cloud. https://www.oasis-open.org/committees/tosca/

6 SCAR. https://github.com/grycap/scar

7 OSCAR. https://github.com/grycap/oscar

8 CLUES. https://www.grycap.upv.es/clues

D1.3 Initial Architecture Design

16 www.ai-sprint-project.eu

based processors, such as those provided by Raspberry Pis, allow to execute OSCAR clusters for the in-the-
field inference of previously-trained Deep Learning models via a FaaS. These computing resources can be
supplemented with on-premises CMPs and even public clouds in order to adapt to increased computing
needs.

Tool Motivation Innovation
Deployment tools Need to provide efficient tools to

perform automated provision and
configuration of virtual resources,
supporting complex application
architectures. The adoption of
open standards for application
architecture description is
mandatory to foster
sustainability. Also, high-level
recipes for automated
infrastructure configuration and
application installations need to
be adopted to guarantee
determinism in distributed and
multi-tenant infrastructures.
These recipes need to be made
publicly available to foster
widespread adoption beyond the
lifetime of AI-SPRINT

● Infrastructure as a Code combined
with standards like TOSCA uses high-
level recipes to define application
architectures whose resources are
automatically provisioned and
configured. This introduces
repeatability and deterministic
deployments.

● Open code repositories and artifacts
such as GitHub, Docker Hub and
Ansible Galaxy are populated with
ready-to-be-used components for
automated application deployment
across the cloud continuum (edge, on-
premises clouds and public clouds).

● Multi-modal interfaces are provided
for automated application deployment
including command-line interfaces,
REST APIs and web-based graphical
user interfaces to accommodate
several categories of users.

● A Continuous Delivery (CD) approach is
adopted to cope with application
changes that need to be distributed
across disparate computing
infrastructures, building on automated
procedures for creating deployment
artifacts, such as GitHub Actions and
Automated Builds in Docker Hub.

Monitoring tools Without knowing the overall state
of all systems components, one
cannot adjust their parameters
and execute necessary actions
when failures occur. That is why
there is a need to provide
subsystem which will be
responsible for: (i) collecting
monitoring data (metrics,
statuses, health checks) from all
subsystems, (ii) provide the
possibility to analyse this

● Improving monitoring data fetching
from temporarily off-line subsystems.

● Providing seamless integration with
client applications.

● Extending algorithms for anomalies
detection.

D1.3 Initial Architecture Design

17 www.ai-sprint-project.eu

datastream, and (iii) notify
controlling subsystems about
spotted anomalies. The whole
monitoring solution should also
be as much “invisible” as possible
for monitored applications,
allowing developers to
concentrate on algorithms and
not on integration issues.
Monitoring must be also well-
integrated with deployment
tools, providing advanced data
gathering functionality without
the need of additional
adjustments by system
administrators or developers. In
case of subsystems which
temporarily work off-line
(without permanent connection
to monitoring infrastructure),
there is a need to provide
mechanisms which will buffer
data for a long period of time
(hours, days).

Programming
framework runtime

The execution of AI applications
on Edge-Cloud infrastructures
requires a runtime that properly
assigns the different components
on the available nodes, also
distributing the data.
The runtime leverages the
embedded computing resources
of each node to host the
execution of functions in a
service manner and generates
hybrid workflows, composed of
atomic and continuous
processing tasks, achieving
distribution, parallelism and
heterogeneity across edge/cloud
resources transparently to the
application developer.
The adoption of such a distributed
model for executing the
applications requires to isolate
the applications from
infrastructure specificities and (of
course) to avoid being locked-in a
specific platform.

● Concentrate on the application
development and rely on the
infrastructure management by the
serverless platform.

● The programming framework runtime
parallelizes the execution of the
different parts of the applications that
can be invoked in a FaaS way according
to the QoS constraints.

● The runtime is able to schedule the
tasks on both edge and cloud devices,
orchestrating the execution and
leveraging on fault tolerance
mechanisms to react to the dynamicity
of the edge.

● Adaptation includes also the possibility
to migrate tasks from cloud backed to
mobile devices (Android) and vice
versa.

D1.3 Initial Architecture Design

18 www.ai-sprint-project.eu

Federated Learning

When multiple parties want to
jointly train a machine learning
model without the exchange of
sensible or private data the use of
federated learning will make this
possible. In the federated
learning approach, data are
expected to reside as close as
possible to the sources which
have generated them and they
reach, at most, the edge part of
the continuum without leaving
the owner borders. AI-SPRINT will
allow the seamless and secure
implementation of different
approaches for federated
learning, either exchanging full
models or exchanging model
gradients. To protect from privacy
attacks techniques for differential
privacy will be implemented not
to disclose information about
individuals or specific records.

● Federated learning used to minimizes
information exchange and preserve
data privacy integrated in the runtime
environment and into the
programming abstraction.

● Losses and gradients computed as
close as possible to the data sources
taking into account model partitioning
between edge and cloud.

● Differential privacy enhancement of
exchanged gradients to further protect
the privacy of the individual or specific
records which the owner does not
want to disclose.

Scheduling for
accelerated devices

DL models are usually trained on
hardware accelerators (e.g.,
GPUs) achieving on average 5-40x
speed-up wrt. CPUs. The ability to
optimize the infrastructure
utilization and process the
workload with high efficiency
under power constraints is critical
for cloud data centers subject to
power consumption quotas. On
the other hand, public clouds
GPU-based VM time unit cost is
5-8x higher than high-end CPU-
only VMs. While there are
advanced systems to manage
virtual Web application
workloads, there are few
solutions for GPU-based systems.
The goal of the Scheduling for
accelerated devices
 component is to
transparently support GPGPUs
systems sharing in private/public
cloud and edge-based
environments to maximise
system usage/minimise

● Define TOSCA extensions for hardware
accelerators.

● Use GPU virtualization (rCUDA).
● Support dynamic reconfiguration and

efficient access to shared accelerators
● Enable remote access to GPUs from

edge resources.
● Develop novel fast-heuristics for

accelerators scheduling at cloud
backends (private and public) and
edge servers, matching accelerators
capabilities with training jobs
requirements.

D1.3 Initial Architecture Design

19 www.ai-sprint-project.eu

operational costs while easing the
programming models. Solutions
to support elasticity at the level of
GPGPUs also through
disaggregated hardware
technologies will be developed
and integrated with advanced
schedulers able to identify the
optimal training jobs execution
order, GPU number and
partitioning among running jobs
providing also upper bounds on
the training time.

Privacy preserving
continuous training

When deployed on the field AI
models might experience some
drift in the observed data or
might need an update because
novel data have been
accumulated in the meanwhile.
This continuous training requires
models to be updated periodically
or because of a triggering event.
This continuous update of models
has a clear impact on the existing
applications which need to be
updated securely with minimal
impact on the system overall.
Because of this, two different
means of updates are foreseen,
one which leverages on the
straightforward weight update
and one which re-deploys from
scratch the whole architecture,
possibly re-partitioning it among
different devices.

● Seamless, secure, privacy preserving
model weights update.

● Application redeployment after re-
partitioning in case the new model
requires a different optimization or a
different set of resources.

● Automated triggering of the update
upon designer defined conditions.

Application
reconfiguration (Krake
and SPACE4AI-R)

The optimal solution identified by
the Application Design Space
Exploration tool needs to be
periodically reevaluated in order
to account for load variations.
These can, indeed, lead to
resources saturation or
underutilization, having a possibly
strong impact on the components
response times and the costs
predicted at design time. This goal
is fulfilled by the Application
reconfiguration tool, which, first
of all, evaluates the current status

● Develop ad-hoc algorithms to quickly
react to load variations at runtime,
adapting the components
configuration and the resource
allocation to the new conditions, in
order to optimize execution costs
given QoS constraints.

● Support runtime migration of stateless
and stateful application components
across heterogeneous devices (edge
and cloud).

D1.3 Initial Architecture Design

20 www.ai-sprint-project.eu

of the system in terms of
incoming loads and components
response times. Then, on the
basis of the collected information,
it determines the new optimal
solution, specifying the
components configuration and
the relative deployment on the
available resources, optimizing
components response times and
execution costs.
Table 3.3 - Runtime Framework: motivations and innovations

The runtime framework will provide several interfaces for provisioning virtual infrastructure to satisfy
different user profiles. A REST API for programmatic access will facilitate application integration. A web-based
GUI (Graphical User Interface) will allow end users with limited technical skills to self-provision virtualized
infrastructure for training models on specific infrastructures customized with certain software and hardware
requirements. A CLI (command-line interface) will allow the savvy user to efficiently interact with the
provided services in order to manage the lifecycle of dynamically provisioned virtual infrastructures.

The benefit of the runtime framework is to provide the “Design Tools” with the ability to deploy the required
computing infrastructure and perform its automated configuration with the precise software artifacts in
order to satisfy the user requirements. A wide range of customized virtual infrastructures are envisioned that
include, but are not limited to: Kubernetes clusters configured to support accelerated training using GPUs;
Monitoring infrastructure, automatically deployed using a DevOps approach for the sake of repeatability;
Virtual Machines with GPUs offered as a service using rCUDA9 for remote acceleration of AI model training;
OSCAR clusters to support FaaS for compute-intensive model inference.

AI-SPRINT also provides a programming framework runtime based on COMPSs that thanks to the integration
with application reconfiguration solutions and to the continuous deployment service support the scheduling
of dynamic workflows; these workflows can change their behaviour during the execution (i.e., according to
the partial results of the application), to adapt application and react to changes in the execution environment
at large. Resource allocation and workflow tasks deployment can be changed in real-time; tasks can be
migrated from cloud to edge servers and devices simplifying the provisioning and management of AI
applications lifecycle, including support (remote access) to edge and accelerator devices. Developers can
write AI/ML applications that will be orchestrated adopting a FaaS paradigm (which supports the execution
of transient stateless functions) for the most effective and seamless use of the continuum resources.

For what concerns component application migration, Krake (https://gitlab.com/rak-n-rok/krake) will be
used. Krake provides a central point for managing component applications at each level of the computing
continuum system. Furthermore, it ascertains the "best" level of resource usage based on user-defined
parameters and re-evaluates the deployment periodically. This leads to an automation in increasing or
decreasing resources. While Krake currently supports only infrastructure metrics (e.g., resource utilization,
hardware energy efficiency), it will be extended to support performance-based application metrics and
enable optimal decisions on how many resources (e.g., total number of Docker/kernel containers) to allocate
to provide latency guarantees (e.g., latency below 100 ms). The goal is to optimally manage edge resources,
which often are characterized as devices with low resource capacity to meet application QoS constraints. The

9 http://www.rcuda.net

D1.3 Initial Architecture Design

21 www.ai-sprint-project.eu

allocation of components to resources is based on various criteria (for example battery level, network
latency, availability of accelerators to speed up component execution, etc.). While Krake will provide the
mechanisms to support components migration to the Application Reconfiguration module, intelligent
decisions that will trigger component migration/cloud resource scaling/change in a DN partition will be made
by the SPACE4AI-R (System PerformAnce and Cost Evaluation on Cloud for AI applications Runtime).

Finally, long running training jobs will be supported by the GPU scheduler. This receives job submissions, in
the form of Docker containers, and determines the best scheduling and component allocation to minimize
costs while meeting deadline constraints. The list of submitted jobs, together with their characteristics in
terms of expected execution times (collected through profiling) and deadlines, and a description of the
system with all the available resources, are provided as input to the GPU scheduler. Based on these
information, the GPU scheduler determines which jobs should be run and the type and number of GPUs that
should be assigned to them, in order to minimize energy costs (in the case of private GPU-accelerated
clusters) or execution costs (in the case of public cloud), while meeting the deadline constraints.
Disaggregated hardware architectures and remote GPUs can be accessed relying on rCUDA.

Data describing state and working parameters of all subsystems will be gathered by the Monitoring
subsystem. It will preserve all collected time series metrics and allow system administrators and other
subsystems to perform various actions. In particular the Monitoring infrastructure will provide the possibility
to create a self-healing system, which will be able to adapt to changing environmental conditions or detected
anomalies and failures. Thanks to the advanced tools that will be developed, the Monitoring subsystem will
also help analysing behaviour of the whole system in time and to find causes of bugs or failures.

Data privacy is a first class citizen in the AI-SPRINT framework and thus tools for distributed computing and
infrastructure management will be used to implement Federated Learning algorithms which are in charge of
training models in a distributed fashion having data, errors, and gradients computed as close as possible to
their source. The Monitoring infrastructure will be used to trigger the retrain of models and their update in
the infrastructure which could go from simple weights update, if no major architectural change has
happened, to full application redeployment in case a novel more effective partitioning of the model has been
found.

3.4 Security and Privacy
The tool we use as a foundation for secure and privacy data processing in the context of AI-SPRINT is SCONE.
The framework provides the possibility to run applications in so called enclaves, i.e., trusted compartments
such that no adversary or even an inside attacker with root privileges can access or compromise the data as
well as the application code. This is achieved by using so-called Trusted Execution environments such as Intel
SGX. Although SCONE currently provides only support for Intel SGX, the objective within this project is to
extend the existing framework to support other TEE vendors such as AMD and Arm which are also typically
found in the domain of edge devices.

The benefit of using SCONE as a foundation for secure computation is the following: It provides transparent
encryption for network connections as well as file systems through so called encrypted volumes.
Furthermore, the framework aims at minimizing the developers effort, hence, in most cases no recompilation
for the application will be needed. This will greatly speed up the adoption process of this approach as only
prebuilt Docker container images will be used.

The framework is complemented by the so-called Configuration and Attestation Service (CAS). This entity is
responsible for verifying if the application code has been tampered with while or before being loaded into
the trusted compartments through a so called attestation process. Once the application has been attested
to run on genuine hardware and no modifications occurred, CAS will provision the application through secure
channels with the necessary secrets and certificates needed to access files and to establish connections in a

D1.3 Initial Architecture Design

22 www.ai-sprint-project.eu

secure manner. The approach follows the principles that no humans should get into the possession of secrets,
hence, certificates and key pairs only needed to establish connections between restful services will be solely
generated and managed within CAS. The CAS instance itself is also running in an enclave such that the
generated secrets will never be exposed to a human or third party entity.

The AI-SPRINT framework is designed to work well with Mobile Edge Computing (MEC) platforms based on
5G access. AI-SPRINT considers scenarios in which the User Equipment (UE) connects to a private 5G network
to access a private MEC platform or in which the UE connects to a public 5G network and accesses a MEC
platform via Local Breakout. The AI-SPRINT Secure Network (ASSN) component is responsible for
implementing granular firewall policy control to restrict the UEs to access only the authorized MEC services
and vice-versa. The ASSN component consists in a logically centralized Controller and in one or more Data
Plane nodes. The Controller has the role of identifying the authorized traffic streams, correlating the UE
identity, the traffic endpoint at the exit of the 5G network, the service entry point in the MEC, and checking
its authorization in the policy database. Then, the Controller configures the relevant Data Plane nodes to
allow the authorized traffic and prevent any other unauthorized traffic.

The AI-SPRINT edge computing platform receives data from IoT devices and can provide access to the
collected data to multiple users, who can be entities that use the data to perform predictions, they can be
entities that use the data to train models, or they can be data aggregators. The AI-SPRINT access control
component makes it possible to automatically authorize access without the need of a central component.
Instead, the authentication of the entity requesting the data and the authorization to access a specific piece
of data are managed using a smart contract executed on the Ethereum blockchain.

In terms of secure booting mechanisms, in AI-SPRINT it will be ensured that every possible hardware as well
as VM instances are secure Boot-enabled. In addition, hardware root-of-trust security such as TPM will be
leveraged. Keylime or a similar system could provide a good entry point into TPM-based secure boot
mechanisms. At the very least, these systems will be implemented in the provided GPU nodes. Furthermore
edge cloud instances as well as VMs should also automatically be securely booted. Therefore, a separate test
procedure is included. The state of the art suggests that IoT devices should also be securely booted in the
future by any means necessary to implement security measures across all levels of data processing.

Tool Motivation Innovation
Trusted Execution
Environments

Traditional isolation techniques
such as provided through
operating systems by having
multiple users etc. and virtual
machines as typically used in cloud
environments is not sufficient as
root users like system
administrators of a cloud node can
still inspect memory and gain
access to credentials by creating
memory dumps. Trusted
Execution Environments allow to
maintain confidentiality and
integrity of code and data as an
application can be run in an
encrypted and isolated memory
region called enclave such that no
other users including users with

Utilizing Trusted Execution Environments
requires adding certain instructions to an
existing application in order to load the
application code in such a trusted
compartment for an isolated execution.
While it is possible to integrate the publicly
available Intel SGX SDK, it requires a lot of
developer effort as interaction between
the system calls must be manually
instrumented. Furthermore, each CPU
vendor provides its own kind of TEE which
requires different instruction and manual
adoption for programs. The goal of AI-
SPRINT is therefore to develop an
orchestration framework which enables
running unmodified code in TEEs of
various vendors such as Intel SGX, ARM
Trustzone etc.

D1.3 Initial Architecture Design

23 www.ai-sprint-project.eu

root privileges can read or
manipulate the data. However,
using Trusted Execution
Environments such as Intel SGX
requires a certain developer effort
to utilize the new instructions
provided by processor vendors in
order to harness these new
properties.

The challenge to achieve this goal is to
provide the same level of protection to the
end-user regardless of the different
properties and guarantees each CPU
vendor with his technology provides. This
requires a deep analysis of the provided
functionality of each vendor and
implementation effort to harmonize the
different approaches.

Secure Boot

Ensuring the integrity of the
framework against malicious
attacks and unauthorized updates
and guaranteeing to boot the
correct operating system (OS).

The integration and use of Secure Boot
paired with hardware root-of-trust
measures such as TPM is mandatory for AI
-SPRINT and will be enabled on servers.
This adds an additional layer of security to
the platform. In addition, the SCONE code
base will provide TEE support for GPUs.
Secure Boot itself is a security
enhancement, but also suffers from
several security vulnerabilities that will
need to be addressed in the future. It will
not be possible to address all security
vulnerabilities within AI-SPRINT, but the
challenges that need to be addressed are
the identified policies for Secure Boot
(e.g., automated upgrade procedures) and
TPM usage, as well as numerous
configuration options that should be
implemented during automated migration
or hosting of edge and cloud nodes and
VMs. In addition, current efforts in Secure
Boot research suggest that Secure Boot
procedures should also be implemented in
IoT instances. Another challenge would be
to implement a procedure that checks if
Secure Boot itself is enabled, even if the
TPM confirms it.

Secure Networks

In a 5G Mobile Edge Computing
scenario, an attacker having access
to a user device can try to move
laterally, trying to gain access to an
unauthorized service, or to an
authorized service claiming to be a
different user.

The component should perform policy
checking at wire speed. AI-SPRINT will
achieve this goal by using the P4 language
for programmable network data plane.
This will make it possible to deploy the
component both on lower-end virtual
switches, for smaller edge scenarios, and
on high-end programmable hardware for
high performance scenarios.

Access Control to IoT
Data

Applications that need to access
data collected from IoT devices
often require very low latency and

Addressing the needs of businesses to
deliver their IoT data to customers at the
territorial level, while guaranteeing the

D1.3 Initial Architecture Design

24 www.ai-sprint-project.eu

high availability. Additionally,
many businesses want to be able
to sell the data they collect from
IoT devices (e.g., sensors readings)
to customers or other businesses
that operate in the same territory,
where the data is actually relevant.

transparency and auditability of enforced
authentication and access control policies
thanks to the use of blockchain
technologies. This is achieved through the
implementation of a smart contract
deployed on the Ethereum blockchain,
which is then used to provide
authentication and access control
capabilities to a web API running in the
edge node.

Table 3.4 - Security Policies: motivations and innovations

D1.3 Initial Architecture Design

25 www.ai-sprint-project.eu

4. Integrated framework
4.1 Detailed architecture

In this section we provide a more detailed description of the architecture, depicted in Figure 4.1, explaining
the interactions amongst components and the possible deployments to support the realization of the use
cases.

Applications in AI-SPRINT are going to be composed of different parts following the COMPSs task
programming mode as baseline; such programming model is based on sequential development in which the
developer is mainly responsible for: i) identifying the functions to be executed as asynchronous parallel tasks;
ii) annotating them with standard Python decorators. Existing code based on other frameworks (Tensorflow,
PyTorch, Keras etc) can be also executed as external applications, splitting for example the data and thus
exploiting the parallelism. To this aim, the EDDL library10, a library developed within the context of the
DeepHealth European Project, can be combined with dislib and PyCOMPSs for supporting distributed and
federated training. Annotations will be extended to allow predicating on components performance and to
specify constraints on the target deployment. For example, an image processing task can be automatically
allocated by the design tools on a specific edge server according to the application performance constraints
(e.g., processing time less than 30 ms). In order to enforce a high-security level for the execution of tasks,
another annotation will force the code to run in a secure enclave using SCONE to secure the architecture
runtime (security by design approach).
Applications will be described as OASIS TOSCA templates describing the topology of their components and
their software dependencies. Multiple alternative candidate deployments will be evaluated using SPACE4AI-
D, an automated tool to derive, given the QoS constraints, optimal component placement maximizing
resource efficiency while minimizing the cloud usage cost.

At the level of the infrastructure, IM is used to dynamically provision the required components for the
execution of the applications and the AI-SPRINT framework. AI-SPRINT will use Docker containers to
automate deployment and provide the level of isolation needed to enforce performance constraints with
minimal overhead. Different target devices will be used as resources, ranging from edge Raspberry PI with
Minified Kubernetes to OpenNebula clusters with accelerated nodes to perform inference jobs, while batch
jobs for training of the models will be executed on both private and public clouds. The COMPSs Runtime will
be used to parallelize the execution of the applications supporting concurrent code execution, automatically
detecting and enforcing the data dependencies among components and spawning parallel tasks to the
available resources, which can be nodes in an edge cluster or clouds. COMPSs runtime will also support the
serverless computing paradigm, and application components or COMPSs workers will be run as event-
triggered functions (for inference in the edge for example) orchestrated within a workflow. To this aim, the
SCAR framework will be used to detect the availability of fresh data on an object storage and to deploy the
required containers with COMPSs functions.

For the scheduling of training tasks on accelerated devices, the rCUDA will be used to manage the efficient
allocation and sharing of resources minimizing the training costs in terms of energy for the private data center
or public cloud operating cost.

The optimal solution identified by the design time tool will be periodically reevaluated in order to account
for load variations. SPACE4AI-R will evaluate the current status of the system, in terms of incoming loads and
response times of the different components. According to this, it will provide an updated solution in terms

10 https://github.com/deephealthproject/eddl

D1.3 Initial Architecture Design

26 www.ai-sprint-project.eu

of components configuration and their deployment on the available resources, optimizing components
response times and execution costs. Application components migration will leverage Krake and be supervised
by SPACE4AI-R when performance constraints are introduced, in order to provide better Service Level
Objectives. In the same way, PyCOMPSs runtime will leverage SPACE4AI-R if performance constraints are
introduced, otherwise COMPSs tasks will be managed by the COMPSs default scheduler.

Both the application components and the core elements of the AI-SPRINT runtime will be monitored through
the AI-SPRINT Monitoring Infrastructure. The alerting module (implemented as an InfluxDB component) will
notify of QoS thresholds violations Krake, SPACE4AI-R or COMPSs runtime, according to the application and
AI-SPRINT framework deployments.

D1.3 Initial Architecture Design

27 www.ai-sprint-project.eu

Figure 4.1 - AI-SPRINT Detailed Architecture

D1.3 Initial Architecture Design

28 www.ai-sprint-project.eu

4.2 Integration plan
The integration plan aims at harmonizing the definition of the requirements with the design and
development phase and ensuring that scientific and technical activities comply with the use cases definition.
In AI-SPRINT a specific task in WP1 is devoted to these integration activities and has also a design side, though
it is confined at the level of architectural design, as described in this document.

The design and implementation of the AI-SPRINT framework are performed by Work Packages WP2, WP3
and WP4. These WPs develop the tools that will be proposed to WP5 (within the project) and to the world.
These WPs have the goal of translating WP1 requirements into tools. While executing such activity, they also
provide valuable feedback to WP1, which enables more precise alignment of the outcome of AI-SPRINT to
real-world needs; also, such feedback acts as a verification of WP1 results.

The integration plan is validated through verification activities and milestones in the workplan of the project,
as depicted in Figure 4.2; the first validation corresponds to WP5 and its goal is validating the output of WP2-
WP4 by using such output to build actual applications. More precisely, the objectives of WP5 are to validate:
i) the output of WP2 by using it to create AI-based applications (such applications intentionally belonging to
widely heterogeneous categories, in order to stress the AI-SPRINT framework from different perspectives);
ii) the output of WP3 by using its tools to deploy, execute, monitor, and operate AI applications preserving
the privacy of data; iii) the output of WP4 by verifying that the structure and execution of the AI applications
(and especially of the one concerning healthcare) meet the security requirements set forth by WP4 and
incorporated first in the requirements generated by WP1, and later into the tools produced by WP2 and WP3.

Figure 4.2 - Milestones for components development

A detailed roadmap for each set of components is available in Sections 6.2, 6.3 and 6.4 of the AI-SPRINT
Deliverable D1.2 - Requirements Analysis document.

D1.3 Initial Architecture Design

29 www.ai-sprint-project.eu

5. Conclusions
This deliverable has provided the initial version of the architecture of the AI-SPRINT platform. This document
is one of the results of the first six months of activities that included the collection of the requirements from
the use cases (detailed in the Deliverable D1.2) and the selection of the technologies that compose the basis
of the platform, that have been compared to the current state of the art in the field (deliverable D1.1). These
activities have involved partners from multiple work packages (WP1, WP2, WP3, WP4, WP5).

This document has presented the different layers of the AI-SPRINT architecture that include the Design Tools,
the Runtime Framework, the Deployable Infrastructure and the Security stack. For each of these layers the
document provides details on the interactions between the components, and it provides a way, through
sequence diagrams, on how to implement the required use cases.

The final version of this document will be provided at M24, after completing the different phases of
developments that will include the feedback of the use cases.

D1.3 Initial Architecture Design

30 www.ai-sprint-project.eu

6. Appendix A

A.1 Roles in AI Design and Operations
During the requirements elicitation exercise (Task 1.2 - Requirements Analysis) a number of end-users
(personas) for the AI-SPRINT framework have been identified. More details are available in the AI-SPRINT
Deliverable D1.2 - Requirements Analysis, Section3. Here we summarize the relevant roles that will be
involved in the definition of the interactions of the AI-SPRINT assets.

Role Responsibilities
Application End User The final end-user an application
Application Architect Define and review the overall architecture of the application

Define KPIs (AI and application)
Review performance and propose improvements
Define and coordinate development tasks

Application Developer Execute Development tasks
Develop and Enhance the software and deploy new versions

AI Expert ML/AI model design and implementation
Application Manager Application Management: Monitoring, Change management

Owner of the CD process
Infrastructure Provider
& Sysops

Setup and Management of the infrastructure runtime environment

Application/Service
Provider

Service Delivery Management of the AI-SPRINT Solutions: Operational
Performance, Cost management, SLA management

Table 2. 1 - AI-SPRINT end-users

A.2 Design and Programming Abstractions

Summary of the use case

ID DES-UC1

Title AI applications programming

Priority Must have

Actors Application Developer, AI Expert

Pre-conditions The application developer provides his/her sequential code

Post-conditions The code is enriched with annotations to provide hints for the scheduling and for
the design space exploration.

D1.3 Initial Architecture Design

31 www.ai-sprint-project.eu

Description of interactions
The definition of the application components in AI-SPRINT is based on the PyCOMPSs programming model
which follows a sequential paradigm where the application is a plain Python script whose functions are
annotated by the user; these annotations are used by the runtime to run those parts of code as asynchronous
parallel tasks. The decorators also contain a description of the function parameters, such as type and
direction, etc. which is the basic information for building the dependency graph where tasks are represented
as nodes and data dependencies between tasks as edges.

Another important feature of PyCOMPSs is the capability to express workflow dynamicity. PyCOMPSs
workflows are created at execution time from a Python code, so it is very easy to program different workflow
branches from previously generated values. However, dynamicity can be also generated by failures or
exceptions. Scientific workflows usually implement hyperparameter searches in huge spaces performing
loads of simulations with different input parameters. It is very likely that some of these simulations fail, but
they should not imply a failure in the whole workflow. For those simulation tasks, developers can provide
hints to ignore these failures, or to cancel their successors. It is also possible that a solution is found before
finishing all the execution. For this purpose, PyCOMPSs supports parallel try-except blocks where if a specific
exception is raised in one of the tasks of the block all the remaining tasks will be cancelled. In this way,
applications made of components deployed on unstable devices in the edge can be executed successfully
thanks to these fault-tolerance mechanisms.

The annotated code together with the execution graph generated by PyCOMPSs runtime, are used by the
SPACE4AI-D tool to provide the type and the number of resources that minimize the cost and the execution
time.

Sequence diagrams

Data flows
Data is provided by the user as annotations in the code to describe the type of parameters and constraints
on the resources. This information is processed by the PyCOMPSs runtime to perform a matchmaking with

D1.3 Initial Architecture Design

32 www.ai-sprint-project.eu

the available resources provided as initial set according to SPACE4AI-D. The graph of the execution is then
sent to the Application Design Space Exploration tool that returns the optimal deployment configuration of
the application components.

A.3 Performance Models

Summary of the use case

ID DES-UC2

Title Performance Models Tools

Priority Must have

Actors Network Architecture search module, SPACE4AI-D, SPACE4AI-R, GPU scheduler

Pre-conditions Application profiling has been performed and a model is built through the aMLLib
library

Post-conditions Performance models tools return the estimated execution time of an application
component according to the selected configuration

Description of interactions
The external tool which needs the execution time estimate (SPACE4AI-D/SPACE4AI-R and the Network
architecture search module in the diagram illustrated below) provides the target configuration description
and invokes the performance models tool. Then the performance models tool, by relying on the aMLLib
library (https://github.com/eubr-atmosphere/a-MLLibrary), computes the execution time. The interaction
between the performance models tool and the Network architecture search (NAS) component is more
complex. Indeed, the NAS module in its exploration performs a profiling of the target network architecture.
In this way, the NAS module enriches the training set used by the aMLLib library to re-train the performance
model regressor that is used under the hood to compute the prediction.

D1.3 Initial Architecture Design

33 www.ai-sprint-project.eu

Sequence diagrams

D1.3 Initial Architecture Design

34 www.ai-sprint-project.eu

Data flows
The data provided to the performance model tool include the component regression model ID and the
resource target of the deployment description. The performance model tool returns the estimate of the
component execution time in seconds. In the interaction with the NAS module, periodically a new training
set for the aMLLib is provided and the performance model is retrained.

A.4 AI Models Architecture Search
Summary of the use case

ID DES-UC3

Title Neural Architecture Search

Priority Must have

Actors Application Designer, AI Expert

Pre-conditions Data have been collected and labeled or a suitable loss function has been defined
regarding the data. Requirements for the final deployment of the model have been
defined and formalized.

Post-conditions The neural architecture search tool returns a set of possible architectures which
fulfill the required task and under the constraints defined by the AI Expert and the
Application Designer.

Description of interactions
The Neural Architecture Search tool interacts with the AI Expert which will provide the required dataset
labeled for the specific application and suitable metrics to be optimized by the search tool. The AI-Expert will
also define the search space for the Neural Architecture Search, possibly limiting the search space herself.
The Application Developer will define the set of performance constraints for the final model implied by the
application, e.g., latency, MFlops, memory, power consumption, privacy requirements. The NAS, during the
search of the optimal architecture will interact with the Performance Models Tool asking for performance
predictions so to shorten search time, retraining periodically the performance models according to the
current cells structures (see also the use case in Section A.2).

D1.3 Initial Architecture Design

35 www.ai-sprint-project.eu

Sequence diagrams

Data flows
The data provided to the NAS are a dataset and the loss definition as well as the definition of the search space
via CLI parameters. Also the resource target for the deployment and the performance constraints are given.
The NAS module returns a fully trained model to be deployed as part of the application.

A.5 Application Design Space Exploration
Summary of the use case

ID DES-UC4

Title Application Design Space Exploration

Priority Must have

D1.3 Initial Architecture Design

36 www.ai-sprint-project.eu

Actors Application Architect

Pre-conditions The Application Architect submits a description of the system, including application
components and its memory requirements, resources (located in cloud and edge)
and their available memory (which bounds the maximum number of components
that can be co-located in each device) and costs. The application is modeled as a
direct acyclic graph (DAG) and it is associated with the expected workload (e.g.,
number of requests per seconds). Each component is associated with candidate
resources for its execution and the corresponding performance demanding time.
Moreover, local and global performance constraints are specified: Local constraints
predicate on a single component (e.g., exposure check for a picture has to be lower
than 100ms) while global constraints involve a set of components that are running
one after another and are associated with a global threshold.

Post-conditions SPACE4AI-D explores and finds an optimal solution for the application component
placement problem (according to candidate resources introduced by the AI
developer) minimizing the resource cost and satisfying the performance
constraints. The optimal configuration includes a description that shows the
placement of each component, provides the estimated execution time of each
component and the total cost of the system.

Description of interactions
Application design space exploration is a process to explore and find an optimal solution for the application
component placement. The system information is submitted by the Application Architect and includes
application components, candidate system resources, the application model (as a direct acyclic graph - DAG),
compatibility assignment among components and resources, resource costs, component performance
demands, local and global constraints. Application components are organized in computational layers which
include a set of candidate resources that can be selected and which allow to specify the characteristics of the
networks that connect edge and cloud.

SPACE4AI-D, explores and finds the optimal solution for the application component placement problem
minimizing the resource cost and satisfying the performance constraints. SPACE4AI-D returns the optimal
configuration and resource cost to the Application Architect who then edits the TOSCA template according
to the optimal configuration found. The Application Architect then sends the TOSCA template to the
Infrastructure Manager (IM) server which finally deploys the application on the target system.

D1.3 Initial Architecture Design

37 www.ai-sprint-project.eu

Sequence diagrams

Data flows
The main data items consist of the description of the system including components’ name and their memory
requirements, computational layers and the resources located on them. Resources are characterized by some
properties like name, type (edge or cloud), memory, the number of available instances and cost. Moreover,
the SPACE4AI-D description file associates each component with the compatible resources which can support
its execution and introduces components performance demands. Moreover, the description file also
includes the list of local and global constraints and DAG application model, associating each node of the DAG
(representing a component) with the transition probabilities and data transfer requirements. The optimal
configuration consists of the description of the optimal placement which shows (in the same format of the
input description file) the resources allocated to each component. The last element involved in this scenario
is the TOSCA template which is edited by the Application Architect according to the optimal configuration
found.

A.6 Deployment tools
The requirements analysis from the use cases described in AI-SPRINT Deliverable D1.2 - Requirements
Analysis results in the following scenarios regarding the automated deployment of virtual infrastructure.

Summary of the use case

ID RUN-UC1

Title Deployment tools

Priority Must have

Actors Application Manager, Infrastructure Provider

Pre-conditions An end user submits a deployment request to provision an application / virtual
infrastructure from an IaaS Cloud provider/private cloud. The deployment request
is specified as a TOSCA template directly to the IM server. Alternatively, the user

D1.3 Initial Architecture Design

38 www.ai-sprint-project.eu

selects the application / virtual infrastructure from the IM dashboard, which builds
the TOSCA template and delegates it to the IM server.

Post-conditions The virtual infrastructure together with the application running inside will be
automatically provisioned from the IaaS Cloud/private cloud. The user will receive
access credentials to that infrastructure or the endpoint to the application. The user
will be able to manage the lifecycle of the virtual infrastructure.

Description of interactions
Provisioning virtual infrastructure from several IaaS Clouds requires interacting with their different APIs and
introducing automated means to perform configuration and application deployment. The deployment tools
involve mainly three components: the Infrastructure Manager (IM) server, which performs the automated
deployment and configuration of virtual infrastructures supporting the TOSCA specification; the IM
dashboard, which provides a simplified web-based GUI for the end users to select predefined application
recipes that can be partially configured by the end-user before its deployment on the IM and, optionally, EC3
a client-side tool for the IM that focuses on the deployment of elastic virtual clusters that can grow and shrink
depending on the workload.

The first sequence diagram illustrates how a user performs the deployment of an application and virtual
infrastructure on an IaaS Cloud. First, the user authenticates with the IM dashboard and defines the IaaS
Cloud access credentials of all the Cloud providers that will be used. Second, the user chooses the
application, provides input information in case of parameterised TOSCA templates and selects the IaaS Cloud
on which the application and the virtual infrastructure will be deployed. This results in a TOSCA template that
is built and submitted to the IM server. Programmatic access via the IM server’s REST API or via the IM CLI
will start from this step. The IM server performs a syntactic analysis and contacts the IaaS Cloud’s native API
in order to provision and configure the VMs (Virtual Machines) that will support the execution of the
application. Once deployed, depending on the configuration of the TOSCA template the IM dashboard will
show the application’s endpoint to be accessed by the end user or provide access details to the underlying
VMs through SSH. The user will be able to manage the lifecycle of the virtual infrastructure by adding and
removing nodes (not shown in the diagram because the infrastructure may feature automated elasticity).
Finally, the user triggers the termination of the infrastructure which results in releasing the required
resources.

The second sequence diagram describes the deployment of an elastic virtual cluster using EC3 using CLUES
as the elasticity manager to decide when to add or remove additional working nodes of the cluster depending
on the workload. First, the user employs the EC3 client to submit a TOSCA template to the IM server, in
charge of provisioning the required VMs from the IaaS Cloud, and configures them as a cluster. Several types
of clusters are supported such as Kubernetes or SLURM. The user receives access credentials to the cluster
front-end node via SSH, from which the user can submit batch processing jobs. The CLUES elasticity manager
monitors the number of pending jobs at the LRMS (Local Resource Management System) in order to decide
when to scale out and scale in, in terms of number of nodes and according to a set of pre-configured elasticity
rules. CLUES contacts the IM server to provision additional nodes (typically a specific instance of the IM server
installed within the front-end node of the cluster so that the cluster is self-managed). These nodes are
automatically integrated in the LRMS to cope with the increased number of pending jobs. Once the LRMS is
empty the nodes are terminated (not shown in the diagram). Finally, the user can terminate the cluster
resulting in the elimination of the resources provisioned.

D1.3 Initial Architecture Design

39 www.ai-sprint-project.eu

Sequence diagrams

D1.3 Initial Architecture Design

40 www.ai-sprint-project.eu

Data flows
The main data flow consists in the description of the application architecture by means of a TOSCA template.
Also, user credentials to the underlying IaaS Cloud are required to perform the provision of Virtual Machines.
VM identifiers are received by the IM and employed in order to manage the lifecycle of virtual infrastructure
by the user.

A.7 Monitoring tools

The requirements analysis from the use case results in the following scenarios regarding the monitoring of
the cluster and deployed applications.

Summary of the use case

ID RUN-UC2

Title Monitoring of the running applications

Priority High

Actors Application Manager, Infrastructure Provider & Sysops

Pre-conditions Applications are provisioned and running in the infrastructure.

Post-conditions Application metrics stored in the monitoring infrastructure. Subsystems responsible
for application management informed about spotted anomalies. Application
Manager & Sysops can view system’s statistics and collected metrics in the
dedicated web UI. Appropriate subsystems can query and analyse stored data.

Description of interactions
The monitoring infrastructure will consist of: (i) a central InfluxDB cluster (plus additional tools) responsible
for storing and analysing data, and (ii) various components (SDK libraries or Telegraf) responsible for
gathering data, deployed with monitored applications. These components will use data provided by
applications and their environments, to generate data entries containing metrics. Metrics are then sent to
InfluxDB. The general rule is that an application should not “know” that it is monitored by this specific
infrastructure. It should only provide metrics, using - usually - mechanisms provided by standard application
frameworks or common libraries. This is a typical “pull” scenario, when monitoring decides when to read
data from monitored applications. In such a case data gathering is performed periodically. The other (rare)
“push” scenario is implemented when metrics generated by application must not be lost and are expected
to be stored in the monitoring data storage. In this case, the application sends data using a dedicated SDK. In
such a scenario the application also has to provide necessary metadata so the monitoring subsystem
properly classifies and stores data.

In the InfluxDB, one can define special rules which can be checked using gathered time-series data. External
systems can be notified when a rule has been violated.

D1.3 Initial Architecture Design

41 www.ai-sprint-project.eu

Sequence diagrams

Data flows
Metrics consist of field values (usually numbers, but they might also be short texts) and additional tags (labels,
key-value pairs). This data record can be interpreted as a value describing the state of a specific instance of
the application. Provided tags help distinguish among data collected from many, different instances of the
same application. In case of a “pull” scenario, data is fetched by a monitoring component responsible for
data gathering on the client side, and then “enriched” with a timestamp. Then it is stored in the data queue
and then sent to InfluxDB using the appropriate API. In the case of “push” scenario, the application decides
when to send metrics. The SDK is responsible for “enriching” the data with timestamp and sending collected
data to the monitoring system.

InfluxDB receives and stores data. Data stored in the database can be queried and analysed using the Flux
query language.

A.8 Programming framework runtime

Summary of the use case

ID RUN-UC3

Title Training of models

Priority Must have

Actors AI Expert

Pre-conditions The AI Expert submits the training of a model, developed using the Design Time
Tools, in batch mode on a cloud cluster

D1.3 Initial Architecture Design

42 www.ai-sprint-project.eu

Post-conditions Application’s components are deployed on the target platform and resources
assigned to the runtime for execution. The model is trained and saved in a storage.

ID RUN-UC4

Title Inference of pre-trained models

Priority Must have

Actors AI Expert

Pre-conditions The availability of new data coming from the field triggers the execution of
inference functions on an existing trained model.

Post-conditions Application’s components are deployed on the target platform and resources
assigned to the runtime for execution. Output data of the inference process are
stored back in the storage.

Description of interactions
The Programming Framework Runtime, based on PyCOMPSs, offers an interface where to request the
execution of functions that will run either on the computing resources embedded on the host device or
transparently offloaded onto other nodes on the cloud-edge continuum. The entry-point to the agent is its
API which offers methods for requesting the execution of a function with a certain parameter value and
performing resource pool modifications. Users or applications request a function execution detailing the logic
to execute, the resource requirements to run the task, the dependencies with previously submitted tasks
and the sources where to fetch the data involved in the operation. Upon the reception of a request, the
API directly invokes the COMPSs runtime system. The goal of this runtime is to handle the asynchronous
execution of tasks on a pool of resources. To achieve its purpose, the runtime has four main components.
The first one, the Resource Manager (RM), keeps track of the computing resources – either embedded
on the device or on remote nodes– currently available. Upon the detection of a change in the resource pool,
the RM notifies all the other components so they react to the change. If dynamic resource provisioning is
enabled, this component should also dynamically adapt the reserved resources to the current workload.
The second component is the Task Scheduler (TS). Its purpose is to pick the resources and time lapse to
host the execution of each task while meeting dependencies among them and guaranteeing the exclusivity
of the assigned resources. The scheduling policy followed by the TS is selected at start time, and can be
replaced by new policies since they are implemented in a plug-in fashion. The Data Manager (DM), the third
piece of the runtime, establishes a data sharing mechanism across the whole infrastructure to fetch the
necessary input data to run the task locally and publish the results. The last component, the Execution Engine
(EE), handles the execution of tasks on the resources. When the TS decides to offload a task to a remote
agent, the EE forwards the function execution request to the API of the remote agent. Conversely, if
the TS determines that the local computing devices will host the execution of a task, the EE fetches from
the DM all the necessary data missing in the node, launches the execution according to its description and
the assigned resources, and publishes the task results to the DM. It is during the task execution when the

D1.3 Initial Architecture Design

43 www.ai-sprint-project.eu

task-based programming models take the scene and convert the logic of the method into a workflow
composed of tasks whose execution will be requested to the same agent.

The first sequence diagram illustrates the execution of a training process initiated by an AI Expert. The
application components, annotated using the design tools, are deployed on the target platform on a set of
virtual nodes and the PyCOMPSs runtime takes care of their orchestration and parallelization. The results of
this process is a trained model that can be exported and used for inference phases.

The second sequence diagram depicts the triggering of inference functions due to the availability of new data
to feed the model. In this case the OSCAR framework is responsible for the deployment of the containers on
a virtual cluster in the edge. The PyCOMPSs runtime is activated, the model is loaded and the proper functions
are invoked in a FaaS style. Output data is made available in the object storage and resources are released.

Sequence diagrams

D1.3 Initial Architecture Design

44 www.ai-sprint-project.eu

Data flows
In the case of the model training the data flows consist in the input data of the model and in the output
trained model available in a standard format. For the inference case, data is generated in the edge by a sensor
or instrument and provided as input of a trained model. Output data is saved back in the storage.

A.9 Federated Learning
Summary of the use case

ID RUN-UC5

Title Federated Learning

Priority Must have

Actors AI Expert

Pre-conditions A model has been defined to be trained either via expert knowledge or via the NAS
module applied to a subset of data. A set of peers devices has been selected for
training, including their datasets and the loss function.

Post-conditions A centralized model has been trained leveraging the dataset of the pears, no data
has been exchanged among the peers.

Description of interactions
The AI Expert defines the models to be trained based on his previous knowledge and some data, possibly
simulated. In this initial architecture definition she can also use the Neural Architecture Search model on the
data she has for the design of the architecture. Once a model to be trained is defined this is sento to the
Federated Learning algorithm which stores the master model centrally and sends a copy to the peers in order
for them to train their own copy with their own data. To do such, each peer computes the local error with
respect to its dataset and the corresponding gradients. In case the implementation uses model averaging the
model is updated and the weights are sent to the centralized model for averaging. otherwise only gradients
are sent instead of the full model. To preserve privacy, mode weights or gradients are corrupted with samples
from a zero mean so that the overall gradient can be recovered via weight/gradient averaging, but model
inversion for each of the local models is not possible.

D1.3 Initial Architecture Design

45 www.ai-sprint-project.eu

Sequence diagrams

Data flows
Architectural description of the model to train is sent to the Federated Learning module, then the Federated
Learning module sends a copy of the centralized model to each of the peers. The peers send to the Federated
Learning model either their local models weights or the computed gradients. The Federated learning model
returns a fully trained model to the AI Expert.

D1.3 Initial Architecture Design

46 www.ai-sprint-project.eu

A.10 Scheduling for accelerated devices
Summary of the use case
The requirements elicitation of D1.2 considers led to the following use case for the scheduling for accelerated
devices components.

ID RUN-UC6

Title Scheduling for accelerated devices

Priority Must have

Actors AI Expert

Pre-conditions The AI expert submits one or more training jobs to an in-house private GPU based
cluster or to a public cloud. Training jobs are provided as Docker containers.

Post-conditions Jobs are executed minimising operation costs. If the cluster is idle for more than 15
minutes it will be deallocated. In case of disaggregated hardware resource
configurations, remote GPUs are accessed through rCUDA

Description of interactions
The scheduling of training jobs is a result of a sophisticated process, which is carried out by the Scheduling
for accelerated devices component. The component includes three main modules: the Job Manager, the Job
Profiler, and the Job Optimizer. The Scheduling for accelerated devices relies on rCUDA when disaggregated
hardware resource configurations are considered. Training applications are submitted by AI experts in the
form of Docker images. The Job Manager receives the users’ requests and orchestrates the execution of the
submitted jobs as follows. In case of private deployments, if the job has never been executed before, the Job
Profiler is invoked to collect information about the expected per-epoch execution time of the submitted job
on the different resources available in the system. One free node (characterized by a given type and number
of GPUs) is dedicated to collect these data, which are then stored in a database (in case no idle nodes are
available, the job profiling is postponed until one among the running jobs will end). Per-epoch time will also
be updated after the training job finishes. If the cluster is heterogeneous (i.e., it includes nodes with different
CPU or GPU types), multiple nodes can be engaged in profiling activities. The collected profiling data, together
with a description of the system, with all available nodes, are provided to the Job Optimizer, which is in
charge of selecting the optimal deployment for the submitted jobs. In particular, the Job Optimizer
determines which resource configuration should be used to deploy and run the different jobs. If the resources
available in the system are insufficient to run all jobs concurrently, some of them are preempted, and their
execution is postponed. The Job Optimizer is invoked by the Job Manager periodically, or in reaction to re-
scheduling events (i.e., a new job submission or completion). The Job Manager deploys the jobs according to
the optimization results, migrating the ones in progress among different GPUs if necessary.

In case of public cloud deployments, if no VMs are already running at the time of the job submission, the VM
identified by the Job Optimizer will be deployed through IM. If the cluster is idle for more than 15 minutes it
will be deallocated.

The first sequence diagram illustrates how an AI expert puts the process in motion in a private cloud. The
end user initially submits job1 which was never run on the system before. Then the Job Manager sends a

D1.3 Initial Architecture Design

47 www.ai-sprint-project.eu

request to the Job Profiler to determine the execution time of a few epochs on a profiling node. Once the
job1 performance profile is available, the optimal configuration is identified by the Job Optimizer and job1
execution starts. In the following, the end user submits job2. In this case, job2 was already run in the system
and hence the profiling phase can be skipped. The Job Manager directly invokes the Job Optimizer which
decides to change the configuration of job1 and to start the execution of job2 on the same node. When job1
ends, job1 performance profile is updated and job2 configuration is changed by the Job Manager (e.g.,
allocating all the GPUs available on the selected node). When job2 ends, its performance profile is updated.

The second sequence diagram illustrates a public cloud deployment scenario under the assumption that the
jobs profiles are already available. In that case, the first VM is initially deployed by IM. When also job2 is
submitted to the system, the Job Optimizer decides to allocate a different VM which will be shared by job1
and job2. When job1 ends, job2 will use all the available GPUs. After 15 minutes from job2 termination, the
VM will be deallocated by IM.

Finally, the last sequence diagram considers a private cloud deployment under the assumption that the job
profile is already available but the system is based on a disaggregated resource configuration and GPUs are
accessed remotely through rCUDA. In this case, first a VM for the rCUDA client and one with the remote GPU
onboard are started by IM. Then, prior to executing the application (let’s say job 1), the Job Manager needs
to ask the rCUDA scheduler for the appropriate GPUs to be used and the GPU memory demanded by the
application. As response to Job Manager request, the rCUDA scheduler provides the right configuration to be
used when the application “job 1” is later run with rCUDA. This configuration is provided as the set of rCUDA
environment variables to be used during the execution of the application. Finally, once the application ends,
the Job Manager contacts the rCUDA scheduler in order to inform it about the completion of job 1, so that
the rCUDA scheduler releases the previously allocated resources. As in the previous scenario, if no other jobs
are submitted in the next 15 minutes the rCUDA client and server VMs are undeployed.

D1.3 Initial Architecture Design

48 www.ai-sprint-project.eu

Sequence diagrams

D1.3 Initial Architecture Design

49 www.ai-sprint-project.eu

D1.3 Initial Architecture Design

50 www.ai-sprint-project.eu

Data flows
The main data items to flow through these scenarios consists of the description of the configuration of the
system (physical nodes in case of private clouds, candidate VMs in case of public cloud), the TOSCA recipes
of the VMs to be started, the jobs performance profile data and jobs due dates. In particular, physical nodes
are characterized by the number of free and total GPUs available. In case of public clouds, running VMs are
characterized by similar data while candidate VMs types are associated also by the hourly cost. Jobs profiling
data include the time to perform one epoch under a given configuration (including the batch size) and the
associated cost (which includes energy and cooling cost of the system) in case of private clouds. Notice that
in this scenario it is possible to take advantage of remote GPU virtualization in order to reduce the amount
of GPU resources required by concurrently sharing the available GPUs among multiple applications.

A.11 Privacy preserving continuous training
Summary of the use case

ID RUN-UC7

Title Continuous training

Priority Must have

Actors Application Manager

D1.3 Initial Architecture Design

51 www.ai-sprint-project.eu

Pre-conditions A new model is available and the monitoring system has triggered an update of the
application.

Post-conditions The application is updated with the new model, either because the weights of the
model have been updated or because the new application has been reoptimized
and redeployed.

Description of interactions
Based on some monitoring rule the retraining of a model is triggered, the IM triggers the training procedure
and once the model is available it updates the application. The model could be trained on demand or it could
be already available, this is totally transparent to the IM. Once the new model is available, the IM has two
options; if the retraining has just updated the model weights these are reloaded in the application after
pausing the inference and triggering a weight reload. If a totally new model is available the overall application
deployment is re-optimized and the new application is redeployed by the IM.

D1.3 Initial Architecture Design

52 www.ai-sprint-project.eu

Sequence diagrams

Data flows
The Monitoring system triggers the IM for a model update. The IM requests the new model to the Training
Facility which returns a new model. If the new model is just a new set of weights, the application is stopped
and the weights are reloaded. If the model is a totally new one the application is replaced after optimization.

D1.3 Initial Architecture Design

53 www.ai-sprint-project.eu

A.12 Application reconfiguration
Summary of the use case

ID RUN-UC8

Title Application reconfiguration

Priority Must have

Actors Monitoring Infrastructure alerting module

Pre-conditions AI application components are running with given configurations, on a system
involving edge and cloud resources. The system status, including components
response times and execution costs, should be periodically reevaluated to account
for load variations. These, inducing resource saturation or underutilization, may
have a strong impact on costs and/or the fulfillment of QoS requirements.

Post-conditions SPACE4AI-R determines a new optimal solution for the system under study,
adapting the current assignment in terms of application components configurations
and resources to the current load. The new optimal solution may include changing
the components configuration, and/or scaling the number of cloud VMs used to run
specific components and migrating some components from edge to cloud or vice
versa.

Description of interactions
The application reconfiguration process is executed periodically to monitor the status of the system and to
react to load variations at runtime. This process is in charge of the SPACE4AI-R tool which includes two main
modules: the Application Manager and the Application Optimizer. Moreover, SPACE4AI-R relies on IM to
deploy additional physical resources on cloud or edge and on Krake for component migrations. SPACE4AI-R
invokes the monitoring tools, which provide a description of the current system status, in terms of execution
time of the running components and resource consumption (e.g., CPU utilizations). According to this
information, SPACE4AI-R checks whether QoS local and global constraints (namely, requirements on the
maximum admissible response times of single components or sequences of components) are satisfied. If any
constraint is violated, the application manager invokes the application optimizer to determine a new optimal
solution, adapting the current one to the actual load, and providing the updated deployment description to
the Infrastructure Manager (IM) server. The IM server deploys the optimal solution on the target system, or
invokes Krake to perform the component migrations, if required.

D1.3 Initial Architecture Design

54 www.ai-sprint-project.eu

Sequence diagrams

Data flows
The main data flows involve the application metrics, required by the SPACE4AI-R tool and provided by the
Monitoring tools, the TOSCA template, which is provided to the IM server to deploy the required
configurations on the target system, and Krake application resource manifest file, provided to Krake in order
to perform the required components migrations.

A.13 Trusted Execution Environments
Summary of the use case

ID SEC-UC1

Title Provide a secure execution environment for AI applications

Priority High

Actors Application End User

D1.3 Initial Architecture Design

55 www.ai-sprint-project.eu

Pre-conditions File as well as network encryption is mandatory while running a process in an
enclave is optional and based on the hardware capability.

Applications/processes need to be sconified, i.e., are either provided as Alpine Linux
binaries as docker containers or available as source code for cross compilation.
Furthermore, security policies must be provided that define what files and network
connections should be encrypted.

Post-conditions The application code as well as its data read from a file system (data at rest) or
network connection are confidentiality as well as integrity protected.

Description of interactions
The application is launched. The launch consists of two steps: First, the binary will launch the starter code
which allocates the enclave memory (a trusted compartment). The enclave memory will then be filled with
the application code and data that we will refer to as enclave in the following. Once the allocation succeeded,
the application code as well as data will be moved into the enclave memory. The application code will then
be attested by creating a measurement in order to ensure that the code was not modified while loading into
the trusted compartment. Furthermore, using the TEE’s instruction of the CPU vendor, the hardware
capabilities are checked to ensure that the enclave will run indeed on genuine hardware which provides the
necessary protection. Once these tests succeed, the application code within the enclave will be launched,
i.e., the enclave is started.

After the enclave start, the application connects to a central entity CAS which is a Configuration and
Attestation Service for secret and certificate provisioning purposes etc. After verification of the application’s
identity, the service will provide the application with the necessary secrets in order to perform encryption as
well as decryption operations on either file system or network level in order to read/write from/to files and
send network packets in a secure manner.

Note that the information about what encrypted volume to encrypt/decrypt and to what other services the
applications are allowed to establish connections to is defined through so called security policies stored at
CAS. The information is further partly extracted from IM etc. during the deployment of applications onto the
infrastructure.

D1.3 Initial Architecture Design

56 www.ai-sprint-project.eu

Sequence diagrams

Data flows

The attestation workflow is bidirectional between the enclave and the CAS. Furthermore, secret
injection/provisioning is done in a similar manner after successful attestation of the application/process.

After a successful application setup, the communication is mostly between the parties defined in the same
policy stored within CAS which includes storing and reading information from encrypted volumes using the
file protection shield etc.

D1.3 Initial Architecture Design

57 www.ai-sprint-project.eu

A.14 Secure Networks
Summary of the use case

ID SEC-UC2

Title Microsegmentation in the 5G Local Breakout

Priority Must Have if using 5G Local Breakout

Actors Application Manager, Infrastructure Providers

Pre-conditions Service is deployed on a 5G Mobile Edge Computing (MEC) platform using Local
Breakout (3GPP N6 interface). Client nodes are deployed on 5G devices.

Post-conditions User devices can connect only to the allowed AI-SPRINT service.

Description of interactions
There are two phases. In the first phase, shown in the first sequence diagram, the Application Manager and
the Infrastructure Provider provide the descriptions of the new service and of the devices allowed to access
it. In the second phase, shown in the second sequence diagram, the service is already deployed and a 5G
device tries to access it.

In the first phase, the Application Manager provides an application description file with the indication of the
name of the service and the service entry point to the Mobile Edge Computing platform, typically an IP
address and a TCP port number. Then, the Infrastructure Provider enrolls each 5G User Equipment (UE) that
is allowed to use the service by adding the identifier of the SIM card to the Policy Server.

Later, in the second phase, when the 5G UE first accesses the service by sending an IP packet, typically a TCP
SYN packet, to the address of the service entry point, the node executing the 5G User Plane Function (UPF)
sends a copy of the packet to the Policy Server. The Policy Server verifies that the packet comes from an IP
address assigned to an authorized 5G UE and deploys traffic routing and filtering rules between the UPF and
the service entry point. These rules are deployed to any switch or router between the UPF and the MEC
(indicated in the Sequence Diagram as Local Breakout Data Plane nodes) and on the nodes executing the UPF
and the MEC.

Once the rules are deployed on the nodes, the packet is forwarded to the entry point.

D1.3 Initial Architecture Design

58 www.ai-sprint-project.eu

Sequence diagrams

Data flows
In the first phase, data flow is in one direction, from the Application Manager and from the Infrastructure
Provider to the Policy Server. Such data consists in the description of the service (e.g., a Kubernetes
deployment file) and in a list of authorized devices (e.g., a list of SIM identifiers).

In the second phase, the data flow consists in a 5G UE performing a TCP active open to the service endpoint.
This TCP segment exits the 5G network at the UPF located at the MEC premises (this operation is called “Local
Breakout”) and is routed to the entry point of the MEC cluster through the 3GPP-defined interface N6. Such
an interface can either be an unstructured IP network or can be an IP network transporting point-to-point
overlay tunnels between the UPF and the MEC. In the AI-SPRINT network model, we assume that it is an SDN
network that can be configured by using an SDN controller and that it consists of a number of Data Plane
nodes that can be programmed using the P4 language. When the TCP packet reaches the UPF interface and
no rule is already in place to forward it, it is sent to the Policy Server, which also serves as the SDN controller.
In case the packet is allowed, the Policy Server deploys the necessary rules to forward it to the service and
to forward any answer from the service to the 5G UE. After successful deployment of the traffic filtering rules,
the traffic is bidirectional and does not involve the Policy Server.

D1.3 Initial Architecture Design

59 www.ai-sprint-project.eu

A.15 Secure Boot
Summary of the use case

ID SEC-UC3

Title Ensuring Secure Boot processes and establishing TPM (Trusted Platform Module)
usage

Priority Must have

Actors Application End User

Pre-conditions Secure Boot needs UEFI firmware to be enabled, servers need a TPM to use
hardware based TPM, without both the system could be more likely infected by
malware. A boot process is performed successfully even if the system is infected.

Post-conditions By setting up Secure Boot, the system is secured by signature verification of every
booting software. The TPM, on the other hand, extends Secure Boot with
cryptographic services like hashes or encryption. The TPM stores these hashes or
encryption keys in a separate memory. The boot process of an infected or
incorrectly configured system is interrupted.

Description of interactions
The process of Secure Boot starts each time an instance like a GPU-node or a VM is started. In the process
Secure Boot checks every signature against a specific private key, which the developer of the booting
software used to sign the code beforehand. The public key of the matching private key will be used to verify
the origin of the software. This happens before anything else in the boot process is executed. If a check fails,
the entire boot process is aborted. If the checks are successful, the firmware hands over control to the booted
operating system. It is important to note that both the Secure Boot process and the TPM must be well
configured to ensure adequate security.

D1.3 Initial Architecture Design

60 www.ai-sprint-project.eu

Sequence diagrams

Data flows
The data that is sent consists mainly of keys and certificates that are bound locally to the cloud, edge or VM
instance side. Since Secure Boot mostly uses asymmetric cryptography, the keys are stored locally in
"signature databases" which are integrated in the UEFI firmware. These keys are only transferred between
these different databases, the TPM and the booted components. No data from the Secure Boot process is
published outside the process or instance.

