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Executive Summary 
 

This document, developed by the AI-SPRINT project, represents an initial version of the platform Architecture 
deliverable (the final due at M24) that offers an overview of the architectural design. 

The focus of this document is the identification of different components and interfaces within the AI-SPRINT 
architectural building blocks, as well as the different strategies necessary for a successful deployment. The 
role of each of the blocks is defined, as well as the required interfaces for the communication between blocks.  

The architectural choices are built taking into account the different types of requirements imposed by the 
applications and services running in the framework through the analysis of the three use cases specified in 
the project proposal and detailed in AI-SPRINT Deliverable D1.2 - Requirements Analysis.  
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1. Introduction 
1.1 Scope of the document 
The aim of the AI-SPRINT “Artificial intelligence in Secure PRIvacy-preserving computing coNTinuum” project 
is to develop a platform composed of design and runtime management tools to seamlessly design, partition 
and operate Artificial Intelligence (AI)I applications among the current plethora of cloud-based solutions and 
AI-based sensor devices (i.e., devices with intelligence and data processing capabilities), providing resource 
efficiency, performance, data privacy, and security guarantees.  This document overviews the AI-SPRINT 
architectural framework introducing the main project assets that will be developed and evolved during the 
project. 

 

1.2 Target Audience 
The Architecture Design Document (initial and final version) is intended for internal use, although it is publicly 
available. The target audience is the AI-SPRINT technical team including all partners involved in the delivery 
of work packages 2,3 and 4 but also it serves as reference for the developers of the three use cases of the 
project. 

 

1.3 Structure of document 
This document includes three main parts: 

● The AI-SPRINT Architectural Overview that provides the description of the main components of the 
platform including the design tools, the runtime framework, the deployable infrastructure and the 
security mechanisms amongst all the components.  

● The Integrated Framework details how the components interact and the different deployment options 
to support scenarios required by the AI-SPRINT use cases.  

● In the Appendix, we provide the details of those possible interaction scenarios and the sequence 
diagrams with the explanation of the data exchanged. 
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3. AI-SPRINT Architectural Overview 
 

This section shows the global design of the AI-SPRINT framework, indicating which main functionalities the 
AI-SPRINT platform will provide for the first iteration of the tools development. For each individual block of 
the system, we describe its role and relation within the global architecture, as well as, the required interfaces 
for the communication with other modules. 

  

 
Figure 3.1 - AI-SPRINT Architecture Overview 

AI-SPRINT will overcome current technological challenges for the design and efficient execution of AI 
applications exploiting resources in the edge-to-cloud continuum such as flexibility, scalability, 
interoperability, security and privacy. Figure 2.1 depicts the high level view of the AI-SPRINT architecture. An 
AI-SPRINT application is mostly written in Python and it makes intensive use of AI technologies.  An 
application usually comprises multiple components which run across a computing continuum with some 
components allocated on the cloud, some on edge servers some on AI-enabled sensors (i.e., devices with 
intelligence and data processing capabilities). 

In particular, the AI-SPRINT use cases (see also the AI-SPRINT Deliverable D1.2 - Requirements analysis) will 
be implemented by using the AI-SPRINT design and development tools. The design environment includes 
Programming Abstractions to hide the communications across components and to transparently implement 
the parallelization of the compute-intensive part of the application, possibly exploiting specialized resources 
(e.g., GPUs and AI enabled sensors). Applications are also enriched with quality annotations (e.g., data flow 
rates, application latency, energy constraints) to express performance, accuracy, privacy, and security 
constraints. Performance Models tools automate the AI application performance profiling and identify the 
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performance model (based mainly on Machine Learning) providing the highest performance prediction 
accuracy.  In particular, Performance Models tools will support performance ML model selection and hyper-
parameters tuning also considering for the target deployment AI-based sensors. Deep networks might be 
deployed across computing continua by considering also multiple partitioning options. AI Models Network 
Architecture Search provides solutions to enable developers with limited ML expertise to train high-quality 
models specific to their needs also in terms of Quality of Service (QoS) requirements. These tools help 
developers to build a learning as a service solution, that, starting from a training set with labelled training 
examples (images or temporal data series which are of interest for use cases) will automatically identify the 
most accurate deep neural network which provides execution time guarantees. Furthemore, for complex 
applications involving many components, multiple alternative candidate deployments will be evaluated 
through the Applications design space exploration tools maximizing resource efficiency while minimizing the 
cloud usage cost. 

AI-SPRINT applications will be deployed and executed transparently on a heterogeneous architecture, 
through a set of runtime tools which manage the different components and data of the applications and 
reacts to system perturbations and requirement changes. The AI-SPRINT runtime environment will include 
tools to: i) support the continuous deployment of AI applications; ii) support application components 
concurrent execution reacting to node failures and identifying their optimal placement and resource 
capacity; iii) trigger automated model retraining, leveraging on solutions for training and retraining at the 
edge; iv) optimize the scheduling and assignment of accelerator devices among competing training jobs. 
Deployment Tools provide automatic mechanisms to guide the process of configuring computing resources 
across the computing continuum and provide a cloud-edge orchestration enabling the automatic deployment 
of AI application models and components, without manual provisioning. The Programming Framework 
Runtime is in charge of supporting concurrent code execution, automatically detecting and enforcing the 
data dependencies among components and spawning parallel tasks to the available resources, which can be 
nodes in an edge cluster or clouds. Privacy preserving continuous training allows AI applications to update 
models in order to capture changes just in weight matrices and internal state initialization of the model, or 
in the model structure because of retriggering of the AI model architecture search. Edge training and 
retraining in AI-SPRINT will leverage Federated Learning algorithms where different learners exchange only 
part of the information which can be extracted from the data in order to improve a model globally, but 
without making explicit the data used to train it. The efficient use of GPUs for the training of neural networks 
will be addressed by proposing advanced techniques of Scheduling for accelerator devices to solve the joint 
resource planning (i.e., how many GPUs to assign to a training job) both for private and public clouds. 
Application components will be continuously monitored by a Monitoring Platform which will be able to 
gather metrics at every layer of the cloud-edge stack.  

AI-SPRINT will provide tools for the deployment of compute instances enabled with Trusted Execution 
Environments (TEEs), that allows application entities to be orchestrated in a way that only trusted parties 
are allowed to establish communication channels with each other through end-to-end encryption, and code 
attestation and verification mechanisms to ensure that only the correct code/binary is being executed. The 
framework will also integrate Secure Booting mechanisms to ensure that the OS where applications are 
running can be attested to provide an extra level of security. The AI-SPRINT Secure Networks component will 
leverage network programmability to manage the setup of virtual networks, to steer secure tunnels through 
them, and will ensure that the network paths comply with the security policies defined at design time 
including when traffic is rerouted in case of failure.  

Table 1. 2 summarizes the WP-level responsibilities of the different components of the architecture, the lead 
maintainer and the major contributors. 
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Tool WP Task Lead Maintainer Major contributors 
Design and 
Programming 
Abstractions 

2 T2.1 BSC BSC, POLIMI, TUD,UPV 

Performance 
Models 

2 T2.3 POLIMI POLIMI, UPV, BSC 

AI Models 
Network 
Architecture 
Search 

2 T2.2 POLIMI POLIMI, BSC, TUD 

Application 
Design Space 
Exploration 

2 T2.4 POLIMI BSC, UPV 

Deployment 
Tools 

3 T3.1 UPV UPV, TUD, POLIMI, BSC, BECK, 
C&H, 7BULLS 

Monitoring Tools 3 T3.3 7BULLS 7BULLS, TUD, BSC, UPV 
Federated 
Learning 

3 T3.4 POLIMI POLIMI, BSC, TUD, BSC, UPV, 
7BULLS 

Scheduling for 
Accelerated 
Devices 

3 T3.5 UPV UPV, POLIMI, 7BULLS, TUD 

Privacy 
Preserving 
Continuous 
Training 

3 T3.4 POLIMI POLIMI, TUD, BSC, UPV, 7BULLS 

Programming 
Framework 
Runtime 

3 T3.2 BSC BSC, POLIMI, UPV 

Application 
Reconfiguration 

3 T3.2 C&H C&H, POLIMI, TUD 

TEE & Code 
Attestation 

4 T4.2 TUD TUD, UPV 

Secure Boot 4 T4.4 TUD TUD, C&H, POLIMI, UPV 
Secure Networks 4 T4.3 POLIMI POLIMI, TUD 

Table 3.1 - AI-SPRINT WP Level Architecture 

 

3.1 Deployable Infrastructure 
The AI-SPRINT architecture is built upon a flexible computing substrate provided by cloud and edge-based 
technologies.  

Concerning the former, cloud computing allows the on-demand provision of virtualized resources to support 
both the computing and storage requirements from the use cases. Different cloud service models will be 
adopted. First, Infrastructure as Service (IaaS) provides the ability to deploy custom Virtual Machines (VMs) 
that are specifically configured with the Operating System (OS), libraries, runtimes and applications that use 
cases require. This is achieved through the use of Cloud Management Platforms (CMPs) such as OpenStack 
and OpenNebula, which provide resource management capabilities featuring both API-based and web-based 
access mechanisms for programmatic and end-user access respectively.  
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In order to facilitate deterministic repeatability of virtual infrastructure deployments, we are adopting an 
Infrastructure as Code (IaC) approach that is being widely adopted by the industry. IaC allows to define 
application architecture using high-level recipes and resort to automated procedures both for virtual 
computing resources provision and automated configuration of said resources. A DevOps approach will be 
adopted in order to achieve deterministic virtual infrastructure deployments across multiple cloud back-
ends. This is exemplified by open-source tools such as Ansible, Puppet and Chef, which allow the definition 
of templates that describe the desired state of the virtual infrastructure and provide means to enact its 
automated configuration for the sake of compliance. Second, Functions as a Service (FaaS) allows to create 
functions coded in a certain programming language and which are triggered in response to certain events 
(such as an HTTP request to an API endpoint or a file upload to an object-storage system). These function 
invocations are executed on computing resources that are automatically managed by the provider so that 
elasticity no longer becomes the main concern of the application developer. These functions also use a fine-
grained cost model, typically in the order of milliseconds of execution, as exemplified by public cloud services 
such as AWS Lambda. The FaaS computing model has experienced tremendous growth in the last years 
leading to the surge of different open source FaaS platforms that aim to replicate the functionality provided 
by their public cloud FaaS services counterparts, but on a Container Management Platform (CMP) such as 
Kubernetes.  

Regarding edge computing, the computing infrastructure requires to be built on low-powered devices that 
prioritize energy efficiency over high-end computing capabilities. Examples of these devices include 
Raspberry Pis, which are single-board computers that were initially targeted to promote computer science in 
developing countries but that have found important niches in the field of edge computing. We plan to adopt 
these boards, possibly adopting accelerators, to create portable computing devices with varying computing 
capabilities (from Raspberry Pis to even small clusters) that can satisfy the computing mobility requirements 
of some use cases (e.g., agricultural). In AI-SPRINT we assume that these edge devices support the execution 
of containers in order to bootstrap the virtualized infrastructure and configuration through automated 
means. To this aim, we are adopting efficient strategies of resource allocation on these devices, such as those 
provided by minified Kubernetes distributions, exemplified by K3S1 and MicroK8s2.  

AI-SPRINT builds on these foundational blocks to support a flexible and customizable deployable 
infrastructure that spans across the computing continuum including edge devices, on-premises Clouds and 
public Clouds. This flexibility, combined with the adoption of open standards, well-known tools from the 
community and best practices in infrastructure deployment, will facilitate the support of the Use Cases. 

 

3.2 Design Tools 
The objective of the AI-SPRINT Design Tools is to provide a layer that abstracts the applications from the 
underlying computing resources, being these edge resources or cloud servers in such a way that the 
application developer only needs to focus on the actual algorithm and application logic. On the other hand, 
interfaces for easing the integration of developed applications with the runtime system will be developed. 

In particular, the AI-SPRINT developer is provided with a framework to design AI applications using 
abstractions to specify quality parameters and to express the resource requirements of the components of 
AI distributed applications. Performance models are used to predict execution times for the different parts 
of AI applications in a given deployment and to drive the mapping of components on processing elements. 

 

1 K3S. https://k3s.io/ 

2 MicroK8s. https://microk8s.io/ 
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Security policies are available in the definition of AI applications to run on different deployments as edge 
resources or cloud premises. 

 

Tool Motivation  Innovation 
Design and 
Programming 
Abstractions 

AI applications considered in AI-
SPRINT are composed of different 
components that combine 
different approaches adopting 
popular frameworks such as 
PyTorch, Tensorflow, Scikit-learn. 
These components have to be 
executed on the edge-cloud 
continuum considered by the 
project, with a combination of 
CPUs and GPUs based distributed 
nodes.  
On top of this, users have to deal 
with big datasets on distributed 
resources. 
Furthermore, applications must 
be configured using policies that 
define which services are allowed 
to communicate with each other 
as well as what files and 
communications channels should 
be encrypted using TLS. Besides 
configuring the encryption and 
access policies, the secure policies 
definition also provides means of 
coordinating secret sharing and 
provision as well as attestation of 
applications to ensure that an 
application is indeed genuine and 
running on trusted hardware. 

● Offer high level interfaces to several 
AI/ML algorithms based on 
PyCOMPSs and standard frameworks. 

● Concentrate on the application 
development and rely on the runtime. 

● Automatic parallelization of the code. 
● Partition the data, and possibly the 

deep network models, to optimize the 
execution. 

● Introduce performance parameters 
for the allocation of tasks to 
computing continuum resources and 
security & privacy annotations for 
data allocation and processing. 

● Define applications following a FaaS 
model. 

Performance Models Once an AI application is designed, 
performance models can help to 
anticipate the performance of the 
application components before 
the production deployment  or 
throughout revision cycles. 
Example of questions that can be 
answered by performance models 
include: how many resources 
(GPUs, memory, CPU threads, 
etc.) will be required to achieve a 
given performance target (e.g., 
training job will end within a due 
date?  the inference time of an AI 

● Support profiling, given multiple 
allocations at the computing 
continuum. 

● Provide novel performance models 
based mainly on machine learning, 
experiment design methods and, 
possibly, queueing networks. 

● Automate components performance 
models training. 
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component will be lower than a 
given threshold ?). Solutions to 
predict AI application components 
performance under different 
configurations and deployment 
settings at the full computing 
continuum stack will be 
developed. 

AI Models Architecture 
Search 
 

The scarcity of AI experts, the 
need for the design of customized 
network architectures, the need 
for a long and tedious 
hyperparameter tuning, make the 
development of novel AI models a 
time and resource consuming 
effort.  To reduce the time to 
market of novel models 
customized for the specific use 
case and for the specific 
computing continuum under 
evaluation, we wil design a tool to 
identify  and automate the search 
of the most accurate deep 
network which complies with QoS 
constraints starting from labelled 
data. The possibility of specifying a 
QoS is what makes AI-SPRINT 
neural architecture search 
different from the competitors 
and it is a unique feature of the AI-
SPRINT framework. 

● Include runtime performance and 
QoS as optimization criteria in the 
search of the best neural architecture. 

●  Consider the multiple layers of the 
computing continuum when 
optimizing and searching for an 
optimal architecture which it will be 
possible to deploy on the design 
target. 

●  Integrate architecture search with 
cloud-edge model partitioning by 
allowing the search algorithm to be 
aware of the network partitioning 
when optimizing its architecture. 

●  Multi-objective space exploration 
and Pareto optimal solutions. 

● Performance estimation as a driver of 
search process. 

● Model pruning. 

Application Design  
Space Exploration 
(SPACE4AI-D) 
 

Once an AI application approaches 
the final deployment stage,  it 
becomes increasingly important 
to tune its performance. This is a 
time-consuming task, since the 
number of different 
configurations can grow very 
large. Tools are needed to guide 
this phase. The ultimate goal of 
the Application Design Space 
Exploration tool  is to explore 
automatically multiple candidate 
deployments for the AI  
application components to 
identify an optimal initial 
deployment which satisfies 
performance constraints. 

● Define ad-hoc algorithms (based on 
random greedy, local search and 
other meta-heuristic methods) 
tailoring the peculiarities of AI 
applications (e.g., multiple versions 
corresponding to different partitions 
of the same deep network deployable 
on edge resources or cloud) to quickly 
find good designs given QoS 
constraints. 

 

Table 3.2 - Design Tools: motivations and innovations 
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The design framework will also provide means to define applications components as microservices and 
event-driven functions that can be dynamically orchestrated at runtime, according to the FaaS model. The 
aim of the design abstractions is to provide high-level annotations to specify QoS constraints and code 
dependencies and to introduce performance parameters for the allocation of tasks to computing continuum 
resources and security & privacy annotations for data allocation and processing. 

The design time framework will support the composition of ML, DL and AI applications primarily adopting the 
PyCOMPSs programming model and tools (e.g., dislib library), enabling the development of complex and 
dynamic workflows, composed of pure computational parts, classical data analytic runs and ML/DL methods. 
At the same time, the adoption of popular AI/ML frameworks will be guaranteed and in all the cases 
applications will be enriched with annotations to specify non-functional properties constraints, security and 
privacy policies, and application candidate target deployments. A number of ML algorithms implemented 
with PyCOMPSs are already available as a Distributed Computing Library (dislib3) inspired by Scikit-learn, 
which eases the task of developing applications providing a common interface in all algorithms.  

Furthermore, as a parallel framework, COMPSs exploits inter-node and intra-node parallelism and executes 
TensorFlow tasks as external processes. The design layer will be based on the PyCOMPSs programming 
framework, but integration with popular frameworks as PyTorch, TensorFlow, Keras will be also provided. 
The main benefit of the integration of the  AI-SPRINT programming model is the reduction of the execution 
time of the training and inference processes by exploiting the inherent data parallelism of input data. To do 
so, the input dataset is distributed over the different targeted nodes and each node is in charge of training 
the model with the assigned dataset part. Later, the different models trained in isolation are combined thus 
requiring to exchange either the model (parameters) or the parameter’s gradients between the nodes.  

Furthermore, AI-SPRINT will develop novel solutions to model the performance of AI applications running at 
the full computing continuum stack.  Performance models  can serve as a fundamental building block for 
cloud service providers hosting AI services in the cloud. Indeed, performance modeling enables cloud 
providers to estimate applications performance based on provisioned resources and to possibly manage 
effectively data center infrastructures at runtime. Moreover, based on the performance modeling feature, 
cloud providers can offer what-if analysis for customers to perform trade-off analyses between cost and 
application execution time. For example, customers might be willing to pay an additional 10% to speed up 
their application by two if there is such a choice but choose not to do so if they have to pay twice more for 
10% performance improvement. Without performance modeling and prediction tools, it is hard to obtain 
such information. The AI-SPRINT performance modelling approach will be mainly based on ML. ML-based 
performance models will be developed to predict the execution time of AI applications running on 
heterogeneous multi-devices systems composed of IoT & AI enabled sensors, edge and cloud resources. The 
tools will provide support and automate AI applications performance profiling. Solutions to identify the ML 
model providing the highest performance prediction accuracy supporting model selection and 
hyperparameters tuning will be also developed. AI-SPRINT solutions will be based on the aMLLib library 
(https://github.com/eubr-atmosphere/a-MLLibrary) which will be enhanced to improve the 
hyperparameters tuning phase. 

To allow a fast development of targeted AI models also to non AI Expert people, but also to support AI Experts 
in their work, a module for model search via Neural Architecture search (NAS), will be implemented. The AI-
SPRINT NAS module will  take into account desired QoS both from a machine learning perspective (e.g., 
accuracy, precision, recall, etc.) and a performance perspective (e.g., latency, memory, power consumption, 
etc.). To allow for this, performance models will be used in order to predict the future performance of a given 
architecture even before deploying it and running it on the real platform. By the use of performance models, 

 

3https://dislib.bsc.es/en/stable/ 
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it becomes possible to speed-up the search of Pareto optimal solutions disregarding those architectures 
which are not considered as suitable with respect to the AI model requirements.  

Application design space exploration will leverage the SPACE4AI-D tool (System PerformAnce and Cost 
Evaluation on Cloud for AI applications Design). SPACE4AI-D tackles the component placement problem and 
resource selection in the computing continuum at design time, dealing with different AI application 
requirements in order to effectively orchestrate heterogeneous edge and cloud resources. The tool will 
leverage some efficient meta-heuristic algorithms such as random greedy, local search, tabu search and so 
on, in order to explore automatically multiple candidate deployments for the AI  application components to 
identify the placement of minimum cost across heterogeneous resources including edge devices, cloud GPU-
based Virtual Machines and FaaS solutions, under QoS response time constraints. 

3.3 Runtime Framework 
The objective of the AI-SPRINT Runtime Framework is to support the automated deployment and monitoring 
of customized virtualized resources across the computing continuum infrastructure. This includes the 
orchestration of computations on that provisioned infrastructure in order to support the training of AI models 
and also exposing the trained models as a service using a FaaS paradigm for inference. Moreover, load 
variations may induce resource saturation or underutilization, which have a possibly strong impact on 
components response times and execution costs. The Runtime Framework has therefore the goal of adapting 
the component placement to account for such events, by migrating components from edge to cloud and vice 
versa, by scaling the amount of cloud resources and/or by changing DNN models partitions configuration. 

Our flagship product in this area is the Infrastructure Manager (IM)4, an open-source tool to deploy 
customized configurable application architectures described using the TOSCA (Topology and Orchestration 
Specification for Cloud Applications)5 standard on multiple Cloud back-ends. These includes widely used on-
premises CMPs such as OpenNebula and OpenStack; public Cloud providers such as Amazon Web Services, 
Microsoft Azure and Google Cloud Platform; European Cloud infrastructures such as the EGI Federated Cloud 
and commercial providers such as Open Telekom Cloud and Orange. 

Two previous developments have been onboarded in AI-SPRINT to support the FaaS requirements from use 
cases. On the one hand, SCAR6 (Serverless Container-aware ARchitectures) supports compute-intensive 
functions packaged as Docker images on top of AWS Lambda, allowing automated delegation of function 
execution into AWS Batch, a service that deploys elastic clusters on top of Amazon EC2, the IaaS managed 
service provided by Amazon Web Services (AWS). This approach combines the benefits of high elasticity 
provided by AWS Lambda with the unbounded computing capacity provided by AWS Batch, allowing to 
create data-driven serverless workflows typically aimed at file processing.  

On the other hand, OSCAR7 (Open-source Serverless Computing for Data-processing Applications) supports 
the very same computing model offered by SCAR but within an on-premises CMP. OSCAR consists of an elastic 
Kubernetes cluster, which is dynamically deployed on all the Cloud providers supported by the IM. The cluster 
can grow and shrink in terms of the number of nodes, thanks to the CLUES8 elasticity system, which inspects 
the status of the Kubernetes cluster to instruct the IM to provision or terminate the nodes in order to self-
adapt to the current and expected workload. The use of a minified Kubernetes distribution running on Arm-

 

4 Infrastructure Manager (IM). https://www.grycap.upv.es/im 

5 OASIS Topology and Orchestration Specification for Cloud. https://www.oasis-open.org/committees/tosca/ 

6 SCAR. https://github.com/grycap/scar 

7 OSCAR. https://github.com/grycap/oscar 

8 CLUES. https://www.grycap.upv.es/clues 
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based processors, such as those provided by Raspberry Pis, allow to execute OSCAR clusters for the in-the-
field inference of previously-trained Deep Learning models via a FaaS. These computing resources can be 
supplemented with on-premises CMPs and even public clouds in order to adapt to increased computing 
needs. 

 

 

Tool Motivation  Innovation 
Deployment tools Need to provide efficient tools to 

perform automated provision and 
configuration of virtual resources, 
supporting complex application 
architectures. The adoption of 
open standards for application 
architecture description is 
mandatory to foster 
sustainability. Also, high-level 
recipes for automated 
infrastructure configuration and 
application installations need to 
be adopted to guarantee 
determinism in distributed and 
multi-tenant infrastructures. 
These recipes need to be made 
publicly available to foster 
widespread adoption beyond the 
lifetime of AI-SPRINT 
 

● Infrastructure as a Code combined 
with standards like TOSCA uses high-
level recipes to define application 
architectures whose resources are 
automatically provisioned and 
configured. This introduces 
repeatability and deterministic 
deployments. 

● Open code repositories and artifacts 
such as GitHub, Docker Hub and 
Ansible Galaxy are populated with 
ready-to-be-used components for 
automated application deployment 
across the cloud continuum (edge, on-
premises clouds and public clouds). 

● Multi-modal interfaces are provided 
for automated application deployment 
including command-line interfaces, 
REST APIs and web-based graphical 
user interfaces to accommodate 
several categories of users. 

● A Continuous Delivery (CD) approach is 
adopted to cope with application 
changes that need to be distributed 
across disparate computing 
infrastructures, building on automated 
procedures for creating deployment 
artifacts, such as GitHub Actions and 
Automated Builds in Docker Hub. 

Monitoring tools Without knowing the overall state 
of all systems components, one 
cannot adjust their parameters 
and execute necessary actions 
when failures occur. That is why 
there is a need to provide 
subsystem which will be 
responsible for: (i) collecting 
monitoring data (metrics, 
statuses, health checks) from all 
subsystems, (ii) provide the 
possibility to analyse this 

● Improving monitoring data fetching 
from temporarily off-line subsystems. 

● Providing seamless integration with 
client applications. 

● Extending algorithms for anomalies 
detection. 
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datastream, and (iii) notify 
controlling subsystems about 
spotted anomalies. The whole 
monitoring solution should also 
be as much “invisible” as possible 
for monitored applications, 
allowing developers to 
concentrate on algorithms and 
not on integration issues. 
Monitoring must be also well-
integrated with deployment 
tools, providing advanced data 
gathering functionality without 
the need of additional 
adjustments by system 
administrators or developers. In 
case of subsystems which 
temporarily work off-line 
(without permanent connection 
to monitoring infrastructure), 
there is a need to provide 
mechanisms which will buffer 
data for a long period of time 
(hours, days). 

Programming 
framework runtime 
 

The execution of AI applications 
on Edge-Cloud infrastructures 
requires a runtime that properly 
assigns the different components 
on the available nodes, also 
distributing the data. 
The runtime leverages the 
embedded computing resources 
of each node  to host the 
execution of functions in  a  
service  manner and generates 
hybrid workflows, composed of 
atomic and continuous 
processing tasks, achieving  
distribution, parallelism and 
heterogeneity across edge/cloud 
resources transparently to the 
application developer. 
The adoption of such a distributed 
model for executing the 
applications requires to isolate 
the applications from 
infrastructure specificities and (of 
course) to avoid being locked-in a 
specific platform. 

● Concentrate on the application 
development and rely on the 
infrastructure management by the 
serverless platform. 

● The programming framework runtime 
parallelizes the execution of the 
different parts of the applications that 
can be invoked in a FaaS way according 
to the QoS constraints. 

● The runtime is able to schedule the 
tasks on both edge and cloud devices, 
orchestrating the execution and 
leveraging on fault tolerance 
mechanisms to react to the dynamicity 
of the edge. 

● Adaptation includes also the possibility 
to migrate tasks from cloud backed to 
mobile devices (Android) and vice 
versa. 



 

 
  

D1.3 Initial Architecture Design 
 

18                                                                                                                                                      www.ai-sprint-project.eu 

 

Federated Learning 
 

When multiple parties want to 
jointly train a machine learning 
model without the exchange of 
sensible or private data the use of 
federated learning will make this 
possible. In the federated 
learning approach, data are 
expected to reside as close as 
possible to the sources which 
have generated them and they 
reach, at most, the edge part of 
the continuum without leaving 
the owner borders. AI-SPRINT will 
allow the seamless and secure 
implementation of different 
approaches for federated 
learning, either exchanging full 
models or exchanging model 
gradients. To protect from privacy 
attacks techniques for differential 
privacy will be implemented not 
to disclose information about 
individuals or specific records. 

● Federated learning used to minimizes 
information exchange and preserve 
data privacy integrated in the runtime 
environment and into the 
programming abstraction. 

● Losses and gradients computed as 
close as possible to the data sources 
taking into account model partitioning 
between edge and cloud. 

● Differential privacy enhancement of 
exchanged gradients to further protect 
the privacy of the individual or specific 
records which the owner does not 
want to disclose. 

Scheduling for 
accelerated devices  
 
 

DL models are usually trained on 
hardware  accelerators (e.g., 
GPUs) achieving on average 5-40x 
speed-up wrt. CPUs. The ability to 
optimize the infrastructure 
utilization and process the 
workload with high efficiency 
under power constraints is critical 
for cloud data centers subject to 
power consumption quotas. On 
the other hand, public clouds 
GPU-based VM  time unit cost is 
5-8x higher than high-end CPU-
only VMs. While there are 
advanced systems to manage 
virtual Web application 
workloads, there are few 
solutions for GPU-based systems. 
The goal of the Scheduling for 
accelerated devices
 component is to  
transparently support  GPGPUs 
systems sharing in private/public 
cloud and edge-based 
environments to maximise 
system usage/minimise 

● Define TOSCA extensions for hardware 
accelerators. 

● Use GPU virtualization (rCUDA). 
● Support dynamic reconfiguration and 

efficient access to shared accelerators 
● Enable remote access to GPUs from 

edge resources. 
● Develop novel fast-heuristics for 

accelerators scheduling at cloud 
backends (private and public) and 
edge servers, matching accelerators 
capabilities with training jobs 
requirements. 
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operational costs while easing the 
programming models. Solutions 
to support elasticity at the level of 
GPGPUs also through 
disaggregated hardware 
technologies will be developed 
and integrated with advanced 
schedulers able to identify the 
optimal training jobs execution 
order, GPU number and 
partitioning among running jobs 
providing also upper bounds on 
the training time. 

Privacy preserving 
continuous training 
 

When deployed on the field AI 
models might experience some 
drift in the observed data or 
might need an update because 
novel data have been 
accumulated in the meanwhile. 
This continuous training requires 
models to be updated periodically 
or because of a triggering event. 
This continuous update of models 
has a clear impact on the existing 
applications which need to be 
updated securely with minimal 
impact on the system overall. 
Because of this, two different 
means of updates are foreseen, 
one which leverages on the 
straightforward weight update 
and one which re-deploys from 
scratch the whole architecture, 
possibly re-partitioning it among 
different devices. 

● Seamless,  secure, privacy preserving 
model weights update. 

● Application redeployment after re-
partitioning in case the new model 
requires a different optimization or a 
different set of resources. 

● Automated triggering of the update 
upon designer defined conditions. 

Application 
reconfiguration (Krake 
and SPACE4AI-R) 

The optimal solution identified by 
the Application Design Space 
Exploration tool needs to be 
periodically reevaluated in order 
to account for load variations. 
These can, indeed, lead to 
resources saturation or 
underutilization, having a possibly 
strong impact on the components 
response times and the costs 
predicted at design time. This goal 
is fulfilled by the Application 
reconfiguration tool, which, first 
of all, evaluates the current status 

● Develop ad-hoc algorithms to quickly 
react to load variations at runtime, 
adapting the components 
configuration and the resource 
allocation to the new conditions, in 
order to optimize execution costs 
given QoS constraints. 

● Support runtime migration of stateless 
and stateful application components 
across heterogeneous devices (edge 
and cloud). 
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of the system in terms of 
incoming loads and components 
response times. Then, on the 
basis of the collected information, 
it determines the new optimal 
solution, specifying the 
components configuration and 
the relative deployment on the 
available resources, optimizing 
components response times and 
execution costs. 
Table 3.3 - Runtime Framework: motivations and innovations 

 

The runtime framework will provide several interfaces for provisioning virtual infrastructure to satisfy 
different user profiles. A REST API for programmatic access will facilitate application integration. A web-based 
GUI (Graphical User Interface) will allow end users with limited technical skills to self-provision virtualized 
infrastructure for training models on specific infrastructures customized with certain software and hardware 
requirements. A CLI (command-line interface) will allow the savvy user to efficiently interact with the 
provided services in order to manage the lifecycle of dynamically provisioned virtual infrastructures.  

The benefit of the runtime framework is to provide the “Design Tools” with the ability to deploy the required 
computing infrastructure and perform its automated configuration with the precise software artifacts in 
order to satisfy the user requirements. A wide range of customized virtual infrastructures are envisioned that 
include, but are not limited to: Kubernetes clusters configured to support accelerated training using GPUs; 
Monitoring infrastructure, automatically deployed using a DevOps approach for the sake of repeatability; 
Virtual Machines with GPUs offered as a service using rCUDA9 for remote acceleration of AI model training; 
OSCAR clusters to support FaaS for compute-intensive model inference. 

AI-SPRINT also provides a programming framework runtime based on COMPSs that thanks to the integration 
with application reconfiguration solutions and to the continuous deployment service support the scheduling 
of dynamic workflows; these workflows can change their behaviour during the execution (i.e., according to 
the partial results of the application), to adapt application and react to changes in the execution environment 
at large. Resource allocation and workflow tasks deployment can be changed in real-time; tasks can be 
migrated from cloud to edge servers and devices simplifying the provisioning and management of AI 
applications lifecycle, including support (remote access) to edge and accelerator devices. Developers can 
write AI/ML applications that will be orchestrated adopting a FaaS paradigm (which supports the execution 
of transient stateless functions) for the most effective and seamless use of the continuum resources.  

For what concerns component application migration, Krake (https://gitlab.com/rak-n-rok/krake) will be 
used. Krake provides a central point for managing component applications at each level of the computing 
continuum system. Furthermore, it ascertains the "best" level of resource usage based on user-defined 
parameters and re-evaluates the deployment periodically. This leads to an automation in increasing or 
decreasing resources. While Krake currently supports only infrastructure metrics (e.g., resource utilization, 
hardware energy efficiency), it will be extended to support performance-based application metrics and 
enable optimal decisions on how many resources (e.g., total number of Docker/kernel containers) to allocate 
to provide latency guarantees (e.g., latency below 100 ms). The goal is to optimally manage edge resources, 
which often are characterized as devices with low resource capacity to meet application QoS constraints. The 

 

9 http://www.rcuda.net 
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allocation of components to resources is based on various criteria (for example battery level, network 
latency, availability of accelerators to speed up component execution, etc.).  While Krake will provide the 
mechanisms to support components migration to the Application Reconfiguration module, intelligent 
decisions that will trigger component migration/cloud resource scaling/change in a DN partition will be made 
by the SPACE4AI-R (System PerformAnce and Cost Evaluation on Cloud for AI applications Runtime). 

Finally, long running training jobs will be supported by the GPU scheduler. This receives job submissions, in 
the form of Docker containers, and determines the best scheduling and component allocation to minimize 
costs while meeting deadline constraints. The list of submitted jobs, together with their characteristics in 
terms of expected execution times (collected through profiling) and deadlines, and a description of the 
system with all the available resources, are provided as input to the GPU scheduler. Based on these 
information, the GPU scheduler determines which jobs should be run and the type and number of GPUs that 
should be assigned to them, in order to minimize energy costs (in the case of private GPU-accelerated 
clusters) or execution costs (in the case of public cloud), while meeting the deadline constraints. 
Disaggregated hardware architectures and remote GPUs can be accessed relying on rCUDA. 

Data describing state and working parameters of all subsystems will be gathered by the Monitoring 
subsystem. It will preserve all collected time series metrics and allow system administrators and other 
subsystems to perform various actions. In particular the Monitoring infrastructure will provide the possibility 
to create a self-healing system, which will be able to adapt to changing environmental conditions or detected 
anomalies and failures. Thanks to the advanced tools that will be developed, the Monitoring subsystem will 
also help analysing behaviour of the whole system in time and to find causes of bugs or failures. 

Data privacy is a first class citizen in the AI-SPRINT framework and thus tools for distributed computing and 
infrastructure management will be used to implement Federated Learning algorithms which are in charge of 
training models in a distributed fashion having data, errors, and gradients computed as close as possible to 
their source.  The Monitoring infrastructure will be used to trigger the retrain of models and their update in 
the infrastructure which could go from simple weights update, if no major architectural change has 
happened, to full application redeployment in case a novel more effective partitioning of the model has been 
found. 

 

3.4 Security and Privacy 
The tool we use as a foundation for secure and privacy data processing in the context of AI-SPRINT is SCONE. 
The framework provides the possibility to run applications in so called enclaves, i.e., trusted compartments 
such that no adversary or even an inside attacker with root privileges can access or compromise the data as 
well as the application code. This is achieved by using so-called Trusted Execution environments such as Intel 
SGX. Although SCONE currently provides only support for Intel SGX, the objective within this project is to 
extend the existing framework to support other TEE vendors such as AMD and Arm which are also typically 
found in the domain of edge devices. 

The benefit of using SCONE as a foundation for secure computation is the following: It provides transparent 
encryption for network connections as well as file systems through so called encrypted volumes. 
Furthermore, the framework aims at minimizing the developers effort, hence, in most cases no recompilation 
for the application will be needed. This will greatly speed up the adoption process of this approach as only 
prebuilt Docker container images will be used. 

The framework is complemented by the so-called Configuration and Attestation Service (CAS). This entity is 
responsible for verifying if the application code has been tampered with while or before being loaded into 
the trusted compartments through a so called attestation process. Once the application has been attested 
to run on genuine hardware and no modifications occurred, CAS will provision the application through secure 
channels with the necessary secrets and certificates needed to access files and to establish connections in a 
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secure manner. The approach follows the principles that no humans should get into the possession of secrets, 
hence, certificates and key pairs only needed to establish connections between restful services will be solely 
generated and managed within CAS. The CAS instance itself is also running in an enclave such that the 
generated secrets will never be exposed to a human or third party entity. 

The AI-SPRINT framework is designed to work well with Mobile Edge Computing (MEC) platforms based on 
5G access. AI-SPRINT considers scenarios in which the User Equipment (UE) connects to a private 5G network 
to access a private MEC platform or in which the UE connects to a public 5G network and accesses a MEC 
platform via Local Breakout. The AI-SPRINT Secure Network (ASSN) component is responsible for 
implementing granular firewall policy control to restrict the UEs to access only the authorized MEC services 
and vice-versa. The ASSN component consists in a logically centralized Controller and in one or more Data 
Plane nodes. The Controller has the role of identifying the authorized traffic streams, correlating the UE 
identity, the traffic endpoint at the exit of the 5G network, the service entry point in the MEC, and checking 
its authorization in the policy database. Then, the Controller configures the relevant Data Plane nodes to 
allow the authorized traffic and prevent any other unauthorized traffic. 

The AI-SPRINT edge computing platform receives data from IoT devices and can provide access to the 
collected data to multiple users, who can be entities that use the data to perform predictions, they can be 
entities that use the data to train models, or they can be data aggregators. The AI-SPRINT access control 
component makes it possible to automatically authorize access without the need of a central component. 
Instead, the authentication of the entity requesting the data and the authorization to access a specific piece 
of data are managed using a smart contract executed on the Ethereum blockchain. 

In terms of secure booting mechanisms, in AI-SPRINT it will be ensured that every possible hardware as well 
as VM instances are secure Boot-enabled. In addition, hardware root-of-trust security such as TPM will be 
leveraged. Keylime or a similar system could provide a good entry point into TPM-based secure boot 
mechanisms. At the very least, these systems will be implemented in the provided GPU nodes. Furthermore 
edge cloud instances as well as VMs should also automatically be securely booted. Therefore, a separate test 
procedure is included. The state of the art suggests that IoT devices should also be securely booted in the 
future by any means necessary to implement security measures across all levels of data processing. 

 

Tool Motivation  Innovation 
Trusted Execution 
Environments 
 

Traditional isolation techniques 
such as provided through 
operating systems by having 
multiple users etc. and virtual 
machines as typically used in cloud 
environments is not sufficient as 
root users like system 
administrators of a cloud node can 
still inspect memory and gain 
access to credentials by creating 
memory dumps. Trusted 
Execution Environments allow to 
maintain confidentiality and 
integrity of code and data as an 
application can be run in an 
encrypted and isolated memory 
region called enclave such that no 
other users including users with 

Utilizing Trusted Execution Environments 
requires adding certain instructions to an 
existing application in order to load the 
application code in such a trusted 
compartment for an isolated execution. 
While it is possible to integrate the publicly 
available Intel SGX SDK, it requires a lot of 
developer effort as interaction between 
the system calls must be manually 
instrumented. Furthermore, each CPU 
vendor provides its own kind of TEE which 
requires different instruction and manual 
adoption for programs. The goal of AI-
SPRINT is therefore to develop an 
orchestration framework which enables 
running unmodified code in TEEs of 
various vendors such as Intel SGX, ARM 
Trustzone etc. 
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root privileges can read or 
manipulate the data. However, 
using Trusted Execution 
Environments such as Intel SGX 
requires a certain developer effort 
to utilize the new instructions 
provided by processor vendors in 
order to harness these new 
properties. 

The challenge to achieve this goal is to 
provide the same level of protection to the 
end-user regardless of the different 
properties and guarantees each CPU 
vendor with his technology provides. This 
requires a deep analysis of the provided 
functionality of each vendor and 
implementation effort to harmonize the 
different approaches. 
 

Secure Boot 
 

Ensuring the integrity of the 
framework against malicious 
attacks and unauthorized updates 
and guaranteeing to boot the 
correct operating system (OS).  

The integration and use of Secure Boot 
paired with hardware root-of-trust 
measures such as TPM is mandatory for AI 
-SPRINT and will be enabled on servers. 
This adds an additional layer of security to 
the platform. In addition, the SCONE code 
base will provide TEE support for GPUs.  
Secure Boot itself is a security 
enhancement, but also suffers from 
several security vulnerabilities that will 
need to be addressed in the future. It will 
not be possible to address all security 
vulnerabilities within AI-SPRINT, but the 
challenges that need to be addressed are 
the identified policies for Secure Boot 
(e.g., automated upgrade procedures) and 
TPM usage, as well as numerous 
configuration options that should be 
implemented during automated migration 
or hosting of edge and cloud nodes and 
VMs. In addition, current efforts in Secure 
Boot research suggest that Secure Boot 
procedures should also be implemented in 
IoT instances. Another challenge would be 
to implement a procedure that checks if 
Secure Boot itself is enabled, even if the 
TPM confirms it.      

Secure Networks 
 
 

In a 5G Mobile Edge Computing 
scenario, an attacker having access 
to a user device can try to move 
laterally, trying to gain access to an 
unauthorized service, or to an 
authorized service claiming to be a 
different user.   

The component should perform policy 
checking at wire speed. AI-SPRINT will 
achieve this goal by using the P4 language 
for programmable network data plane. 
This will make it possible to deploy the 
component both on lower-end virtual 
switches, for smaller edge scenarios, and 
on high-end programmable hardware for 
high performance scenarios. 

Access Control to IoT 
Data 

Applications that need to access 
data collected from IoT devices 
often require very low latency and 

Addressing the needs of businesses to 
deliver their IoT data to customers at the 
territorial level, while guaranteeing the 
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high availability.  Additionally, 
many businesses want to be able 
to sell the data they collect from 
IoT devices (e.g.,  sensors readings) 
to customers or other businesses 
that operate in the same territory, 
where the data is actually relevant. 

transparency and auditability of enforced 
authentication and access control policies 
thanks to the use of blockchain 
technologies.  This is achieved through the 
implementation of a smart contract 
deployed on the Ethereum blockchain, 
which is then used to provide 
authentication and access control 
capabilities to a web API running in the 
edge node. 

Table 3.4 - Security Policies: motivations and innovations 
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4. Integrated framework 
4.1 Detailed architecture 
 

In this section we provide a more detailed description of the architecture, depicted in Figure 4.1, explaining 
the interactions amongst components and the possible deployments to support the realization of the use 
cases.  

Applications in AI-SPRINT are going to be composed of different parts following the COMPSs task 
programming mode as baseline; such programming model is based on sequential development in which the 
developer is mainly responsible for: i) identifying the functions to be executed as asynchronous parallel tasks; 
ii) annotating them with standard Python decorators. Existing code based on other frameworks (Tensorflow, 
PyTorch, Keras etc) can be also executed as external applications, splitting for example the data and thus 
exploiting the parallelism. To this aim, the EDDL library10,  a library developed within the context of the 
DeepHealth European Project, can be combined with dislib and PyCOMPSs for supporting distributed and 
federated training. Annotations will be extended to allow predicating on components performance and to 
specify constraints on the target deployment. For example, an image processing task can be automatically 
allocated by the design tools on a specific edge server according to the application performance constraints 
(e.g., processing time less than 30 ms). In order to enforce a high-security level for the execution of tasks, 
another annotation will force the code to run in a secure enclave using SCONE to secure the architecture 
runtime (security by design approach).  
Applications will be described as OASIS TOSCA templates describing the topology of their components and 
their software dependencies. Multiple alternative candidate deployments will be evaluated using SPACE4AI-
D, an automated tool to derive, given the QoS constraints, optimal component placement maximizing 
resource efficiency while minimizing the cloud usage cost.  

At the level of the infrastructure, IM is used to dynamically provision the required components for the 
execution of the applications and the AI-SPRINT framework. AI-SPRINT will use Docker containers to 
automate deployment and provide the level of isolation needed to enforce performance constraints with 
minimal overhead. Different target devices will be used as resources, ranging from edge Raspberry PI with 
Minified Kubernetes to OpenNebula clusters with accelerated nodes to perform inference jobs, while batch 
jobs for training of the models will be executed on both private and public clouds. The COMPSs Runtime will 
be used to parallelize the execution of the applications supporting concurrent code execution, automatically 
detecting and enforcing the data dependencies among components and spawning parallel tasks to the 
available resources, which can be nodes in an edge cluster or clouds. COMPSs runtime will also support the 
serverless computing paradigm, and application components or COMPSs workers will be run as event-
triggered functions (for inference in the edge for example) orchestrated within a workflow. To this aim, the 
SCAR framework will be used to detect the availability of fresh data on an object storage and to deploy the 
required containers with COMPSs functions.  

For the scheduling of training tasks on accelerated devices, the rCUDA will be used to manage the efficient 
allocation and sharing of resources minimizing the training costs in terms of energy for the private data center 
or public cloud operating cost. 

The optimal solution identified by the design time tool will be periodically reevaluated in order to account 
for load variations. SPACE4AI-R will evaluate the current status of the system, in terms of incoming loads and 
response times of the different components. According to this, it will provide an updated solution in terms 

 
10 https://github.com/deephealthproject/eddl 
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of components configuration and their deployment on the available resources, optimizing components 
response times and execution costs. Application components migration will leverage Krake and be supervised 
by SPACE4AI-R when performance constraints are introduced, in order to provide better Service Level 
Objectives. In the same way, PyCOMPSs runtime will leverage SPACE4AI-R if performance constraints are 
introduced, otherwise COMPSs tasks will be managed by the COMPSs default scheduler. 

Both the application components and the core elements of the AI-SPRINT runtime will be monitored through 
the AI-SPRINT Monitoring Infrastructure.  The alerting module (implemented as an InfluxDB component) will 
notify of QoS thresholds violations Krake, SPACE4AI-R or COMPSs runtime, according to the application and 
AI-SPRINT framework deployments. 
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Figure 4.1 - AI-SPRINT Detailed Architecture
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4.2 Integration plan 
The integration plan aims at harmonizing the definition of the requirements with the design and 
development phase and ensuring that scientific and technical activities comply with the use cases definition. 
In AI-SPRINT a specific task in WP1 is devoted to these integration activities and has also a design side, though 
it is confined at the level of architectural design, as described in this document. 

The design and implementation of the AI-SPRINT framework are performed by Work Packages WP2, WP3 
and WP4. These WPs develop the tools that will be proposed to WP5 (within the project) and to the world. 
These WPs have the goal of translating WP1 requirements into tools. While executing such activity, they also 
provide valuable feedback to WP1, which enables more precise alignment of the outcome of AI-SPRINT to 
real-world needs; also, such feedback acts as a verification of WP1 results. 

The integration plan is validated through verification activities and milestones in the workplan of the project, 
as depicted in Figure 4.2; the first validation corresponds to WP5 and its goal is validating the output of WP2-
WP4 by using such output to build actual applications. More precisely, the objectives of WP5 are to validate: 
i) the output of WP2 by using it to create AI-based applications (such applications intentionally belonging to 
widely heterogeneous categories, in order to stress the AI-SPRINT framework from different perspectives); 
ii) the output of WP3 by using its tools to deploy, execute, monitor, and operate AI applications preserving 
the privacy of data; iii) the output of WP4 by verifying that the structure and execution of the AI applications 
(and especially of the one concerning healthcare) meet the security requirements set forth by WP4 and 
incorporated first in the requirements generated by WP1, and later into the tools produced by WP2 and WP3. 

 

 

Figure 4.2 - Milestones for components development 

 

A detailed roadmap for each set of components is available in Sections 6.2, 6.3 and 6.4 of the AI-SPRINT 
Deliverable D1.2 - Requirements Analysis document. 
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5. Conclusions 
This deliverable has provided the initial version of the architecture of the AI-SPRINT platform. This document 
is one of the results of the first six months of activities that included the collection of the requirements from 
the use cases (detailed in the Deliverable D1.2) and the selection of the technologies that compose the basis 
of the platform, that have been compared to the current state of the art in the field (deliverable D1.1). These 
activities have involved partners from multiple work packages (WP1, WP2, WP3, WP4, WP5). 

This document has presented the different layers of the AI-SPRINT architecture that include the Design Tools, 
the Runtime Framework, the Deployable Infrastructure and the Security stack. For each of these layers the 
document provides details on the interactions between the components, and it provides a way, through 
sequence diagrams, on how to implement the required use cases. 

The final version of this document will be provided at M24, after completing the different phases of 
developments that will include the feedback of the use cases. 
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6. Appendix A 
 

A.1 Roles in AI Design and Operations 
During the requirements elicitation exercise (Task 1.2 - Requirements Analysis) a number of end-users 
(personas) for the AI-SPRINT framework have been identified.  More details are available in the AI-SPRINT 
Deliverable D1.2 - Requirements Analysis, Section3.  Here we summarize the relevant roles that will be 
involved in the definition of the interactions of the AI-SPRINT assets.    

Role Responsibilities 
Application End User The final end-user an application 
Application Architect Define and review the overall architecture of the application 

Define KPIs (AI and application) 
Review performance and propose improvements 
Define and coordinate development tasks 

Application Developer Execute Development tasks 
Develop and Enhance the software and deploy new versions 

AI Expert ML/AI model design and implementation 
Application Manager Application Management: Monitoring, Change management 

Owner of the CD process 
Infrastructure Provider 
& Sysops 

Setup and Management of the infrastructure runtime environment 

Application/Service 
Provider 

Service Delivery Management of the AI-SPRINT Solutions:  Operational 
Performance, Cost management, SLA management 

Table 2. 1 - AI-SPRINT end-users 

A.2 Design and Programming Abstractions  
 

Summary of the use case 
 

ID DES-UC1 

Title AI applications programming  

Priority Must have 

Actors Application Developer, AI Expert 

Pre-conditions The application developer provides his/her sequential code  

Post-conditions The code is enriched with annotations to provide hints for the scheduling and for 
the design space exploration. 
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Description of interactions 
The definition of the application components in AI-SPRINT is based on the PyCOMPSs programming model 
which follows a sequential paradigm where the application is a plain Python script whose functions are 
annotated by the user; these annotations are used by the runtime to run those parts of code as asynchronous 
parallel tasks. The decorators also contain a description of the function parameters, such as type and 
direction, etc. which is the basic information for building the dependency graph where tasks are represented 
as nodes and data dependencies between tasks as edges. 

Another important feature of PyCOMPSs is the capability to express workflow dynamicity. PyCOMPSs 
workflows are created at execution time from a Python code, so it is very easy to program different workflow 
branches from previously generated values. However, dynamicity can be also generated by failures or 
exceptions. Scientific workflows usually implement hyperparameter searches in huge spaces performing 
loads of simulations with different input parameters. It is very likely that some of these simulations fail, but 
they should not imply a failure in the whole workflow. For those simulation tasks, developers can provide 
hints to ignore these failures, or to cancel their successors. It is also possible that a solution is found before 
finishing all the execution. For this purpose, PyCOMPSs supports parallel try-except blocks where if a specific 
exception is raised in one of the tasks of the block all the remaining tasks will be cancelled. In this way, 
applications made of components deployed on unstable devices in the edge can be executed successfully 
thanks to these fault-tolerance mechanisms. 

The annotated code together with the execution graph generated by PyCOMPSs runtime, are used by the 
SPACE4AI-D tool to provide the type and the number of resources that minimize the cost and the execution 
time. 

 

Sequence diagrams 
 

 

 

Data flows 
Data is provided by the user as annotations in the code to describe the type of parameters and constraints 
on the resources. This information is processed by the PyCOMPSs runtime to perform a matchmaking with 
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the available resources provided as initial set according to SPACE4AI-D. The graph of the execution is then 
sent to the Application Design Space Exploration tool that returns the optimal deployment configuration of 
the application components. 

 

A.3 Performance Models 
 

Summary of the use case 
 

ID DES-UC2 

Title Performance Models Tools 

Priority Must have 

Actors Network Architecture search module, SPACE4AI-D, SPACE4AI-R, GPU scheduler 

Pre-conditions Application profiling has been performed and a model is built through the aMLLib 
library 

Post-conditions Performance models tools return the estimated execution time of an application 
component according to the selected configuration 

 

Description of interactions 
The external tool which needs the execution time estimate (SPACE4AI-D/SPACE4AI-R and the Network 
architecture search module in the diagram illustrated below) provides the target configuration description 
and invokes the performance models tool.  Then the performance models tool, by relying on the aMLLib 
library (https://github.com/eubr-atmosphere/a-MLLibrary), computes the execution time. The interaction 
between the performance models tool and the Network architecture search (NAS) component is more 
complex.  Indeed, the NAS module in its exploration performs a profiling of the target network architecture.  
In this way, the NAS module enriches the training set used by the aMLLib library to re-train the performance 
model regressor that is used under the hood to compute the prediction. 
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Sequence diagrams 
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Data flows 
The data provided to the performance model tool include the component regression model ID and the 
resource target of the deployment description.  The performance model tool returns the estimate of the 
component execution time in seconds.  In the interaction with the NAS module, periodically a new training 
set for the aMLLib is provided and the performance model is retrained. 

  

A.4 AI Models Architecture Search 
Summary of the use case 
 

ID DES-UC3 

Title Neural Architecture Search 

Priority Must have 

Actors Application Designer, AI Expert 

Pre-conditions Data have been collected and labeled or a suitable loss function has been defined 
regarding the data. Requirements for the final deployment of the model have been 
defined and formalized. 

Post-conditions The neural architecture search tool returns a set of possible architectures which 
fulfill the required task and under the constraints defined by the AI Expert and the 
Application Designer. 

 

Description of interactions 
The Neural Architecture Search tool interacts with the AI Expert which will provide the required dataset 
labeled for the specific application and suitable metrics to be optimized by the search tool. The AI-Expert will 
also define the search space for the Neural Architecture Search, possibly limiting the search space herself. 
The Application Developer will define the set of performance constraints for the final model implied by the 
application, e.g., latency, MFlops, memory, power consumption, privacy requirements. The NAS, during the 
search of the optimal architecture will interact with the Performance Models Tool asking for performance 
predictions so to shorten search time, retraining periodically the performance models according to the 
current cells structures (see also the use case in Section A.2). 
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Sequence diagrams 
 

 

 

Data flows 
The data provided to the NAS are a dataset and the loss definition as well as the definition of the search space 
via CLI parameters. Also the resource target for the deployment and the performance constraints are given. 
The NAS module returns a fully trained model to be deployed as part of the application. 

 

A.5 Application Design Space Exploration 
Summary of the use case 
 

ID DES-UC4 

Title Application Design Space Exploration 

Priority Must have 
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Actors Application Architect 

Pre-conditions The Application Architect submits a description of the system, including application 
components and its memory requirements, resources (located in cloud and edge) 
and their available memory (which bounds the maximum number of components 
that can  be  co-located  in  each  device) and costs. The application is modeled as a 
direct acyclic graph (DAG) and it is associated with the expected workload (e.g., 
number of requests per seconds).  Each component is associated with candidate 
resources for its execution and the corresponding  performance demanding time.  
Moreover, local and global performance constraints are specified: Local constraints 
predicate on a single component (e.g., exposure check for a picture has to be lower 
than 100ms) while global constraints involve a set of components that are running 
one after another and are associated with a global threshold. 

Post-conditions SPACE4AI-D explores and finds an optimal solution for the application component 
placement problem (according to candidate resources introduced by the AI 
developer) minimizing the resource cost and satisfying the performance 
constraints. The optimal configuration includes a description that shows the 
placement of each component, provides the estimated execution time of each 
component and the total cost of the system. 

 

Description of interactions 
Application design space exploration is a process to explore and find an optimal solution for the application 
component placement. The system information is submitted by the Application Architect and includes 
application components, candidate system resources, the application model (as a direct acyclic graph - DAG), 
compatibility assignment among components and resources, resource costs, component performance 
demands, local and global constraints. Application components are organized in computational layers which 
include a set of candidate resources that can be selected and which allow to specify the characteristics of the 
networks that connect edge and cloud.  

SPACE4AI-D, explores and finds the optimal solution for the application component placement problem 
minimizing the resource cost and satisfying the performance constraints. SPACE4AI-D returns the optimal 
configuration and resource cost to the Application Architect who then edits the TOSCA template according 
to the optimal configuration found. The Application Architect then sends the TOSCA template to the 
Infrastructure Manager (IM) server which finally deploys the application on the target system. 
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Sequence diagrams 

 

Data flows 
The main data items consist of the description of the system including components’ name and their memory 
requirements, computational layers and the resources located on them. Resources are characterized by some 
properties like name, type (edge or cloud), memory, the number of available instances and cost. Moreover, 
the SPACE4AI-D description file associates each component with the compatible resources which can support 
its execution and introduces components performance demands.  Moreover, the description file also 
includes the list of local and global constraints and DAG application model, associating each node of the DAG 
(representing a component) with the transition probabilities and data transfer requirements. The optimal 
configuration consists of the description of the optimal placement which shows (in the same format of the 
input description file) the resources allocated to each component. The last element involved in this scenario 
is the TOSCA template which is edited by the Application  Architect according to the optimal configuration 
found.  

 

A.6 Deployment tools 
The requirements analysis from the use cases described in AI-SPRINT Deliverable D1.2 - Requirements 
Analysis results in the following scenarios regarding the automated deployment of virtual infrastructure. 

 

Summary of the use case 

ID RUN-UC1 

Title Deployment tools 

Priority Must have 

Actors Application Manager, Infrastructure Provider 

Pre-conditions An end user submits a deployment request to provision an application /  virtual 
infrastructure from an IaaS Cloud provider/private cloud. The deployment request 
is specified as a TOSCA template directly to the IM server. Alternatively, the user 
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selects the application / virtual infrastructure  from the IM dashboard, which builds  
the TOSCA template and delegates it to the IM server. 

Post-conditions The virtual infrastructure together with the application running inside will be 
automatically provisioned from the IaaS Cloud/private cloud. The user will receive 
access credentials to that infrastructure or the endpoint to the application. The user 
will be able to manage the lifecycle of the virtual infrastructure. 

 

Description of interactions 
Provisioning virtual infrastructure from several IaaS Clouds requires interacting with their different APIs and 
introducing automated means to perform configuration and application deployment. The deployment tools 
involve mainly three components: the Infrastructure Manager (IM) server, which performs the automated 
deployment and configuration of virtual infrastructures supporting the TOSCA specification; the IM 
dashboard, which provides a simplified web-based GUI for the end users to select predefined application 
recipes that can be partially configured by the end-user before its deployment on the IM and, optionally, EC3 
a client-side tool for the IM that focuses on the deployment of elastic virtual clusters that can grow and shrink 
depending on the workload.  

The first sequence diagram illustrates how a user performs the deployment of an application and virtual 
infrastructure on an IaaS Cloud. First, the user authenticates with the IM dashboard and defines the IaaS 
Cloud access credentials of all the Cloud providers that will be used.  Second, the user chooses the 
application, provides input information in case of parameterised TOSCA templates and selects the IaaS Cloud 
on which the application and the virtual infrastructure will be deployed. This results in a TOSCA template that 
is built and submitted to the IM server. Programmatic access via the IM server’s REST API or via the IM CLI 
will start from this step. The IM server performs a syntactic analysis and contacts the IaaS Cloud’s native API 
in order to provision and configure the VMs (Virtual Machines) that will support the execution of the 
application. Once deployed, depending on the configuration of the TOSCA template the IM dashboard will 
show the application’s endpoint to be accessed by the end user or provide access details to the underlying 
VMs through SSH. The user will be able to manage the lifecycle of the virtual infrastructure by adding and 
removing nodes (not shown in the diagram because the infrastructure may feature automated elasticity). 
Finally, the user triggers the termination of the infrastructure which results in releasing the required 
resources. 

The second sequence diagram describes the deployment of an elastic virtual cluster using EC3 using CLUES 
as the elasticity manager to decide when to add or remove additional working nodes of the cluster depending 
on the workload. First, the user employs the EC3 client to submit a TOSCA template to the IM server, in 
charge of provisioning the required VMs from the IaaS Cloud, and configures them as a cluster. Several types 
of clusters are supported such as Kubernetes or SLURM. The user receives access credentials to the cluster 
front-end node via SSH, from which the user can submit batch processing jobs. The CLUES elasticity manager 
monitors the number of pending jobs at the LRMS (Local Resource Management System) in order to decide 
when to scale out and scale in, in terms of number of nodes and according to a set of pre-configured elasticity 
rules. CLUES contacts the IM server to provision additional nodes (typically a specific instance of the IM server 
installed within the front-end node of the cluster so that the cluster is self-managed). These nodes are 
automatically integrated in the LRMS to cope with the increased number of pending jobs. Once the LRMS is 
empty the nodes are terminated (not shown in the diagram). Finally, the user can terminate the cluster 
resulting in the elimination of the resources provisioned. 

 



 

 
  

D1.3 Initial Architecture Design 
 

39                                                                                                                                                      www.ai-sprint-project.eu 

 

Sequence diagrams 
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Data flows 
The main data flow consists in the description of the application architecture by means of a TOSCA template. 
Also, user credentials to the underlying IaaS Cloud are required to perform the provision of Virtual Machines. 
VM identifiers are received by the IM and employed in order to manage the lifecycle of virtual infrastructure 
by the user. 

 

A.7 Monitoring tools 
 

The requirements analysis from the use case results in the following scenarios regarding the monitoring of 
the cluster and deployed applications. 

Summary of the use case 
 

ID RUN-UC2 

Title Monitoring of the running applications 

Priority High 

Actors Application Manager, Infrastructure Provider & Sysops 

Pre-conditions Applications are provisioned and running in the infrastructure. 

Post-conditions Application metrics stored in the monitoring infrastructure. Subsystems responsible 
for application management informed about spotted anomalies. Application 
Manager & Sysops can view system’s statistics and collected metrics in the 
dedicated web UI. Appropriate subsystems can query and analyse stored data. 

 

Description of interactions 
The monitoring infrastructure will consist of: (i) a central InfluxDB cluster (plus additional tools) responsible 
for storing and analysing data, and (ii) various components (SDK libraries or Telegraf) responsible for 
gathering data, deployed with monitored applications. These components will use data provided by 
applications and their environments, to generate data entries containing metrics. Metrics are then sent to 
InfluxDB. The general rule is that an application should not “know” that it is monitored by this specific 
infrastructure. It should only provide metrics, using - usually - mechanisms provided by standard application 
frameworks or common libraries. This is a typical “pull” scenario, when monitoring decides when to read 
data from monitored applications. In such a case data gathering is performed periodically. The other (rare) 
“push” scenario is implemented when metrics generated by application must not be lost and are expected 
to be stored in the monitoring data storage. In this case, the application sends data using a dedicated SDK. In 
such a scenario the application also has to  provide necessary metadata so the monitoring subsystem 
properly classifies and stores data. 

In the InfluxDB, one can define special rules which can be checked using gathered time-series data. External 
systems can be notified when a rule has been violated. 
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Sequence diagrams 

 

 
Data flows 
Metrics consist of field values (usually numbers, but they might also be short texts) and additional tags (labels, 
key-value pairs). This data record can be interpreted as a value describing the state of a specific instance of 
the application. Provided tags help distinguish among data collected from many, different instances of the 
same application. In case of a “pull” scenario, data is fetched by a monitoring component responsible for 
data gathering on the client side, and then “enriched” with a timestamp. Then it is stored in the data queue 
and then sent to InfluxDB using the appropriate API. In the case of “push” scenario, the application decides 
when to send metrics. The SDK is responsible for “enriching” the data with timestamp and sending collected 
data to the monitoring system.  

InfluxDB receives and stores data. Data stored in the database can be queried and analysed using the Flux 
query language. 

 

A.8 Programming framework runtime  
 

Summary of the use case 

ID RUN-UC3 

Title Training of models 

Priority Must have 

Actors AI Expert 

Pre-conditions The AI Expert submits the training of a model, developed using the Design Time 
Tools,  in batch mode on a cloud cluster 
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Post-conditions Application’s components are deployed on the target platform and resources 
assigned to the runtime for execution. The model is trained and saved in a storage. 

 

ID RUN-UC4 

Title Inference of pre-trained models 

Priority Must have 

Actors AI Expert 

Pre-conditions The availability of new data coming from the field triggers the execution of 
inference functions on an existing trained model.  

Post-conditions Application’s components are deployed on the target platform and resources 
assigned to the runtime for execution. Output data of the inference process are 
stored back in the storage. 

 

Description of interactions 
The Programming Framework Runtime, based on PyCOMPSs, offers an interface where to request the 
execution of functions that will run either on the computing resources embedded on the host device or 
transparently offloaded onto other nodes on the cloud-edge continuum. The entry-point to the agent is its 
API which offers methods for requesting the execution of a function with a certain parameter value and 
performing resource pool modifications. Users or applications request a function execution detailing the logic 
to execute, the resource requirements to run the task, the dependencies with previously submitted tasks 
and the sources where to fetch the data involved in the operation.  Upon  the  reception  of  a  request,  the  
API  directly  invokes  the  COMPSs runtime system. The goal of this runtime is to handle the asynchronous 
execution of tasks on a pool of resources. To achieve its purpose, the runtime has four main  components. 
The  first  one,  the  Resource  Manager  (RM),  keeps  track  of the computing resources – either embedded 
on the device or on remote nodes– currently available. Upon the detection of a change in the resource pool, 
the RM notifies all the other components so they react to the change. If dynamic resource provisioning is 
enabled, this component should also dynamically adapt the  reserved  resources  to  the  current  workload.  
The  second  component  is  the Task Scheduler (TS). Its purpose is to pick the resources and time lapse to 
host the execution of each task while meeting dependencies among them and guaranteeing the exclusivity 
of the assigned resources. The scheduling policy followed by the TS is selected at start time, and can be 
replaced by new policies since they are implemented in a plug-in fashion. The Data Manager (DM), the third 
piece of the runtime, establishes a data sharing mechanism across the whole infrastructure to fetch the 
necessary input data to run the task locally and publish the results. The last component, the Execution Engine 
(EE), handles the execution of tasks on the resources. When the TS decides to offload a  task  to  a  remote  
agent,  the  EE  forwards  the  function  execution  request  to the  API  of  the  remote  agent.  Conversely,  if  
the  TS  determines  that  the  local computing devices will host the execution of a task, the EE fetches from 
the DM all the necessary data missing in the node, launches the execution according to its description and 
the assigned resources, and publishes the task results to the DM. It is during the task execution when the 
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task-based programming models take the scene and convert the logic of the method into a workflow 
composed of tasks whose execution will be requested to the same agent. 

The first sequence diagram illustrates the execution of a training process initiated by an AI Expert. The 
application components, annotated using the design tools, are deployed on the target platform on a set of 
virtual nodes and the PyCOMPSs runtime takes care of their orchestration and parallelization. The results of 
this process is a trained model that can be exported and used for inference phases. 

The second sequence diagram depicts the triggering of inference functions due to the availability of new data 
to feed the model. In this case the OSCAR framework is responsible for the deployment of the containers on 
a virtual cluster in the edge. The PyCOMPSs runtime is activated, the model is loaded and the proper functions 
are invoked in a FaaS style. Output data is made available in the object storage and resources are released. 

Sequence diagrams 
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Data flows 
In the case of the model training the data flows consist in the input data of the model and in the output 
trained model available in a standard format. For the inference case, data is generated in the edge by a sensor 
or instrument and provided as input of a trained model. Output data is saved back in the storage.  

 

A.9 Federated Learning 
Summary of the use case 
 

ID RUN-UC5 

Title Federated Learning 

Priority Must have 

Actors AI Expert 

Pre-conditions A model has been defined to be trained either via expert knowledge or via the NAS 
module applied to a subset of data. A set of peers devices has been selected for 
training, including their datasets and the loss function. 

Post-conditions A centralized model has been trained leveraging the dataset of the pears, no data 
has been exchanged among the peers. 

 

Description of interactions 
The AI Expert defines the models to be trained based on his previous knowledge and some data, possibly 
simulated. In this initial architecture definition she can also use the Neural Architecture Search model on the 
data she has for the design of the architecture. Once a model to be trained is defined this is sento to the 
Federated Learning algorithm which stores the master model centrally and sends a copy  to the peers in order 
for them to train their own copy with their own data. To do such, each peer computes the local error with 
respect to its dataset and the corresponding gradients. In case the implementation uses model averaging the 
model is updated and the weights are sent to the centralized model for averaging. otherwise only gradients 
are sent instead of the full model. To preserve privacy, mode weights or gradients are corrupted with samples 
from a zero mean so that the overall gradient can be recovered via weight/gradient averaging, but model 
inversion for each of the local models is not possible. 
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Sequence diagrams 

 

 

Data flows 
Architectural description of the model to train is sent to the Federated Learning module, then the Federated 
Learning module sends a copy of the centralized model to each of the peers. The peers send to the Federated 
Learning model either their local models weights or the computed gradients. The Federated learning model 
returns a fully trained model to the AI Expert. 
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A.10 Scheduling for accelerated devices  
Summary of the use case 
The requirements elicitation of D1.2 considers led to the following use case for the scheduling for accelerated 
devices components. 

ID RUN-UC6 

Title Scheduling for accelerated devices 

Priority Must have 

Actors AI Expert 

Pre-conditions The AI expert submits one or more training jobs to an in-house private GPU based 
cluster or to a public cloud.  Training jobs are provided as Docker containers. 

Post-conditions Jobs are executed minimising operation costs.  If the cluster is idle for more than 15 
minutes it will be deallocated.  In case of disaggregated hardware resource 
configurations, remote GPUs are accessed through rCUDA 

 

Description of interactions 
The scheduling of training jobs is a result of a sophisticated process, which is carried out by the Scheduling 
for accelerated devices component. The component includes three main modules: the Job Manager, the Job 
Profiler, and the Job Optimizer. The Scheduling for accelerated devices relies on rCUDA when disaggregated 
hardware resource configurations are considered. Training applications are submitted by AI experts in the 
form of Docker images. The Job Manager receives the users’ requests and orchestrates the execution of the 
submitted jobs as follows. In case of private deployments, if the job has never been executed before, the Job 
Profiler is invoked to collect information about the expected per-epoch execution time of the submitted job 
on the different resources available in the system. One free node (characterized by a given type and number 
of GPUs) is dedicated to collect these data, which are then stored in a database (in case no idle nodes are 
available, the job profiling is postponed until one among the running jobs will end).  Per-epoch time will also 
be updated after the training job finishes. If the cluster is heterogeneous (i.e., it includes nodes with different 
CPU or GPU types), multiple nodes can be engaged in profiling activities. The collected profiling data, together 
with a description of the system, with all available nodes, are provided to the Job Optimizer, which is in 
charge of selecting the optimal deployment for the submitted jobs. In particular, the Job Optimizer 
determines which resource configuration should be used to deploy and run the different jobs. If the resources 
available in the system are insufficient to run all jobs concurrently, some of them are preempted, and their 
execution is postponed. The Job Optimizer is invoked by the Job Manager periodically, or in reaction to re-
scheduling events (i.e., a new job submission or completion). The Job Manager deploys the jobs according to 
the optimization results, migrating the ones in progress among different GPUs if necessary. 

In case of public cloud deployments, if no VMs are already running at the time of the job submission, the VM 
identified by the Job Optimizer will be deployed through IM.  If the cluster is idle for more than 15 minutes it 
will be deallocated.  

The first sequence diagram illustrates how an AI expert puts the process in motion in a private cloud.  The 
end user initially submits job1 which was never run on the system before.  Then the Job Manager sends a 
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request to the Job Profiler to determine the execution time of a few epochs on a profiling node.  Once the 
job1 performance profile is available, the optimal configuration is identified by the Job Optimizer and job1 
execution starts.  In the following, the end user submits job2.  In this case, job2 was already run in the system 
and hence the profiling phase can be skipped.  The Job Manager directly invokes the Job Optimizer which 
decides to change the configuration of job1 and to start the execution of job2 on the same node.  When job1 
ends, job1 performance profile is updated and job2 configuration is changed by the Job Manager (e.g., 
allocating all the GPUs available on the selected node).  When job2 ends, its performance profile is updated.   

The second sequence diagram illustrates a public cloud deployment scenario under the assumption that the 
jobs profiles are already available. In that case, the first VM is initially deployed by IM.  When also job2 is 
submitted to the system, the Job Optimizer decides to allocate a different VM which will be shared by job1 
and job2.  When job1 ends, job2 will use all the available GPUs.  After 15 minutes from job2 termination, the 
VM will be deallocated by IM.  

Finally, the last sequence diagram considers a private cloud deployment under the assumption that the job 
profile is already available but the system is based on a disaggregated resource configuration and GPUs are 
accessed remotely through rCUDA. In this case, first a VM for the rCUDA client and one with the remote GPU 
onboard are started by IM. Then, prior to executing the application (let’s say job 1), the Job Manager needs 
to ask the rCUDA scheduler for the appropriate GPUs to be used and the GPU memory demanded by the 
application. As response to Job Manager request, the rCUDA scheduler provides the right configuration to be 
used when the application “job 1” is later run with rCUDA. This configuration is provided as the set of rCUDA 
environment variables to be used during the execution of the application. Finally, once the application ends, 
the Job Manager contacts the rCUDA scheduler in order to inform it about the completion of job 1, so that 
the rCUDA scheduler releases the previously allocated resources. As in the previous scenario, if no other jobs 
are submitted in the next 15 minutes the rCUDA client and server VMs are undeployed. 



 

 
  

D1.3 Initial Architecture Design 
 

48                                                                                                                                                      www.ai-sprint-project.eu 

 

Sequence diagrams 
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Data flows 
The main data items to flow through these scenarios consists of the description of the configuration of the 
system (physical nodes in case of private clouds, candidate VMs in case of public cloud), the TOSCA recipes 
of the VMs to be started,  the jobs performance profile data and jobs due dates. In particular, physical nodes 
are characterized by the number of free and total GPUs available.  In case of public clouds, running VMs are 
characterized by similar data while candidate VMs types are associated also by the hourly cost. Jobs profiling 
data include the time to perform one epoch under a given configuration (including the batch size) and the 
associated cost (which includes energy and cooling cost of the system) in case of private clouds. Notice that 
in this scenario it is possible to take advantage of remote GPU virtualization in order to reduce the amount 
of GPU resources required by concurrently sharing the available GPUs among multiple applications.  

 

A.11 Privacy preserving continuous training 
Summary of the use case 
 

ID RUN-UC7 

Title Continuous training 

Priority Must have 

Actors Application Manager 
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Pre-conditions A new model is available and the monitoring system has triggered an update of the 
application.  

Post-conditions The application is updated with the new model, either because the weights of the 
model have been updated or because the new application has been reoptimized 
and redeployed. 

 

Description of interactions 
Based on some monitoring rule the retraining of a model is triggered, the IM triggers the training procedure 
and once the model is available it updates the application. The model could be trained on demand or it could 
be already available, this is totally transparent to the IM. Once the new model is available, the IM has two 
options; if the retraining has just updated the model weights these are reloaded in the application after 
pausing the inference and triggering a weight reload. If a totally new model is available the overall application 
deployment is re-optimized and the new application is redeployed by the IM. 
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Sequence diagrams 

 

Data flows 
The Monitoring system triggers the IM for a model update. The IM requests the new model to the Training 
Facility which returns a new model. If the new model is just a new set of weights, the application is stopped 
and the weights are reloaded. If the model is a totally new one the application is replaced after optimization. 
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A.12 Application reconfiguration  
Summary of the use case 
 

ID RUN-UC8 

Title Application reconfiguration 

Priority Must have 

Actors Monitoring Infrastructure alerting module 

Pre-conditions AI application components are running with given configurations, on a system 
involving edge and cloud resources. The system status, including components 
response times and execution costs, should be periodically reevaluated to account 
for load variations. These, inducing resource saturation or underutilization, may 
have a strong impact on costs and/or the fulfillment of QoS requirements. 

Post-conditions SPACE4AI-R determines a new optimal solution for the system under study, 
adapting the current assignment in terms of application components configurations 
and resources to the current load. The new optimal solution may include changing 
the components configuration, and/or scaling the number of cloud VMs used to run 
specific components and migrating some components from edge to cloud or vice 
versa. 

 

Description of interactions 
The application reconfiguration process is executed periodically to monitor the status of the system and to 
react to load variations at runtime. This process is in charge of the SPACE4AI-R tool which includes two main 
modules: the Application Manager and the Application Optimizer. Moreover, SPACE4AI-R relies on IM to 
deploy additional physical resources on cloud or edge and on Krake for component migrations.  SPACE4AI-R 
invokes the monitoring tools, which provide a description of the current system status, in terms of execution 
time of the running components and resource consumption (e.g., CPU utilizations). According to this 
information, SPACE4AI-R checks whether QoS local and global constraints (namely, requirements on the 
maximum admissible response times of single components or sequences of components) are satisfied. If any 
constraint is violated, the application manager invokes the application optimizer to determine a new optimal 
solution, adapting the current one to the actual load, and providing the updated deployment description to 
the Infrastructure Manager (IM) server. The IM server deploys the optimal solution on the target system, or 
invokes Krake to perform the component migrations, if required. 
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Sequence diagrams 

 

 

Data flows 
The main data flows involve the application metrics, required by the SPACE4AI-R tool and provided by the 
Monitoring tools, the TOSCA template, which is provided to the IM server to deploy the required 
configurations on the target system, and Krake application resource manifest file, provided to Krake in order 
to perform the required components migrations. 

 

A.13 Trusted Execution Environments 
Summary of the use case 

ID SEC-UC1 

Title Provide a secure execution environment for AI applications 

Priority High 

Actors Application End User 
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Pre-conditions File as well as network encryption is mandatory while running a process in an 
enclave is optional and based on the hardware capability. 

Applications/processes need to be sconified, i.e., are either provided as Alpine Linux 
binaries as docker containers or available as source code for cross compilation. 
Furthermore, security policies must be provided that define what files and network 
connections should be encrypted. 

Post-conditions The application code as well as its data read from a file system (data at rest) or 
network connection are confidentiality as well as integrity protected. 

 

Description of interactions 
The application is launched. The launch consists of two steps: First, the binary will launch the starter code 
which allocates the enclave memory (a trusted compartment). The enclave memory will then be filled with 
the application code and data that we will refer to as enclave in the following. Once the allocation succeeded, 
the application code as well as data will be moved into the enclave memory. The application code will then 
be attested by creating a measurement in order to ensure that the code was not modified while loading into 
the trusted compartment. Furthermore, using the TEE’s instruction of the CPU vendor, the hardware 
capabilities are checked to ensure that the enclave will run indeed on genuine hardware which provides the 
necessary protection. Once these tests succeed, the application code within the enclave will be launched, 
i.e., the enclave is started. 

After the enclave start, the application connects to a central entity CAS which is a Configuration and 
Attestation Service for secret and certificate provisioning purposes etc. After verification of  the application’s 
identity, the service will provide the application with the necessary secrets in order to perform encryption as 
well as decryption operations on either file system or network level in order to read/write from/to files and 
send network packets in a secure manner. 

Note that the information about what encrypted volume to encrypt/decrypt and to what other services the 
applications are allowed to establish connections to is defined through so called security policies stored at 
CAS. The information is further partly extracted from IM etc. during the deployment of applications onto the 
infrastructure. 
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Sequence diagrams 
 

 

Data flows 
 

The attestation workflow is bidirectional between the enclave and the CAS. Furthermore, secret 
injection/provisioning is done in a similar manner after successful attestation of the  application/process.  

After a successful application setup, the communication is mostly between the parties defined in the same 
policy stored within CAS which includes storing and reading information from encrypted volumes using the 
file protection shield etc. 
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A.14 Secure Networks 
Summary of the use case 
 

ID SEC-UC2 

Title Microsegmentation in the 5G Local Breakout 

Priority Must Have if using 5G Local Breakout 

Actors Application Manager, Infrastructure Providers 

Pre-conditions Service is deployed on a 5G Mobile Edge Computing (MEC) platform using Local 
Breakout (3GPP N6 interface). Client nodes are deployed on 5G devices. 

Post-conditions User devices can connect only to the allowed AI-SPRINT service. 

 

Description of interactions 
There are two phases. In the first phase, shown in the first sequence diagram, the Application Manager and 
the Infrastructure Provider provide the descriptions of the new service and of the devices allowed to access 
it. In the second phase, shown in the second sequence diagram, the service is already deployed and a 5G 
device tries to access it. 

In the first phase, the Application Manager provides an application description file with the indication of the 
name of the service and the service entry point to the Mobile Edge Computing platform, typically an IP 
address and a TCP port number. Then, the  Infrastructure Provider enrolls each 5G User Equipment (UE) that 
is allowed to use the service by adding the identifier of the SIM card to the Policy Server. 

Later, in the second phase, when the 5G UE first accesses the service by sending an IP packet, typically a TCP 
SYN packet, to the address of the service entry point, the node executing the 5G User Plane Function (UPF) 
sends a copy of the packet to the Policy Server. The Policy Server verifies that the packet comes from an IP 
address assigned to an authorized 5G UE and deploys traffic routing and filtering rules between the UPF and 
the service entry point. These rules are deployed to any switch or router between the UPF and the MEC 
(indicated in the Sequence Diagram as Local Breakout Data Plane nodes) and on the nodes executing the UPF 
and the MEC. 

Once the rules are deployed on the nodes, the packet is forwarded to the entry point. 
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Sequence diagrams 

 

 

 

 

 

Data flows 
In the first phase, data flow is in one direction, from the Application Manager and from the Infrastructure 
Provider to the Policy Server. Such data consists in the description of the service (e.g., a Kubernetes 
deployment file) and in a list of authorized devices (e.g., a list of SIM identifiers). 

In the second phase, the data flow consists in a 5G UE performing a TCP active open to the service endpoint. 
This TCP segment exits the 5G network at the UPF located at the MEC premises (this operation is called “Local 
Breakout”) and is routed to the entry point of the MEC cluster through the 3GPP-defined interface N6. Such 
an interface can either be an unstructured IP network or can be an IP network transporting point-to-point 
overlay tunnels between the UPF and the MEC. In the AI-SPRINT network model, we assume that it is an SDN 
network that can be configured by using an SDN controller and that it consists of a number of Data Plane 
nodes that can be programmed using the P4 language. When the TCP packet reaches the UPF interface and 
no rule is already in place to forward it, it is sent to the Policy Server, which also serves as the SDN controller. 
In case the packet is allowed, the Policy Server deploys the necessary rules to forward it to the service and 
to forward any answer from the service to the 5G UE. After successful deployment of the traffic filtering rules, 
the traffic is bidirectional and does not involve the Policy Server. 
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A.15 Secure Boot 
Summary of the use case 

ID SEC-UC3 

Title Ensuring Secure Boot processes and establishing TPM (Trusted Platform Module) 
usage 

Priority Must have 

Actors Application End User 

Pre-conditions Secure Boot needs UEFI firmware to be enabled, servers need a TPM to use 
hardware based TPM, without both the system could be more likely infected by 
malware. A boot process is performed successfully even if the system is infected. 

Post-conditions By setting up Secure Boot, the system is secured by signature verification of every 
booting software. The TPM, on the other hand, extends Secure Boot with 
cryptographic services like hashes or encryption. The TPM stores these hashes or 
encryption keys in a separate memory. The boot process of an infected or 
incorrectly configured system is interrupted. 

 

Description of interactions 
The process of Secure Boot starts each time an instance like a GPU-node or a VM is started. In the process 
Secure Boot checks every signature against a specific private key, which the developer of the booting 
software used to sign the code beforehand. The public key of the matching private key will be used to verify 
the origin of the software. This happens before anything else in the boot process is executed. If a check fails, 
the entire boot process is aborted. If the checks are successful, the firmware hands over control to the booted 
operating system. It is important to note that both the Secure Boot process and the TPM must be well 
configured to ensure adequate security. 
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Sequence diagrams 
 

 

 

Data flows 
The data that is sent consists mainly of keys and certificates that are bound locally to the cloud, edge or VM 
instance side. Since Secure Boot mostly uses asymmetric cryptography, the keys are stored locally in 
"signature databases" which are integrated in the UEFI firmware. These keys are only transferred between 
these different databases, the TPM and the booted components. No data from the Secure Boot process is 
published outside the process or instance. 

 


