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Abstract: Neurovascular coupling (NVC) is the process associating local cerebral blood flow (CBF)
to neuronal activity (NA). Although NVC provides the basis for the blood oxygen level dependent
(BOLD) effect used in functional MRI (fMRI), the relationship between NVC and NA is still unclear.
Since recent studies reported cerebellar non-linearities in BOLD signals during motor tasks execu-
tion, we investigated the NVC/NA relationship using a range of input frequencies in acute mouse
cerebellar slices of vermis and hemisphere. The capillary diameter increased in response to mossy
fiber activation in the 6–300 Hz range, with a marked inflection around 50 Hz (vermis) and 100 Hz
(hemisphere). The corresponding NA was recorded using high-density multi-electrode arrays and
correlated to capillary dynamics through a computational model dissecting the main components
of granular layer activity. Here, NVC is known to involve a balance between the NMDAR-NO
pathway driving vasodilation and the mGluRs-20HETE pathway driving vasoconstriction. Simu-
lations showed that the NMDAR-mediated component of NA was sufficient to explain the time
course of the capillary dilation but not its non-linear frequency dependence, suggesting that the
mGluRs-20HETE pathway plays a role at intermediate frequencies. These parallel control pathways
imply a vasodilation–vasoconstriction competition hypothesis that could adapt local hemodynamics
at the microscale bearing implications for fMRI signals interpretation.

Keywords: cerebellum; neurovascular coupling; granule cells; nitric oxide; NMDA receptor

1. Introduction

Neurovascular coupling (NVC) comprises mechanisms that link neuronal activity
(NA) and vascular motility, adjusting the cerebral blood flow (CBF) to the energy demand
of neural tissue. In the last couple of decades, increasing attention has been devoted
to addressing NVC mechanisms, both in physiological and pathological conditions. The
metabolic hypothesis, with the rapid glucose and oxygen consumption by active neural cells
driving blood vessel responses, has long been considered the basis for the interpretation
of blood oxygen level dependent (BOLD) signals recorded using functional magnetic
resonance imaging (fMRI). However, the cellular and molecular mechanisms involved
have not yet been clarified [1–4], and the validity of this hypothesis was undermined by
several observations where CBF was not directly linked to changes in oxygen or glucose
concentration [5–7]. Further studies supported the neurogenic hypothesis, in which CBF
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changes are determined by direct signaling through molecules released by neurons or glial
cells [8–10]. Interestingly, the role of astrocytes in determining the vascular tone has been
emphasized in the set-point hypothesis, balancing dilation and constriction to maximize
vessel responses to NA [11]. Additional mechanisms as intrinsic vascular properties are
involved as well [12] and might contribute to region-specific differences [13]. Finally,
differences in vasodilation and vasoconstriction agents have been described throughout
the brain [14]. It is highly likely that all these microscale mechanisms intervene to some
extent in determining the CBF changes following neuronal activation, probably with
different relevance depending on the region involved [7], complicating the interpretation
of macroscale phenomena like the BOLD signal [3,15].

In the cerebellum, NVC shows particular properties. The densely packed granular
layer is the main determinant of changes in cerebellar energy consumption and the granule
cells, which are NOergic and release nitric oxide (NO) in both the granular and molecular
layers [16,17], are likely to be the primary controllers of NVC [18–20]. Vasodilation in the
granular layer is entirely mediated by neuronal N-methyl-D-aspartate receptor (NMDAR)-
dependent production of NO, while the main vasoconstriction pathway is the metabotropic
glutamate receptors (mGluRs)-dependent production of 20-hydroxyeicosatetraenoic acid
(20-HETE), presumably released by astrocytes [21] and blocked by NO itself [8]. Vasodila-
tion and vasoconstriction pathways likely converge on pericytes, in agreement with their
role in controlling microvessel caliber and initiating the BOLD signal [22,23]. A possible
NVC region specificity was recently suggested by the evidence of different BOLD responses
in the cerebellar cortex during the execution of intensity-graded grip force motor task in
humans, with the most substantial effects appearing in vermis lobule V and hemisphere
lobule VI [24,25], but it is unclear whether these differences simply reflect different cortical
inputs or local NVC factors. Moreover, reports of non-linear BOLD response alterations due
to pathology such as multiple sclerosis make understanding NVC factors very important
for explaining the mechanisms of disease [26,27].

Several studies reported a direct correlation between NA and blood perfusion, where
NA is measured as the summed local field potentials (∑LFP) evoked during electrical or
sensory stimulation [28–36]. Generally, the stimulus-evoked changes in CBF (or related
parameters) linearly correlate with NA at increasing activation rates. Non-linearities
were reported mainly as a ceiling-effect due to a saturation of CBF increase at certain
frequencies or stimulus amplitudes [28–30,37,38], usually with increasing perfusion at
increasing frequencies. Interestingly, few cases have been reported of perfusion decreasing
at higher frequencies, well-explained by the corresponding decrease of ∑LFP [33,36]. In
summary, the studies so far reported a linear correlation of blood perfusion with NA, with
some non-linearity mainly due to structural limitations of vessel motility.

Here, we investigated NVC in the granular layer of acute cerebellar slices by elec-
trically activating mossy fibers at 6 to 300 Hz and measuring capillary diameter changes
and NA responses in the vermis lobule V and the hemisphere lobule VI. NVC increased
with frequency but showed a marked inflexion at intermediate frequencies that was not
attributable to saturation of the effect. An advanced realistic computational model of the
granular layer was used to dissect the NA features best correlated with vessel responses,
confirming the key role of NMDAR in determining the time course of vessel dilation.
Unexpectedly, NA-related parameters (including ∑LFP) were not sufficient to explain
the specific frequency-dependence profile of cerebellar NVC, suggesting that additional
mechanisms might be involved. The hypothesis of an NA-driven frequency-dependent
competition between vasodilation and vasoconstriction pathways was therefore proposed
as a hypothesis and thoroughly discussed.

2. Materials and Methods

Animal maintenance and experimental procedures were performed according to the
international guidelines of the European Union Directive 2010/63/EU on the ethical use
of animals and were approved by the local ethical committee of the University of Pavia
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(Italy) and by the Italian Ministry of Health (authorization n. 645/2017-PR and following
art.1, comma 4 of the D.Lgs.n. 26/2014 approved on 9 December 2017). According to this
authorization, the sample size was estimated a priori using G*Power software (Wilcoxon–
Mann–Whitney test, effect size 1.5, significance level 0.05) yielding an actual Power of 0.82.
Reporting complies with the ARRIVE guidelines (Animal Research: Reporting in Vivo
Experiments).

2.1. Preparation of Acute Cerebellar Slices

Acute 220 µm parasagittal cerebellar slices were obtained from juvenile (17–23 days
old) C57BL/6 mice of both sexes, as reported previously [21,39–41] (see Supplementary
Materials for details), from both the vermis and hemisphere. Slices were recovered for at
least 1 h in Krebs solution before being incubated for 1 h with 75 nM U46619 (Abcam, Cam-
bridge, United Kingdom), a thromboxane agonist. For recording, slices were transferred
to the recording chamber of an upright microscope (Slicescope, Scientifica Ltd., Uckfield,
United Kingdom) or the HD-MEA (BioCAM X, 3Brain AG, Wädenswil, Switzerland),
where Krebs solution was perfused (2 mL/min), maintained at 37 ◦C, and combined with
75 nM U46619. Krebs solution for slice cutting and recovery contained (in mM): 120 NaCl,
2 KCl, 1.2 MgSO4, 26 NaHCO3, 1.2 KH2PO4, 2 CaCl2, and 11 glucose, equilibrated with
95% O2-5% CO2 (pH 7.4). All drugs were obtained from Sigma-Aldrich (Merck KGaA,
Darmstadt, Germany), unless otherwise specified.

2.2. Immunofluorescence Staining

Pericytes and capillaries were stained in the granular layers of the cerebellar vermis
and hemisphere slices as previously described [21,42], focusing, respectively, on lobule V
and lobule VI (see Supplementary Materials for details). The rabbit anti-NG2 chondroitin
sulfate proteoglycan (Millipore, Merck KGaA, Darmstadt, Germany) and FITC-isolectin
B4 (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) primary antibodies were used to
stain the pericytes and blood vessels, respectively. Slices were mounted on microscope
slides, using ProLong® Gold antifade reagent with DAPI (Molecular Probes, Thermo
Fisher Scientifics, Waltham, MA, USA). Fluorescence of samples was observed with a TCS
SP5 II LEICA confocal microscopy system (Leica Microsystems GmbH, Wetzlar, Germany)
furnished with a LEICA DM IRBE inverted microscope. All acquisition files were visualized
by LAS AF Lite software. Negative controls were carried out in parallel by treating slices
with non-immune serum during the incubation procedures.

2.3. Time-Lapse Acquisition and Analysis of Capillary Diameter Changes

Granular layer vessels were identified using bright-field microscopy. Vermis lobule
V and hemisphere lobule VI were first identified using a 4× objective (XL Fluor 4×/340,
N.A.: 0.28, Olympus, Tokyo, Japan). Secondly, the granular layer was inspected using a
60× objective (LumPlanFl 60×/0.90 W, Olympus, Tokyo Japan) which allowed us to locate
capillaries and pericytes. Only in-plane vessels (walls parallel to the acquisition system)
with an inner diameter < 10 µm and surrounded by at least 1 pericyte (arrowheads in
Figure 1B) were considered. In ex vivo conditions, capillaries lose intraluminal flow and
pressure due to the mechanical stress of the slicing procedure. Slices were pre-incubated
with 75 nM U46619, a thromboxane agonist that re-establishes the vascular diameter
mimicking physiological conditions [8,11,42,43], as previously described [21]. Therefore,
these measurements are the closest proxy for in vivo conditions. Once the focus of the
objective was adjusted on the capillary walls, the pericyte soma was no longer clearly
visible. With their long projections, pericytes regulate the caliber of distant portions of the
vessels [23]. Only one capillary at a time was in focus using 60× magnification, allowing
us to record only one capillary per slice, to avoid possible impairments in subsequent
dilations given the absence of physiological conditions to maintain the tone [21]. There is
no reason to believe that summing up observations from multiple slices might prevent the
generalization of capillary dynamics in response to stimulation.
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Figure 1. Anatomo-physiological correlations of NVC in the cerebellar granular layer. (A) Confocal 
fluorescent images of cerebellar slices stained for IB4 (green), NG2 (red), and DAPI (blue) to identify 
capillaries, pericytes, and cell nuclei, respectively. In both vermis and hemisphere, granule cells (as-
terisks) are in proximity of pericytes (arrowheads) located on capillary endothelium (green). (B) 
Bright-field images taken before and during mossy fiber stimulations at 50 Hz (vermis). The peri-
cytes (arrowheads) are visible near granule cells (asterisks) and the capillary walls can be easily 
identified. The internal diameter changes in response to stimulation (white bar). The arrow indicates 
a red blood cell that moves inside the capillary as a consequence of blood vessel motility. (C) Aver-
age time courses of capillary dilation during mossy fibers activation at different frequencies in ver-
mis and hemisphere. The figure shows the average percent change in capillary diameter size in the 
different conditions tested for the vermis lobule V and hemisphere lobule VI. Mossy fibers were 
stimulated for 35 s at 6, 20, 50, 100, and 300 Hz (stim bar). The dashed lines indicate the time points 
at 2, 20, and 35 s, used to analyze dilation in the subsequent analysis. In each panel, the dilation at 
the end of stimulus was significantly different compared to pre-stimulus baseline (see Table S1 in 
Supplementary Material). In both panel sets, grey dots represent stability recordings in which stim-
ulation was not delivered (n = 8). 

Mossy fibers were stimulated with 15 V stimuli (of 200 μs duration/pulse; corre-
sponding to 50 μA given the electrode resistance) at 6, 20, 50, 100, and 300 Hz for 35 s, 

Figure 1. Anatomo-physiological correlations of NVC in the cerebellar granular layer. (A) Confocal
fluorescent images of cerebellar slices stained for IB4 (green), NG2 (red), and DAPI (blue) to identify
capillaries, pericytes, and cell nuclei, respectively. In both vermis and hemisphere, granule cells
(asterisks) are in proximity of pericytes (arrowheads) located on capillary endothelium (green).
(B) Bright-field images taken before and during mossy fiber stimulations at 50 Hz (vermis). The
pericytes (arrowheads) are visible near granule cells (asterisks) and the capillary walls can be easily
identified. The internal diameter changes in response to stimulation (white bar). The arrow indicates
a red blood cell that moves inside the capillary as a consequence of blood vessel motility. (C) Average
time courses of capillary dilation during mossy fibers activation at different frequencies in vermis
and hemisphere. The figure shows the average percent change in capillary diameter size in the
different conditions tested for the vermis lobule V and hemisphere lobule VI. Mossy fibers were
stimulated for 35 s at 6, 20, 50, 100, and 300 Hz (stim bar). The dashed lines indicate the time points
at 2, 20, and 35 s, used to analyze dilation in the subsequent analysis. In each panel, the dilation
at the end of stimulus was significantly different compared to pre-stimulus baseline (see Table S1
in Supplementary Materials). In both panel sets, grey dots represent stability recordings in which
stimulation was not delivered (n = 8).
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Mossy fibers were stimulated with 15 V stimuli (of 200 µs duration/pulse; correspond-
ing to 50 µA given the electrode resistance) at 6, 20, 50, 100, and 300 Hz for 35 s, using a
bipolar tungsten electrode (Warner Instruments, Holliston, MA, USA; electrode resistance
0.3 MΩ) in cerebellar lobule V or VI in vermis and hemisphere slices, respectively. In all
cases, the mossy fibers stimulation induced a significant vasodilation (Figure 1B). Capillary
responses in the granular layer were detected about 200 µm distant from the stimulating
electrode placed on the white matter containing the mossy fibers (average distance in
vermis slices: 131.93 ± 5.60 µm; n = 50 and hemisphere slices: 135.45 ± 5.28 µm; n = 49;
vermis vs. hemisphere p = 0.648). It must be noted that the white matter bundle also
contains climbing fibers and Purkinje cells axons. Since only mossy fibers contribute to
granular layer responses, from this point onward we will indicate the stimulation procedure
as “mossy fibers stimulation” in the rest of the manuscript. The time-lapse bright-field
images of each capillary’s caliber changes were obtained using a CCD camera (DMK41BU,
Imaging Source, Bremen, Germany), controlled by the IC-capture 2.1 software (Imaging
Source, Bremen, Germany) to acquire 1 image every second (before, during, and after
mossy fibers stimulation) with 5 ms exposure time. Image sequences were analyzed offline
using the ImageJ software, as previously described [21,22]. The high sensitivity of the
ImageJ measuring tool and the 60× objective used for image acquisition allowed us to
reliably detect changes in vessel diameter in the submicrometer range. The portion of the
vessel showing the maximal effect was considered for the analysis. The slope of the dilation
curves was obtained by calculating the mathematical slope of the line passing through the
points of percentage vessel dilations at 1 s and 5 s (Figure 2).

2.4. Electrophysiological Recordings of Neuronal Activity in Cerebellar Slices

Neuronal activity was recorded as local field potential (LFP) (Figure 3) in the gran-
ular layer of vermis lobule V and hemisphere lobule VI during mossy fibers stimulation.
Slices were treated the same as for the time-lapse imaging and placed on the recording
chamber of a high-density multi-electrode array (HD-MEA) system (BioCAM X, 3Brain
AG, Wädenswil, Switzerland). The recording probe was a CMOS Arena biochip with 4096
microelectrodes arranged in a 64 × 64 matrix, covering an area of 2.67 mm × 2.67 mm.
The electrodes’ size was 21 µm × 21 µm with a pitch of 42 µm. Neuronal activity was
sampled at 17,840.7 Hz/electrode and acquired with BrainWave X (3Brain AG). Stimulation
was provided by a tungsten bipolar electrode (Warner Instruments) placed over the mossy
fibers using a micromanipulator (Patch-Star, Scientifica Ltd., Uckfield, United Kingdom).
The stimulator unit was embedded in the BioCAM X hardware and set to deliver current
pulses of 50 µA (200 µs duration/pulse), at 6, 20, 50, and 100 Hz, thus matching the same
stimulation conditions used for the recordings of capillary responses. Due to technical
limitations, the 300 Hz stimulation frequency was not included in the analysis. In the
granular layer, neuronal response to mossy fibers stimulation originated LFPs. In both
vermis and hemisphere, the LFPs showed a typical N1–N2a-N2b–P2 complex (inset in
Figure 3): N1 corresponds to pre-synaptic volley activation, N2a-N2b are informative of
granular cells synaptic activation, and P2 is likely to represent currents returning from the
molecular layer [44]. In order to characterize granule cell responses to stimulation, the
analysis was focused on N2a and N2b peaks’ amplitude and time to peak. Recordings were
exported and analyzed with MATLAB (MathWorks, Natick, MA, USA). Given the biochip
electrodes’ properties and the densely packed neurons in the granular layer, a reasonable
estimate of the number of neurons contributing to the signal was 10–15 cells per electrode
(though it might be slightly underestimated, see Supplementary Materials for details).
To match the distances used for capillary responses, the signals recorded in the channels
located beyond 200 µm from the stimulation electrode were not included in the analysis.
Given the high spatial resolution of the HD-MEA used, the granular layer responses in
a 200 µm range were detected by nine channels per slice. The average distance from the
stimulating electrode of the electrophysiological responses was 133 ± 3 µm (n = 20 slices;
n = 159 electrodes), not statistically different from the capillary average distances from the
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stimulating electrode in time-lapse imaging (133 ± 4 µm, n = 99 vessels; unpaired Student’s
t test p = 0.99). The cumulative LFP during the stimulation was calculated to compare the
NA trend to the capillary responses in the same conditions.
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Figure 2. NVC frequency dependence in the cerebellar granular layer. (A) Average time course
of vasodilation during mossy fibers stimulation at 2, 20, and 35 s in capillaries of the vermis and
hemisphere. Asterisks indicate pairs of points that were statistically different (* p < 0.05). Vermis: 2 s,
20 Hz vs. 50 Hz (p = 0.039); 20 s, 20 Hz vs. 50 Hz (p = 0.0358); 35 s, 6 Hz vs. 100 Hz (p = 0.014), 50 Hz
vs. 100 Hz (p = 0.049), 6 Hz vs. 20 Hz (p = 0.015), 6 Hz vs. 300 Hz (p = 0.036) (one-way ANOVA; for
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increasing frequencies n = 9, 10, 10, 10, 11, respectively). Hemisphere: 2 s, 50 Hz vs. 300 Hz (p = 0.029);
35 s, 100 Hz vs. 20 Hz (p = 0.024), 100 Hz vs. 300 Hz (p = 0.009) (one-way ANOVA; for increasing
frequencies n= 9, 10, 10, 10, 10, respectively). The box markers show the data that are used for
plots in (B), unfolded along the x-axis. (B) Average dilations at 35 s at each frequency tested in the
vermis and hemisphere (dots and squares, respectively, connected by trend lines). The dilations in
the vermis and hemisphere were statistically different at 100 Hz (p = 0.039). (C) Same plot as in (B),
using the maximum dilation instead of the dilation at a fixed time point. The dilations in the vermis
and hemisphere were statistically different at 100 Hz (p = 0.022). (D) The plots show the positive
correlation between the maximum dilation at each frequency and the slope in the first 1–5 s, for
the vermis (left) and hemisphere (right). (E) Same plot as in (B,C), using the slope in the first 1–5 s
as a function of stimulation frequency. The slopes in the vermis and hemisphere were statistically
significant at 100 Hz (p = 0.031).
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pulse stimulation of mossy fibers is superimposed in a color-scale (2 ms bin). A representative trace 
is shown from the HD-MEA biochip channel indicated by the arrow. The stimulus intensity and 

Figure 3. NA recordings in the cerebellar granular layer. (A) Example of a vermis and hemisphere
cerebellar slice placed on the HD-MEA biochip (scale bar 0.5 mm). The activity following single-
pulse stimulation of mossy fibers is superimposed in a color-scale (2 ms bin). A representative trace
is shown from the HD-MEA biochip channel indicated by the arrow. The stimulus intensity and
stimulating electrode is the same as used in Figure 1B. The inset shows the entire N1-N2a-N2b-P2

complex that comprises the classic LFP in the granular layer (see Methods for details). (B) The
histograms show the average peak amplitude of N2a and N2b, for both the vermis and hemisphere
(n = 10 slices for both) and the single data points. Statistical significance is indicated by asterisks
(*** p < 0.001).

2.5. Computational Model of the Granular Layer

Simulations were performed using a detailed computational model which reproduced
the anatomo-functional organization of the cerebellar granular layer (GL) network [45,46]
endowed with biophysically realistic single cell models of granule cells (GrCs) and Golgi
cells (GoCs), as well as a simplified reconstruction of mossy fiber terminals: the glomeruli
(gloms). Detailed reconstruction of synaptic dynamics and receptors was also included,
allowing us to reproduce the NMDA receptor-mediated current. The full GL network had
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a volume of 800 × 800 × 150 µm3; circuit organization and connectivity were reproduced
according to specific connectivity rules, accounting for both geometric and statistical data
(see also [47] for a similar approach). The vermis network included 384,000 GrCs, 914 GoCs
and 29,415 gloms. For the cerebellar hemisphere, neuronal density distributions were
adjusted according to cell data from the Allen Brain Atlas (https://mouse.brain-map.
org/ (accessed on 12 November 2020)), with GrC and GoC densities in the hemisphere,
respectively, 64% and 89% higher than in the vermis (while the GrCs/gloms ratio was
assumed to be constant). This led to a network reconstruction of the hemisphere GL with
630,419 GrCs, 1733 GoCs and 48,291 gloms. It should also be noted that the GrCs/GoCs
ratio changed significantly from the vermis (~420:1) to the hemisphere (~364:1).

The experimental protocol was reproduced stimulating a subset of gloms (in a sphere
of 27.7 µm radius [45]) with 35 s trains at the different frequencies of 6, 20, 50, 100, and
300 Hz. The total amount of excited GrCs was 1290 and 1996 for vermis and hemisphere
networks, respectively. Notice that the number of GrCs contributing to the simulated re-
sponse is comparable to the estimated total number of GrCs contributing to the LFP signal
(see above: 10–15 neurons per electrode, 9 electrodes per slice, 10 slices per condition, re-
sulting in a number of neurons contributing to the total average LFP above 900–1350 units).
NMDAR-mediated currents were recorded for each stimulated GrC. The cumulative sum
of the NMDA-current, averaged over each cell, was calculated at 2, 20, and 35 s during
stimulation.

The full description of the computational model is reported in Supplementary Meth-
ods.

2.6. Model Validation

The model validation against experimental data was obtained using the N2a peak of
the granular layer’s LFP. While the N2a peak is mainly informative of the AMPAR-mediated
component of the granule cells’ response, the N2b peak depends on both NMDAR’s activa-
tion and inhibitory inputs. Therefore, model validation is more solid against the N2a peak,
rather than a combination of different factors varying in an unpredictable manner. The
model was validated using the following procedure. The average membrane depolarization
of all the active GrCs was computed in the 1 ms time-window following the stimuli. This
corresponded to the N2a peak observed in the experiments. The procedure was repeated
for all stimulation frequencies used in the experiments. The resulting set of measurements
was normalized and low-pass filtered (Butterworth, 0.2 Hz, 2nd order). These simulated
data were compared to experimental data obtained measuring the N2a peaks.

2.7. Data Analysis

Data were compared using statistical paired and unpaired Student’s t test and with
ANOVA test. First, we applied the Shapiro–Wilk test to check the normal distribution of
data. Second, the parametric one-way ANOVA and, finally, the Fisher post hoc tests were
used to validate the statistical significance. Data were considered statistically significant
with p < 0.05 and were reported as mean ± SEM (standard error of the mean).

3. Results

In the cerebellum, CBF changes mostly rely on capillary diameter changes in the
granular layer following changes in NA [21,22]. Synaptic activation determines the release
of vasoactive molecules (NO and 20-HETE, [21]) acting on pericytes, contractile cells
that enwrap the capillary wall [48,49]. Here, we analyzed the effect of different input
frequencies on NVC in the granular layer of vermis lobule V and hemisphere lobule VI of
the cerebellar cortex.

https://mouse.brain-map.org/
https://mouse.brain-map.org/
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3.1. Anatomical Organization of Neurovascular Components in the Granular Layer of Vermis
and Hemisphere

In the granular layer of both vermis and hemisphere, the microvessel walls consisted
of tightly connected endothelial cells surrounded by granule cells (asterisks in Figure 1)
but not by smooth muscle cells, in agreement with previous reports on rats [21]. Notably,
granule cells are in close proximity with pericytes, making the latter very suitable to
receive chemical transmitters from activated neurons [50]. In both vermis and hemisphere,
cerebellar slices showed granular layer capillaries labeled by anti-isolectin B4 and anti-
proteoglycan NG2 primary antibodies, which stained vessel and pericyte membranes,
respectively [21,42] (Figure 1A). The pericytes appeared to enwrap capillaries (arrowheads
in Figure 1A,B), whose pre-contracted average internal diameter was not statistically
different (unpaired Student’s t test, p = 0.13) in the vermis (2.75 ± 0.15 µm, n = 50) and
hemisphere (2.47 ± 0.11 µm, n = 49). Thus, the cerebellar vermis and hemisphere showed
similar granular layer organization of neurovascular components, composed of capillaries,
pericytes, and granule cells.

3.2. Non-Linear Frequency-Dependent Dilation of Granular Layer Capillaries (NVC)

NVC was assessed by measuring capillary diameter changes following mossy fibers
stimulation. Mossy fibers stimulation determined a significant vasodilation in granu-
lar layer capillaries, in both the vermis and hemisphere, at all the frequencies tested
(6, 20, 50, 100, and 300 Hz; Supplementary Table S1) but the amount of dilation varied
(Figures 1C and 2). In the vermis (Figures 1C and 2A), significant differences were evident
at 2 s (20 Hz vs. 50 Hz), 20 s (20 Hz vs. 50 Hz) and 35 s (50 Hz vs. 100 Hz; 6 Hz vs.
20 Hz, 100 Hz, 300 Hz). In the hemisphere (Figures 1C and 2A), significant differences were
evident at 2 s (50 Hz vs. 300 Hz) and 35 s (100 Hz vs. 20 Hz, 300 Hz). Consequently, the
dilation did not increase linearly with frequency, as illustrated by the points taken at 35 s
(Figure 2B).

The time at which the maximum dilation was reached varied for each vessel, with
an average of 23.7 ± 1.5 s in the vermis and 21.4 ± 1.4 s in the hemisphere (n = 50 and
49, respectively, p = 0.274). To exclude the effect of time, we considered the maximum
dilation at the different frequencies, dissociating the effect of frequency from the effect of
time. This comparison did not reveal any statistical difference between the two methods
(p = 0.73 and p = 0.76 for the vermis and hemisphere, respectively) and confirmed the
presence of a significant inflection in the dilations observed at 50 Hz and 100 Hz for the
vermis and hemisphere, respectively (p = 0.022). E.g., at 100 Hz, dilation in the vermis
was at its maximum (at 35 s 7.25 ± 1.27%, n = 10), while in the hemisphere it was around
minimum values (at 35 s 3.21 ± 1.29%, n = 10, p = 0.032). It should be noted that the
maximum dilation was similar in the vermis and hemisphere, despite differences in the
frequency-dependence profile. To provide the basis for a comparison to the BOLD signals
(peaking in few seconds) we calculated the slope of the dilation curves in the first 1–5 s
during stimulation. Interestingly, the 1–5 s slope correlated well with maximum dilation,
both in the vermis and hemisphere (Figure 2D). The plot of the slope as a function of
stimulation frequency also showed the same non-linear trend observed when measuring
dilation at 35 s and maximum dilation (Figure 2E).

3.3. Granular Layer Responses to Mossy Fibers Stimulation (NA)

In order to correlate NA with blood vessel dilation, several studies in different brain
areas used local field potential (LFP) cumulative amplitude [28–36]. Here, the LFPs elicited
in the granular layer by mossy fibers stimulation were measured using a high-density multi-
electrode array (HD-MEA). This technique allowed us to assess the spatial distribution of
NA and to record the LFPs at a distance from the stimulating electrode comparable to that
of the capillaries. In this way, NA was recorded by the same tissue volume that was likely
to generate the bulk of the signals that correlate NA to NVC (see Methods; Figure 3A).
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According to previous characterizations of granular layer LFPs [44,51], N2a and N2b
peaks derive from the synaptic activation of multiple granule cells clustered around the
electrode. N2a mainly depends on the AMPAR-mediated component of granule cell re-
sponses and on spike synchronicity, while N2b is informative on the NMDAR-mediated
component of granule cell responses and its inhibitory control [44,52].

The response to single-pulse mossy fibers stimulation was first characterized in the
granular layers of the vermis and hemisphere (Figure 3A). In the vermis, N2a peaked at
1.59 ± 0.03 ms with an amplitude of −158.74 ± 5.53 µV and N2b peaked at 4.36 ± 0.10 ms
with an amplitude of −67.93 ± 3.04 µV (n = 10 slices, 81 electrodes for all measurements).
In the hemisphere, N2a peaked at 2.05 ± 0.06 ms with an amplitude of −137.39 ± 4.66
µV and N2b peaked at 3.79 ± 0.09 ms with an amplitude of −78.88 ± 2.90 µV (n = 10
slices, 76 electrodes for all measures). Thus, N2a had a higher peak and shorter time-to-
peak in the vermis compared to the hemisphere (unpaired Student’s t tests, p = 0.003 and
p = 6.85 × 10−10, respectively); conversely, N2b had a higher peak and shorter time-to-
peak in the hemisphere compared to the vermis (unpaired Student’s t tests, p = 0.01 and
p = 0.000123, respectively) (Figure 3B).

In the same slices, granular layer responses were characterized using the same stim-
ulation patterns previously used to assess vasodilation (except for 300 Hz, see Methods).
The time course of N2a peak amplitudes at different frequencies for vermis and hemisphere
is reported in Figure 4A. In all cases, during the stimulation, N2a peak amplitudes de-
creased and attained a plateau. The decrease was more evident at higher frequencies (see
Supplementary Table S2 for the percent change at the end of the stimulation). N2b peak
amplitudes showed a trend similar to N2a (Figure 4A). It should be noted that, despite
identical stimulation intensity, N2a was usually smaller in the hemisphere than in the
vermis (e.g., at 2 s, 20 s, 35 s; n = 10 for both, unpaired Student’s t test p < 0.05).

The LFP amplitude was considered as a proxy of NA. However, N2a and N2b showed
an almost exponential decrease during the stimulus trains, mostly reflecting adaptation
in the neurotransmission process [53], with time-constants that became smaller at higher
frequencies. This trend markedly differed from that of NVC (cf. Figure 1C), so that neither
N2a nor N2b nor their sum explained the time course of dilation and its non-linearity in the
frequency domain (Figure 4B).

3.4. Simulated NMDA Currents Correlate with NVC Time-Course

The biochemical pathway leading to capillary dilation in the granular layer relies
on the activation of postsynaptic NMDARs in granule cells causing neuronal nitric oxide
synthase (nNOS) activation and NO release [21]. Since the NMDA LFP component could
not be quantitatively extracted from N2b (not being the only contributor to this peak), we
used a realistic computational model of the cerebellar network [45] to simulate the NMDAR
component of granular layer responses to mossy fiber inputs. The model of the vermis
was the same used previously [45,47], while the model of the hemisphere was adjusted to
tune cell densities according to the Allen Brain Atlas (see Methods). Accordingly, granule
cell density was increased resulting in a higher granule cell/Golgi cell ratio (Figure 5A).
Model validation was performed against the experimental data at different time points
and frequencies, showing a high level of convergence (Figure 5B; see also Methods for
details). Eventually, the model yielded the NMDA current build-up in granule cells during
the different stimulation patterns in the vermis and hemisphere.
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Figure 4. Time and frequency dependence of LFPs during stimulation. (A) The plots show the time
course of N2a and N2b peak amplitude in response to stimulation at different frequencies, recorded in
10 vermis and 10 hemisphere slices (the responses in the right part of the N2a plots are down-sampled).
(B) Frequency dependence of the average cumulative LFP response, N2a and N2b measured at 35 s
during stimulation at different frequencies in the vermis (n = 10) and hemisphere (n = 10) (same slices
as in panel (A)). Statistical significance is indicated by asterisks (* p < 0.05).
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Figure 5. Realistic computational modeling of granular layer response in the vermis and hemi-
sphere. (A) Schematic illustration of the spatial distribution of granule cells (red dots) and Golgi 
cells (blue dots) in a volume chunk of the granular layer (100 μm3) of the cerebellar vermis and 
hemisphere in a realistic computational model derived from 45. For better rendering, granule cells 
are down-sampled by a factor of 20. There are 1203 granule cells and 55 Golgi cells for the vermis, 
1980 granule cells and 113 Golgi cells for the hemisphere. (B) Computational model validation 

Figure 5. Realistic computational modeling of granular layer response in the vermis and hemisphere.
(A) Schematic illustration of the spatial distribution of granule cells (red dots) and Golgi cells (blue
dots) in a volume chunk of the granular layer (100 µm3) of the cerebellar vermis and hemisphere in a
realistic computational model derived from 45. For better rendering, granule cells are down-sampled
by a factor of 20. There are 1203 granule cells and 55 Golgi cells for the vermis, 1980 granule cells and
113 Golgi cells for the hemisphere. (B) Computational model validation against the experimental data
for the vermis and hemisphere. The plot shows the distribution of normalized response amplitude
experiments (N2a peak amplitude) and simulations using the same stimulation frequency. The time
points considered for model validation are 1, 2, 10, 20, 25, and 35 s. The simulated frequencies are the
same as those used in the experiments. The black lines are linear fittings (vermis: slope 0.81, R2 0.73,
p < 0.001; hemisphere: slope 0.80; R2 0.70, p < 0.001), the dashed lines are 95% confidence intervals.

We then considered that vasodilation in the granular layer is mediated by NMDAR-
dependent production of NO [21] acting, through volume diffusion, on guanylyl cyclase
(GC) in pericytes. The consequent cyclic guanosine monophosphate (cGMP) levels, which
are the ultimate cause of vasodilation, correlate almost linearly with NO levels [54]. How-
ever, cGMP levels decrease due to the action of phosphodiesterase (PDE) that activates with
a slow time-constant (around 20 s) [54]. This eventually decreases cGMP concentration by
26.4% and 59.9% after 20 s and 35 s, respectively [54]. Estimating the impact of NMDAR
activation on NVC then requires a correction for PDE action. We, therefore, simulated the
cumulative NMDA current build-up, corrected by PDE (−26.4% and −59.9% after 20 and
35 s, respectively [54]), and used it as a proxy of the signal controlling NVC (Figure 6A).



Cells 2022, 11, 1047 13 of 21

Indeed, the corrected NMDA current build-up approached NVC, at all frequencies tested
(Figure 6B and Supplementary Figure S1).
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Figure 6. Comparison of simulated NMDA currents in granule cells and blood vessel changes.
(A) Time course of the granule cells’ cumulative NMDA current during 100 Hz stimulation and
of the corresponding vessel response, for the vermis and hemisphere. The plot shows both the
corrected and uncorrected NMDA component (see text for details). All data are normalized to
amplitude at 2 s. (B) The bar graph shows the difference between the normalized values of simulated
NMDA components and vessel dilation at 20 and 35 s at all tested frequencies, for the vermis and
hemisphere. The grey rectangles represent the normalized confidence interval (±1SD) yielded by
model simulations of the NMDA current. Notice that all data points fall within the confidence
interval, both for the vermis and hemisphere. (C) Frequency dependence of the cumulative NMDA
currents measured at 35 s, for the vermis and hemisphere. This panel should be compared to the
corresponding one for vasodilation (cf. Figure 2B).

In aggregate, these simulations suggested that the NMDAR-NO-GC pathway, in-
corporating the effect of PDE on cGMP levels, is sufficient to explain the time course of
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vasodilation, at each frequency tested, for both vermis and hemisphere. Conversely, NM-
DAR activity alone was not sufficient to explain either the frequency dependence or region
dependence of NVC (Figure 6C to Figure 2B; the two trends reported, normalized for the
amplitude scale, were statistically different with p = 0.013 and p = 0.00003 for the vermis
and hemisphere, respectively).

4. Discussion

The central finding in this study was that NVC in the cerebellum shows non-linear fre-
quency dependence. The capillary diameter increased in response to mossy fiber activation
in the 6–300 Hz range, with a marked inflection around 50 Hz (vermis) and 100 Hz (hemi-
sphere). Notice that the physiological average frequency of mossy fiber discharge is below
200 Hz [55], but they have been reported to sustain brief burst of activity with instantaneous
frequencies up to 700 Hz [56–58]. For this reason, we also tested the ultrafast band, though
its physiological relevance is less clear. In any case, the main finding of this study concerned
the physiological 50–100 Hz frequency range. Interestingly, the NMDA receptor-mediated
component of the granular layer responses triggering nNOS activation and NO production,
once corrected for PDE activation (Figure 7A), could effectively explain the time course of
vessel dilation at each stimulus frequency but was insufficient to explain the non-linearity
in vessel response with respect to input frequency. These results revealed a complexity
and diversity of NVC at the microscale suggesting a partial uncoupling from NA and the
intervention of other mechanisms in addition to the NMDA-nNOS-NO pathway.

4.1. Non-Linearity and Region Specificity of Cerebellar NVC

Mossy fiber stimulations induced capillary vasodilation in the mouse cerebellar gran-
ular layer, attaining, on average, a maximum after 22 s. This effect, which was observed
both in the vermis and the hemisphere, resembles that previously reported in rat cerebellar
slices [21]. Interestingly, vasodilation reached the maximum at 20 Hz, but then decreased
only to rise back to maximum at 300 Hz. This observation was confirmed using the dilation
at the end of the stimulation (35 s), maximum dilation (independent from time), and the
slope of the dilation curves in the first 1–5 s. These data demonstrate that cerebellar NVC
is non-linear with respect to circuit stimulation frequency. The NVC curve, after bending
beyond 20 Hz, recovered more rapidly in the vermis than in the hemisphere. It is worth
noting that capillary dilation ranging from ~2.5% to ~7.5% is sufficient to increase the total
blood flow by 4.8–16.5%, and the cerebrovascular volume by 2.4–7.9% [21,43,59] within the
physiological range associated with BOLD responses in rodents in vivo [60,61] (see Supple-
mentary Methods for details). The fact that the initial slope of dilation was predictive of the
maximum dilation in the different conditions offers a background to fill the gap between
the time resolution of BOLD signals (peaking in a few seconds) and ex vivo investigations
of NVC (characterized by longer time-constants to reach the maximum effect).

The reasons for the region specificity of cerebellar granular layer NVC remain unclear.
In both the granular layer of cerebellar vermis and hemisphere, the pericytes were detected
on capillary walls and in close contact with granule cells, i.e., in the ideal location to
detect the chemical mediators released by neurons and glial cells in response to local
NA changes [22,50]. Thus, the fundamental anatomical organization of the main cellular
components was similar. Some differences in NA (relative size of the N2a and N2b LFP
components) were observed between the two regions but did not explain those in NVC.
Thus, neither anatomical nor electrophysiological data could explain local NVC differences.
Therefore, there is a partial uncoupling of NA from NVC, and metabolic effects may play a
role along with the neurogenic ones [7]. This case resembled that reported in the cerebral
cortex, where differences in CBF occurred between the somatosensory and frontal areas
of awake mice during locomotor activity on a treadmill [62] in the absence of differences
in NA.
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Figure 7. The vasodilation–vasoconstriction competition hypothesis. (A) Schematic illustration of the
main players involved in NO and 20-HETE release, according to [21]. Vasodilation is mediated by
the NMDAR-NOS-NO pathway, while vasoconstriction is mediated by the mGluR-PLA-20-HETE
pathway. Notice that NO inhibits 20-HETE synthesis [8]. PLA, phospholipase A; GC, guanylyl cyclase;
PDE, phosphodiesterase. (B) Schematic illustration of the competition between NO and 20-HETE in
determining vessel diameter changes. [NO] (red) is directly proportional to the simulated NMDA
current (not shown), while capillary dilation (violet) is provided by experimental measurements (the
difference between the two curves is in yellow). The 20-HETE is specular to the NVC inflection at
intermediate frequencies (more details are given in text). (C) The differential engagement on the NO
and 20-HETE pathways are shown for low, intermediate, and high stimulus frequencies (note the
different thickness of the arrows).

4.2. NA and NVC in the Cerebellar Vermis and Hemisphere

Reports in various brain areas have identified the ∑LFP as the measure of NA that
best matches NVC [28–36]. Here, we used a high-density multi-electrodes array (HD-
MEA) to record LFPs from the granular layer of cerebellar cortical slices in the vermis and
hemisphere during mossy fibers stimulation. In both the vermis and hemisphere, the LFP
was composed of the typical N2a-N2b wave sequence [44,51,52], which is informative on
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the AMPAR- and NMDAR-mediated components of granule cell responses to mossy fibers
stimulation, respectively. Interestingly, N2a was larger in the vermis while N2b was larger
in the hemisphere. These differences were well-matched by updating the granule cell-Golgi
cell ratio and neuronal density in the hemisphere and the vermis according to the Allen
Brain Atlas in a realistic microcircuit model and could, therefore, reflect differences in local
network organization. We expected that the differences in NA could explain the NVC
non-linearity. However, the LFP parameters did not account for NVC dynamics, neither in
the time nor frequency domains.

4.3. NMDAR Currents Drive the Time Course of Dilation but Do Not Determine Its
Frequency Dependence

Unlike other brain regions, capillary vasodilation in the cerebellar granular layer is
known to rely entirely on the NMDAR-nNOS-NO pathway, which is in line with the fact
that this layer has the highest level of nNOS expression in the brain [14,21]. Moreover, a
previous report in the rat somatosensory cortex showed the failure of ∑LFP in accounting
for CBF variations at specific frequencies when the NMDA currents did not contribute
to the signal [29]. It should not be surprising, then, that the parameter describing the
relationship between NA and the time course of dilation in our case is the NMDAR-
mediated component of granule cell response. In this study, a realistic theoretical model
of the granular layer, tuned against subtle anatomical differences between vermis and
hemisphere, was crucial to reconstruct the NMDAR-mediated component of the response.
Following validation against experimental data, the simulated NMDA current build-up
proved suitable to determine the time course of vasodilation. Nevertheless, the NMDA
current could neither explain the frequency dependence of vasodilation (see Figure 2B) nor
its regional specificity.

4.4. The Vasodilation–Vasoconstriction Competition Hypothesis

In a previous study [21], we demonstrated that NVC in the granular layer is mediated
by NA-dependent release of the vasodilator agent NO, which occludes the effect of the
vasoconstrictor agent 20-HETE, released following mGluRs activation, presumably in
glial cells. The effect of 20-HETE appeared only when NOS activity was blocked, in
line with the notion that NO blocks this vasoconstrictor pathway [8] (Figure 7A). The
inflection in the NVC-frequency plot hints at a competition between vasodilator and
vasoconstrictor pathways based on the frequency-dependent balance between NO and 20-
HETE production (Figure 7B). Indeed, in rat cerebellar slices, pharmacological subtraction
experiments revealed that 20-HETE reduced the vasodilation mediated by NO at 50 Hz by
44%, in fair agreement with the data reported here [21].

The vasodilation–vasoconstriction competition hypothesis is illustrated in Figure 7C.
The amount of NO produced at low frequency (<50 Hz) is sufficient to block 20-HETE syn-
thesis. Indeed, 20-HETE depends on the mGluRs activation, which needs neurotransmitter
accumulation during high-frequency input discharges [63]. At increasing frequencies,
glutamate build-up and spillover would intensively activate extrasynaptic mGluRs [63,64]
recruiting the 20-HETE pathway. At this point, 20-HETE synthesis would surge, NO would
not be able to counteract it, and the pericytes would combine the two signals causing the
inflection of NVC curves observed at intermediate frequencies (50–150 Hz). At high fre-
quency (>50–100 Hz), NO would increase enough to block the 20-HETE synthesis. Indeed,
astrocytes mGluRs have been reported to mediate an intracellular Ca2+ signal which satu-
rates, at increasing glutamate concentrations, besides showing desensitization [63,65,66].
This might help in explaining the decrease in the vasoconstriction efficiency at increasing
stimulation frequencies. To be noted, the mGluRs are G-protein-coupled receptors and
the pathway for 20-HETE synthesis involves more molecular steps [65–68] than that of
NO production (NMDARs –> nNOS –> NO), which peaks in about 200 ms from stimulus
onset [21]. Therefore, the release kinetics of 20-HETE may be somehow slower than those of
NO, but this is probably irrelevant to the present case, given the 10 times slower timescale



Cells 2022, 11, 1047 17 of 21

(seconds) of vessel dilation. This reasoning may as well apply to the fMRI recordings
in vivo (with a sampling rate on the scale of seconds).

Although not exhaustive, this set of mechanisms accounts for the NVC/frequency
non-linearity and provides the basis for a future quantitative mathematical model. Needless
to say, such a model would provide a means to understanding neurological and neurode-
generative diseases, such as multiple sclerosis, where the non-linear BOLD response to a
variable grip-force task was altered in the primary motor cortex [27]. Future work should
aim not only to improve the mathematical model explaining the NVC complexity from
cellular physiology experiments, but to scale such models to interpret in vivo data from
human studies of central nervous system pathologies [69].

4.5. Comparing Different NVC Hypotheses and the Case for Cerebellar Region Specificity

The vasodilation–vasoconstriction balance, different from an NA ceiling effect, could
prevent the system from saturating through a dynamic regulation of the vessel caliber
set-point when the input frequency increases. However, it does not account alone for
the shift from 50 to 100 Hz in the curve inflexion between the vermis and hemisphere
and requires further comments. We could not rule out that subtle anatomical differences
occur beyond the resolution of this study, addressing the “neurogenic hypothesis” of NVC.
Other factors that are likely to come into play have been reported in different brain regions.
Activity-dependent metabolites and the lowering of glucose and oxygen concentrations can
link neuronal activity and vessel tone (e.g., see discussion in [7]) addressing the “metabolic
hypothesis”. It is also interesting to consider the “set-point hypothesis” for determining
dilation or constriction depending on the initial vascular tone [11]. Although we did not
find any difference in pre-constricted capillary diameter between vermis and hemisphere,
we could not rule out the possibility that different set-points characterize these two regions,
so that similar initial diameter would not imply the same dilation/constriction balance. In
addition, the cells combining multiple signals could include not just the pericytes but also
the astrocytes [11] and endothelium [12], although blood vessel intrinsic properties should
have been marginally involved due to the lack of intravascular pressure in acute brain
slices. In summary, it is highly probable that NVC does not simply rely on the metabolic or
neurogenic hypotheses but is defined by a complex interaction of multiple factors that vary
locally from one brain region to another.

4.6. Considerations on the Development of Cerebellar NVC

Possible changes in NVC during development were proposed as an explanation for the
negative BOLD signals characterizing infants at early developmental stages [70,71]. Though
little is known about the development of cerebellar NVC, we used juvenile mice in our study
and a few considerations might be needed. First, granule cells and synaptic connections
in the granular layer are functionally mature at this stage (in terms of ionic channels,
synaptic transmission mechanisms, and plasticity) [41,72–76]. Second, the organization of
granular layer astrocytes around the glomeruli is properly structured and functional in
juvenile rodents [77,78]. It should be noted that cerebellar astrocytes are quite different
from brain astrocytes [79], and their proliferation significantly drops between 4 and 7 days
after birth [80]. Thirdly, we did not find any age dependence in capillary dilation in our
data. Although there is no evidence that NVC might have expressed immature properties
in our study, the understanding of the neurovascular unit in the cerebellum is far from
complete and a possible influence of a late phase of development cannot be excluded.

5. Conclusions

The mechanisms of NVC and its impact on local brain functioning are gaining increas-
ing attention in the scientific community, both for understanding BOLD signals used in
fMRI and for the potential implications in neurovascular pathology. Our data showed that
NVC is probably more complex than previously thought, adjusting to the input frequency
in a region-specific manner. To the best of our knowledge, this was the first report of this
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effect in the cerebellar cortex. Interestingly, our results suggested that the force/BOLD
non-linearity recorded from the cerebellum during motor task execution [24,25] could, at
least in part, be due to local non-linear NVC properties. Although the understanding of
NVC fine-tuning is still incomplete, our results integrated the neurogenic and metabolic
hypothesis opening the perspective of a dynamic microvessel diameter regulation, which
should be considered to interpret BOLD signals in fMRI recordings.
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