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Executive Summary 
 

The aim of the AI-SPRINT “Artificial intelligence in Secure PRIvacy-preserving computing coNTinuum” project 
is to develop a platform composed of design and runtime management tools to seamlessly design, partition 
and operate Artificial Intelligence (AI) applications among the current plethora of cloud-based solutions and 
AI-based sensor devices (i.e., devices with intelligence and data processing capabilities), providing resource 
efficiency, performance, data privacy, and security guarantees.   

The aim of this deliverable is to review the state-of-the-art in techniques used in the development and 
operation of AI applications in computing continua and the related technologies. The deliverable starts with 
an overview of AI applications and edge computing market trends. It examines the standardisation and open-
source landscape, where many of the emerging standards are mainly focused on the network layer, also 
highlighting opportunities for open-source community involvement to expand technology availability.  Then, 
the deliverable provides a background on AI applications design, also considering some advanced design 
trends (e.g., Network Architecture Search, Federated Learning, Deep Neural Networks partitioning) 
introducing the software development frameworks and hardware solutions which allow to run such 
applications in a computing continuum. 

We then report an overview of the state-of-the-art of the solutions offered by the main cloud market players 
and the European providers. We also extensively discuss existing solutions for applications deployment, 
monitoring, runtime management, and scheduling considering the emerging Function as a Service paradigm. 

In the last part of the deliverable, we report an overview of the performance modelling solutions, security, 
and privacy problems for AI applications in edge environments. It is found that some areas, such as component 
placement and design space exploration with privacy preservation and performance guarantees, are fairly 
under-developed, since solutions tailored for AI applications are lacking, and thus offer an opportunity for 
innovation. 
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1. Introduction  
1.1 Scope of the document 
Artificial Intelligence (AI) and edge computing have recently emerged as major trends in the ICT industry. 
However, the heterogeneity of the technologies and software development solutions in use are evolving 
quickly and are still a challenge for researchers and practitioners. The aim of the AI-SPRINT “Artificial 
intelligence in Secure PRIvacy-preserving computing coNTinuum” project is to develop a platform composed 
of design and runtime management tools to seamlessly design, partition and operate AI applications among 
the current plethora of cloud-based solutions and AI-based sensor devices (i.e., devices with intelligence and 
data processing capabilities), providing resource efficiency, performance, data privacy, and security 
guarantees.   

The aim of this deliverable is to review the state-of-the-art in techniques used in the development and 
operation of AI applications in computing continua and the related technologies. The deliverable starts with 
an overview of AI applications and edge computing market trends and standardisation work for the edge-
cloud ecosystem, the enabling role of AI, as well as open-source initiatives and security challenges for both 
for edge computing and AI.  Then, the deliverable provides a background on AI applications design, considering 
also some advanced design trends (e.g., Network Architecture Search, Federated Learning, Deep Neural 
Networks partitioning) introducing the software development frameworks and hardware solutions which 
allow to run such applications in a computing continuum. The goal of this deliverable is therefore to support 
this investigation with an analysis on the scientific and technical state-of-the-art of the solutions offered by 
the main cloud market players and the European providers. We also extensively discuss existing solutions for 
enterprise applications deployment, monitoring, runtime management, and scheduling considering the 
emerging Function as a Service paradigm. Furthermore, given the general objective of AI-SPRINT to support 
non-functional requirements of AI applications (e.g., application execution time, AI models accuracy, security, 
and privacy preservation), we also survey performance modelling solutions, security, and privacy technologies 
for AI applications in edge environments. It is found that some areas, such as component placement and 
design space exploration with privacy preservation and performance guarantees, are fairly under-developed, 
since solutions tailored for AI applications are lacking, and thus offer an opportunity for innovation. 

 

1.2 Target audience 
The State of The Art Analysis deliverable is intended for internal use to provide all partners of the consortium 
a snapshot of the current technologies and research literature contributions, and a shared terminology, 
although it is publicly available. The target audience is the AI-SPRINT technical team including all partners 
involved in the delivery of work packages 2,3 and 4 but it also serves as reference for the developers of the 
three use cases of the project. 

 

1.3 Structure of Document 
This document is organised in seven chapters which cover the following topics: 

● Chapter 2 provides basic concepts, introducing definitions related to AI applications development and 
edge systems, also providing an overview of the standardization initiatives and market trends.  

● Chapter 3 describes the state-of-the-art of the mainstream frameworks adopted for the development 
of AI application in computing continua and the solutions currently offered by the cloud big players 
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and by the main European cloud providers. Furthermore, the chapter overviews the hardware of 
intelligent sensors currently offered in the market, including the ones specific for the development of 
the AI-SPRINT use cases. 

● Chapter 4 continues the overview by revising advanced solutions for the design of AI applications that 
concern deep learning models partitioning, network architecture search, federated learning, AI 
application performance modelling, and component placement in computing continua. 

● Chapter 5 analyses runtime management frameworks and the related technologies and provides an 
overview of virtualization and cloud/container orchestration technologies, deployment and 
monitoring, and scheduling solutions for clusters adopting GPU accelerators. 

● Chapter 6 is devoted to security and privacy issues for AI applications. 
● Chapter 7, finally, concludes this deliverable and overviews the AI-SPRINT development path. 

 

Out of the present investigation, our main achievement is the identification of the most relevant baselines to 
the AI-SPRINT work and of open problems in the area touched by the project. The reader is invited to consult 
deliverable D1.2 - Requirement analysis for a detailed requirement analysis that used the output of this survey 
to define the AI-SPRINT goals. 
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2. AI Applications in Computing Continua 
Chapter 2 provides an overview on some basic concepts, introducing definitions related to AI applications 
development and edge systems, and also providing an overview of the standardization initiatives, which are 
mostly focused on mobile networks but with a growing expansion of edge-related initiative, as well as market 
trends.  

In particular, some definitions on AI applications and the computing continua are provided in Section 2.1. 
Section 2.2 introduces the main standardization initiatives in edge computing, while Section 3.3 outlines the 
importance of deploying AI applications at the edge. 

 

2.1 Definition and terminology  
 

2.1.1 AI Basic Concepts  
Artificial Intelligence (AI) is a branch of computer science aimed at developing intelligent systems, i.e., 
providing machines with the problem-solving and decision-making capabilities typical of a human mind. 
Nowadays, computers are still far from reaching a human-like intelligence, but AI is increasingly integrated in 
our devices, providing support in our daily tasks. What makes a system intelligent is the ability of perceiving 
the world, e.g., through sensors, and learning from the perceived data.  

Machine Learning (ML) is a subfield of AI in charge of the research and the development of learning algorithms, 
through which systems can learn from examples and experience. Reporting the definition given in the book 
by T. Mitchell (1997) [Mitchell1997], “a computer program is said to learn from experience E with respect to 
some class of tasks T and a performance measure P, if its performance at task T, as measured by P, improves 
with experience E”. Experience, which comes in the form of a huge amount of data commonly referred to as 
training set, is thus exploited by learning algorithms to build mathematical models to accomplish specific 
tasks. Depending on the kind of information contained in the observations, it is possible to identify different 
types of learning, commonly classified into the following paradigms: 

● Supervised learning: each observation in the training set is a tuple < x, t >, where x is the features 
vector, i.e., the input of the model, and t is the associated target or label, which is the desired expected 
output coming from some unknown distribution f, i.e., t = f(x). In a supervised setting the system finds 
a good approximation of the mapping function f, by learning structures in the data. It is now clear that 
the name of this paradigm comes from the need of supervision, the targets, during the learning 
process. Collecting targets is one of the stages in the learning pipeline which requires the most effort 
and it usually requires intensive manual labelling of the collected examples. Supervised learning tasks 
are typically categorized, depending on the type of the available targets, into the following problems: 

• Classification: in this kind of task the targets t are discrete. Indeed, the goal is to learn the 
function that assigns each input to one of a finite number of classes K, i.e.:  

f(x): ℝn ⟶ {1, …, K} 

This is the case, among others, of image classification, e.g., handwritten digits recognition, or 
text classification. Depending on the number of classes, the classification problem can be 
binary or multi-class, i.e., K = 2 or K  > 2, respectively. 

• Regression: in this case the targets t are continuous variables, i.e.:  

f(x): ℝn ⟶ ℝ 
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Examples of regression problems are the prediction of the temperature, or of the selling price 
of a specific product.  

Several algorithms have been successfully applied to solve supervised learning tasks, like Logistic 
Regression, K-Nearest Neighbours (K-NN), Support vector machine (SVM), Decision Tree, and the 
game-changer Artificial Neural Networks (ANNs) [Mitchell1997, Bishop2006, Goodfellow2016]. 

● Unsupervised learning: in an unsupervised setting the targets associated to the input features are not 
available during learning. In this case, the goal is to learn the correlation in the input data rather than 
the input-output mapping function as in the supervised case. Algorithms following this learning 
paradigm are typically employed to divide input data into groups, task known as clustering (e.g., K-
means or DBSCAN), or to determine the distribution of data within the input space, i.e., density 
estimation [Bishop2006], or to project the data into a lower-dimensional space (e.g., Principal 
Component Analysis - PCA [Goodfellow2016]).   

● Reinforcement learning: in this setting there is a continuous interaction between the system and the 
environment, and the goal is to find suitable actions based on the observations. Differently from the 
supervised case, no examples of desired output are provided during learning but, instead, they are 
discovered through a process of trials and errors. The system performs an action on the environment 
and receives an observation plus a reward. The goal is to find an optimal policy that maximizes the 
cumulative reward [Sutton1998]. 

 

The main focus of AI-SPRINT is on Supervised Learning and thus, in the following of this report most of the 
examples and literature will be based on this paradigm. 

The performance of a machine learning algorithm strictly depends on the representation of the input data, or 
more in general, on the representation of the information contained in the observations defined in the form 
of features. Classical Machine Learning provides algorithms to learn patterns detectable by looking at these 
features in order to perform some tasks, but it does not deal with the representation of such features which 
is named Feature Engineering. Figure 2.1 depicts the scheme of a classification task from a classic ML 
perspective. While the classification algorithm is learned, the features given to the algorithm are manually 
designed. The performance of the classifier heavily depends on the ability of designing the right set of 
features. 

 
Figure 2.1 - Example of image classification with Machine Learning. Only the classifier is learned. Features are manually designed 

It goes without saying that the quality of the learned classifier heavily depends on the ability of designing the 
right set of features for the given tasks. However, handcrafting features can be very time-consuming and for 
many tasks it is difficult to know which features should be extracted from data. A possible solution comes 
from a learning paradigm which sits between the unsupervised and supervised learning ones, which can be 
defined as semi-supervised learning. In this setting, unlabelled data is exploited by some unsupervised 
algorithm to learn a new representation of the input features (see Figure 2.2), which is thus projected to a 
new space where similar examples have similar representations. Then, labelled data is used to learn the final 
classifier (regressor) in a supervised fashion. The above classification example now becomes the one depicted 
in Figure 2.3. 



 
 

 
  

D1.1 State of the Art Analysis 
 
 

15                                                                                                                                                      www.ai-sprint-project.eu 
  
 

 
Figure 2.2 - Unsupervised learning used to project features in a new space 

 
Figure 2.3 - Example of image classification with learned feature projection 

  
Figure 2.4 - Example of image classification with learned feature representation and classifier 

Beside the improvements gained by transforming features in a new representation, human features designing 
is still needed as a pre-processing step on data. Deep Learning (DL) emerges in this context as a new field of 
ML to provide a way to automatically learn a feature representation directly from data, without relying on 
hand-crafted features (see Figure 2.4). DL can be seen as the attempt of putting together ML and 
representation learning, by jointly learning good general features and the final predictor. Representations are 
learned at different levels of abstractions by stacking multiple Neural Network (NN) layers, building complex 
representations on top of simpler ones. Thus, the idea of DL is to learn structured feature transforms which 
provide a hierarchical representation of input features (see Figure 2.5).  

 
Figure 2.5 - Example of hierarchical feature representation 

Deep feedforward neural networks, or Multi-Layer Perceptrons (MLPs), are the baseline deep learning models 
defining a function f(x; θ) in which the information flows from input, through the intermediate layers, and 
finally to the output, where θ are the learnable parameters. Convolutional Neural Networks1 (CNNs) 
[Goodfellow2016] are feedforward networks specialized in processing data with a grid-like topology, such as 
image data, which can be thought of as a 2D grid of pixels. What characterizes a CNN is the use of convolutional 
layers, in which shared parameters are learned to detect patterns in the data. The typical architecture of a 
CNN is depicted in Figure 2.6, which it is possible to notice the scheme depicted above in Figure 2.4. Indeed, 

 
 
1 https://cs231n.github.io/convolutional-networks/ 
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there is a feature extraction network, composed of alternated convolution, activation, and pooling layers, 
followed by a fully-connected network, where every neuron of each layer is connected to every neuron of 
adjacent one, for the final prediction. The output produced by a convolutional layer is typically called feature 
map, while the learned parameters are the kernels, or filters. CNNs have been successfully employed in many 
computer vision tasks like, but not limited to image recognition, image segmentation, and object detection. 

Other types of DL architecture are the Recurrent Neural Networks (RNNs), which are an extension of the 
feedforward neural networks, enhanced with feedback connections to process sequential data, thus 
introducing the concept of memory during learning. Among the recurrent architecture are Long Short-Term 
Memory (LSTM) [Hochreiter1997] networks, which are capable of modelling very long-term dependencies, 
which is instead a limitation of the standard RNNs. This kind of architecture has become the first choice for 
processing sequential data in natural language related tasks as language modelling and machine translation, 
but also for other tasks like video analysis or time series anomaly detection. 

 
Figure 2.6 - Example of CNN architecture2, specifically, the famous VGG16 architecture [Simonyan2014] 

DL and, more in general, ML models, are learned during the so-called training phase, in which a huge amount 
of data collected into the so-called training set is used to find the mapping function between given input and 
output, in the case of supervised learning, or a new representation of data, in the case of unsupervised 
learning. The goal is to find the values of model parameters which minimize a certain error E, commonly 
known as loss function L. This is done by using specific optimization algorithms which minimizes a real function. 
Training in ANNs is usually performed by using iterative, gradient-based optimization algorithms, in which the 
model parameters are updated following the direction given by the gradient of the loss function given a batch, 
i.e., a sub-group, of examples from input data. The specific gradient-based algorithms are usually 
improvements of the well-known stochastic gradient descent (SGD). Parameters of the optimization 
algorithm, and the algorithm itself, are part of the so-called training hyperparameters. In order to compute 
the gradients, the backpropagation algorithm is employed, which allows the information given by the loss to 
flow backwards through the network [Rumelhart1986]. 

 
 
2 Figure source: https://neurohive.io/en/popular-networks/vgg16/ 



 
 

 
  

D1.1 State of the Art Analysis 
 
 

17                                                                                                                                                      www.ai-sprint-project.eu 
  
 

A model is learned using the training set. However, the real goal of training is to learn a model which is able 
to generalize on unseen data. When this does not happen, i.e., the learned model perfectly fits on training 
data, but it has very poor performance on unseen samples, the model is said to overfit. Overfitting is one of 
the main challenges encountered during training. One of the solutions to control overfitting, is to put aside 
some samples of the training data, which will be used as a test set for a very final evaluation of the model. If 
the amount of available data is large enough, it is possible to extract an additional non-overlapping validation 
set, which will be used to control overfitting during learning, eventually stopping the training when the model 
starts to overfit (early stopping). There are other techniques to avoid overfitting, to which we usually refer to 
as regularization methods [Goodfellow2016].  

Once the model has been trained, it can be used to make predictions given new data. This process is often 
called inference and it is typically faster than training, since no optimization is required (for instance, no 
gradient computation) and only a forward pass through the model is needed.  

Model training is only a single phase of the overall process through which a ML application is developed. A 
complete model lifecycle is depicted in Figure 2.7. It is a cyclical process which begins with the collection of 
raw data into the dataset used for model training (data ingestion). Then, data is prepared for training, i.e., it 
is cleaned (it can contain missing values, duplicates, invalid or noisy data) and pre-processed by applying 
specific transformations (data preparation). Thus, model training can be performed. In this phase the ML 
model is selected and learned by using the training set. Once the model has been trained, it is validated on 
the test set, to determine the performance of the model based on the project requirements (model 
validation). Finally, the model is integrated into real applications (model deployment). Typically, during the 
deployment process it is ensured fast inference by using specialized hardware and model optimizations (see 
Sections 3 and 4). What closes the cycle is the possibility of re-training the model in the case new data is 
available or the model becomes to have performance degradation through time. We refer to this behaviour 
as model drift, which can be divided into two main categories: concept drift, i.e., the statistical properties of 
the target variable change, and data drift, i.e., the statistical properties of data change (e.g., seasonal 
patterns). 

 
Figure 2.7 - ML model lifecycle 

Most ML and DL algorithms depend on many hyperparameters, which have an impact on the performance of 
the learned model. Examples of hyperparameters are the choice of the correct optimization algorithm and 



 
 

 
  

D1.1 State of the Art Analysis 
 
 

18                                                                                                                                                      www.ai-sprint-project.eu 
  
 

the related parameters, like the learning rate, momentum, or batch size, but also the ones related to the 
model itself, for instance, the k in the k-nearest neighbour algorithm, the number of convolutional layers, the 
number of neurons in a fully-connected layer, the activation function, and others. Choosing the right set of 
hyperparameters, also called hyperparameter tuning, is a challenging issue. The first approach is to choose 
the hyperparameters manually, a process that requires a good understanding of the considered task and good 
ability to analyse the results. However, it can result in a very expensive procedure, in terms of time and human 
effort, which can be increasingly challenging as the space of the possible choices for the hyperparameters 
grows. Manual hyperparameters tuning can be a good choice when we start from a good initialization, 
exploiting, for instance, the knowledge discovered by others having already experienced the use of the 
considered architecture in the specific task.  

The process of selecting the right hyperparameters can be seen as an optimization algorithm, in which we are 
trying to select those hyperparameters that optimize an objective function, typically the validation error. Thus, 
specific optimization algorithms can be employed. When the number of hyperparameters is limited, one of 
the common algorithms is grid search. In this algorithm, the possible values for each hyperparameter must be 
declared and then, a model is trained for every joint specification of hyperparameters. The experiment that 
performs better on the validation set, as measured by the selected metric, is the one corresponding to the 
best hyperparameters. The main problem with such an algorithm is that the computational cost grows 
exponentially with the number of parameters.  

In this context are gaining ground automated ML (AutoML) tools, which other than automating the main 
stages of a ML process like the data preparation or feature engineering, allows also to optimize the 
hyperparameters of the learning algorithms. Also, Network Architecture Search (NAS) techniques are part of 
this scene, allowing to automatically design model architectures (see Section 4.2). 

 

2.1.2 OpenFog reference Architecture  
The applications we will consider in AI-SPRINT are enterprise applications, mostly written in Python, that make 
intensive use of AI technologies and are based on multiple components running across a computing 
continuum. Specifically, components can be allocated on the cloud or on edge servers and AI-enabled sensors 
(i.e., sensors with some computing capabilities able to perform at least AI model inference), following the 
OpenFog Reference Architecture (RA) [OpenFog2017], adopted as an IEEE standard since 2018 
[IEEEstandard2018]. The selection of AI-enabled edge devices is motivated by considerations detailed in the 
following. In enterprise systems, “edge” is the vast space or intermediary between endpoints and the core 
(defined as the epicenter of computing and storage capabilities of a company) [Morales2020]. It may include 
far and remote locations, as well as the shop floor of a manufacturing company, a retail store, a remote office, 
or a branch office, up to a colocation datacentre that is used as secondary or auxiliary resource beyond the 
central company datacentre. Every use case has a different way of leveraging a technology and requires a 
detailed business case. However, there are four main common aspects that show the impacts, and the benefits 
of enabling AI at the edge: 

● Latency: performing AI inferencing at the edge enables low-latency use cases, with the possibility to 
take decisions on the gathered data without the need for information to travel in a round trip to a far 
datacentre or cloud location. According to the type of Edge, latency can vary from real time (zero-
latency) to single digit milliseconds to the order of tens of milliseconds. 

● Connectivity: the ability to continuously perform tasks and processes in case of intermittent 
connectivity to the cloud or the core location. 

● Bandwidth cost: reducing data travelling to the core/cloud. Especially in the case of live HD images or 
video signals, the ability to perform AI at the edge may decide the viability of the business case. 
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● Privacy: several use cases (consider, e.g., those related to the processing of images coming from 
security cameras) need to process sensitive data, whose deployment in the cloud violates the 
prescribed security and privacy constraints. Performing the initial phases of AI inference (or training 
in case of federated learning, see also Section 6.5) at the edge, and offloading to the cloud as the last 
layers of networks (thus sending only pre-processed data, from which it is not possible to recover any 
sensitive information) supports the development of privacy-aware applications. 

 
Based on the upon observations, according to the OpenFog RA, AI-SPRINT will consider a computing 
continuum structured according to different layers (or tiers), whose number may change according to the 
characteristics of the problem we are tackling. In particular, the requirements that have the strongest impact 
on determining the number of layers are related to: (i) the amount of work that should per performed on each 
layer, (ii) the number of available sensors and the computing capabilities of resources at each layer, (iii) the 
requirements about latency, reliability, and availability of the different nodes. 

The AI-SPRINT reference architecture is reported in Figure 2.8. It includes four main layers, which can be 
further subdivided according to the use case characteristics. The initial layer of the fog computing paradigm 
hierarchy, denoted as Layer 0, includes IoT and AI-enabled edge sensors. These devices are mainly devoted to 
data collection; they can be used for data processing, provided that they have enough computation 
capabilities, especially when latency reduction is crucial for the applications (e.g., when operations should be 
performed at millisecond or sub-millisecond granularity). Layer 1 is characterized by edge servers, PCs and/or 
Raspberry Pi devices. Some devices (e.g., smartphones) will be considered at one of these layers according to 
the specific application scenario. For the sake of simplicity, if not differently specified, we normally identify 
both these layers with the term edge. The last layers of the fog computing paradigm hierarchy include the 
cloud. This can be further divided according to the type of resources that are exploited to deploy the 
application components: the assumed cloud deployment environments will be FaaS and IaaS, either public or 
private. Different cloud providers will be considered to avoid lock-in and to minimize costs, with components 
deployed at runtime, possibly, on multiple clouds. 

 
Figure 2.8 - AI-SPRINT Reference Architecture 

AI-SPRINT will consider multiple edge computing paradigms: micro-clouds operated by the 
telecommunications operator (a.k.a. Mobile Edge Computing, MEC, as specified in the 5G standards), public 
cloudlets located at business premises, and private cloudlets located at the end-user premises. Edge devices 
will be based on general purpose processor and Arm architectures (see also Section 3.5), possibly accelerated 
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via GPUs or TPUs to perform real-time inference when needed; the AI application will be deployed via Docker 
containers (see Section 3.4) which can handle accelerators also on low-end architectures such as Arm 
processors.  

 

2.2 Edge Computing Standardisation: State of Play       
 

2.2.1 3GPP and Edge Computing 
5G will help technologies like edge computing and artificial intelligence to harmonise and enable them to work 
together much more efficiently. AI and edge can both serve as building blocks but in diverse ways. From the 
network layer perspective, AI can further optimise edge computing applications. At the application layer, edge 
can be a building block for AI, e.g., by offloading limited capabilities from the device to the network. 

Edge computing environments are a complex multi-supplier, multi-stakeholder ecosystem of devices, people, 
and things. This complexity makes coordination and cooperation across the diverse stakeholder group, with 
growing consensus on the need to work together to educate consumers and businesses and support the 
coordination of on-going standardisation3. 

The ICT Standardisation 2021 Rolling Plan4 does not mention the on-going standardisation work on edge 
computing in 3GPP, where it is a basic functionality of the 5G core network (5GC). Standardisation work on 
edge started in Release 15, it is foundational in Release 17 (expected late 2021/early 2022) and is expected to 
feature in future releases and as we gradually move beyond 5G. Edge computing affects all parts of the 5GC 
with work taking place in the following working groups of SA (Service and System Aspects)5. 

● SA1 (Services)6: Requirements for 5GC, including edge computing. 
● SA2 (Architecture)7: Enhancements for edge computing in 5GC. 
● SA3 (Security)8: Security for edge computing in 5GC. 
● SA4 (Multimedia Codecs, systems and services)9: Streaming architecture extensions for edge 

computing in 5GC. 
● SA5 (Management, orchestration and charging)10: Management and charging for edge computing. 
● SA6 (Application enablement and critical communication applications for vertical markets)11: 

Architecture for edge applications. 

 
 
3 See for example, the webinar takeaways of Edge Computing - Industry Vertical Viewpoints, 
http://global5g.org/online-tool-standards-tracker/webinar-takeaways-edge-computing-industry-vertical-
viewpoints, and 3GPP Standards on Edge Computing, http://global5g.org/online-tool-standards-
tracker/webinar-takeaways-3gpp-standards-edge-computing, April 2021.  
4 https://ec.europa.eu/growth/content/2021-rolling-plan-ict-standardisation-released_en. 
5 https://global5g.org/sites/default/files/2021-04-22-VerticalWS-EdgeComputing_GeorgMayer.pdf. 
https://www.3gpp.org/specifications-groups/sa-plenary/sa1-services/home. 
6 https://www.3gpp.org/specifications-groups/sa-plenary/sa1-services/home. 
7 https://www.3gpp.org/specifications-groups/sa-plenary/sa2-architecture/home.       
8 https://www.3gpp.org/specifications-groups/sa-plenary/sa3-security/home. 
9 https://www.3gpp.org/specifications-groups/sa-plenary/sa3-security/home. 
10 https://www.3gpp.org/specifications-groups/sa-plenary/sa5-telecom-management/home. 
11 https://www.3gpp.org/specifications-groups/sa-plenary/sa6-mission-critical-applications/home. 
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SA2 and SA6 are the primary two groups in 3GPP for edge computing. The table below summarises key areas 
of standardisation on edge in three SA groups from the April 2021 webinar, 5G Vertical User Workshop – Edge 
Computing. Insights from the webinar help fill gaps in the 2021 Rolling Plan12. 

Table 2.1 summarises the main study and work items in 3GPP SA2, SA5 and SA6 for Release 17, along with 
their level of advancement. 

3GPP WG Study /work item Release Progress (in 
April 2021) 

SA2 Study on enhancement of support for Edge Computing in 5GC 
(FS_enh_EC; SP-200093) 

17 100% 

SA2 Enhancement of support for Edge Computing in 5G Core network 
(eEdge_5GC; SP-201107) 

17 60% 

SA6 Application layer architecture, and deployment scenarios 
(FS_EDGEAPP, EDGEAPP) 

• Study on Application Architecture for enabling Edge 
Applications 

• Architecture for enabling Edge Applications 

17 100% 

 

100% 

 95% 

SA5 SA5: Management aspects on Edge Computing (FS_Edge_Mgt)     

Table 2.1 - Study and Work items in SA (Source: 3GPP) 

Table 2.2 summarises the relevant specifications for edge computing.  

Relevant specifications for edge computing 

TS 23.22213 (Rel 15) Common API Framework for 3GPP Northbound APIs 

TS 23.50114 (Rel-15) System architecture for the 5G System (5GS) 

TS 23.50215 (Rel-15) Procedures for the 5G System (5GS) 

TS 23.50316 (Rel-15) Policy and charging control framework for the 5G System (5GS); Stage 2 

TR 23.74817 (Rel-17) Study on enhancement of support for Edge Computing in 5G Core network (5GC) 

TS 23.54818 (Rel-17) 5G System Enhancements for Edge Computing; Stage 2 

TS 23.55819 (Rel-17) Architecture for enabling Edge Applications (EA) 

Table 2.2 - Current 3GPP Specifications on Edge Computing (Source: 3GPP) 

 
 
12https://global5g.org/sites/default/files/VerticalWebinar_SA2_update_Edge_Computing_PuneetJain.pdf; 
https://www.youtube.com/watch?v=k3jvI5qeJZ4&t=117s. 
13 https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3337. 
14 https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144. 
15 https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3145. 
16 https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3334. 
17 https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3622. 
18 https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3856. 
19 https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3723. 
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In SA6, the edge enabler layer (3GPP EDGEAPP) gives support for application clients to locate, connect and 
switch to the most suitable application server on the edge20. It enables application servers on the edge to use 
the underlying 3GPP network to provide the best possible services. EDGEAPP allows the integration of APIs 
enabling application developers to focus better on application features. The architecture allows flexible 
deployment models and business relationships, e.g., multiple edge computing service providers with 
advanced application features for application context relocation or service continuity, EES capability 
exposure/APIs, service-based architecture. 

 

2.2.2 ETSI MEC 
According to the 2021 ICT Standardisation Rolling Plan (March 2021) - (Chapter on cloud and edge computing), 
ETSI MEC provides IT and cloud computing capabilities within the access segments of network infrastructure 
in close proximity to users. It is developing a set of standardised APIs to enable MEC services. The access 
network gives application developers and content providers a service environment with ultra-low latency and 
high bandwidth with direct access to real-time network information that can be used by applications and 
services to offer context-related services. 

Two sources help to update and expand on the Rolling Plan: 

● ETSI White Paper #36 – Harmonising standards for edge computing – A synergised architecture 
leveraging ETSI ISG MEC and 3GPP specifications, July 202021. 

● Edge Computing: Industry Vertical Viewpoints, webinar April 202122. 
 
Architectures, Standards and Open Source 

Standards for deploying cloud at the edge are required when there is a need for solutions involving multiple 
stakeholders, realising scales of economy, avoiding lock-in, and enabling multi-vendor solutions using best of 
breed components from each provider. 

 Examples of where standards are particularly required for edge deployments with mobile network operator 
(MNO) infrastructure include: common infrastructure capabilities, smart application placement, discovery of 
and optimal (re)-routing, service continuity, cloud applications designed to enhance the user experience by 
leveraging network services, edge federation across multiple MNOs. 

As different standardisation activities cover various aspects and complement each other to a large extent, the 
ETSI white paper #36 proposes an architecture that supports diverse market-driven use cases and related 
requirements. It leverages existing standards to form a “synergised mobile edge cloud architecture” with 
common practices for developers, thereby creating a single application software module running on edge 
environments. The scope of the relevant standards groups (ETSI ISG MEC, 3GPP, GSMA and 5GAA) in relation 
to the architecture are summarised in Table 2.3.  

 

 
 
20 
https://global5g.org/sites/default/files/5G%20Vertical%20User%20Webinar%20Series_3GPP%20SA6%20EDGE
APP_SA6%20Chair_SureshChitturi.pdf. 
21 https://www.etsi.org/images/files/ETSIWhitePapers/ETSI_wp36_Harmonizing-standards-for-edge-
computing.pdf. 
22 http://global5g.org/online-tool-standards-tracker/webinar-takeaways-edge-computing-industry-vertical-
viewpoints; https://www.youtube.com/watch?v=uI55CDqAz7M&t=21s.  
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Standards 
Body/Group/Association 

Scope and Purpose 

ETSI ISG MEC23 Open and standardised IT service environment, allowing 3rd-party (edge-
unaware and edge aware) applications to be hosted at the edge of the 
mobile network, capable of exposing network and context information. It 
has specified: 

● Common and extensible application enablement framework for 
delivering services. 

●  Specific service-related APIs for information exposure and 
programmability. 

● Management, orchestration and mobility-related APIs, facilitating 
the running of applications at the right location at the right time and 
ensuring service continuity. 

ETSI MEC is studying MEC federations to enable the shared usage of MEC 
services and applications for multi-operator, multi-network and multi-
vendor environments. 

Beyond the white paper, the April 2021 webinar highlighted that: 

● The fundamental MEC specifications are ready. ETSI MEC is 
recognised in the industry as the leading SDO for application 
enablement and edge computing. 

● MEC is well positioned to satisfy the needs of an Operator Platform 
and help monetising the operator’s network using MEC APIs. 

● MEC is flexible and extensible. 
● The number of edge initiatives in the industry has considerably 

grown and they should leverage MEC to ensure common practices 
and tools for the developers. This will help to ensure adoption and 
accelerate time-to-market24. 

3GPP SA6 ● Defines architecture (EDGEAPP) to enable edge applications 
through the specification of an enabling layer easing 
communication between application clients deployed at the edge. 

● EDGEAPP offers benefits for edge-aware applications through direct 
interaction with the device hosted Edge Enabler Client. The 
architecture also enables the CAPIF (Common API Framework25) as 
a standardised means for providing and accessing APIs in the edge 
cloud. 

3GPP SA2 ● Defines the architecture for mobile core networks including 5G. 
● Defines how user traffic is routed to the appropriate application 

servers in the edge clouds. 
● Provides means for application to provision traffic steering rules. 

 
 
23 https://www.etsi.org/technologies/multi-access-edge-computing. 
24 
https://global5g.org/sites/default/files/MEC%20for%203GPP%20MRP%20Webinar%20on%20Edge%20Compu
ting%20for%20Industry%20Verticals.pdf. 
25 https://www.3gpp.org/common-api-framework-capif. 
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3GPP SA5 ● Specifies underlying life-cycle management of application servers in 
the edge cloud and charging aspects for edge services. 

GSMA ● Focuses on setting requirements and implementing agreements, 
using applicable standards. 

● Specifying requirements and end-to-end high-level architecture for 
a unified Operator Platform to help operators make their assets and 
capabilities consistently available to developers and enterprises 
across networks and national boundaries. 

● Fosters involvement of both standards bodies and open-source 
communities. 

• Phase 1: Federating multiple operators’ edge computing 
infrastructure to give application providers access to global 
edge cloud to run distributed, low latency applications via a 
common set of APIs. 

5GAA (5G Automotive 
Association)26 

● Defines requirements and implementation recommendations for 
cellular V2X applications using multi-access computing as per ETSI 
MEC specifications. 

The 5GAA MEC4AUTO WG aims to demonstrate the use of multi-access 
edge computing (MEC) technology for automotive services, e.g., when two 
distinct automotive vendors can truly test at least three use cases involving 
two distinct MNOs using network infrastructure from two distinct vendors27. 

Table 2.3 - Standards for synergised architecture (Source: ETSI and 3GPP MRP Webinar Series) 

Figure 2.9 visualises the state of play for the edge industry application ecosystem, spanning the fusion of 
network and compute capabilities and standardised compute capabilities. 

 
 
26 https://5gaa.org/      
27 
https://global5g.org/sites/default/files/5GAA_MEC4AUTO_Presentation_at_3GPP_MRP_Webinar_2021_04_20.p
df.  
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Figure 2.9 - Edge landscape at the 5G network layer 

Open source plays a key role in shaping and accelerating deployments of edge clouds. Diverse open-source 
projects pertaining to the cloud may also apply to edge clouds, e.g., when offering high throughput, low 
latency, high availability, horizontal scalability. Other open-source initiatives are emerging to specifically 
support on-going standards for edge-cloud deployments in conjunction with mobile networks. Value 
propositions are expected to come from supporting developers and speeding up the time to deployment. 
Vertical specific open-source components can also enhance edge cloud deployments by offering microservices 
that can be used by application developers through APIs. Therefore, the involvement of open-source 
communities has the potential for additional developments supporting on-going standards, alignment, and 
technology enablement. It may also help update the landscape and pinpoint news areas for standardisation 
and position open-source initiatives within it. 

One such open-source initiative is EdgeGallery, an initiative based in China that focuses on the network of 
edge computing and IIoT applications. The following summary stems from a webinar in April 2021 on edge 
computing and industry vertical viewpoints28. Its aims at including, creating a unified platform for the 
ecosystem for verticals and operators; operator-led edge computing architecture and capability de-facto 
standards (e.g. 3GPP) and lowering the threshold for enterprise application deployment and building a B2B 
ecosystem. Figure 2.10 reflects its positioning statement. 

 
 
28  www.edgegallery.org; https://www.youtube.com/watch?v=CovSM57JUyc. 
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Figure 2.10 - Positioning of EdgeGallery  

2.2.3 Edge Computing Security 
In May 2021, ETSI published a white paper entitled, ETSI MEC Security: Status of Standards Support and Future 
Evolutions29, with a focus on security-related use cases and requirements, highlighting inadequate industry 
approaches to cloud security. Tackling issues like security, privacy and trust need to be prioritised along with 
the challenges brought by edge cloud federations and (far) edge devices, e.g., IoT environment, with end-to-
end (E2E) approaches by adopting standards relevant to edge computing systems. In this context, end-to-end 
security in edge environments has implications on all the elements coming from stakeholders in the system. 

The white paper gives an overview of ETSI MEC standards and support for security with references to other 
relevant standards in the domain, e.g., ETSI TC CYBER, ETSI ISG NFV, 3GPP SA3, as well as cybersecurity 
regulation potentially applicable to edge computing, concluding with perspectives on future evolutions and 
standards directions. Standards for the infrastructure virtualisation and management include critical building 
blocks for MEC system security design. 

IoT use cases may differ substantially both within and across industry segments. Sectorial requirements and 
national requirements for privacy and security can bring further complications in terms of overall performance 
and compliance. E2E security in MEC systems is therefore very important. Moreover, MEC platforms can 
handle application traffic and various application elements may reside not only in MEC hosts but also on User 
Equipment (UE) and end-devices, where the security capabilities of the latter come into the E2E picture of 
security. The deployment of IoT devices in a MEC environment may also involve additional support that an IoT 
device may require, e.g., due to security constraints, power limitations and compute or communication 
capabilities. 

Because of the highly distributed nature of MEC clouds, Trusted Computing concepts are highly 
recommended. The Trusted Computing Group (TCG)30 defines the widely accepted TP standard and related 
standards. In MEC environments, TCG is important for physical platform security. 

The benefits of edge computing will strengthen the promise of 5G and expand the prospects for several new 
and enhanced use cases, including virtual and augmented reality, IoT, Industrial IoT, autonomous driving, real-
time multiplayer gaming, split computing – once the large-scale infrastructure and pervasive Wide Area 

 
 
29 https://www.etsi.org/images/files/ETSIWhitePapers/ETSI_WP_46-_MEC_security.pdf      
30 https://trustedcomputinggroup.org/      
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Networks are in place31. However, in the 3GPP 5G system, MEC use cases represent many of the higher risk 
threat scenarios. 3GPP specifications and standardisation work come into play through SA3 (security), which 
assesses security issues once the core work has been completed.  

Finally, the evolution of edge computing will go hand in hand with related infrastructural technologies, cloud, 
and networking. Hence security challenges will be associated with challenges in these technologies with an 
additional “edge twist” in terms of being a highly distributed cloud reliant on network functionality. 

The SDO outputs to date spotlighted in the white paper are summarised in Table 2.4.  

SDO WG/TC Output Purpose 

ETSI ISG NFV32 Describe and specify virtualisation requirements, NFV architecture framework, 
functional components, and their interfaces, as well as protocols and APIs for 
these interfaces 

NFV Security WG (NFV 
SEC)33 

Analysis of specifications and reports on security requirements and solutions for 
NFVI (NFV infrastructure) 

ETSI MEC34 MEC architecture design variant allowing for different deployment options of 
MEC systems. 

ETSI ISG NFV35 ETSI GS NRV-SEC 024: provide a “whole system” security monitoring and 
management framework. 

ETSI NFV security 
WG36 37 

ETSI GR NFV-SEC 011 and ETSI GS NFV-SEC 010: security and protocols necessary 
to securely support lawful interception in a virtualisation environment which 
include LI architecture and retained data protection. 

ETSI ISG NFV38 39 ETSI GS NFV-SOL 013 and ETSI GS NFV-SEC022: security for NFVI and NFV MANO 
API. It is essential to ensure APIs do not allow an attacker a single point of entry 
into all layers of the MEC environments. 

 
 
31 https://www.3gpp.org/news-events/2152-edge_sa6. 
32  https://www.etsi.org/technologies/nfv. 
33 https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-SEC%20022v2.6.1%20-
%20GS%20-%20API%20Access%20Token%20Spec.pdf. 
34 https://docbox.etsi.org/ISG/NFV/Open/Drafts. 
35 ETSI GS NFV-SEC 024 V2.8.1 (2020-06): “Network Functions Virtualisation (NFV) Phase 2); Security; Access 
Token Specification for API access”, Link: https://www.etsi.org/deliver/etsi_gs/NFV-
SEC/001_099/022/02.08.01_60/gs_NFV-SEC022v020801p.pdf.  
36 ETSI GR NFV-SEC 011 V1.1.1 (2018-04): “Network Functions Virtualisation (NFV); Security; Report on NFV LI 
Architecture”, Link: https://www.etsi.org/deliver/etsi_gr/NFV-SEC/001_099/011/01.01.01_60/gr_nfv-
sec011v010101p.pdf.  
37 ETSI GS NFV-SEC 010 V1.1.1 (2016-04): “Network Functions Virtualisation (NFV); NFV Security; Report on 
Retained Data problem statement and requirements”, Link: https://www.etsi.org/deliver/etsi_gs/nfv-
sec/001_099/010/01.01.01_60/gs_nfv-sec010v010101p.pdf 
38 ETSI GS NFV-SOL 013 V3.4.1 (2021-01): “Network Functions Virtualisation (NFV) Release 3; Protocols and Data 
Models; Specification of common aspects for RESTful NFV MANO APIs”, Link: 
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/013/03.04.01_60/gs_NFV-SOL013v030401p.pdf.  
39 ETSI GS NFV-SEC 022 V2.8.1 (2020-06): “Network Functions Virtualisation (NFV) Release 2; Security; Access 
Token Specification for API Access”, Link: https://www.etsi. 
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NFV security WG40 41 42 ETSI GS NFV-SEC 023: container security. ETSI GS NFV-SEC 026: isolation and trust 
domain. ETSI GR NFV-SEC 027: NFVI security assurance. The aim of this work is 
to make the NFVI secure enough for wide range deployment scenarios and use 
cases. 

ETSI TC CYBER43 44 

  

EN 303 645: consumer IoT requirements for security and data protection, 
specifying security and data protection provisions for consumer IoT devices that 
connect to network infrastructures and interact with associated services. Draft 
TS 103 701 defines a conformance assessment methodology while work item 
CYBER.0062 offers guidance on vulnerability disclosures. 

ETSI TC CYBER45 Draft ETSI TS 103 486: secure and manageable identity management scheme 
applicable to IoT devices in a MEC environment. Requirements of cryptographic 
methods that establish trust in Authority-Attribute trees, with data structures 
representing identity information that can be encoded in a suitable ontology 
(e.g., SAREF[15]). 

ETSI TC CYBER46 Draft ETSI TS 103 742: basic good practices for the cybersecurity of 
communication networks such as one that the deployment of IoT applications in 
a MEC environment may involve, including policy aspects and their lifecycle. 

TCG47 Baseline TPM specification (TCG1) is an international ISO/IEC standard (ISO/IEC 
11889). 

3GPP48 Draft TS 23.548 (5G system Enhancements for Edge Computing). Release 17. 
Support of EAS discovery and edge relocation in various connectivity models, 
network information provisioning to local applications with low latency. 

3GPP SA349 TR33.839: security enhancements on the support for edge computing in the 5G 
core network (5GC) as part of Release 17. This TR covers a key issue from a 
security perspective based on the procedure to protect the EAS discovery 

 
 
40 Draft ETSI GS NFV-SEC 023 V0.0.4 (2020-07): “ Network Functions Virtualisation (NFV); Security; Container 
Security Specification - Release 4”, Link: https://docbox.etsi.org/ISG/NFV/Open/Drafts- 
41 Draft ETSI GS NFV-SEC 026 V0.0.3 (2021-02): “Network Functions Virtualisation (NFV) Release 4; Security; 
Isolation and trust domain specification - Release 4 “, Link: https://docbox.etsi.org/ISG/NFV/Open/Drafts. 
42 Draft ETSI GR NFV-SEC 027 V0.0.1 (2021-04): “Network Functions Virtualisation (NFV) Release 4; Security; 
Report on security assurance of NFVI - Release 4”, Link: https://docbox.etsi.org/ISG/NFV/Open/Drafts. 
43 Draft ETSI EN 303 645 V2.1.0 (2020-04): “Cyber Security for Consumer Internet of Things: Baseline 
Requirements”, Link: 
https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.01.00_30/en_303645v020100v.pdf.  
44 Draft ETSI TS 103 701 V0.0.7 (2021-03): “Cyber Security for Consumer Internet of Things: Conformance 
Assessment of Baseline Requirements“, Link: https://docbox.etsi.org/CYBER/CYBER/Open/Latest_Drafts/CYBER-
0050v007-TS103701-Cybersecurity-assessment-for-consumer-IoT-product.pdf.  
45 Draft ETSI TS 103 486: “CYBER; Identity Management and Discovery for IoT”, DTS/CYBER-0014' Work Item: 
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=47653.  
46 Draft ETSI TS 103 742: “CYBER; Baseline Cybersecurity for a Communications Network”, DTS/CYBER-0055' 
Work Item: https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=58919.  
47 ISO/IEC 11889 (2015): “Information technology – Trusted platform module library – Part1: Architecture”,  
https://www.iso.org/standard/66510.html.  
48 3GPP TS 23.548: “Study on application architecture for enabling Edge Applications”, 
https://www.3gpp.org/ftp/Specs/archive/23_series/23.548/.  
49 3GPP TR 33.839: “Study on security aspects of enhancement of support for edge computing in 5G Core (5GC)”,  
https://www.3gpp.org/ftp/specs/archive/33_series/33.839.  
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message, securely expose the network information to local applications and 
authorises the UE EAS service access during edge data network relocation with 
seamless change. 

3GPP SA650 TS 23.558 (EDGEAPP architecture): Security of the transport for edge interfaces 
should include aspects like confidentiality, integrity and relay protected to 
prevent any attacker from eavesdropping, manipulation and/or replay. 
Authentication and authorisation to access EES capability is key to avoiding 
unauthorised information and attackers from flooding the EES to launch a Denial-
of-Service Attack. The re-use of the CAPIF security model for authentication and 
authorisation has been proposed. 

3GPP51 TS 33.501: Proposed re-use of SBI based security for message protection to 
ensure confidentiality, integrity and replay protection. To enable DNS security, 
DNS over (D)TLS can be used for secure discovery of edge services. Release 15 
(Non-standalone). Like TR 33.848, this report explores additional threats and 
mitigations necessary to design, test and deploy functions in a virtual 
environment. 

3GPP SA352 TR 33.848: Study on security impacts of virtualisation. Security impacts of 
virtualisation. SA3 has so far identified 28 key security issues applicable to MEC. 
Some of these can be addressed through existing standards and security best 
practices but others require the development of new security solutions or 
deployment mitigations. 

3GPP SA353 TR33.818: Security Assurance Methodology (SECAM), leading to the introduction 
of a set of security assurance specifications (SCAS) for 3GPP virtualised network 
products. This TR provides security assurance mechanisms in 3GPP virtualised 
environment, such as threats related to the integration of ETSI VNF concepts and 
interfaces in the 3GPP virtualised system. Release 17. 

NESAS, jointly defined 
by 3GPP and GSMA54 

NESAS-2.0. The Network Equipment Security Assurance Scheme (NESAS) is an 
industry-wide framework to facilitate improvements in security levels across the 
mobile industry. It provides a security baseline to evidence that network 
equipment satisfies a list of security requirements and has been developed based 
on vendor development and product lifecycle processes that provide security 
assurance. The scheme should be used globally as a common baseline, on top of 
which individual operators or national IT security agencies may want to put 
additional security requirements. 

 
 
50 3GPP TS 23.548: “Study on application architecture for enabling Edge Applications”, 
https://www.3gpp.org/ftp/Specs/archive/23_series/23.548/.  
51 3GPP TS 33.501: “Security architecture and procedures for 5G System”, 
https://www.3gpp.org/ftp/Specs/archive/33_series/33.501/.  
52 https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3574.  
53 https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3543.  
54 Network Equipment Security Assurance Scheme – Overview; Version 2.0”, 05 February 2021, Link: 
https://www.gsma.com/security/wp-content/uploads/2021/02/FS.13-NESAS-Overview-v2.0.pdf.  
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ISO/IEC55 ISO 15408-1 (2009; reviewed in 2015) - Security assurance: Common Criteria 
technology is a global reference. It defines a framework for specifying the 
functional and security requirements of a computer system operating in a given 
environment and subject to certain assurance levels. 

Tailored schemes for specific constraints of 5G ecosystems, e.g., GMSA NESAS 
could also play a role in meeting regulatory requirements for 5G infrastructure 
components. 

Table 2.4 - Standards relevant for edge computing security (Source: ETSI) 

 

 Future evolutions of security support 

The ETSI white paper highlights the following five evolutions that will bring new security challenges, with 
several base security enablers that will require future standardisation to support the evolution of edge 
computing: 

● More radical approach to cloud-native like serverless proposals. 
● Consolidation of hybrid clouds and NFV through the seamless integration of acceleration mechanisms 

both in computing and networking: in-networking computing. 
● The integration of acceleration mechanisms both in computing and network forwarding. 
● The pervasiveness of AI and its strong reliance on dependable data flows. 
● The evolution of networks beyond 5G. 

Table 2.5 summarises the main standardisation requirements expected from these evolutions. 

 

Evolution Focus High-level standardisation requirements 

Confidential computing Protect data while being processed and stored through hardware-
based isolation for the processing of payloads. Currently based on 
vendor specific designs and threat models. It requires a standardised 
approach to hardware-based acceleration. 

Network topology attestation Ability to verify that a given network flow, at any given plane, will pass 
through the specific functions, optionally preserving a given order. A 
promising way forward for completing attestation mechanisms is inline 
operation and management along with programmable packet 
forwarding devices. 

AI pervasiveness Address challenges in terms of privacy, especially when using highly 
centralised data stores. New techniques enable collaborative AI/ML 
without centralised data. This allows accurate AI/ML models to be 
trained while retaining the privacy and locality of private and sensitive 
data. Evident applicability of edge computing. Need for common, 
secure, and standardised data and knowledge representation models. 

Disintermediation mechanisms This advent of disintermediation mechanisms provided by Distributed 
Ledger Technologies presents possibilities for distributed security 

 
 
55 https://www.iso.org/standard/50341.html      
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solutions, including the incorporation of reputation mechanisms and 
dynamic trust assessment. DLT has the potential to protect the integrity 
of AI data via immutable records and distributed trust between 
stakeholders. 

Cryptographic models and 
protocols 

These methods and models are rooted at the computational 
complexity of solving certain mathematical problems and are 
threatened by the advent of quantum computers. Ongoing 
standardisation activities should be incorporated into future edge 
computing practice. NIST is leading standardisation efforts towards 
interoperability of secure cryptographic systems with existing protocols 
and networks56. ETSI ISG QKD (Quantum Key Distribution) is working on 
interfaces and operational procedures for integrating this technology 
with network operations and services57. 

Table 2.5 - Security Support Evolutions (Source: ETSI) 

2.2.4  Securing Artificial Intelligence  
Artificial intelligence has been driven by the rapid progress of deep learning and its wide applications, such as 
image classification, object detection, speech recognition and language translation. The ETSI Group Report on 
Securing Artificial Intelligence (SAI) Mitigation Strategy Report, ETSI GR SAI 005 V1.1.158, published in March 
2021, focuses on deep learning, and explores the existing mitigating countermeasure attacks. 

The GR summarises existing and potential approaches against poisoning attacks, backdoor attacks, evasion 
attacks, model stealing attacks and data extraction attacks for AI-based systems. Existing mitigations can 
become less effective over time due to the rapid evolution of attack technology for AI-based systems though 
mitigation approaches and their rationales remain. Most of the approaches analysed come from academic 
settings with assumptions that need to be considered when applied in practice. 

It outlines available methods for securing AI-based systems by mitigating known or potential security threats 
identified in the recent ENISA threat landscape publication59 and ETSI GR SAI 004 Problem Statement Report60. 
It also discusses security capabilities, challenges, and limitations when adopting mitigation for AI-based 
systems in certain potential use cases. As such, the GR serves as a securing AI technical survey reference for 
planning, designing, developing, deploying, operating, and maintaining AI-based systems, setting a baseline 
for a mutual understanding of relevant AI cyber security threats and mitigations that will be key for 
widespread deployment and acceptance of AI systems and applications. In future, more research work needs 
to be done on automatic verification and validation, explainability and transparency, and novel security 
techniques to counter emerging AI threats. 

The GR describes the workflow of machine learning models, where the model life cycle includes both 
development and deployment stages. Based on this, it summarises existing and potential mitigation 
approaches against training attacks, that is, mitigations to protect the ML model from poisoning and backdoor 
attacks, and against inference attacks, including those from evasion, model stealing, and data extraction. 

 
 
56 https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization. . 
57 https://www.etsi.org/technologies/quantum-key-distribution. 
58 https://www.etsi.org/deliver/etsi_gr/SAI/001_099/005/01.01.01_60/gr_SAI005v010101p.pdf. 
59 https://www.enisa.europa.eu/topics/threat-risk-management/threats-and-trends.  
60 https://www.etsi.org/deliver/etsi_gr/SAI/001_099/004/01.01.01_60/gr_SAI004v010101p.pdf.      
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Mitigation approaches are firstly summarised as model enhancement and model-agnostic, and then grouped 
by their rationales. 

 

2.3 Importance of AI@EDGE for the Business  
The availability of huge datasets and technology advances in Big Data, the Internet of Things (IoT) and fast 
connectivity are showing the potential impact of AI new systems and services, digital assistants, robots, and 
drones on companies. AI is today a general-purpose technology, with the ability to leverage data transforming 
it into actionable insights, extended and packaged into different types of applications across all industries, 
such as voice and image recognition, machine translation, control of assisted driving and autonomous vehicle 
navigation. The EC’s White Paper on artificial intelligence [EuropeanCommission2020], published for public 
consultation in February 2020, defines AI as one of the most important applications of the data economy. The 
EC considers AI as an instrument to harness the value of data in order to build European sustainable economic 
growth and societal wellbeing. 

Since AI relies on an extensive base of data, it is usually associated with environments where computational 
and storage capabilities are at their best, being within a core datacentre of a company, or in the cloud. In fact, 
AI is becoming a critical platform play for all cloud service providers in Europe. As many organizations are 
choosing to move increasing volumes of data into the cloud as part of their digital transformation, cloud 
represents a key enabler for AI and is increasingly becoming the choice for organizations building AI because 
of its flexibility and scalability when it comes to running processes as well as its capabilities with respect to 
organizing and managing enterprise data. 

Still, according to IDC’s Multi-cloud survey 2020, on-premises IT is the preferred way to deliver AI workload 
for 51% of the European respondents, followed by Hybrid Cloud (28%) and Public Cloud (15%). To understand 
the impact of AI at the edge, though, a distinction between different AI workloads should be made. Broadly 
speaking, this can be divided into the training of an AI model, and the inference process. Training requires 
heavy computing and storage capabilities, having the datacentre or the cloud as the most convenient 
environment to perform the task. On the other hand, when the model is trained, inference does not require 
the same performance, opening new possibilities. 

Edge is gaining increasing attention as the approach of moving infrastructure and workloads closer to where 
data is created and consumed is now promising for different use cases across multiple industries, especially 
in combination with AI and IoT. According to the 2018 European AI survey, already 40% of the respondents 
were deploying AI inferencing at edge locations. With the advancements seen in the silicon industry and the 
ability to run increasingly efficient AI models on small footprint devices, edge will become the preferred 
environment where AI models will be applied [Roberti2020].  

According to IDC’s Edge Spending Guide, V2 2020, the AI component of the European Enterprise Edge 
spending will become increasingly important, driving 10% of the market by 2024, and passing the $4B mark 
(see Figure 2.9). For comparison, the figure for the US shows a bigger market, almost two times the size of the 
European one. Still, estimated growth rates are very similar, with 4-years compound annual growth rates 
aligned right below 30%, highlighting how the interest in AI at the edge is skyrocketing across different regions. 

Looking at the European scenario, beyond professional services, that will be interested in the build out of the 
edge value chain, to provide AI solutions at the edge to customers in other industries, Retail, Manufacturing 
and Transportation companies will be the verticals driving the growth. Further, it is important to note that AI 
at the edge will play a role in enabling key use cases both to increase customer experience and to ensure 
better operation reducing costs, like in the case of automated preventive maintenance, or automated threat 
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intelligence and prevention systems, applicable across different verticals, or in industry-specific use cases like 
diagnosis and treatment systems for Healthcare [IDC Edge Spending Guide, V2 2020 (January 2021)].  

 

 
Figure 2.11 - European Edge Market Growth. Source: IDC Edge Spending Guide, V2 2020 (January 2021) 
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3. AI technologies  
Chapter 3 describes the state-of-the-art of the traditional frameworks adopted in the computing continua for 
the development of AI application. Moreover, it presents the solutions currently offered by the cloud big 
players and by the main European cloud providers. The chapter overviews the hardware of intelligent sensors 
currently offered in the market, including those that will be adopted to develop the AI-SPRINT use cases.  

In particular, an initial overview on edge intelligence is presented in Section 3.1, while Section 3.2 focuses on 
the main frameworks for the design and development of AI applications. Section 3.3 describes PyCOMPSs, a 
framework for parallel, distributed applications. Section 3.4 gives an overview of cloud-based solutions related 
to AI, and Section 3.5 provides a snapshot on the available technologies for edge intelligence. Then, 
application-specific technologies are presented. In particular, Section 3.6 describes wearable sensors for 
stroke care, Section 3.7 focuses on cameras for Agriculture 4.0, and Section 3.8 provides insights on drone 
technologies for inspection and maintenance. Finally, Section 3.9 provides a description of the AI frameworks, 
boards, and accelerators for the considered case studies. 

 

3.1 Overview  
It is recognized that the three most important elements for an intelligent application are: data, model, and 
computation. Correspondingly, the complete deployment of most intelligent applications (unsupervised 
learning-based application is not included, which however is not a target in AI-SPRINT) includes three 
components: data collection and management, training, and inference. Computation remains a hidden 
component that is essential for the other three components. Combined with an edge environment, these 
three obvious components turn into edge cache (data collection and storage at the edge), edge training 
(training at the edge), and edge inference (inference at the edge) respectively. Computation at the edge 
traditionally is done via offloading. Hence, the hidden component turns into the edge offloading (computation 
at the edge). 

 

Edge Caching 

In edge intelligence, edge caching refers to a distributed data system’s proximity to end-users. It collects and 
stores the data generated by edge devices and surrounding environments and the data received from the 
Internet to support intelligent applications for users at the edge. Edge devices, such as monitoring devices and 
sensors, record the environmental information. Such data are collected at reasonable places and used for 
processing and analysis by intelligent algorithms to provide services for end-users (for example, the video 
captured by cameras could be cached on vehicles for aided driving [Xu2017]). 

 

Edge Training 

Edge training refers to a distributed learning procedure that learns the optimal values of all the weights, the 
bias, or the hidden patterns based on the training set cached at the edge. Different from traditional centralized 
training procedures on powerful servers or computing clusters, edge training predominantly occurs on edge 
servers or edge devices, which are usually not as powerful as centralized servers or computing clusters. The 
model/algorithm is trained either on a unique device (solo training [Lane2016]) or by the collaboration of edge 
devices (collaborative training [McMahan2017, IEEEGuide2021]) with training sets cached at the edge. The 
availability of the acceleration module speeds up the training, while the optimization module rectifies 
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problems in training: for example, updating the frequency, cost, privacy, and security issues. The uncertainty 
estimates module controls the uncertainty in training. Once trained, the computed parameters can be 
persisted to storage (file), program memory (RAM), and deployed as an Application Programming Interface 
(API) — the model can be executed in resource-constrained devices in an offline fashion. The deployed models 
are monitored for drift and retrained as necessary. 

 

Edge Inference 

In order to employ trained models for inference in an edge environment some critical issues have to be faced. 
In particular, we must consider:  

● how to make models applicable for their deployment on edge devices or servers; 
● how to accelerate edge inference to provide real-time responses. 

For the first problem, researchers mainly focus on two research directions: designing new models/algorithms 
that consider fewer requirements on the hardware naturally suitable for edge environments, and compressing 
existing models to reduce unnecessary operation during inference. In this last direction researchers focus on 
compressing existing models to obtain thinner and more compact models which are more computation- and 
energy-efficient with negligible or even no loss on accuracy. There are five commonly used approaches to 
model compression: 

● Low-rank approximation: the main idea is to use the multiplication of low-rank convolutional kernels 
to replace kernels of high dimension. This is based on the fact that a matrix could be decomposed into 
the multiplication of multiple matrices of smaller size [Jaderberg2014]; 

● Knowledge distillation: is based on transfer learning [Yosinski2014], which trains a NN of smaller size 
with the distilled knowledge from a larger model. The large and complex model is called teacher 
model, while the compact model is referred as student model, which takes the benefit of transferring 
knowledge from the teacher network; 

● Compact layer design: in Deep NNs , if weights end up to be close to zero, the computation is wasted. 
A fundamental way to solve this problem is to design compact layers in NNs, which could effectively 
reduce the consumption of resources, e. g., memories and computation power. Some approaches 
consist of introducing sparsity and replacing fully connected layers with global average pooling 
[Szegedy2015]; 

● Network pruning: the main idea is to delete unimportant parameters, since not all parameters are 
important in highly precise Deep NNs [LeCun1989, Hassibi1992]. Consequently, connections with less 
weights are removed, which converts a dense network into a sparse one; 

● Parameter quantization: a very Deep NN involving many layers with millions of parameters, consumes 
a large amount of storage and slows down the training procedure. However, highly precise 
parameters in NNs are not always necessary in achieving high performance, especially when these 
highly precise parameters are redundant [Denil2013]. For example, some approaches consist in the 
conversion of weight parameters of intermediate layers in 8-bit fixed point integers [Vanhoucke2011]. 
Results show that the total required memory shrinks 3-4 times and that the quantised model could 
achieve a 10 times speedup over an optimised baseline and a 4 times speedup over an aggressively 
optimised float point baseline without affecting the accuracy. 

 
The next sections provide a complete analysis on the technologies currently used for the development of AI 
applications in computing continua which are the target deployment models for AI-SPRINT. 
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3.2 Mainstream Frameworks for AI Development in Computing 
Continua and Edge Devices 

Together with the advances in ML algorithms and in device technology, we are witnessing an increase of the 
number of specific tools and frameworks, with the goal of making faster and easier the implementation and 
integration for these algorithms. This section is provided to give a comprehensive overview of the main 
frameworks on the scene. We start by introducing the concept of Tiny Machine Learning (TinyML), which is 
targeting limited capacity devices that we can encounter in computing continua. Then, we provide a survey of 
the frameworks specialized in the development and deployment of ML solutions. Popular general-purpose 
multi-platform frameworks, i.e., TensorFlow, Keras, PyTorch, and Caffe, are first presented, followed by the 
ones designed to deploy AI models on generic embedded devices, i.e., TensorFlow Lite, TensorFlow Lite Micro, 
PyTorch Mobile, and Apache TVM. Finally, some specific-vendor frameworks are described, i.e., NVIDIA 
TensorRT, Intel OpenVINO Toolkit, and STM32Cube.AI. 

3.2.1 Tiny Machine Learning 
Today everything in the physical world would be translated preferably into the corresponding digital version. 
More specifically, this process consists of adjusting a transducer that translates information generated by 
some sensor towards some digital component. Most of the time this mechanism is accomplished by micro-
controllers. On the other side, the endpoint handling digital information, responsible for assigning some 
meaning to sensor data may be under the form of Edge AI or even Cloud AI. However, some fundamental 
issues arise in existing intelligent scenarios. In particular, AI processes can be highly inefficient in terms of 
energy consumption, they are computation-intensive, and they present strict requirements on resources, e. 
g., Central Processing Unit (CPU), Graphics Processing Unit (GPU), memory, and network, which make it 
impossible to be available anytime and anywhere for end users. 

Furthermore, the relatively vast amount of data exchanged from sensor transducers to the processing unit in 
FOG architectures introduces several privacy issues as highlighted by the European Union in the General Data 
Protection Regulation (GDPR) related to securing the private information of users. If mobile users upload their 
data to the cloud for a specific intelligent application, they will take the risk of privacy leakage: for example, 
the personal data might be extracted by malicious hackers or companies for illegal purposes [Xu2020]. 
Nowadays, users’ personal, extremely sensitive data like photos and voice recordings are kept indefinitely by 
the companies that collect them. Users can neither delete them nor restrict the purposes for which it is 
utilized. Furthermore, centrally kept data are subject to legal subpoenas and extra-judicial surveillance. In 
most cases, the best way to protect privacy is to confine such data to the device that has acquired them so 
that sensor data never leaves it. 

Moreover, in cloud AI applications, there is a giant volume of data generated and collected by billions of 
mobile users and IoT devices, distributed at the network edge. Uploading such a volume of data to the cloud 
consumes significant bandwidth resources, which would also result in unacceptable latency for users. Lastly, 
the nature of the data exchange, whether it is wired or wireless, can be a source of unreliability, too. 

It is exactly in this context that TinyML emerges. It comes into the boundary between the physical and the 
digital world enabling machine intelligence right next to the physical world, or even on both sides. Conversely 
to the cloud-based intelligent applications (as also initially discussed in Section 2.1.2), TinyML provides 
numerous benefits: 

● Energy efficiency: the devices on which it is deployed consume relatively few energy (order of mWs). 
It makes battery-operated devices suitable for intelligence inference; 

● Privacy: the information exchanged by TinyML devices is mostly “meta-data” guaranteeing privacy by 
design and the overall amount of data is processed locally; 
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● Improved latency: the latency is improved achieving a better designing level and even offline 
execution is allowed. It makes TinyML suitable for real-time decision-making, like car automation or 
alongside workers at factory assembly lines; 

● Reliability: there are no connectivity issues due to the totally no-exchange of digital information — 
think about Apple Siri (until the current iOS 14 release) and Microsoft’s Cortana that are based on 
cloud computing and they would not function if the network is unavailable; 

● Reduced costs: from one side consuming relatively few energy has a direct impact on the energy costs 
compared to more powerful solutions. On the other hand, TinyML is cheaper than cloud-based 
intelligent solutions because it requires less storage and replaces the processing costs. 

 
TinyML represents a burgeoning field at the intersection of embedded systems and ML. The world has over 
250 billion microcontrollers [ICInsight2020] with strong growth projected over coming years. As such, a new 
range of embedded applications is emerging for Neural Network (NN) models. Because these models are 
extremely small (a few hundred KBs), running on microcontrollers or DSP-based embedded subsystems, they 
can operate continuously with minimal impact on device battery life [David2021]. Table 3.1 highlights the 
differences in terms of hardware machine intelligence is commonly deployed. It is analogously remarkable 
the difference with the design of a TinyML deployment and with adopted hardware platforms as well. 

Technology Implemented Design Hardware 

Cloud AI Deep NN on the cloud Tensor Processing Unit (TPU), Field 
Programmable Gate Array (FPGA), GPU, CPU 

Edge AI Optimized algorithms and CNN-light 

 

System on Chip (SoC), additionally with 
Neural Processing Unit (NPU) accelerators 

TinyML CNN-micro 

 

Microprocessor Control Unit (MCU) with no 
hardware accelerators 

Table 3.1 - Positioning of TinyML with respect to cloud and edge AI 

The NN model difference between TinyML, and cloud of course, but solely considering the smaller edge, is 
astonishing and this difference leads to a hardware choice that inherits all the benefits listed so far. Moreover, 
it is of pairwise importance to consider the data sources the TinyML applications would gather and from 
where. From Figure 3.1, it is clear that most of the information handled by such micro-CNNs are coming from 
the space around the device. Capturing data starting from CMOS cameras, IR cameras, microphones, or optical 
sensors, TinyML can be everywhere around us. 



 
 

 
  

D1.1 State of the Art Analysis 
 
 

38                                                                                                                                                      www.ai-sprint-project.eu 
  
 

 
Figure 3.1 - Percentage of information handled by micro-CNNs [Gousev2020] 

We have a diverse ecosystem allowing TinyML to grow faster [David2021]. On one side, the hardware 
production allows to have available on the market more efficient platforms; on the other side, the software 
infrastructure becomes more mature, and we have available more efficient algorithms. Moreover, many 
corporate and venture capitalists invest in such technologies and the number of start-ups increases too. 
However, this is also limiting TinyML because hardware vendors have related but separate needs. TinyML 
frameworks are often tied to specific devices, and it is hard to perform a proper choice as they are optimized 
based on hardware, software, and the specific vertically integrated solution.  

Some specific technical challenges make developing a ML framework for embedded systems extremely 
complex: 

● Missing Features: Embedded platforms are defined by their tight limitations. Therefore, many 
advances from the past few decades that have made software development faster and easier are 
unavailable to these platforms because the resource trade-offs are overly expensive. Examples 
include dynamic memory management, virtual memory, an operating system, a standard instruction 
set, a file system, floating-point hardware, and other tools that seem fundamental to modern 
programmers. Though some platforms provide a subset of these features, a framework targeting 
widespread adoption in this market must avoid relying on them. 

● Fragmented Market and Ecosystem: Many embedded system uses only require fixed software 
developed alongside the hardware, usually by an affiliated team. The lack of applications capable of 
running on the platform is therefore much less important than it is for general-purpose computing. 
Moreover, backward instruction-set-architecture (ISA) compatibility with older software matters less 
than in mainstream systems because everything that runs on an embedded system is probably 
compiled from the source code anyway. As follows, embedded hardware can aggressively diversify to 
meet power requirements, whereas even the latest x86 processor can still run instructions that are 
nearly three decades old. These differences indicate the pressure to converge on one or two dominant 
platforms or ISAs is relatively weaker in the embedded space, leading to fragmentation. Many ISAs 
support thriving ecosystems, and the benefits they bring to particular applications outweigh 
developers’ cost of switching. Companies indeed allow developers to include their ISA extensions. 
Matching the broad variety of embedded architectures are the numerous toolchains and integrated 
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development environments (IDEs) that support them. Many of these systems are exclusively available 
through a commercial license with the hardware manufacturer, and in cases where a customer has 
requested specialized instructions, they may be inaccessible to everyone. These arrangements have 
no open-source ecosystem, leading to device fragmentation that prevents the development team 
from producing software that runs on many separate embedded platforms. 

● Resource Constraints: People who build embedded devices do so because a general-purpose 
computing platform exceeds their design limits. The most dominant drivers are: (i) cost, with a 
microcontroller typically selling for less than a few dollars [ICInsight2020]; (ii) power consumption, as 
embedded devices may require just a few milliwatts of power, whereas mobile and desktop CPUs 
require watts; and (iii) form factor, since capable microcontrollers can be smaller than a grain of rice. 
To accommodate their needs, hardware designers trade-off capabilities. A general characteristic of an 
embedded system is its low memory capacity. At one end of the spectrum, a big embedded system 
has a few megabytes of flash ROM and at most a megabyte of SRAM. At the other end, a small 
embedded system has just a few hundred kilobytes or fewer, often split between ROM and RAM. 
These constraints mean both working memory and permanent storage are significantly smaller than 
most software designed for general-purpose platforms would assume. To be specific, the size of the 
compiled code in storage requires minimization. Most software designed for general-purpose 
platforms contains code that often goes uncalled on a given device. Choosing the code path at run-
time is a better use of engineering resources than shipping more highly custom executables. Such run-
time flexibility is complex to justify when code size represents a concern, and the potential uses are 
much less. As a result, developers must break through a library’s abstraction if they want to carry out 
modifications to suit their target hardware. 

 
TinyML follows the guidelines introduced in Section 3.1 to develop intelligent applications on edge devices as 
well as IoT embracing architectures, techniques, tools, and approaches capable of performing on-device 
analytics for different sensing modalities (like vision, audio, motion) with an energy cost below 1mW, targeting 
predominately battery-operated devices. The most correct definition of a TinyML implementation is that of a 
holistic hardware–system–software co-design (see Figure 3.2) that is joint with extreme optimization and 
innovation in all these three areas. However, as discussed in the previous section related to the development 
constraints, there is no unique framework to follow for building and deploying a TinyML application, but 
everything depends on the application tasks and the characteristics of the underlying hardware device and its 
supported platform(s). 

 
Figure 3.2 - TinyML: holistic hardware–system–software co-design 
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In the remaining part of this section, we present frameworks that aim to deploy AI models on a generic 
embedded device and, as a consequence, those which can be defined as all-purpose multi-platform 
frameworks. Subsequently, we will go deepening some vendor-specific frameworks. 

 

3.2.2 General Purpose Deep Learning Frameworks 
 

TensorFlow 

TensorFlow61 is a free and open-source software library for machine learning created and maintained by the 
Google Brain team. Since its first release in late 2015, it has become one of the most popular deep learning 
frameworks in the world. It can be used across a range of tasks but has a particular focus on training and 
inference of deep neural networks. It has a comprehensive, flexible ecosystem of tools, libraries and 
community resources that lets researchers and developers easily build and deploy ML powered applications. 
Its flexible architecture allows for the easy deployment of computation across a variety of platforms (CPUs, 
GPUs, and Tensor Processing Units - TPUs62) with few code changes, and from desktops to clusters of servers 
to mobile and edge devices. Furthermore, it provides support for distributed training, allowing portions of the 
network graph to be computed on different processes and servers, and for scaling computation on multiple 
GPUs, on one machine, on multiple machines in a network, or on Cloud TPUs. 

TensorFlow computations are expressed as stateful dataflow graphs. The name TensorFlow derives from the 
operations that such neural networks perform on multidimensional data arrays, which are referred to as 
tensors. In a dataflow graph, nodes represent tensors or operations, and the edges represent input and output 
of computations. Using dataflow graphs allows exploiting parallelism, distributed execution, and portability. 
The computation of the entire graph, or parts of it, is performed within a TensorFlow session, which 
encapsulates the environment in which operations are executed and tensors are evaluated. In 2019, Google 
announced TensorFlow 2.0, whose main updates are Keras integration, described in the following sub-section, 
and eager execution, for immediate iteration and intuitive debugging. Eager execution is an imperative 
programming environment that evaluates operations immediately, without building graphs: operations return 
concrete values instead of constructing a computational graph to run later. This makes it easy to get started 
with TensorFlow and debug models. 

 

Keras 

Keras63 is a high-level API specifically developed to enable fast experimentation. It provides an abstract 
interface of other deep learning frameworks, typically referred to as backends. In the last years, Keras updates 
mainly concentrated on the integration with Tensorflow 2.0, becoming itself a part of the framework as the 
tf.keras package.  

Thanks to Keras abstractions, building ML models becomes very intuitive. Indeed, it provides basic building 
blocks that can be combined to form the final model. The core data structures are layers, like Conv2D and 
Dense (fully-connected) layers, and models, through which multiple layers are combined, e.g., the Sequential 
model, which consists of a linear stack of layers. Keras functional API allows to build graphs of layers or to 

 
 
61 https://www.tensorflow.org/ 
62 https://cloud.google.com/tpu/docs/tpus 
63 https://keras.io/ 
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write custom models from scratch via subclassing of the Layer class, which encapsulates both a state, i.e., the 
layer weights, and a transformation from inputs to outputs, i.e., a call (forward pass). 

The main advantages of using Keras are: 

● Better user experience though a very flexible API 
● Availability of some deep learning models with their pre-trained weights 
● Built-in support for multi-GPU and distributed training 

 

PyTorch 

PyTorch64 is an open-source machine learning library primarily developed by Facebook’s AI Research lab based 
on the Torch library, an open-source library based on the Lua programming language released in 2002.  It is 
mainly used for applications such as computer vision and natural language processing. Thanks to its user-
friendly interface it gained popularity in the last years becoming one of the preferred platforms for deep 
learning research.  

PyTorch defines its own data structure, i.e., the torch.Tensor, which is a multi-dimensional matrix containing 
elements of a single data type, and provides operations for tensor computing. PyTorch tensor computing is 
similar to Numpy65 computing on arrays, but the former can be accelerated via GPU. One of the main 
characteristics of PyTorch is the dynamic computation of graphs and one of the fastest implementations of 
reverse-mode auto-differentiation through the PyTorch Autograd package, which basically records the 
operations performed and then uses them to compute gradients. Dynamic graphs allow easier debugging, 
arbitrary changes to a model without rebuilding overhead, and variable-length inputs and outputs. 
Furthermore, PyTorch builds its functions as Python classes, thus it can be integrated with Python functions 
and packages. This, together with its imperative programming style, makes developing in PyTorch intuitive 
and easy to debug. 

There are a couple of ways in which Pythorch differentiate from TensorFlow: 

● Ease of use: compared to Tensorflow, PyTorch offers more freedom to customize layers, thanks also 
to its tight integration with the Python language. However, the release of its 2.0 version, with the 
Keras integration, made Tensorflow a good candidate in terms of ease of use too. 

● Static vs. dynamic graphs: one of the historical differences between the two frameworks was the 
generation of computational graphs. TensorFlow works on static graphs, i.e., the computation graph 
of the model must be first defined and then executed, while PyTorch offers the advantages of using 
dynamic graphs as described before, without the need of using special sessions. However, with the 
introduction of the eager execution in TensorFlow 2.0 this gap has been reduced, and we can have a 
dynamic computation similar to the PyTorch one also in TensorFlow. 

● Data parallelism: it is the other historical difference between the two frameworks. Using 
torch.nn.DataParallel it is possible to wrap any model which is replicated on each device and the 
computation is parallelized over the batch dimension. Multi-node data parallelism is obtained instead 
through the torch.nn.DistributedDataParallel module, which replicates the model across the defined 
machines. Implementing data parallelism in Tensorflow 1.X was very difficult and a lot of effort was 
required to obtain the same PyTorch behaviour. With the introduction of Tensorflow 2.0 things 
changed and thanks to the tf.distributed.Strategy API we can obtain data parallelism with very few 
lines of code. 

 
 
64 https://pytorch.org/ 
65 https://numpy.org/ 
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● Visualization: when it comes to visualization of the training process, TensorFlow held the lead for a 
while. TensorFlow uses its TensorBoard66 visualization toolkit, which is very complete and provides all 
the visualization tools needed to debug and understand running experiments. At the beginning 
PyTorch developers used Visdom67, but the features provided by Visdom are very minimalistic and 
limited. Subsequently, PyTorch integrated TensorBoard visualization through the 
torch.utils.tensorboard utilities, acquiring the same visualization capabilities provided by TensorFlow. 

 

Caffe 

Caffe68 (Convolutional Architecture for Fast Feature Embedding) is a deep learning framework, originally 
developed at University of California, Berkeley. Caffe development relies on compiling from C++ source code, 
and it offers bindings for Python and MATLAB. Its core objectives are strongly oriented toward image 
segmentation and classification, a specialization that makes it a distinct offering in the run of open-source 
Python-centered deep learning libraries. It has an expressive architecture that is suitable for the development 
and modelling of DL models, and which allows for transparent and easy switching between GPU and CPU 
operations. It is fast and even the project's long-standing claim of being able to process 60 million images in 
one day (equating to 1 millisecond per image for inference, or 4 milliseconds per image for learning) have 
been exceeded with recent updates to the library. One of Caffe's other biggest strengths comes in the form 
of access to a large number of pre-trained models from the Model Zoo deep net repository69. It may lack 
TensorFlow's high-level APIs and generalization, but the extra work needed to implement layers makes for a 
lean and well-optimized release code. This is fit for mobile and cloud environments without the overhead of 
complex framework architectures. 

In 2017, Facebook Research released Caffe2 to open source. This new version offers quantized computation, 
additional hardware support, new capacity for high-volume distributed training, and better support for 
Recurrent Neural Networks (RNNs) than the original. It also brings its own implementation of Model Zoo. In 
May 2018, Caffe2 was integrated into PyTorch. Caffe is well-suited for edge deployment, less so for abstract 
research. Caffe2 is heavily used within the Facebook machine learning community. 

 

ONNX 

Open Neural Network Exchange (ONNX70) is an open-source artificial intelligence ecosystem of technology 
companies and research organizations that establish open standards for representing machine learning 
algorithms and software tools to promote innovation and collaboration in the AI sector. ONNX is the first step 
in enabling different tools to work together, by allowing them to share models. What DL frameworks have in 
common is that they provide an interface to build computation graphs and runtimes that process these 
graphs. Thus, graphs serve as intermediate representation (IR). The ONNX format represents a common IR 
with the goal of establishing a powerful ecosystem among frameworks. ONNX specification consists of the 
following components: 

1. A definition of an extensible computation graph model 
2. Definitions of standard data types 

 
 
66 https://www.tensorflow.org/tensorboard 
67 https://ai.facebook.com/tools/visdom/ 
68 https://caffe.berkeleyvision.org/ 
69 https://caffe.berkeleyvision.org/model_zoo.html 
70 https://onnx.ai/ 
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3. Definitions of built-in operators 
 
Points 1 and 2 form the ONNX IR and built-in operators are divided into a set of primitive operators and 
functions. 

The top-level ONNX construct is a Model, a structure that associates metadata with a graph containing all the 
executable elements. The metadata is used to determine whether an implementation is able to execute the 
model. Each model must explicitly name the operator sets, which define the available operators and their 
version. Each operator used within a graph must be declared by one of the operator sets imported by the 
model. Computation graphs are structured as a list of nodes (with no cycles), each one representing a call to 
an operator having zero or more inputs and one or more outputs. Each graph must define the names, types 
and shapes of its input and outputs. Names of nodes, inputs, output, initializers, and attributes are provided 
in namespaces. 

There are two official ONNX variants, i.e., ONNX and ONNX-ML, which differ for the supported types and 
operators. ONNX definition recognizes only tensors as input and output types, while ONNX-ML also recognizes 
sequences and maps. 

 

3.2.3 Deep Learning Frameworks for Embedded Devices 
 

TensorFlow Lite 

TensorFlow Lite71 is a set of tools to help developers run TensorFlow models on mobile, embedded, and IoT 
devices. It enables on-device ML inference with low latency and limited binary size. TensorFlow Lite consists 
of two core components: 

● Converter: it converts TensorFlow models into an efficient form for use by the interpreter and can 
introduce optimizations to improve binary size and performance. 

● Interpreter: it runs specially optimized models on many different hardware types including mobile 
phones, embedded Linux devices, and microcontrollers. 

 
Figure 3.3 - Workflow to deploy machine intelligence on edge devices with TensorFlow Lite9 

The step-by-step workflow to deploy machine intelligence on edge devices with TensorFlow Lite (as depicted 
in the Figure 3.3) is the following. 

● Model Selection: A TensorFlow model is a data structure that contains the logic and knowledge of a 
ML network trained to solve a particular problem. There are many ways to obtain a TensorFlow model, 
from using pre-trained models to training your own. To adopt a model with TensorFlow Lite, there is 

 
 
71 https://www.tensorflow.org/lite 
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a conversion step which translates a full TensorFlow model into the TensorFlow Lite format. It is 
impossible to design or train a model using TensorFlow Lite. Even now another approach is 
considered: transfer learning [Yosinski2014].  

● Model Conversion: TensorFlow Lite is designed to execute models efficiently on mobile and other 
embedded devices with limited computation and memory resources. Some of this efficiency comes 
from utilizing a format for storing models: FlatBuffer, a file format designed to be space-efficient. 
TensorFlow models must be converted into FlatBuffer format to be handled by TensorFlow Lite. 

● Run Inference with the Model: Running data through a model to obtain predictions requires a model, 
an interpreter, and input data. The TensorFlow Lite interpreter comprises a library that takes a model 
file, executes the operations it defines on input data and provides access to the output. The 
interpreter works across multiple platforms and provides a simple API for running TensorFlow Lite 
models from Java, Swift, Objective-C, C++, and Python. As follows, it is easy to use from both major 
mobile platforms (iOS and Android) but also embedded Linux remains a prominent platform for 
deploying ML with TensorFlow Lite. Additionally, the interpreter can be configured with delegates to 
make use of hardware acceleration on different devices. The GPU Delegate allows the interpreter to 
run proper operations on the device GPU. 

● Model Optimization: TensorFlow Lite provides optimization tools that typically reduce the size of the 
model, the time it takes to run, or both. This can come at the cost of a reduction in terms of accuracy, 
but the reduction is often slight enough it is worthwhile. Moreover, optimized models may require 
slightly more complex training, conversion, or integration. ML optimization represents an evolving 
field, and TensorFlow Lite Model Optimization Toolkit is continually growing as new techniques have 
been developed. One of the most useful optimizations is quantization. By default, the weights and 
biases in a model are stored as 32-bit floating-point numbers so that high-precision calculations can 
occur during training. In TensorFlow Lite, quantization allows reducing the precision of these numbers 
so that they fit into 8-bit integers, a four-times reduction in size. To a greater extent, since it is 
effortless for a CPU to perform math with integers than with floats, a quantized model will run faster. 

 
Finally, with a focus on the deployment of the converted and optimized model on microcontrollers, the last 
step is to convert such a model into a C source file that can be included in a binary file and loaded directly on 
the memory of a resource-constrained device. This is explicitly done because most of the microcontrollers do 
not have a filesystem and even if they did, the extra code required to load a model from the disk would be 
wasteful given their limited space at disposal. 

 

TensorFlow Lite Micro 

TensorFlow Lite Micro is an open-source ML inference framework for running DL models on embedded 
systems, based on the work of David et al. [David2021]. It inherits TensorFlow Lite model conversion and 
optimization infrastructure while addressing the efficiency demands imposed by embedded-system resource 
constraints and fragmentation challenges that make cross-platform interoperability nearly impossible. The 
framework employs a one-of-a-kind interpreter-based approach that allows for flexibility, portability and easy 
adaption to new applications or features, while addressing these unique challenges. The deployment of a 
TensorFlow Lite Micro application is divided into several steps: 

1. The first step is to load into memory a live NN model object. Through the client API, the 
application developer creates an “operator resolver” object. The API OpResolver controls which 
operators link to the final binary, reducing file size. 
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2. The second step is to provide a contiguous memory “arena” that stores intermediate results 
and other variables required by the interpreter. This is required because it is assumed that dynamic 
memory allocation is not available. 
3. The third step is to create an interpreter instance and pass it the model, the operator resolver, 
and the arena as arguments. An alternative to an interpreter-based inference engine is to use C or 
C++ to generate native code from a model during export. This can improve performance at the 
expense of portability because the code must be recompiled for each target. During the initiation 
phase, the interpreter allocates all necessary memory from the arena. Any subsequent allocations are 
avoided to prevent heap fragmentation causing errors in long-running applications. OpResolver, 
which is provided by the application, maps the serialized model’s operator types to the 
implementation functions. 
4. The fourth step is execution. The application retrieves and populates pointers to memory 
regions that represent the model inputs (often derived from sensors or other user-supplied data). 
When the inputs are ready, the application calls the interpreter to run the model calculations. This 
procedure entails iterating through the topologically sorted operations, locating the inputs and 
outputs using offsets calculated during memory planning (see Figure 3.4), and calling the evaluation 
function for each operation. 
5. Finally, the interpreter returns control to the application after evaluating all operations. 
Invocation is a straightforward blocking call. Because most Microprocessor Control Units (MCUs) are 
single-threaded and use interrupts for urgent tasks, this is acceptable. However, an application can 
still perform one from a thread, and platform-specific operators can continue to distribute their work 
across processors. Once the invocation is complete, the application can query the interpreter to locate 
the arrays containing the model-calculation outputs and then use those outputs. 

 
Threading and multitasking support are not included in the framework because such features would need less 
portable code and operating system dependencies. However, multi-tenancy is supported. The framework can 
run multiple models, as long as they do not need to run at the same time. 

 
Figure 3.4 - TensorFlow Micro architecture 
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Despite the fact that TensorFlow Lite Micro was designed to address the unique challenges of microcontroller 
development, the standard TensorFlow Lite framework may be easier to integrate when working with more 
powerful devices (e.g., an embedded Linux device). Indeed, as stated in the technical documentation72, the 
following limitations should be considered: 

● Support for a limited subset of TensorFlow operations, which limits the architectures that is possible 
to run. The list of supported operations can be found in the file all_ops_resolver.cc in the Tensorflow 
repository73 

● Support for a limited set of devices 
● Low-level C++ API requiring manual memory management 
● On device training is not supported. 

 

PyTorch Mobile 

PyTorch Mobile74 is a new Facebook framework, which stays entirely in the PyTorch ecosystem, for deploying 
models on edge devices. PyTorch Mobile provides an end-to-end workflow which simplifies the production 
for mobile devices. At the moment it is in beta stage, but it will be available soon as a stable release. Among 
the main advantages is the capability of directly converting a PyTorch model to a mobile-ready format without 
the need of using other tools or frameworks. Furthermore, its initial release supports several quantization 
techniques to shrink model sizes, i.e., post-training quantization, dynamic quantization, and quantization-
aware training. In Figure 3.5 a typical workflow for mobile deployment is reported. 

 
 
72 https://www.tensorflow.org/lite/microcontrollers 
73 https://github.com/tensorflow/tensorflow 
74 https://pytorch.org/mobile/home/ 
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Figure 3.5 - PyTorch Mobile: workflow for mobile deployment (from the project website12) 

The current experimental build is limited to CPU, which limits the inference speed. Recently, the following 
features have launched in prototype: GPU support on iOS, GPU support on Android, DSP and NPU support 
on Android. 

 

Apache TVM 

Apache TVM75 is an open-source ML compiler framework for CPUs, GPUs, and ML accelerators. The Apache 
TVM Project’s vision is to host a diverse community of experts and practitioners in ML, compilers, and systems 
architecture to create an open-source framework that is accessible, extensible, and automated for optimizing 
current and emerging ML models for any hardware platform. The main features of TVM are: 

● Compilation of DL models into minimum deployable modules 
● Infrastructure to automatic generate and optimize models on more backend with better performance 

 

 
 
75 Figure source: https://tvm.apache.org/docs/ 
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In this section, we describe the process required to deploy an application in TVM, which is schematized in 
Figure 3.6: 

● Model import: TVM can import models from other frameworks, such as ONNX, Tensorflow, or 
PyTorch, in the importer layer. Model conversion in Relay, TVM’s high level model language, 
represents a model that has been imported into TVM. Relay is a NN functional language and 
intermediate representation. It is compatible with traditional data flow-style representations and 
functional-style scoping (let-binding) which makes it a fully featured differentiable language. 
Moreover, it allows the user to mix the two programming styles. Relay performs several high-level 
optimizations on the model before running the Relay Fusion Pass. TVM includes a Tensor Operator 
Inventory with predefined templates of common computations to aid in the conversion process. 

● Model lowering in tensor expression: Lowering is the transformation of a higher-level representation 
into a lower-level representation. Relay Fusion Pass reduces the model from the higher-level Relay 
representation to a smaller set of sub-graphs, with each node representing a task. A task is a collection 
of computation templates expressed in Tensor Expression, where the template parameters control 
how the computation is executed on hardware. A schedule is the specific ordering of computation 
defined by parameters to the Tensor Expression template. 

● Tuning: Tuning is the process of searching the Tensor Expression parameter space for an optimized 
schedule for the target hardware. There are several optimization options available, each of which 
necessitates varying degrees of user interaction. Among the optimization options are: 

• AutoTVM: A search template is specified by the user for the schedule of a Tensor Expression 
task or Tensor Expression sub-graph. To produce an optimized configuration, AutoTVM 
directs the search of the parameter space defined by the template. As part of the TVM 
Operator Inventory, AutoTVM requires users to define manually templates for each operator. 

• Ansor/Auto-Schedule: Ansor can automatically search an optimization space with much less 
intervention and guidance from the end user by using a TVM Operator Inventory (TOPI) of 
operations. Tensor Expression templates are used by Ansor to guide the search.  

● Choosing the optimal configuration for the model: Following tuning, an optimal schedule for each task 
is selected. Regardless of whether it is AutoTVM or AutoSchedule, schedule records in JSON format 
are generated and used by this step to build an optimized model.  

● Lowering to a hardware specific compiler: Following the selection of an optimized configuration based 
on the tuning step, the model is reduced to the representation expected by the target compiler for 
the hardware platform. This is the final phase of code generation, to produce an optimized model that 
can be deployed in production. TVM supports a variety of compiler backends, including: 

• LLVM: targeting arbitrary microprocessor architecture including standard x86 and Arm 
processors, AMDGPU and NVPTX code generation, and any other LLVM supported platform. 

• Specialized compilers: such as NVCC, NVIDIA’s compiler.  
• Embedded and specialized targets: which are implemented through TVM’s Bring Your Own 

Codegen framework. 
 
The compiler-specific generated code can then be reduced to machine code at the end of this process. 
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Figure 3.6 - TVM optimizing compiler framework workflow 

 

3.2.4 Vendor-specific Deep Learning Frameworks 
 

Intel OpenVINO 

OpenVINO76 by Intel is available as a comprehensive toolkit for rapidly developing applications and solutions 
that solves a variety of tasks. Based on the latest generations of NNs, including CNNs models, recurrent and 
attention-based networks, the toolkit extends computer vision and non-vision workloads across Intel 
hardware, maximizing performance. It accelerates applications with high-performance, AI, and DL inference 
deployed from the edge to the cloud.  

 
Figure 3.7 - Intel OpenVINO workflow 

The OpenVINO workflow consists of four steps and reflects some similarity with the TensorFlow Liteworkflow, 
described previously (see Figure 3.7). 

● Model preparation: analogously with what has been discussed with TensorFlow Lite, there are many 
ways to prepare and train a DL model. In addition to the model preparations already discussed in the 
previous section, OpenVINO allows to download a pre-trained model from the Open Model Zoo, 
which includes DL solutions to a variety of vision problems, including object recognition, face 
recognition, pose estimation, text detection, and action recognition, at a range of measured 
complexities. 

● Model conversion and optimization: one of the core components of OpenVINO is the Model 
Optimizer: a cross-platform command-line tool that converts a trained NN from its source framework 
to an open-source, nGraph-compatible Intermediate Representation (IR) for use in inference 

 
 
76 https://docs.openvinotoolkit.org/latest/index.html 
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operations. The Model Optimizer imports models trained in popular frameworks like Caffe, 
TensorFlow, MXNet, Kaldi, and ONNX and performs a few optimizations to remove excess layers and 
group operations when possible into simpler, faster graphs. The Intermediate Representation is a pair 
of files describing the model: 

• .xml: describes the network topology 
• .bin: contains the weights and biases binary data 

If a NN model contains layers that are not in the list of known layers for supported frameworks, both 
the conversion and optimization process adjust them through the use of Custom Layers allowing the 
end-user to plug in its implementation for existing or completely new operations. 

● Running and tuning inference: The other core component of OpenVINO is the Inference Engine, which 
manages the loading and compiling of the optimized NN model, runs inference operations on input 
data, and outputs the results. Inference Engine can execute synchronously or asynchronously, and its 
plugin architecture manages the appropriate compilations for execution on multiple Intel devices, 
including both workhorse CPUs and specialized graphics and video processing platforms. 
OpenVINO Tuning Utilities can be used with the Inference Engine to trial and test inference on a 
model. The benchmark utility utilizes an input model to run iterative tests for throughput or latency 
measures, and the Cross-Check Utility compares the performance of differently configured inferences. 
There is, in addition, a Post-Training Optimization Tool designed to accelerate the inference of DL 
models by employing specific methods without model retraining or fine-tuning, like post-training 
quantization. To apply post-training algorithms the tool requires the model to be converted into the 
OpenVINO IR and a calibration dataset representing a use case scenario.  

● Packaging and deployment: Once the model is optimized for inference, OpenVINO outputs the 
relative run-time package for a variety of devices which span from the Intel CPUs to Intel Processor 
Graphics to the Intel Neural Compute Stick 2 and Vision Accelerator Design with Intel Movidius Visual 
Processing Units (VPUs), see also Section 3.5.5. Besides this, a deployment manager is available for 
Python CLI to accommodate other specialized needs. 

 

NVIDIA TensorRT 

The NVIDIA TensorRT77 is a C++ library that facilitates high-performance inference on NVIDIA GPUs. TensorRT 
can optimize and deploy applications to the data centre, as well as embedded and automotive environments 
(Figure 3.8). It is designed to work in a complementary fashion with training frameworks such as TensorFlow, 
that has integrated TensorRT so that it can be used to accelerate inference within the framework.  

 
 
77 https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html 



 
 

 
  

D1.1 State of the Art Analysis 
 
 

51                                                                                                                                                      www.ai-sprint-project.eu 
  
 

 
Figure 3.8 - NVIDIA TensorRT accelerates every inference platform78 

Alternatively, TensorRT can be used as a library within a user application: users can run custom layers through 
TensorRT using the Plugin interface. The GraphSurgeon utility provides the ability to map TensorFlow nodes 
to custom layers in TensorRT, thus enabling inference for many TensorFlow networks with TensorRT. It 
includes parsers for importing existing models from Caffe, ONNX, or TensorFlow, and C++ and Python APIs for 
building models programmatically. 

TensorRT focuses specifically on running an already-trained network quickly and efficiently on a GPU for the 
purpose of generating a result. It optimizes the network by combining layers and optimizing kernel selection 
for improved latency, throughput, power efficiency, and memory consumption. If the application specifies, it 
will additionally optimize the network to run in lower precision, further increasing performance and reducing 
memory requirements. 

 
Figure 3.9 - NVIDIA TensorRT workflow79 

 
 
78 https://developer.nvidia.com/tensorrt 
79 Figure source: https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html 
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The NVIDIA TensorRT Documentation defines the workflow (depicted in Figure 3.9) for developing and 
deploying a DL model split in three steps:  

● Training: Like the previous two platforms in development and deployment, the training phase does 
not involve the adoption of TensorRT. So, during the training phase, the data scientists and developers 
will start with a statement of the problem and then they will design the structure of the network and 
train the model. During training, they will monitor the learning process which may provide feedback 
which will cause them to revise the loss function, acquire or augment the training data. At the end of 
this process, they will validate the model performance and save the trained model. 

● Developing a deployment solution: TensorRT documentation treats this part with multiple sub-steps, 
described in the following: 

• As a first step, in this case, it is highly suggested to understand what priority is willing to be 
given to the wanted implementation since there are a diverse number of systems that might 
incorporate the trained model. 

• Once the architecture of the inference solution is defined, an inference engine from the saved 
network using TensorRT can be implemented. There are a number of ways to do this 
depending on the training framework used and the network architecture. Generally, this 
means to take the saved NN and parse it from its saved format into TensorRT using the ONNX 
parser, Caffe parser, or UFF parser. 

• After the network is parsed different optimization options can be adopted — batch size, work-
space size, mixed precision, and bounds on dynamic shapes. These options are chosen and 
specified as part of the TensorRT build step where an optimized inference engine is built, 
based on the chosen network. 

• Once created an inference engine using TensorRT, the next step is the validation that 
reproduces the results of the model as measured during the training process. FP32 or FP16 
choices should match the results quite closely but, selecting 8-bit floating point integers, there 
may be a small gap between the accuracy achieved during training and the inference 
accuracy. 

• The last phase consists in writing out the inference engine in a serialized format. This is also 
called a plan file. 

● Solution deployment: When a plan file containing an optimized inference model is available, the next 
step consists of deploying that file into a production environment. How to create and deploy the plan 
file will depend on the specific environment. The TensorRT library will be linked to the deployment 
application which will call into the library when it wants an inference result. To initialize the inference 
engine, the application will first deserialize the model from the plan file into an inference engine. 
TensorRT is usually used asynchronously, therefore, when the input data arrives, the program calls an 
enqueue function with the input buffer and the buffer in which TensorRT should put the result. In an 
embedded scenario, the deployment process involves the following steps: 

• Export the trained network to a format such as UFF or ONNX which can be imported into 
TensorRT 

• Write a program that uses the TensorRT C++ API to import, optimize, and serialize the trained 
network to a plan file 

• Build and run make_plan on the host system to validate the trained model before its 
deployment to the target system 

• Copy the trained network to the target system. Re-build and re-run the make_plan program 
on the target system to generate a plan file 
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STM32Cube.AI 

STMicroelectronics allows to deploy pre-trained NNs thanks to STM32Cube.AI80 which is an extension pack of 
the widely used STM32CubeMX configuration and code generation tool enabling AI on STM32 Arm Cortex-M-
based microcontrollers. The deployment workflow on such devices includes the following steps: 

● Train the NN model: as for TensorRT, training is performed using off-the-shelf DL frameworks. Among 
STM32Cube.AI features, the native support for several DL frameworks such as Keras and TensorFlow 
Lite, and for all the frameworks which can export models to the ONNX format, like PyTorch. 

● Convert NN into optimized code for the STM32 MCU: the next step is to embed the pre-trained NN 
into an MCU (optimized code minimizing complexity and memory requirements). The STM32Cube.AI 
extends STM32CubeMX by providing an automatic NN library generator, the X-CUBE-AI81, an 
STM32Cube Expansion Package (see Figure 3.10), that converts pre-trained NNs into a library 
automatically integrated in the final project. It provides an automatic and advanced NN mapping tool 
to generate and deploy an optimized and robust C-model implementation of a pre-trained NN (DL 
model) for the embedded systems with limited and constrained hardware resources.  In addition, it 
provides specific MCU and board filtering to guide users to select the right devices, which fit the 
requirements, e.g., RAM or Flash memory size, given the users models. 

● Deployment: the final prototype of the application is obtained through the integrated software 
packages, i.e., function packs, which include low-level drivers, middleware libraries and sample 
applications assembled into a single software package. Developers can easily start from these 
examples and make modifications to fit their specific application. 

 

 
Figure 3.10 - X-CUBE-AI core engine 

 

 
 
80 https://www.st.com/content/st_com/en/ecosystems/stm32-ann.html 
81 https://www.st.com/en/embedded-software/x-cube-ai.html 
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3.3 PyCOMPSs  
Developing applications able to efficiently use distributed infrastructure has some implicit concerns: 
decomposing the problem into computing units (tasks), map those tasks onto the available compute resource 
and decide the optimal moment to start the task execution (scheduling), enabling data-sharing mechanisms, 
handle both the hardware and software specificities of the underlying nodes (portability and interoperability). 
Edge computing not only has not solved those issues, but it has increased the complexity by adding the 
handling of network disruptions and handovers. 

COMP Superscalar (COMPSs) [Lordan2014] is a framework that aims to ease the development of parallel, 
distributed applications. The core of the framework is its programming model with which developers write 
their code in a sequential, infrastructure-unaware manner releasing them from all the above-mentioned 
concerns. At execution time, a runtime system decomposes the application into tasks and orchestrates their 
executions on a distributed platform guaranteeing the sequential consistency of the code.  

COMPSs' main characteristic is that developers code applications using regular programming languages as if 
the code was to be run on a single-core computer. For the runtime system to detect the inherent tasks, 
application developers need to select, using annotations or decorators depending on the language, a set of 
methods whose invocations become tasks to be executed asynchronously and, potentially, in an out-of-order 
manner. 

To guarantee the sequential consistency of the code, the runtime system monitors the data values accessed 
by each task -- the arguments, callee object and results of the method invocation -- to find dependencies 
among them. For the runtime to better-exploit the application parallelism, developers need to describe how 
the method operates (reads, generates or updates) on each data value by indicating its directionality (IN, OUT, 
INOUT, respectively). Such data values can be either files, primitive types, objects or even streams. 

PyCOMPSs is the Python approach to the COMPSs programming model. Besides the regular task dependency 
detection and the execution orchestration, it is enabled with novel features such as integration with Numba 
for just-in-time task compilation or support for data types such as streams, persistent objects, or collections. 
Moreover, the development environment has some additional tools such as integration with Jupyter 
Notebook or the PyCOMPSs player, a command line tool building on containers for application testing 
purposes. 

PyCOMPSs integrates dislib [Alvarez2019], a distributed computing library highly focused on machine learning 
that delegates on PyCOMPSs the distribution of the data processing. Inspired by scikit-learn, dislib provides 
various supervised and unsupervised learning algorithms through an easy-to-use API and achieves high 
performance relying on Numpy’s mathematical implementations. The cornerstone of dislib is the dsArray: a 
built-in 2-dimensional array that allows parallel operation and that is used as data input or intermediate data 
structure by most of the algorithms implemented within the library. Additionally, PyCOMPSs, supports also 
the European Distributed Deep Learning library (EDDL), a library developed within the context of the 
DeepHealth European project [Flich2020]. EDDL API is centered around the concepts of Tensor - a class 
encapsulating all element-wise and linear algebra operations on a matrix - and Neural Network. EDDL allows 
the parallel and distributed execution of the training of AI models. For doing so, it delegates on PyCOMPSs the 
distribution of the execution of its algorithms. 

 

3.4 Cloud-based solutions 
This section is intended to give an overview of the currently available commercial cloud-based solutions and 
services related to AI solutions, edge computing, IoT, and FaaS. The goal is to provide a snapshot of what 
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services are currently available in the market, to position the AI-SPRINT project that aims to define a novel 
framework for developing and operating AI applications. Therefore, the analysis also includes the main cloud 
big players, but it is focused on European cloud providers and cloud providers operating in Europe. 

The first part of the section provides an overview of the current market-specific situation of a selection of 
relevant cloud providers with focus on specific components and features related to AI solutions, IoT and edge 
device management, as well as security aspects. In the second part, the use of Functions as a Service (FaaS) 
will also be discussed.  

Not all providers sell IoT and Edge services. In terms of edge capabilities, also not all providers offer similar 
features. Some of the key features which would be needed by the AI-SPRINT use cases are: 

● Possibility to manage centrally the code which must be deployed on edge devices 
● Possibility to manage edge devices using a device shadow (or digital twin) in the cloud (administrators 

update the device shadow, the synchronization between device shadow and actual device happens 
automatically when the edge device is connected) 

● Possibility to change from the cloud configuration edge device settings  
● Possibility to transfer easily data (e.g., files, telemetry) from edge and cloud 
● Possibility to encrypt data transferred between edge devices and cloud 
● Availability of SDKs which allows to control IoT devices on the edge 

 
According to the current status of the cloud market, cloud providers edge services do not offer any specific AI 
or ML capabilities, nor performance guarantees in terms of application components execution time. However, 
assuming that the edge device is powerful enough, inference can be run on the edge device in best-effort. All 
cloud providers offer proprietary solutions, interoperability among providers is not supported. 

 

3.4.1 Amazon Web Services 
 

AI related Solutions 

AWS provides many AI-related and ML-related services82. Some examples are:  

● Amazon SageMaker, a service that enables the creation, training, and provisioning of machine 
learning models at scale 

● Amazon Augmented AI, a simple implementation of human verification of ML predictions 
● Amazon Elastic Inference, accelerating deep learning inference 
● Amazon Forecast, increase forecast accuracy using machine learning 
● Amazon Healthlake, making sense of health data 
● Amazon Rekognition, analyzing images and videos 

 

and much more. Besides the mentioned individual solutions that tackle several specific problems, AWS also 
offers a service called Amazon SageMaker Autopilot, which completely automates the creation and training 
of classification or regression machine learning models. In addition, the well-known frameworks such as 
PyTorch, TensorFlow or Apache MXNet are also provided to be worked with. With the AWS Neuron SDK, 
Developers can use their own models and integrate them in frameworks like Tensorflow, PyTorch or MXNet.   

 
 
82 https://aws.amazon.com/machine-learning/ai-services/ 
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Furthermore, AWS provides the ability to use scalable high-performance infrastructure for compute-intensive 
machine learning using GPU as a service, harnessing the power of GPUs like NVIDIA A100. Besides that, it is 
also possible to make use of Amazon EC2 Inf1 instances which offer fast inferencing at low cost, by using ML-
specialized AWS Inferentia-Chips. Furthermore, AWS announced to offer AMD GPU instances anytime soon. 

 

Edge Solutions 

AWS IoT is a cloud service which allows “things” to publish data to the AWS Cloud. The “things” authenticate 
with the cloud using a certificate and communicate using HTTP or MQTT. On the cloud side, messages 
published by the “things” can be routed to other AWS services, i.e., they can be saved, can be used to trigger 
functions, can be added to a queue, or can be streamed to other services. AWS IoT assumes all things send 
data in JSON format, the routing of messaging is performed by specifying a set of rules based on the content 
of the message (e.g., “if device_type is xy and temperature is above 45 degrees, then execute action abc”). 

AWS IoT allows managing edge devices using device “shadows”, i.e., device settings can be defined in the 
cloud, and, as soon as the device is on-line, the shadow and the actual device are synchronized. 

Edge support of the IoT device is implemented using AWS IoT Greengrass. The AWS Greengrass core (see 
Figure 3.11) is a software component which can be installed on supported devices; the software component 
enables a subset of services to be run directly on the edge (e.g., Lambda function). An edge device manages 
all the “things” connected to it, but the edge device interacts with the cloud, and it is managed from the cloud. 
The edge device does not need cloud connection to run. 

 
Figure 3.11 - Green Grass Architecture 

AWS also runs a service called AWS Outpost, which is basically a server rack with several servers on which 
AWS services can be run on-premises but managed on the cloud. For Amazon customers, the AWS Outpost 
server rack is a black box completely managed by AWS, it just needs Internet connection and power supply. 
As a summary, AWS IoT Greengrass Core: 

● Provides local services (compute, messaging, state, security), and communicates locally with devices 
that run the AWS IoT Device SDK. 

● Runs in 64-bit CPU-based devices (x86 or Arm) that run a general-purpose OS such as Linux. 
 
While AWS IoT Greengrass offers the following features: 
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● An AWS Lambda runtime that allows to execute serverless instructions if needed. The AWS Lambda 
could also run code which allows AI inference on the cloud. 

● A shadow implementation, i.e., each “thing” is associated with a JSON file (the shadow) where all the 
parameters/variables are set and can be modified with Lambda functions from the core or from the 
cloud. 

● A message manager, which allows “things” to send messages when the core is temporarily not 
available (e.g., restart or update). 

● Possibility to manage edge resources from the cloud by grouping them, a group is composed of the 
things and the Greengrass Core. 

● A discovery service, it is a service mainly used by the things to get certificates to connect to a 
Greengrass Core. 

● An over-the-air update agent that allows updating one or more Greengrass Cores on a network at the 
same time or on predefined schedules. The devices with the Greengrass core will need to have the 
WiFi activated for this feature to work. 

● Local resources access on the Greengrass Core device if it is needed, the resources can be anything. 
● A machine learning inference, meaning that the training is done on the cloud servers, but the model 

is on the Greengrass device and can perform in real time what it was trained to do. 
● Connectors help to implement reusable business logic, interact with cloud and local services (including 

AWS and third-party services), ingest and process device data, enable device-to-device calls using 
MQTT topic subscriptions and user-defined Lambda functions. This module works as a package that 
can be deployed on a core without the hassle of learning new APIs or protocols.  

 

Application development is supported by the AWS IoT Device SDK which: 

● Allows devices to interact locally with AWS IoT Greengrass Cores. 
● Runs in almost any device that supports C++, Node.js, Java, or Python 2.7, 3.7, and 3.8. 

 

Security Aspects 

All data flowing across the AWS Global Network connecting the AWS datacentres and regions is automatically 
encrypted at the physical layer before it leaves the AWS secured sites. There are other layers of encryption, 
such as for all cross-region VPC peering traffic and customer or service-to-service TLS connections. AWS 
provides tools to encrypt data in transit and at rest to ensure that only authorized users can access it. 

AWS Greengrass protects user data through the secure authentication and authorization of devices, through 
secure connectivity in the local network, between local devices and the cloud. Device security credentials 
function in a group until they are revoked, even if connectivity to the cloud is disrupted, so that the devices 
can continue to securely communicate locally. Each edge device can be secured using a certificate, which 
allows authentication and encryption of data in transit. AWS Greengrass does not encrypt data at rest, it relies 
on the security provided by the underlying Linux system. Any application running on AWS Greengrass can 
encrypt its data, also using AWS services which store secrets and passwords (AWS Greengrass supports local 
encryption of passwords or secrets retrieved from the cloud). 

In terms of official security measurements, AWS is certified with ISO/IEC 27001 (Information Security), ISO/IEC 
27017 (Cloud Security) and ISO/IEC 27018 (Privacy Protection). Additionally, AWS provides a stack of security 
services which can be combined with other services. 
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3.4.2 Microsoft Azure 
 

AI related Solutions 

Besides AWS, Microsoft Azure also offers a wide variety of AI-related services83 like: 

● Azure Cognitive Services, a family of AI-services and cognitive APIs for the development of intelligent 
apps 

● Azure Synapse Analytics, a service made for Big Data analysis 
● Azure Machine Learning, end-to-end scalable platform with experimentation and model management 
● Azure Computer Vision, out of the box image analysis 
● Azure Health Bot, build and deploy AI-powered healthcare services 
● Azure Auto ML, to create and train ML models automatically 

 

and many other services for detecting anomalies, wrangling data, or deploying ML pipelines. There is also an 
option to get a free demo account to test most of the said services for a month with an included budget of 
170$. All services are managed and distributed through the unified Azure platform. Azure provides access to 
powerful GPUs like NVIDIA K80, P100, P40, M60 and V100 with high compute capabilities for AI related 
problems. 

 

Edge Solutions 

Azure offers a wide set of IoT services: IoT Hub, IoT Central, Time Series Insights, Azure Digital Twins for 
connectivity and analysis and IoT Edge and Azure Sphere.  

The IoT Hub and IoT Central services are similar to AWS IoT. They allow things to publish data to the cloud; 
messages sent by the cloud are routed to other Azure services based on their content. The messages can be 
routed to a blob storage, an Azure function, an application running on a Kubernetes cluster etc. 

A Digital Twin is the Azure equivalent of the AWS Shadow; it allows reading data and writing configuration on 
things which might be offline; the synchronization between things and their digital twin is managed by Azure 
and happens automatically when the things are on-line. 

Data sent from things to the Cloud can be indexed, queried, and visualized using the service Time Series 
Insights. The IoT Edge service allows deploying containers on Edge devices. As in the case of AWS, once a 
software component is installed on an edge device, the device can be managed centrally from the cloud and 
a subset of Azure services can be run on the edge devices (e.g., blob storage). IoT Edge also allows the 
deployment of containers on the cloud; these containers can interact with things attached to the edge device 
using HTTP or MQTT. 

Azure Sphere OS is a custom Linux-based microcontroller operating system created by Microsoft to run on an 
Azure Sphere-certified chip and to connect to the Azure Sphere Security Service. The Azure Sphere OS provides 
a platform for IoT application development, including both high-level applications and real-time capable 
applications. 

 

 
 
83 https://azure.microsoft.com/de-de/services/machine-learning/ 
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Security Aspects 

The security model of IoT Edge is similar to Greengrass. The edge device authenticates and encrypts data in 
transit by using a certificate. Data stored using the Edge IoT services (e.g., a file stored on an Azure Blob) is 
not encrypted by default, Edge IoT relies on the underlying Linux system to encrypt data and manage 
permissions at file level. Azure Sphere devices do have enhanced security, they can also be managed by an 
Azure IoT Edge device. 

IoT Edge supports several standardized device management patterns, such as Reboot, Factory Reset, 
Configuration Change, Firmware Upgrade, Reporting progress and status. The device management capabilities 
are part of the IoT Hub service, they are not specific to the Edge IoT devices, but they also apply to them. 

In terms of official security measurements, Azure is certified with ISO/IEC 27001 (Information Security), 
ISO/IEC 27017 (Cloud Security), ISO/IEC 27018 (Privacy Protection) and ISO/IEC 27701 (Privacy Information 
Management System). Additionally, Azure provides a stack of security services which can be combined with 
other services. 

 

3.4.3 Google Cloud Platform 
 

AI related Solutions 

The solutions and services for Machine Learning and AI technologies of Google are similar to those of Amazon 
and Microsoft. There are several services which one can use to develop, train, test or deploy AI related 
solutions and services. The main ones are: 

● AutoML, to create and train custom ML models automatically 
● Vision AI, pretrained models to identify or detect text, emotions, images and more 
● Video AI, to detect and classify videos 
● Cloud Natural Language, classification for unstructured text 
● Text-to-speech, speech synthesis in multiple languages and voices 
● Speech-to-Text, speech recognition and transcription 
● Deep Learning Containers, preconfigured and optimized containers for deep learning environments 

 

and more. On an infrastructure level, AI optimized, and cost-effective hardware is available to support training 
and inference of AI models. Google provides access to powerful GPUs like NVIDIA K80, P100, P4, T4, V100, 
and A100 or TPU (Tensor Processing Unit) with even higher compute capabilities for AI related problems. One 
TPU v2 outperforms 8 NVIDIA v100 GPUs with up to 27x lower training times and at lower cost, according to 
Google. As a last remark, GPUs are available as virtual instances, therefore not at bare metal. 

 

Edge Solutions 

The IoT offering of Google Cloud is similar to those of AWS and Azure. Google Cloud IoT service can be used 
to manage things, collect data from them, update their configuration and visualize collected data. The service 
uses a pub/sub communication architecture, enabling it to subscribe to specific data sent by things. The 
service allows central configuration of the things (similar to Digital Tween or Shadow Device used by Azure 
and AWS, respectively). 
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Edge support is similar to the one offered by Azure: a runtime environment is installed on the Edge device, 
which can then be managed from the Cloud. Edge devices can run containers which can be deployed centrally. 

 

Security Aspects 

Device life-cycle management is managed using a device registry in the cloud. Google offers a set of tools to 
provision and maintain edge devices, similar to AWS and Azure.  Edge device authentication is managed using 
certificates. Data is encrypted on transit; local encryption relies on the capabilities of the edge devices’ 
underlying OS. 

In terms of official security measurements, Google Cloud Platform is certified with ISO/IEC 27001 (Information 
Security), ISO/IEC 27017 (Cloud Security) and ISO/IEC 27018 (Privacy Protection). Additionally, Google 
provides a stack of security services which can be combined with other services. 

 

3.4.4 IBM 
 

AI related Solutions 

Similar to Amazon, Google and Microsoft IBM is a full stack cloud provider. Therefore, in terms of AI services, 
IBM is also offering a bunch of AI related services. Namely there are services like: 

● IBM Watson Assistant, provide virtual assistants on any website 
● IBM Watson Language Translator, API for translation with domain-specific models 
● IBM Watson Natural Language Classifier, Visual tool and API for text classification 
● IBM Watson Speech-to-Text and Text-to-Speech 
● IBM Watson Machine Learning, Infrastructure for running AI models at scale 
● IBM Streaming Analytics, Dashboard for real-time analysis of data streams 

 

and more. As IBM offers those services, it needs to be stated that the given services are not as diverse as those 
from Amazon, Google and Microsoft. It lacks especially in AutoML and visual AI capabilities. From an 
infrastructural view, IBM offers vGPU instances as well as bare metal GPU instances like NVIDIA V100, P100 
or T4. 

 

Edge Solutions 

IBM offers some Edge/IoT services such as: 

● IBM Edge Application Manager, an autonomous management platform for edge computing 
● IBM Watson IoT Platform, SaaS for device management, monitoring and data storage. 

 

No information is available on edge SDKs or centralized edge specific code management. 

 

Security Aspects 

IBM provides a fairly big stack of security services. for example: 

● IBM Cloud Data Shield, Runtime encryption for data-in-use protection on Kubernetes clusters 
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● IBM Cloud Certificate Manager, Certificate management for cloud resources 
● IBM Cloud Hardware Security Module, Tamper-resistant hardware to store and process cryptographic 

keys 
● IBM Cloud Security and Compliance Center, SaaS to define and audit the compliance posture of your 

cloud 
● IBM Cloud Security Advisor, Dashboard for security management, analysis and remediation 

 

and more. In terms of official security measurements, IBM is certified with ISO/IEC 27001 (Information 
Security), ISO/IEC 27017 (Cloud Security) and ISO/IEC 27018 (Privacy Protection). 

 

3.4.5 Oracle 
 

AI related Solutions 

Oracle is another big cloud provider, which recently improved its AI service and tool portfolio. Among others, 
Oracle offers the following solutions: 

● Oracle AutoML, to create and train custom ML models automatically 
● Oracle Data Analysis Platform, featuring ready to use cloud infrastructure, analysis and visualization 

for data science with dozens of tools/frameworks 
● Oracle Integration and Migration, to efficiently prepare and ingest data  

 

and more additional helper tools and services. Currently Oracle offers GPU as a Service options like NVIDIA 
V100 and P100. Oracle plans to offer additional GPU acceleration options in their cloud environments, for 
example with the NVIDIA A100. However, currently there is no GPU acceleration available for Oracle AutoML 
or other high-level services.  

 

Edge Solutions 

Oracle offers a PaaS solution named IoT Cloud to manage Edge/IoT devices centrally. It supports features like 
gateway management, direct connections, the management of software on the devices, the monitoring of IoT 
device metrics and the setting of the security features. Oracle uses REST and Oauth for connectivity. 

 

Security Aspects 

In terms of security features, Oracle offers many services and tools. There are for example services to secure 
the clouds infrastructure like:  

● autonomous Linux, eliminate complexity and human error to reduce cost, increase security and 
availability, automatic updates and security improvements  

● key management 
● root of trust 
● isolated network virtualization 

 

whereas there are also services to ensure cloud application security like: 



 
 

 
  

D1.1 State of the Art Analysis 
 
 

62                                                                                                                                                      www.ai-sprint-project.eu 
  
 

● Identity Cloud Servics 
● Risk Management Cloud, automate advanced security and transaction monitoring to strengthen 

financial controls, ensure separation of duties (SoD), stop fraud, and streamline audit workflows 
● CASB (cloud access security broker), gain visibility and detect threats on the entire cloud stack for 

workloads and applications, for example, via real-time threat intelligence feeds and use predictive 
analytics to manage threats. 

 

In terms of official security measurements, Oracle is certified with ISO/IEC 27001 (Information Security), 
ISO/IEC 27017 (Cloud Security), ISO/IEC 27018 (Privacy Protection). 

 

3.4.6 CloudSigma 
 

AI related Solutions 

According to our analysis, at current state, the German cloud provider CloudSigma does not provide any AI 
related services, apps or platforms. Furthermore, there are not any offerings to use GPUs or any other AI 
acceleration hardware.  

 

Edge Solutions 

There are no special offerings or services which provide edge solution support or deeper management 
characteristics. However, it is possible to connect and send data from several IoT devices to the CloudSigma 
platform via REST. 

 

Security Aspects 

For the REST functionalities, CloudSigma uses HTTP Basic authentication. No more special security measures 
could be identified. However, in terms of official security measurements CloudSigma is certified with ISO/IEC 
27001 (Information Security), ISO/IEC 27017 (Cloud Security) and ISO/IEC 27018 (Privacy Protection). 

 

3.4.7 1&1 Ionos 
 

AI related Solutions 

There are no known AI services available. Also, no GPU acceleration capabilities are offered by the German 
cloud provider 1&1 Ionos. 

 

Edge Solutions 

As far as the analysis we performed shows, there are no Edge/IoT related services. 

 

Security Aspects 

In terms of official security measurements, 1&1 Ionos is certified with ISO/IEC 27001 (Information Security). 
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3.4.8 Scaleway 
 

AI related Solutions 

This French cloud provider offers some AI related services such as: 

● Machine Learning Images, ready-to-go Data Science environment with pre-installed Anaconda, Scikit, 
Nvidia Rapids, and Pytorch 

● AI Inference, which allows anyone with a trained model to deploy it in a Scaleway environment 
without DevOps skills. 

Scaleway also provides GPU acceleration at the IaaS level, but only the NVIDIA Tesla P100 is available.  

 

Edge Solutions 

Scaleway provides the IoT Hub service in which it is possible to manage centrally all connected IoT devices and 
to make use of features like:  

● IoT Routes, a gateway to other cloud services or third-party cloud providers with object storages, 
databases or REST routes  

● IoT Networks, use protocols like MQTT, REST, Sigfox and LoRa 
● Metrics, device or hub level usage overview (message counter and activity) 
● Virtual Devices, generate virtual representations of real devices and use them with all IoT Hub services 
● Identification and Security, manage identification and security of devices with three modes, Mutual-

authentication TLS, Server-authentication TLS or Plain (no security) 
 

Security Aspects 

Scaleway is providing various security measurements such as TLS via MQTT on IoT level or complete data 
encryption of cloud servers. In terms of official security measurements, Scaleway is certified with ISO/IEC 
27001 (Information Security). 

 

3.4.9 OVHcloud 
 

AI related Solutions 

This French cloud provider offers some AI related services, for example: 

● OVHcloud AI Training, out-of-the-box training environment with Kubernetes orchestration 
● OVHcloud ML Serving, ML service deployment API 
● NVIDIA NGC Platform, containerized NVIDIA GPUs. 

Furthermore, OVHcloud provides some GPU as a Service capabilities with up to 4 NVIDIA Tesla V100 GPUs. 
However, there are no more GPU options to choose from.  

 

Edge Solutions 

OVHcloud provides an integrated platform to manage IoT devices and edge nodes. The connection to these 
nodes is based on ssh, but very limited documentation is reported on the provider web site. 
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Security Aspects 

In terms of official security measurements, OVHcloud is certified with ISO/IEC 27001 (Information Security), 
ISO/IEC 27017 (Cloud Security), ISO/IEC 27018 (Privacy Protection) and ISO/IEC 27701 (Privacy Information 
Management System). Furthermore, OVHcloud also provides health data related compliance to ensure that 
health data is securely processed and stored. 

 

3.4.10 Exoscale 
 

AI related Solutions 

This Swiss cloud provider does not provide any AI related services. However, it offers GPU acceleration with 
up to 4 NVIDIA V100 virtual on demand GPU instances.  

 

Edge Solutions 

There are rudimentary edge related services like centralized edge device management, load balancing, private 
networks, or elastic IPs.  

 

Security Aspects 

No specific services could be identified. In terms of official security measurements, Exoscale is certified with 
ISO/IEC 27001 (Information Security), ISO/IEC 27017 (Cloud Security), ISO/IEC 27018 (Privacy Protection). 
Additionally, Exoscale also is certified with the CSA Star. 

 

3.4.11 Fuga 
 

AI related Solutions 

Fuga is a cloud provider located in the Netherlands. However, for the time being, no AI services or GPU 
acceleration capabilities are provided. 

 

Edge Solutions 

No edge related services are offered by the Dutch company. 

 

Security Aspects 

No specific services could be identified. In terms of official security measurements, Exoscale is certified with 
ISO/IEC 27001 (Information Security). 
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3.4.12 Linode 
 

AI related Solutions 

No AI related services are offered by the US American cloud provider. In terms of GPU acceleration, there is a 
small offering with NVIDIA RTX Quadro 6000 series GPUs. Note that, compared to other European cloud 
providers which offer P100, V100 or A100 GPUs, the RTX Quadro 6000 is less performant. 

 

Edge Solutions 

No edge related services are offered. 

 

Security Aspects 

No specific services could be identified. In terms of official security measurements, Linode is certified with 
ISO/IEC 27001 (Information Security).  

 

3.4.13 Vultr 
 

AI related Solutions 

No AI services or GPU acceleration capabilities are offered by this US American cloud provider. 

 

Edge Solutions 

No edge related services could be identified. 

 

Security Aspects 

No specific services could be identified. There are also no known security related certifications achieved by 
this company. 

 

3.4.14 Open Telekom Cloud 
 

AI related Solutions 

This German cloud provider offers only the following AI related service: 

● ModelArts-Beta, a platform to design, develop and train machine learning models 
 

In terms of general analytics, Data Ingestion Service and Data Warehouse Service are offered. The provider 
supports GPU acceleration at IaaS level with Nvidia T4. 
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Edge Solutions 

In terms of edge management, a service called Intelligent Edge Fabric (IEF) is offered. The company website 
states that the service will be available soon (https://open-telekom-cloud.com/en/products-
services/intelligent-edge-fabric). However, according to the official documentation, feature services like Edge-
node management, Edge-application management and automatic application scheduling will be provided. 

 

Security Aspects 

Some basic services like Firewall-as-a-Service, a Key management service and a web application firewall are 
provided. In terms of official security measurements, Open Telekom Cloud is certified with ISO/IEC 27001 
(Information Security), ISO/IEC 27017 (Cloud Security), ISO/IEC 27018 (Privacy Protection). 

Table 3.2 summarizes the core aspects of this analysis at a glance, whereas red fields mean no provision at all, 
yellow means partial provision and green means that a big stack, a lot of services or various options are 
available. 

 AI related services GPU as a Service Edge Solutions Security Aspects 

AWS     

Azure     

Google     

Cloudsigma     

IBM     

1&1 Ionos     

Scaleway     

OVHcloud     

Oracle     

Exoscale     

Fuga     

Linode     

Vultr     

Telekom     

Table 3.2 - Cloud Provider comparison according to AI services and edge system support capabilities 

In conclusion, the big players in cloud computing like AWS, Microsoft Azure, Google, Oracle and IBM are 
offering various services options for AI related and/or edge focused development with good GPU acceleration 
capabilities by simultaneously providing a solid security. Smaller cloud providers like Scaleway, OVHcloud, 
Exoscale and Open Telekom Cloud are also solid providers, but with some limited support to AI services and 
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edge systems. Finally, some providers such as 1&1 Ionos, Cloudsigma, Fuga, Linode, and Vultr do not offer 
enough features and services, at least in the areas discussed, and cannot be considered data science or AI-
driven cloud providers. 

 

3.4.15 FaaS 
Cloud computing has become in the last decade the main option for virtualized computing. It has achieved 
increasing both hardware utilization and the ability to execute disparate computing workloads with complex 
requirements on shared computing infrastructures. Initial service delivery models, such as Infrastructure as a 
Service (IaaS), are exemplified by public Cloud services such as Amazon EC2 and on-premises Cloud 
Management Platforms (CMPs) such as OpenStack. These were later extended to accommodate additional 
models such as Platform as a Service (PaaS) and, more recently, Functions as a Service (FaaS) in the quest for 
rising the level of abstraction for application developers at the expense of relying on the infrastructure 
provider for automated elasticity, efficient virtual infrastructure provisioning and improved resource 
allocation.  

Pioneer FaaS services, exemplified by public Cloud services such as AWS Lambda [AWSLambda] and Azure 
Functions [AzureFunctions], provide event-driven execution of functions coded in some programming 
languages supported, offering automated resource allocation, and highly elastic capabilities that superseded 
the ones found in traditional IaaS offerings. For example, a Lambda function can support up to 3000 
concurrent executions. This could only be achieved by using lightweight virtualization technologies, as is the 
case of Firecracker [FireCracker] which allows deploying micro Virtual Machines (microVMs) in non-virtualized 
environments in less than a second.  

Initially, AWS Lambda functions only supported certain programming languages. This required a cumbersome 
migration procedure to execute scientific applications on said service, involving additional programming. Still, 
scientific applications can benefit from the high elasticity provided by serverless computing and the scale-to-
zero capability that incurs in no cost unless the functions are being executed. The combination of both features 
allows to deploy elastic applications that are latently available in the Cloud at a zero cost and that can rapidly 
and automatically provision the required computing resources in order to cope with sudden workload spikes.  

The increased popularity of serverless computing together with the increased maturity of Container 
Orchestration Platforms paved the way for the surge of multiple open-source developments mimicking the 
functionality offered by public serverless offerings. This is the case of OpenFaaS, Apache OpenWhisk, 
Kubeless, KNative and Fission, to name just a few. These frameworks provide the ability to create user-defined 
functions typically packaged as Linux containers that can be invoked on-demand and the execution takes place 
coordinated by an orchestration platform such as Kubernetes. However, mimicking the functionality offered 
by public serverless offerings leaves out support for complex scientific applications for data processing, with 
large dependencies, strict execution requirements and that may eventually need accelerated hardware such 
as GPUs. 

Among the cloud providers reviewed in the previous section, FaaS services are provided by the big players 
(AWS, Azure, IBM, and Oracle), while in Europe only Scaleway and OVHcloud provide some FaaS 
functionalities. In particular, Scaleway serverless platform allows users to deploy their FaaS and Containerized 
Applications (CaaS) in a managed infrastructure, while OVHcloud provides a managed Kubernetes system 
based on OpenFaaS (an open-source framework for building Serverless functions with Docker and 
Kubernetes). 
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3.5 Technologies and Solutions for Edge Intelligence  
In the last years, we are witnessing advances in both edge computing and AI technology. While the latter 
demonstrated its capability of exploiting big data to reach state-of-the-art performance in various fields, the 
former allowed to push services, intended as both computation and data storage, to the proximity of the end 
users, i.e., the edge nodes of the networks. The synergistic interaction between AI and edge computing was 
an unavoidable step that resulted in a new paradigm defined as edge intelligence (EI) 
[Li2018][Wang2019][Xu2020], intended as a set of connected systems and devices for, as discussed in Section 
2.1.2,  data collection, caching, processing, and analysis. The key aspect of this new interdiscipline is that the 
analysis of the data is performed locally, i.e., to the proximity to where it is collected, with the aim of speeding 
up the processing and to ensure the privacy and security of data. In this context, AI can play an important role, 
by customizing Machine Learning (ML) and Deep Learning (DL) models to take advantage of edge big data, 
thus enhancing the quality of the analysis. However, existing ML/DL models are computationally intensive and 
require specific resources, e.g., CPU, GPU, memory, and network. In the following, we provide an up-to-date 
overview of the embedded systems capable of hosting ML/DL models and of supporting common learning 
frameworks and tools such as Tensorflow, Tensorflow Lite, PyTorch, Caffe and ONNX (see Section 3.2).  

 

3.5.1 General Purpose Arm SoCs 
A system on a chip (SoC) is an integrated circuit (also known as a "chip") that integrates all or most components 
of a computer. These components almost always include a central processing unit (CPU), memory, 
input/output ports and secondary storage, often alongside other components such as radio modems and a 
graphics processing unit (GPU) – all on a single substrate or microchip. We analyse the most widely adopted 
solutions in the following tables. In particular, the boards are compared specifying the included processors, 
accelerators, integrated memory, and communication interfaces. Furthermore, the supported OS, Containers 
(e.g., Docker and BalenaOS), ML frameworks, and tools described in Section 3.2 are reported. 
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Raspberry Pi 4 B 

 

General description The Raspberry Pi 4 Model B is the latest version in the Raspberry Pi mini-
computer series, and it is a very competitive platform for machine learning 
inferencing at the edge. 

SoC: ● Broadcom BCM2711, Quad core Cortex-A72 (Arm v8) 64-bit @ 1.5GHz 
● VideoCore VI @ 500 MHz 

Accelerator - 

Memory 2GB, 4GB or 8GB LPDDR4-3200 SDRAM 

Connectivity 2.4 GHz and 5.0 GHz 802.11ac Wireless, Bluetooth 5.0, BLE, Gigabit Ethernet 

OS Linux 

Container Docker, BalenaOS 

Supported Frameworks 
and Tools 

● TensorFlow, TensorFlow Lite, PyTorch, Caffe 
● ONNX 

Table 3.3 - Raspberry Pi 4 B84 

  

 
 
84 https://www.raspberrypi.org/products/raspberry-pi-4-model-b/ 
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Raspberry Pi Zero W 

 

General description This is a low-cost version of the Raspberry Pi, which extends the Pi Zero family 
and comes with added wireless LAN and Bluetooth connectivity. 

SoC: ● Broadcom BCM2835, 1GHz, single-core 
● VideoCore IV @ 250 MHz 

Accelerator - 

Memory 512MB 

Connectivity 802.11 b/g/n Wireless, Bluetooth 4.1, BLE 

OS Linux 

Container Docker, BalenaOS 

Supported Frameworks 
and Tools 

● TensorFlow, TensorFlow Lite, PyTorch, Caffe 
● ONNX 

Table 3.4 - Raspberry Pi Zero W85 

  

 
 
85 https://www.raspberrypi.org/products/raspberry-pi-zero-w/ 
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ODROID-HC4 

 

General Description The ODROID devices are an alternative to the Raspberry Pi. Moreover, they 
usually mount a dissipator, which maintains the SoC cooler, thus, they behave 
better on heavy load. On top of that, they do not have high power 
consumption, usually between 6W and 7W.  
The ODROID-HC4 board is based on the same ARM CPU as the ODROID-C4. 

SoC: ● Amlogic S905X3, Quad-Core Cortex-A55 1.800GHz 
● Mali-G31 MP2 GPU with 4 x 650Mhz 

Accelerator - 

Memory DDR4 4GB 

Connectivity GbE LAN (10/100/1000 Mbps) 

OS Linux 

Container Docker, BalenaOS 

Supported Frameworks 
and Tools 

● TensorFlow 
● ONNX 

Table 3.5 - ODROID-HC486 

  

 
 
86 https://wiki.odroid.com/odroid-hc4/odroid-hc4  
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ODROID-H2+ 

 

General description Powerful x86 64bit single board computer with large memory capacity and 
advanced IO ports. 

SoC: ● Intel Quad-core J4115, 2.3Ghz 
● Intel UHD Graphics 600 (Gen9.5) 700Mhz 

Accelerator - 

Memory MAX 32GB (Not included) 

Connectivity 2.5Gbit Ethernet 

OS Linux / Android 

Container Docker, BalenaOS 

Supported Frameworks 
and Tools 

● TensorFlow 
● ONNX 

Table 3.6 - ODROID-H2+87 

  

 
 
87 https://wiki.odroid.com/odroid-h2/start 
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ODROID-N2+ 

 

General description The ODROID-N2+ is a speed upgrade to the original ODROID-N2 that is more 
powerful, stable, and faster performing than the N1. 

SoC: ● Amlogic S922X Processor Quad-core Cortex-A73 (up to 2.4Ghz) and 
Dual-core Cortex-A53 (up to 2Ghz) 

● Mali-G52 GPU with 6 x Execution Engines (800Mhz) 

Accelerator - 

Memory 4GB / 2GB DDR4 

Connectivity Gigabit Ethernet 

OS Linux / Android 

Container Docker, BalenaOS 

Supported Frameworks 
and Tools 

● TensorFlow 
● ONNX 

Table 3.7 - ODROID-N2+88 

  

 
 
88 https://wiki.odroid.com/odroid-n2/odroid-n2 
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ODROID-XU4 

 

General description ODROID-XU4 is a new generation of computing device with more powerful, 
energy-efficient hardware and a smaller form factor. 

SoC: ● Samsung Exynos5422 Cortex™-A15 2Ghz and Cortex™-A7 Octa core 
● Mali-T628 MP6 

Accelerator - 

Memory 2GB  

Connectivity Gigabit Ethernet 

OS Linux / Android 

Container Docker, BalenaOS 

Supported Frameworks 
and Tools 

● TensorFlow 
● ONNX 

Table 3.8 - ODROID-XU489 

In the following, we provide some insights on the performance of the SoCs introduced above, i.e., Raspberry 
and ODROID families, as reported on reference benchmarks. In particular, the Linpack90 benchmarks provide 
a measure of the floating-point computing power of a system. The measured performance consists of the 
number of 64-bit floating-point operations, generally additions and multiplications, a computer can perform 
per second, also known as FLOPS. In particular, Figure 3.12 provides a comparison among Raspberry Pi models. 
It is possible to observe how the Raspberry Pi 4 dominates the benchmark with its single-precision (SP), 
double-precision (DP), and single-precision accelerated with NEON (SP NEON), an advanced single instruction 
multiple data architecture extension, scores, resulting faster than the Raspberry Pi Zero W but also than the 
Raspberry Pi 3 Model B+ and A+. 

 
 
89 https://wiki.odroid.com/odroid-xu4/odroid-xu4 
90 http://www.netlib.org/benchmark/hpl/ 
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Figure 3.12 - Linpack benchmark of Raspberry Pi models91 

Other benchmarks usually considered to compare EI devices as complete systems are the UnixBench92 
benchmarks which provide a basic indicator of the performance of a Unix-like operating system. UnixBench is 
used to measure performance when running single or multiple tasks. Rather than performing a CPU, RAM or 
disk benchmarking, it provides an analysis of the overall system performance, which depends not only on the 
hardware, but also on the operating system and libraries. This is done by targeting tests at specific areas. In 
particular, we observe the following tests: 

● Drystone: it is used to measure and compare the performance of computers. The test focuses on string 
handling, as there are no floating point operations. It is heavily influenced by hardware and software 
design, compiler and linker options, code optimization, cache memory, wait states, and integer data 
types. 

● Whetstone: this test measures the speed and efficiency of floating-point operations. This test contains 
several modules that are meant to represent a mix of operations typically performed in scientific 
applications. A wide variety of C functions including sin, cos, sqrt, exp, and log are used as well as 
integer and floating-point math operations, array accesses, conditional branches, and procedure calls. 
This test measure both integer and floating-point arithmetic 

 

Figure 3.13 compares different ODROID generations and the Raspberry Pi board. We can observe that all the 
ODROID boards are faster than the Raspberry Pi 4. 

 
 
91 https://medium.com/@ghalfacree/benchmarking-the-raspberry-pi-4-73e5afbcd54b 
92 https://github.com/kdlucas/byte-unixbench 
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Figure 3.13 - UnixBench benchmark comparing Raspberry Pi and ODROID models93 

 

3.5.2 Hardware Accelerated SoCs & SoMs 
In the following, we introduce the SoCs and system on module (SoM) that have Hardware Acceleration for 
deep learning. A SoM is a board-level circuit that integrates a system function in a single module. A typical 
application is in the area of embedded systems. Unlike a single-board computer, a SOM serves a special 
function like a SoC. The device integrated in the SOM typically requires a high level of interconnection for 
reasons such as speed, timing, bus-width etc., in a highly integrated module. There are benefits in building a 
SoM, as for SoC; one notable result is to reduce the cost of the baseboard or the main printed circuit board. 

 

NVIDIA - Jetson SoMs 

NVIDIA® Jetson™ is the world’s leading platform for AI on the edge. Its high-performance, low-power 
computing for DL and computer vision makes it the ideal platform for compute-intensive projects. The Jetson 
platform includes a variety of Jetson modules together with the NVIDIA JetPack™ SDK. Each Jetson module is 
a computing system packaged as a plug-in unit (System on Module). NVIDIA offers a variety of Jetson modules 
with different capabilities, which are summarized in Table 3.9, while Figure 3.14 shows the NVIDIA® Jetson™ 
Board Support Package (BSP) architecture.  

  

 
 
93 https://www.odroid.co.uk/index.php?route=product/product&path=246_239&product_id=868 



 
 

 
  

D1.1 State of the Art Analysis 
 
 

77                                                                                                                                                      www.ai-sprint-project.eu 
  
 

 Jetson Nano Jetson TX2 Jetson XAVIER NX Jetson AGX XAVIER 

GPU 128 Core Maxwell - 
0.5 TFLOPs (FP16) 

256 Core Pascal - 
1.3 TFLOPs (FP16) 

384 Core Volta - 21 
TOPs (INT8) 

512 Core Volta - 32 
TOPs (INT8) 

CPU 4 Core Arm A57 
(1.43GHz) 

6 Core Denver 
(1.4GHz) and 4 Core 
A57 (2GHz) 

6 Core Carmel Arm 
64bit (4x1.4GHz, 
2x1.9GHz) 

8 Core Carmel Arm 
64bit (2.265GHz) 

RAM 4GB 64bit LPDDR4 
25.6 GB/s 

8GB 128bit LPDDR4 
58 GB/s 

8GB 128bit LPDDR4 
51.2 GB/s 

16GB 256bit 
LPDDR4 136.5 GB/s 

Storage 16GB eMMC 32GB eMMC 16GB eMMC 32GB eMMC 

Camera 12 lanes (3x4 or 
6x2) MIPI CSI-2 

12 lanes (3x4 or 
6x2) MIPI CSI-2 

12 lanes (3x4 or 
6x2) MIPI CSI-2 

16 lanes (4x4 or 
8x2) MIPI CSI-2 

Ethernet 1 GigE 1 GigE 1 GigE 1 GigE 

WiFi/BT External  Onboard External External  

Supported 
Frameworks 

TensorFlow, TF-
Lite(*), PyTorch, 
Caffe2, Keras, 
MXNet, ONNX 

TensorFlow, TF-
Lite(*), PyTorch, 
Caffe2, Keras, 
MXNet, ONNX 

TensorFlow, TF-
Lite(*), PyTorch, 
Caffe2, Keras, 
MXNet, ONNX 

TensorFlow, TF-
Lite(*), PyTorch, 
Caffe2, Keras, 
MXNet, ONNX 

Container Docker (via nvidia-
docker2) and 
BalenaOS 

Docker (via nvidia-
docker2) and 
BalenaOS 

Docker (via nvidia-
docker2) and 
BalenaOS 

Docker (via nvidia-
docker2) and 
BalenaOS 

Table 3.9 - Jetson family: technical specifications94 

(*) TF-Lite is not encouraged by NVIDIA, so there is little support for it. However, it has been successfully used 
on Jetson Nano and Jeston XAVIER NX. 

 
 
94 https://developer.nvidia.com/embedded/jetson-modules#family 
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Figure 3.14 - NVIDIA® Jetson™ Board Support Package (BSP) architecture95 

In particular, we are interested in the Artificial Intelligence modules: 

● NVIDIA TensorRT: provides a high-performance neural network inference engine for production 
deployment of deep learning applications, as described in Section 3.2.4. 

● cuDNN: NVIDIA CUDA Deep Neural Network library. 
 

Both NVIDIA® Jetson Xavier™ NX and Jetson AGX Xavier contain the dual NVIDIA Deep Learning Accelerator 
(NVDLA96) engines. The NVDLA is an open architecture that promotes standardization in designing DL 
inference accelerators.  Most of the computation on CNNs uses the same mathematical operations and can 
be grouped on five basic layer types: convolution, activation, pooling, normalization, and fully-connected. 
These operations have extremely predictable memory access patterns and thus can be highly accelerated with 
application-specific hardware that exploits those patterns. Figure 3.15 NVLDA internal architecture. 

 
 
95 Figure source: https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-
3231/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/overview.html 
96 http://nvdla.org/ 
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Figure 3.15 - Internal architecture of NVDLA core97 

 

Rockchip SoCs 

Rockchip is a Chinese fabless semiconductor company based in Fuzhou. It produces SoC products for tablets 
& PCs, streaming media TV boxes, AI audio & vision, and IoT hardware. Finally, they released some chips with 
hardware acceleration for neural networks. In the following table, the most interesting SoCs are reported 
from the EI point of view. Their hardware acceleration unit is called Neural Processing Unit (NPU) and it packs 
from 1.2 TOPs up to 3.0 TOPs (8 bit), which is enough for most embedded applications. Just to have a 
comparison, the Jetson Nano packs 0.5 TFLOPs (16 bit), therefore, we should expect similar (or better) 
performance. Table 3.10 provides a comparison of the main Rockchip SoCs. 

 RV1109 RV1126 RK1808 RK3399 

CPU Dual-Core CortexA7 Quad-Core 
CortexA7 

Dual-Core 
CortexA35 

Dual-Core 
CortexA72 + Quad-
Core CortexA53 

GPU -  -  -  Arm Mali-T864 

NPU 1.2 TOPs 2.0 TOPs 3.0 TOPs 3.0 TOPs 

RAM External 32bit 
DDR4/LPDDR4 

External 32bit 
DDR4/LPDDR4 

External 32bit 
DDR4/LPDDR4 

External 64bit 
DDR4/LPDDR4 

 
 
97 Figure source: http://nvdla.org/primer.html 
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Camera 1x MIPI-CSI 2lanes 1x MIPI-CSI 2lanes 1x MIPI-CSI 2lanes 2x MIPI-CSI 4lanes 

Ethernet 100 Mbit/s 100 Mbit/s 100 Mbit/s 100 Mbit/s 

WiFi/BT External  Onboard External External  

OS Linux  Linux  Linux  Linux, Android 

Supported  
Frameworks 

Caffe, TensorFlow, 
TF-Lite, ONNX, 
PyTorch, Keras, 
Darknet 

Caffe, TensorFlow, 
TF-Lite, ONNX, 
PyTorch, Keras, 
Darknet 

Caffe, TensorFlow, 
TF-Lite, ONNX, 
PyTorch, Keras, 
Darknet 

Caffe, TensorFlow, 
TF-Lite, ONNX, 
PyTorch, Keras, 
Darknet 

Container Docker  Docker Docker Docker 

Table 3.10 - Comparison of Rockchip SoCs 

 

BalenaOS (see Section 5.1) might also become supported. At the moment, it is supported only by RV3328. 
Particularly interesting are three products, which can be classified as High End MPU, Mid-Range MPU, and 
Entry Level MPU. All of them pack both a General Purpose CPU and a NPU core. The technical specifications 
are summarized in Figures 3.16, 3.17, and 3.18. 

 
Figure 3.16 - RK3399 - High End MPU98 

 

 
 
98 Figure source: http://opensource.rock-chips.com/wiki_RK3399 
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Figure 3.17 - RK1808 - Mid Range MPU99 

 
Figure 3.18 - RV1109 - Entry Level MPU (new)100 

 

 
 
99 Figure source: http://opensource.rock-
chips.com/images/4/43/Rockchip_RK1808_Datasheet_V1.2_20190527.pdf 
100 Figure source: https://www.rock-chips.com/a/en/products/RV11_Series/2020/0427/1074.html 
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Figure 3.19 - NPU block diagram101 

The Neural Processing Units (see Figure 3.19) are cores specifically designed to run standard CNNs. They 
have the following characteristics: 

● Powerful NPUs 
• Embedded neural network hardware acceleration 
• Up to 3.0 TOPs@INT8 Inference (300 GOPs@INT16, 100 GFLOPs@FP16) 

● Heterogeneous computing 
• NN kernel supports convolutional and fully-connected layers 
• NPU’s internal VPU unit supports OpenCL / OpenVX API for custom layer support and reduces 

synchronization time 
• CPU/PPU for precision compute and for future network layers 

● Easy-to-use model conversion tool 
• Support one-click conversion, to a mainstream architecture model102 

● Typical applications: 
• People counting / Face recognition / Gesture recognition 
• Products quality inspection 

 

Renesas SoCs 

Renesas Electronics Corporation is a Japanese semiconductor manufacturer headquartered in Tokyo, Japan. 
Its core business is microcontrollers, but they also released a SoC specifically designed for embedded 
applications in need of NN hardware acceleration. 

 
 
101 Figure source: https://wiki.radxa.com/RockpiN10/hardware/npu 
102 https://github.com/rockchip-linux/rknn-toolkit 
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Figure 3.20 - RZ/V2M Technical specifications103 

Their main product for EI is the RZ/V2M which main characteristics can be summarized as follows (see also 
Figure 3.20 for the main technical specifications): 

● It has an AI dedicated hardware IP, DRP-AI, configured with a Dynamically Reconfigurable Processor 
(DRP) and AI-MAC, combining both a high-speed AI inference and low power consumption (1TOPS/W 
class power performance) 

● In addition, the image signal processor (ISP) is highly robust, producing a stable image independent of 
the environment, allowing for a high AI recognition accuracy 

● With these features, the RZ/V2M realizes low power consumption, which is a challenge for embedded 
devices, making heat dissipation measures easier. Since heat sinks and cooling fans are no longer 
needed, the equipment can be miniaturized, and the bill of material cost can be reduced 

● It also features high-speed communication interfaces such as USB 3.1, PCI-Express, Gigabit Ethernet, 
and many CPU peripheral functions. Thus, it can also be used in a variety of applications 

● Runs TinyYOLO at 33 fps 
● Runs Linux and can be used with Docker 
● Support ONNX to import ML models. The pipeline is schematized in Figure 3.21. 

 
Figure 3.21 - RZ/V2M ONNX model import pipeline104 

Intel SoCs 

Having bought Altera, an FPGA company, Intel solutions are mainly based on this kind of technology. However, 
since AI-SPRINT focuses on interchangeable technologies, we are not going to consider FPGAs as they require 

 
 
103 Figure source: https://www.renesas.com/us/en/products/microcontrollers-microprocessors/rz-cortex-a-
mpus/rzv2m-dual-cortex-a53-lpddr4x32bit-ai-accelerator-isp-4k-video-codec-4k-camera-input-fhd-display-
output 
104 Figure source: https://www.renesas.com/us/en/document/bro/rz-family-microprocessors-
brochure?language=en 
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much more hardware specific work. Instead, we focus on the Intel SoCs which integrate their own NN 
hardware acceleration called VPU (Vision Processing Unit), namely Intel Movidius. 

Intel Movidius is a custom design built to run inference of deep neural networks for images. It is powered by 
Intel Movidius Vision Processing Unit which is customized for Computer Vision. The main characteristics are 
the following: 

● Processor: Intel Movidius Myriad X Vision Processing Unit (VPU) 
● Supported frameworks: TensorFlow and Caffe 
● Compatible operating systems: Ubuntu* 16.04.3 LTS (64 bit), CentOS* 7.4 (64 bit), and Windows® 10 

(64 bit) 
● Container: Docker 

Application development is supported by the Intel Movidius Neural Compute SDK (NCSDK) which provides 
tools for profiling, tuning, and compiling a DNN model on compatible neural compute devices. The NCSDK 
includes a set of software tools to compile, profile, and validate DNNs as well as the Intel Movidius Neural 
Compute API (NCAPI) for application development in C/C++ or Python. The available tools are summarized in 
the following Figure 3.22. 

 
Figure 3.22 - Intel® Movidius™ Neural Compute SDK tools105 

 

Google Coral - SoM and ASIC 

Coral is a platform of hardware and software components from Google that allows to build devices which can 
locally run AI models, providing hardware acceleration for NNs on the edge. Differently from the previous 
technologies, Coral devices are based on the Edge TPU co-processor (Tensor processing unit), a small 
application-specific integrated circuit (ASIC) from Google. The Edge TPU was specifically designed to power 
state-of-the-art neural networks at high speed, with a low power cost. 

Google offers both Production SoMs and Prototyping boards. AI-SPRINT will adopt mainly the prototyping 
boards (development kits) as they are easier to work with. The prototyping boards are: Dev Board, USB 
Accelerator, and Dev Board Mini. The production boards are: Mini PCIe Accelerator,  M.2 Accelerator A+E key,  
B+M key, and M.2 Accelerator with Dual Edge TPU and System-on-Module (SoM). The key specifications are 
reported in Tables 3.11-3.13. 

 
 
105 Figure source: https://movidius.github.io/ncsdk/tools/tools_overview.html 
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Dev Board 

 

General description The Dev Board is a single-board designed to perform fast machine learning 
inferencing in a small form factor. 

SoC: ● NXP i.MX 8M SoC (quad Cortex-A53, Cortex-M4F) 
● Integrated GC7000 Lite Graphics 

Accelerator Google Edge TPU coprocessor: 4 TOPS (int8); 2 TOPS per watt 

Memory 1 GB LPDDR4 (option for 2 GB or 4 GB coming soon) 

Connectivity Gigabit Ethernet port, Wi-Fi 2x2 MIMO (802.11b/g/n/ac 2.4/5GHz) and 
Bluetooth 4.2 

OS Mendel Linux (derivative of Debian) 

Container Docker, BalenaOS 

Supported Frameworks  TensorFlow Lite API (assisted by the PyCoral API) 

Table 3.11 - Dev Board106 

  

 
 
106 https://coral.ai/products/dev-board/ 
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USB Accelerator 

 

General description The Coral USB Accelerator enables high-speed machine learning inferencing on 
a wide range of systems, by adding an Edge TPU coprocessor. 

SoC: - 

Accelerator Google Edge TPU coprocessor: 4 TOPS (int8); 2 TOPS per watt 

Memory - 

Connectivity - 

OS Linux (On the host) 

Container Docker (On the host) 

Other info ● Can only be used via USB.  
● Host computer must have the Edge TPU runtime and API library 

Table 3.12 - USB Accelerator107 

  

 
 
107 https://coral.ai/products/accelerator/ 
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Dev Board Mini 

 

General description The Coral Dev Board Mini is a single-board computer that provides fast 
machine learning (ML) inferencing in a small form factor. 

SoC: ● MediaTek 8167s SoC (Quad-core Arm Cortex-A35)  
● IMG PowerVR GE8300 (integrated in SoC) 

Accelerator Google Edge TPU coprocessor: 4 TOPS (int8); 2 TOPS per watt 

Memory 2 GB LPDDR3 

Connectivity Wi-Fi 5 (802.11a/b/g/n/ac); Bluetooth 5.0 

OS Mendel Linux (derivative of Debian) 

Container Docker, BalenaOS 

Supported Frameworks  TensorFlow Lite API (assisted by the PyCoral API) 

Table 3.13 - Dev Board Mini108 

 

 
Figure 3.23 - Basic workflow to create a model for the Edge TPU109 

All the TPU devices support only Tensorflow Lite models that are fully 8-bit quantized and compiled specifically 
for the Edge TPU (see Figure 3.23).  Furthermore, it is not possible to train a model directly with Tensorflow 
Lite. Instead, the model must be converted from a Tensorflow file (such as a .pb file) to a Tensorflow Lite file 

 
 
108 https://coral.ai/products/dev-board-mini/ 
109 Figure source: https://coral.ai/docs/edgetpu/models-intro/#compatibility-overview 
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(a .tflite file), using the Tensorflow Lite converter.  Finally, there are also some limitations on the supported 
operations, but the most used ones are all present (e.g., Conv2d, MaxPool2d, FullyConnected, Sofrmaz, ReLU, 
etc. 

 

Quectel - SoMs 

Quectel is the world’s leading supplier of cellular IoT modules. It basically produces Narrowband (NB) & LTE 
Modules and SoMs for IoT. It has recently released two new SoMs specifically designed for AI applications, 
Quectel SC66 and SC20.  SC66 is equipped with a Neural Processing Engine based on the Qualcomm SDM660 
chipset. It features 8x Kryo260 cores (custom design, 64-Bit) that are divided into two clusters: a fast cluster 
of four cores with up to 2.2GHz and a power saving efficiency cluster with up to 1.8GHz. In addition to the 8 
CPU cores, the SC66 integrates an Adreno 512 GPU with an LPDDR4X memory controller (dual-channel 1866 
MHz). AI Engine’s hardware includes a Hexagon Vector Processor, Adreno GPU (Graphics Processing Unit, as 
workhorse of the AI) and Kryo CPU. Other characteristics include: 

● Cellular (LTE), WiFi and Bluetooth. But the version with only WiFi & BT is available 
● OS: Android 9.0 
● Two memory solutions:  

• 32GB + 3GB 
• 64GB + 4GB 

● Supports Tensorflow 
If the SC66 is the High Tier module, the SC20 is the Entry Level Tier with the following characteristics: 

● Qualcomm® MSM8909 (1.1Ghz Quadcore Processor) 
● Two memory solutions:  

• 8GB + 1GB 
• 16GB +2GB 

● Cellular (LTE), WiFi and Bluetooth connectivity. But the version with only WiFi & BT is available 
● OS: Android 7.1 / Linux 
● Supports Tensorflow Lite. 

 

3.5.3 Hardware Accelerated Microcontrollers 
A Microcontroller is a small computer on a single metal-oxide-semiconductor integrated circuit chip, 
characterized by low costs and limited computational power. They usually integrate many peripherals like 
ADC, Timers, Interrupts, PWMs, etc., and they lack a MMU (Memory Management Unit), which means that 
they cannot host a normal OS. In the following, we present the main Microcontrollers solutions that provide 
Hardware Acceleration for DL. 

 

STMicroelectronics - CubeAI 

ST’s hardware acceleration works by using the microcontroller’s internal Digital Signal Processing (DSP), which 
allows running NNs via the CubeAI library. Figure 3.24 shows the microcontroller families that support CubeAI. 
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Figure 3.24 - Overview of the microcontroller families that support CubeAI110 

The CubeAI library supports Keras, Tensorflow Lite, ONNX and PyTorch frameworks (see Figure 3.25). By using 
the STM32 Cube AI framework we can import the model and convert it into optimized code which will run on 
the MCU. 

 
Figure 3.25 - Workflow to import models from DL frameworks and ONNX111 

However, a microcontroller cannot support a normal OS such as Linux and therefore no container can be 
employed. The only OS that can be installed is μClinux, which is a variation of the Linux kernel that targets 
microcontrollers without an MMU. The only exception is the STM32MP1, as it features both an STM32F4 

 
 
110 Figure source: 
https://www.st.com/content/ccc/resource/sales_and_marketing/presentation/product_presentation/group0/69
/82/bf/ae/5a/8b/40/91/STM32CubeAI_press_pres/files/STM32CubeAI_press_pres.pdf/jcr:content/translations/
en.STM32CubeAI_press_pres.pdf 
111 Figure source: 
https://www.st.com/content/ccc/resource/sales_and_marketing/presentation/product_presentation/group0/69
/82/bf/ae/5a/8b/40/91/STM32CubeAI_press_pres/files/STM32CubeAI_press_pres.pdf/jcr:content/translations/
en.STM32CubeAI_press_pres.pdf 
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microcontroller and a SoC (650 MHz Cortex -A7, 209 MHz Cortex -M4). Therefore, it supports Linux and 
containers such as Docker. 

 

Maxim Integrated - MAX78000 

MAX78000 is an Ultra-Low-Power Arm Cortex-M4 Processor from Maxim Integrated, which is used for AI 
applications. The MAX78000 is built to enable NNs and combines energy-efficient AI processing with ultra-
low-power microcontrollers. The hardware-based convolutional neural network (CNN) accelerator enables 
battery-powered applications to execute AI inferences while spending only microjoules of energy. The core 
technical specifications are as follows: 

● Dual Core Ultra-Low-Power Microcontroller  
• Arm Cortex-M4 Processor with FPU Up to 100MHz  
• 512KB Flash and 128KB SRAM  
• Optimized Performance with 16KB InstructionCache  
• 32-Bit RISC-V Coprocessor up to 60MHz  

● Neural Network Accelerator  
• Highly Optimized for Deep Convolutional Neural Networks  
• 442k 8bit Weight Capacity with 1,2,4,8-bit Weights  
• Programmable Input Image Size up to 1024 x 1024pixels  
• Programmable Network Depth up to 64 Layers  
• Programmable per Layer Network Channel Widths up to 1024 Channels  
• 1- and 2-Dimensional Convolution Processing  
• Flexibility to Support Other Network Types, Including MLP and Recurrent Neural Networks  

● Power Management Maximizes Operating Time for Battery Applications  
• 2.0V to 3.6V SIMO Supply Voltage Range  
• Dynamic Voltage Scaling Minimizes Active CorePower Consumption  
• 22.2μA/MHz While Loop Execution at 3.0V from Cache (CM4 only)  

 

MAX78000 is the most power-efficient embedded device by Maxim Integrated. Multiple high-speed and low-
power communications interfaces are supported, including the Inter-IC Sound (I2S) and a parallel camera 
interface (PCIF). MAX78000 supports Tensorflow and PyTorch, but it works similarly to CubeAI, i.e., the model 
must be quantized and transformed into embedded code. No support for OS like Linux is provided. 

 

Espressif - ESP32-S3 

The ESP32-S3112 (see Figure 3.26) is the latest WiFi/BT Module (basically a microcontroller with connectivity) 
from Espressif. ESP32-S3 is a dual-core XTensa LX7 MCU, capable of running at 240 MHz. Apart from its 512 
KB of internal SRAM, it also comes with integrated 2.4 GHz, 802.11 b/g/n Wi-Fi and Bluetooth 5 (LE) 
connectivity that provides long-range support. It has 44 programmable general-purpose input/output (GPIOs) 
and supports a rich set of peripherals. It also supports larger, high-speed octal SPI flash, and PSRAM with 
configurable data and instruction cache. Being a microcontroller, it runs only a real-time operating system, 

 
 
112 https://www.espressif.com/en/products/socs/esp32-s3 
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and this is the case of FreeRTOS (a real-time operating system kernel for embedded devices that has been 
ported to 35 microcontroller platforms and distributed under the MIT license). 

 
Figure 3.26 - Espressif’s ESP32-S3 Wi-Fi + Bluetooth LE SoC113 

 

3.6 Smartwatches and bands in stroke care  
Stroke is the second leading cause of death and third leading cause of disability in adults worldwide [GBD 
2016]. It is a common disease, with increasing incidence in the aging population, that affects one in four people 
over their lifetime. Stroke is defined as a neurological deficit due to an acute focal injury in the central nervous 
system by a vascular cause. Its presentations can be ischaemic, resulting from a reduced blood flow generally 
due to an arterial occlusion, or haemorrhagic, resulting from a rupture of cerebral arteries [Campbell2020]. 
Clinical examination and brain imaging, such as computed tomography (CT) scan or magnetic resonance 
imaging (MRI), are crucial to differentiate the stroke subtypes. 90% of strokes are attributable to modifiable 
risk factors [ODonnell2010], such as high blood pressure, smoking, diabetes, physical inactivity, and, 
specifically for ischaemic stroke, atrial fibrillation (AF) [Chugh2014; Tu2010], which is an arrhythmia of the 
atrial chambers of the heart. Knowing the timing of stroke is critical for effective medical intervention. 
However, the sudden onset of stroke can be masked if it is unwitnessed, under-recognized or not 
communicated. For this reason, new strategies for preventing and monitoring stroke or its recurrence have 

 
 
113 Figure source: https://www.espressif.com/en/news/ESP32_S3 
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been developed, such as the use of smart wearable devices for cardiovascular care, which represents one the 
most promising approaches [Bayoumy2021]. 

Wearable devices are connected electronic devices that can be worn as accessories or embedded into 
clothing. They include medical earbuds, patches, chest straps, smartwatches or bands, smart rings, and others. 
Thanks to the ability of performing long-term continuous monitoring, wearable devices, especially 
smartwatches or bands (Table 3.14), enable virtual or remote cardiovascular care with critical benefits for 
stroke and the reduction of hospitalization expenses [Kuehn2016]. The market size for wearable devices is 
expected to rise to $70 billion by the year 2025 [Ajami2015]. Remote monitoring for cardiovascular care by 
wearable devices generally consists of three components: 1) sensors collecting data on physiological 
parameters; 2) a network or communication interface transferring this data to a remote terminal, such as a 
smartphone, and 3) a remote cloud analytics platform. 

Common wearable sensors for cardiovascular care include activity sensors (e.g., triaxial accelerometer, 
barometer, Global Positioning System or GPS), biometric sensors (e.g., photoplethysmography or PPG, 
electrocardiography or ECG, oscillometry), invasive and non-invasive biochemical sensors (e.g., monitoring of 
blood glucose and electrolytes, sweat and hydration status), and biomechanical sensors (e.g., 
ballistocardiography, seismocardiography, dielectric sensors). Most of the parameters measured by those 
sensors have been traditionally recorded only during clinic visits with limitations for a detailed, continuous, 
and objective assessment in real-life environments. 

Accelerometers are largely used to monitor physical activity. Among the most common types of 
accelerometers, the differential capacitive accelerometer is the most employed in wearable devices due to 
low power consumption, fast response to motion and superior accuracy [Yang2010]. 

Heart rate (HR) and heart rhythm measurements are generally performed by using ECG and PPG. Some 
smartwatches or bands can record a single-lead ECG, where a contralateral finger can be placed on a negative 
electrode on the side of the device while the back of the watch serves as a positive electrode. Single-lead ECGs 
can diagnose arrhythmias such as AF, especially when coupled with PPG. By recording the variable intensity 
of photons continuously reflected through the skin, PPG measures changes in the microvascular blood 
volume, which indicates pulse waves that can be recorded as a tachograms [Kamisalic2018]. To preserve 
battery life, most wearables activate PPG during physical activity or intermittently during rest or sleep. PPG 
accuracy can be affected by skin colour, moisture, tattoos, and variable contact with the skin [Dagher2020]. 

Benchmark studies comparing the performance in HR accuracy of PPG sensors across different wearable 
devices are rather scarce. One study compared the Apple Watch 3 and the Fitbit Charge 2 showing similar 
accuracies across 24 hours and during various activities [Nelson2019]. In particular, the Apple Watch 3 exhibits 
a mean agreement of 95% with the golden standard ECG and the Fitbit Charge 2 a mean agreement of 91%. 
Another study compared wrist-worn sensors (Fitbit Blaze, Apple Watch, Garmin Forerunner 235, TomTom 
Spark Cardio) and one chest strap (Polar H7), showing that PPG HR readings from wrist-worn sensors are less 
accurate than the chest monitor [Etiwy2019]. Studies that specifically focus on algorithms for AF detection via 
PPG sensors report an overall sensitivity of 90-96% and specificity of 85-99% [Krivoshei2017; McManus2013; 
Brasier2019; Dörr2019]. Obtaining an adequate PPG signal at the wrist represents the main technical 
limitation for these devices. Nevertheless, while one study found that it was not possible to analyse the PPG 
signal in 21.8% of the records for poor signal quality [Dörr2019], another study on a most recent device 
reported only 3% of unclassifiable records [OscaAsensi2020]. 

Finally, recent studies focus on the effectiveness of AF diagnosis through wearable devices, such as the 
mSToPS study [Steinhubl2018] that showed a higher rate of new AF diagnosis via ECG monitoring, or the Apple 
Heart study [PerezApple2019], the largest to date, that showed the possibility of AF diagnosis in individuals 
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without a known history of the disease. In this regard, the ongoing HEARTLINE trial [HEARTLINE2020] is 
evaluating the improved clinical outcomes of PPG-enabled devices for AF detection. 

Company Device name Parameter measurement 
Adidas miCoach Fit Smart HR, PA 
Apple Apple Watch HR, PA, falls, sleep, ECG 
Biobeat BB-613WP HR, PA, cuff-less BP 
Fitbit Flex, One, Charge HR, PA, sleep 
Garmin Vivoactive, Vivofit, Forerunner HR, PA, sleep 
Huawei Huawei Watch GT, Huawei Band HR, PA, SPO2 
Karacus DIONE, TRITON HR, PA 
Omron HeartGuide HR, PA, sleep, cuff BP 
Samsung GearFit 2 HR, PA, sleep 
SmartCardia INYU HR, PA, ECG 
TomTom TomTom Spark HR, PA 
Withings  Steel HR, Move, Move ECG, Pulse 

HR 
HR, PA, sleep, ECG. SPO2 

Google Wear OS on different hardware 
manufacturers 

HR, PA, sleep 

Arrhythmia algorithm S.L. RITHMI HR, ECG, SPO2 
AliveCor KardiaBand HR, ECG 
Microsoft Microsoft Band HR, PA, sleep 
Nike FuelBand PA 
Under Armour + HTC UA Band HR, PA, sleep 
Xiaomi Mi Band HR, PA 
Fitbug Fitbug ORB PA, sleep 

Table 3.14 - Common smartwatches or bands on the market (adapted from [6]). BP, blood pressure; ECG, electrocardiogram; HR, 
heart rate; PA, physical activity; SPO2, arterial oxygen saturation 

 

3.7 Cameras for Agriculture 4.0  
The specific agricultural field that AI-SPRINT tackles is viticulture. Due to its specific features, viticulture is 
especially suitable for the application of Agriculture 4.0 approaches and techniques, and particularly of the AI-
SPRINT approach. The “Viticulture 4.0” use case of AI-SPRINT aims at optimizing wine-making practices by 
considering the spatial and temporal variability of information collected from vine plants. Therefore, capturing 
relevant information is crucial to produce meaningful analyses. In viticulture, weather, soil, botanical and 
economic data are currently considered: AI-SPRINT intends to complement these with sensor data streams 
collected by the agricultural machines. 

Botanical information can be collected at several scales, from satellite to microscopic. Unlike large-scale 
cultivation (like maize, bean, tomatoes, etc.), where information can be massively collected through remote 
sensing (e.g., using satellites or drones), viticulture requires considering the vertical dimension of the plant. 
Thus, in the context of AI-SPRINT, we will focus on proximity detection. In the following sections, we review 
the relevant technologies available for this purpose. 
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3.7.1 Camera sensors for vine plant diseases and pests detection 
Generally used in the broad agricultural sector, camera sensors can also be integrated into systems to detect 
vine diseases and directly act on them by spraying or cutting. Tables 3.15-3.18 provide a review of the available 
devices of this kind and show how the application of these sensors to viticulture is still in its initial phase. 

Smartstriker by Carbon 
Bee 

 

General description ● This camera integrates a GPS receiver with three different imaging 
sensors, i.e., RGB sensor, IR sensor, and Hyperspectral sensor 

● Primarily used in general agriculture, Carbon Bee started to deploy this 
camera in viticulture, too 

Table 3.15 - Smartstriker  

 

Bilberry by Bilberry SAS 

 

General description ● This camera integrates an RGB sensor and a GPS receiver 
● Only used in general agriculture 

Table 3.16 - Bilberry  
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See&Spray by Blue 
River Technology 

 

General description ● This camera integrates an RGB sensor and a GPS receiver 
● Only used in general agriculture 

Table 3.17 - See&Spray 

 

SmartSprayer by 
Bosch/Xarvio/Amazone 

 

General description ● This camera integrates a GPS receiver, an RGB sensor and a red light 
source 

● Only used in general agriculture 

Table 3.18 - SmartSprayer 

   

3.7.2 Diseases detection on vine leaves 
Disease detection can be performed through RGB, IR, and Hyperspectral imaging sensors. Drones were the 
first platform used for this application and can carry one or more sensors, but their limited payload is a strong 
constraint in many cases. Images are taken in the visible spectrum, but also certain specific wavelength ranges 
in the near-infrared (NIR, around 800 nm) and the Red Edge (about 735 nm) are detected. This information is 
used to calculate specific multispectral indices, such as the NDVI (Normalized Difference Vegetation Index), 
which provide information on the health state of the crop, in particular vigor or stress. When multispectral 
indices highlight an anomalous situation, the winegrower must personally visit the vine to diagnose the issue: 
for instance, to decide if it is due to water stress or to diseases. 

RGB cameras are currently being considered to detect Esca and Flavescences Dorée diseases (see Figure 3.27). 
For fungal diseases such as late blight and powdery mildew, multispectral cameras are preferred. Carbon Bee 
and RGX System seem to take the lead for onboard solutions, with a sensor embedding three cameras and AI. 
Still, those sensors are devised for the detection of single diseases. 
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Moving from curative to preventive by analyzing images is not easy because similar symptoms are associated 
with different plant diseases. Plant diseases lead to confusion also because plant stress is inherently poly-
symptomatic. 

 
Figure 3.27 - Esca detection by proximal sensing 

At regular intervals of time, several images taken on the same plot should make it possible to better detect 
these diseases by considering their temporal evolution or even to follow the expansion of infections and 
identify the most vulnerable areas to better target treatments. Remote sensing makes it possible to grid plot 
fields with different resolutions. On a wheat field, the images provided give an idea, for example, of the 
extension of wheat rust to a degree of accuracy of 95%. The detection carried out by a drone at very low 
altitude or by a camera onboard a tractor pushes the investigation to the scale of the spot on the sheet. It 
allows to have an image with a very high resolution and target the treatments at the scale of the vine strain, 
for example. 

Unconventional sensors would make it possible to detect diseases before the onset of symptoms. Still, this 
technology is expensive and remains very complex to transpose from the laboratory to the plot. However, this 
would significantly reduce the costs of treatments since they would be applied very early. AI applied to images 
taken in the field can locate the places where the disease is present. However, the resolution of the images 
(whether taken in proximity or from remote sensing) must be sufficient to distinguish the different vine 
elements to treat, for example, only the vine leaves (for more details, see [Samson2021]). 

 

3.7.3 Grape detection 
The interest towards detection of grapes is due to the fact that estimating their volume leads to yield 
estimation, which is of extreme interest to the winegrower. Grape detection research is oriented on early 
grape volume analysis, while the grapes are still visible and not yet hidden by the leaves. An RGB and RGB-D 
camera combined with a LiDAR or other 3D sensor are usually needed. The objective is to count and measure 
the volume of grapes to produce a yield estimation [Santos2020], [Kurtser2020]. 
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3.7.4 Vine canopy volume estimation 
Estimation of the vine canopy is important to determine plant state and can be used as input data for other 
processes. AI-SPRINT, in particular, considers the use case where this information is used to control the 
spraying of phytosanitary products. 

It is possible to estimate the volume of the vine canopy by LiDAR and other 3D industrial sensors 
[Cherariet2020]. GREGOIRE has validated the tridimensional reconstruction of the vine canopy with a 3D 
Infrared device mounted on a harvesting machine114,115. 

 

3.8 Drones Image Acquisition Technologies for Inspection and 
Maintenance  

Unmanned aerial vehicles (commonly called drones or abbreviated as UAV) became recently a tool of choice 
for visual inspection of industrial infrastructure. There are numerous reasons for that. The major ones are: 

● Ease of transport: drones are fairly compact and can be transported easily even to remote locations 
● Flight time: advanced drone technology allows for longer flight times making the inspection process 

cost and time efficient 
● Image quality: images or video footage taken by drones are of much better quality than shots taken 

from the ground using telephoto lenses and tripods (common alternative to drone-based acquisition)  
● Safety: one of alternatives to drone operations is climbing onto infrastructure to inspect damages in 

detail which is a time consuming and dangerous process. 
 

Modern drones offer not only longer flight times but also substantial lift capabilities. More lift allows more 
equipment on-board. At the same time, development of energy-efficient, miniaturized electronics is 
progressing as well. Combining these two technologies together, enable the building of flying multi-sensor 
devices with significant on-board data processing and communication capabilities. 

 

3.8.1 Drone components 
This section will cover general architecture of the multicopter, which is the UAV type most commonly used 
for industrial inspection, with special attention to components relevant for AI-SPRINT.  

A multicopter can be split into the following elements: 

● Frame: the base drone is built on 
● Motors: responsible for rotating the propellers 
● Propellers: they are usually of two types and depending on motor rotation direction they create air 

pressure difference which is the source of lift 
● ESC (electronic speed controller): controls the amount of power provided to each motor and 

communicates with the flight controller 
● Batteries and cables: energy source and distribution 

 
 
114 www.pleinchamp.com/actualite/machinisme~un-guidage-automatique-sans-gps-pour-les-automoteurs-
gregoire 
115     www.ifm40.fr/nos-solutions/robotique-vehicules-autonomes/machine-a-vendanger-autonome-la-vision-
3d-au-service-de-lagriculture/ 
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● Radio transmitter: responsible for communication with the drone (at least 4 channels are required) 
● Flight controller: is basically a SoC with some internal sensors (accelerometer, gyroscope, 

magnetometer, barometer etc.). It is the central component of the drone; gathers data from external 
(like GPS, obstacle avoidance sensors) and internal sensors, communicates with the remote controller 
and ESC. The flight controller runs the flight control software. There are multiple flight controller 
stacks available on the market running both open source and proprietary, closed software. 

● Sensors: additional sensors are used either for real-time flight control or data collection, some of them 
include: 

• Cameras (usually equipped with gimbal for stabilization and angle control) 
• Distance sensors (also used as obstacle avoidance); sensors can leverage various 

measurement techniques like: lidar, sonar, ToF (infrared time-of-flight), stereoscopic camera 
(with depth estimation) 

• Airspeed sensors 
• GPS (also with real-time kinematic positioning) 
• Optical flow sensor (camera and lidar based speed estimation) 
• 3D LiDAR, 3D laser mapping  

● Companion computer: additional computers used for additional computation, for example real-time 
image analysis; practically any SoC with proper interfaces can be used for that purpose. Detailed 
analysis of suitable devices, including GPU equipped devices is available in Section 3.5. 

● Communication peripherals: various communication components like: GSM modules, WIFI, bluetooth 
etc. 

 

3.8.2 Flight Controllers and Flight stacks 
Flight controllers with their software are key components responsible for UAVs ability to fly. Software running 
on the controller is especially important. It affects the drone flight characteristics, how to pilot the drone or 
the level of autonomy. The most widely used open-source platforms available today are: 

● PX4: probably the best-known open-source autopilot software (not only for drones) written in C/C++; 
using open-hardware Pixhawk as reference platform116 

● ArduPilot: extensively used flight control stack written in C/C++117 
● Cleanflight: C based open-source project based on 8-bit MultiWii118  
● Betaflight: based on Cleanflight and Baseflight119  
● INAV: Cleanflight fork focusing on GPS related features120 
● Paparazzi UAV: both open-software and open-hardware project focusing on autonomous flight 

written in C and Python121 
 

3.8.3 Companion Computers 
From an AI-SPRINT standpoint, UAV companion computers are the key element. Even though companion 
computers are not responsible for core drone functions, they can provide key data for drone operations by 
analyzing real time data from sensors and providing feedback to flight control or the drone operator. There is 

 
 
116 https://px4.io/ 
117 https://ardupilot.org/ 
118 http://cleanflight.com/ 
119 https://betaflight.com/ 
120 https://github.com/inavFlight/inav/wiki 
121 https://wiki.paparazziuav.org/wiki/Main_Page 
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a wide range of devices available for that purpose. Some are capable of running even computer vision models 
based on deep neural networks in real time by leveraging GPU chips. Exhaustive list of such SoCs is presented 
in Section 3.5. Flight controllers and companion computers communicate over MAVLink protocol, an efficient, 
reliable, low overhead protocol and well suited for low-bandwidth links and resource-constrained systems.  

 

3.9 Gaps filled by AI-SPRINT 
In AI-SPRINT, an application is an enterprise application, mostly written in Python, that makes intensive use 
of AI technologies and is based on multiple components running across a computing continuum. Scikit-learn 
and Python machine learning libraries (e.g., xgboost, statsmodels, etc.), PyTorch, Keras, and TensorFlow will 
be the main frameworks and libraries that will be considered initially. Edge and IoT devices will be targeted 
via the container abstraction either via docker, when supported, or via the BalenaOS while optimization for 
the target hardware will be performed via vendor specific frameworks. 

The AI-SPRINT framework will be more flexible than existing programming solutions. AI-SPRINT will address 
most of the challenges related to the composition of AI applications and their deployment and execution on 
the edge with transparent offloading to cloud platforms depending on load and constraints requirements. 
Specific highlights will be put on security and QoS in the definition of the framework and design abstractions 
will be defined accordingly. The PyCOMPSs programming model will be used as base technology. Applications 
will be designed transparently with respect to the execution platform and their execution will be delegated to 
the runtime. Moreover, AI application developers will be able to develop code that can seamlessly run, 
without changes, on traditional batch systems or on clouds using a FaaS model avoiding cloud vendor lock-in.   

The next section will introduce the state-of-the-art of advanced features for AI applications design and 
development that will be addressed by AI-SPRINT and will constitute the main innovations of the framework. 
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4. AI Application Advanced Design 
Chapter 4 reviews the advanced solutions developed for the design of AI applications. These involve DL models 
partitioning, network architecture search, federated learning, AI application performance modelling, and 
component placement in computing continua. In particular, the description of DL models partitioning, and the 
corresponding strategies are presented in Section 4.1. Section 4.2 introduces network architecture search, 
while Section 4.3 presents the federated learning paradigm, with a particular emphasis on its adoption for 
privacy preservation. Section 4.4 describes how the performance of AI applications can be modelled. Finally, 
components placement strategies in computing continua are presented in Section 4.5. 

 

4.1 DL models partitioning  
Deep Neural Networks (DNNs) are one of the most popular topics in machine learning in these years. However, 
DNNs usually need powerful resources for performing their huge computations. The work in [Yadwadkar2019] 
investigates the DNN inference phase and discusses the challenges that inference serving systems encounter 
these days, analysing the gaps between what users expect and the existing inference serving solutions. The 
identified challenges include the selection of a model-variant (which means diverse requirements lead to 
different models), the existence and need of heterogeneous hardware architectures, the varying load and 
query patterns and the start-up latency of the DNN frameworks. Authors also define two concepts: managed 
and model-less inference serving system. A managed inference serving system is an inference serving system 
that automates resource provisioning for models to serve users’ inference queries satisfying their 
requirements. A model-less system is an interface to the managed inference serving system where users are 
able to focus on querying an inference for their tasks without needing to think of models, and the trade-offs 
offered by model-variants. According to the challenges mentioned above, they define and make a case for 
managed and model-less inference serving systems and indicate the open research directions to realize this 
vision. 

Splitting the DNN to several parts and executing in a distributed way on edge-cloud devices, is a commonly 
adopted approach to overcome DNN computation requirements in computing continua. Accordingly, there 
are many works to partition DNN such as [Teerapittayanon2017] which proposes a distributed deep neural 
network (DDNN) over distributed computing hierarchies. DDNN maps a trained DNN onto heterogeneous 
physical devices distributed locally, at the edge, and in the cloud. The vertical lines in Figure 4.1 represent the 
DNN pipeline which connects the horizontal bars (NN layers). The authors consider different settings for 
DDNNs. The cloud-based DDNN is the standard DNN running in the cloud (Figure 4.1a). The next deployment 
considers a cloud-based DDNN by introducing end devices and a local exit point that may classify samples 
before the cloud (Figure 4.1b), possibly adding multiple end devices and performing a local aggregation 
together with classification (Figure 4.1c). Finally, Figure 4.1d and Figure 4.1e extend the scenarios reported in 
Figure 4.1b and Figure 4.1c by adding edge layers between the cloud and end devices, while Figure 4.1f shows 
how the edge can also rely on multiple distributed end devices. 
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Figure 4.1 - Overview of the DDNN architecture [Teerapittayanon2017] 

Similarly, a lightweight scheduler has been proposed in [Kang2017] to automatically partition DNN 
computation between mobile devices and datacentres at the granularity of neural network layers. Authors 
profile the mobile device and the server to generate performance prediction models for the spectrum of DNN 
layer types.  This only needs to be done once for a given set of mobile and server platforms. They select the 
best DNN partition points by utilizing the layer performance prediction models which are used to estimate the 
latency of executing layers on mobile and cloud. The work also estimates the power of executing layers on 
the mobile device and calculates the wireless data transfer latency based on the latest wireless network 
bandwidth. The best partition point is identified according to the target. If the target is latency, the point 
minimising the total execution and communication time is selected. If the target is energy, the point that 
minimizes the total energy consumption is identified. 

On the other hand, there are some other methods like early exiting and pruning to reduce the execution time 
and resources. Two examples of such methods are proposed in [Li2020] and [Shiand2019], respectively. In 
[Li2020], authors focused on inference phase combined with DNN right sizing that further reduces 
computation latency via early exiting inference at an appropriate intermediate DNN layer and DNN 
partitioning to maximize the efficiency of DNN inference. They consider static and dynamic configurations 
depending on bandwidth stability during the DNN inference and they consider a threshold for latency 
requirement. A runtime optimization algorithm is proposed, whose goal is reaching a trade-off between 
latency and accuracy.  The algorithm proceeds in a greedy way, initially setting the partition point to the last 
exit point (which has the higher accuracy). Next, the algorithm considers all possible layers partitioning 
between edge and cloud and calculates the latencies of running the different layers on device and cloud. The 
partition that leads to minimum latency is selected by inspection. If this latency is lower than an a priori fixed 
threshold, the partition found is the optimal result, otherwise, they compute the minimum latency for the 
previous exiting point and reiterate. In [Shiand2019], authors propose a 2-step pruning framework for DNN 
partition between mobile devices and edge servers. The DNN model is pruned once in the training phase 
where unimportant convolutional filters are removed iteratively. In pruning step s, they apply an iterative 
pruning algorithm to the entire original testing network. Since the data generated by the last layer in the front-
end part of the network before the partition point needs to be transmitted via wireless channel, pruning can 
be applied to the layer just before the partition point to shorten the transmission latency. In pruning step 2, 
they apply the iterative pruning algorithm to each layer in the pruned network after pruning step 1 by 
restricting the pruning range to each layer. In this way, they identify a set of pruned network models that are 
generated by pruning each layer, which correspond to the partition point just after the layer. Next, they 
compute mobile and edge server computation latency and the transmission latency for each pruned network 
model and select a network model and its corresponding partition point with minimum latency. More 
recently, a lightweight collaborative DNN for the mobile web, named LcDNN, has been proposed in 
[Huang2020]. Authors design a lightweight DNN with a binary neural network (BNN) branch to execute the 
inference of DNN on the mobile web in order to decrease mobile energy consumption and latency. They also 
propose a joint training method and implement an inference library for running the BNN on the mobile web. 
Finally, they present an online scheduling based on Deep Reinforcement Learning, called DRLoS, to maximize 
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the resource utilization of the edge. Vice versa, some other works like [Eshratifar2021] use partitioning both 
in the inference and the training phase. Authors propose a method, called JointDNN, and reduce the mobile 
cloud computing optimal scheduling problem to the shortest path problem shown in Figure 4.2, in which top 
vertices represent the DNN layers on cloud and bottom vertices represent the DNN layers on edge. The 
weights on horizontal edges denote the computation cost of the current layer on edge or cloud and the weight 
on diagonal edges represent the communication cost from cloud to edge or vice versa. If the scenario does 
not have any constraint (mobile battery limitations, quality of service constraints, etc.), the optimal scheduling 
can be obtained by solving the shortest path problem in the JointDNN graph model.  If the scenario has 
constraints, they proposed an integer linear programming (ILP) formulation of DNN partitioning for both 
training and inference phase for the different scenarios with different constraints.  

  
Figure 4.2 - Graph model of JointDNN approach [Eshratifar2021] 

In addition to splitting the layers of DNN among devices, splitting the input data sample is another method to 
reduce computation load on a single device and distribute the load among devices in edge-cloud. A hybrid 
parallelism method to partition both the DNN and the data samples across the edge device, edge server and 
cloud centre is proposed in [Liu2020]. Authors considered three levels of tasks: Original Task which trains the 
full DNN with bo data samples, Short Task which trains ms consecutive layers from layer 1 to layer ms with bs 
data samples and Long Task which trains ml consecutive layers from layer 1 to layer ml with bl data samples. 
By assigning each task to device, edge or cloud, there are 6 different states (permutation of 3). They solved 
an integer linear programming (ILP) optimization problem for each state to achieve the best state with 
minimum total time. In the optimization problem, the decision variables are ms and ml which are the partition 
points of layers and bo, bs and bl which are mini-batch size of data sample assigned to device, edge or cloud. 

Finally, a methodology to find an optimal placement of Convolutional Neural Networks (CNNs) on the IoT 
devices is proposed in [Disabato2015]. Authors formulate the problem as an optimization problem for 
assigning the layer of CNNs to N IoT devices in order to minimize the latency between the data-gathering 
(input read) and decision-making (inference result) phases within the memory and processing load 
constraints. Early-exits are also considered to reduce the network traffic and computation requirements for 
the whole system. 

 

4.2 Network Architecture Search  
Neural architecture search (NAS) is the process of automating machine learning solutions design. In the last 
decade, deep learning solutions like neural networks have been frequently used for their capability of 
extracting features automatically from data, avoiding the feature engineering step required by traditional 
machine learning algorithms. Through the years, many engineers developed new techniques to improve 
neural network accuracy on relevant problems, usually comparing the results obtained from their 
architectures on reference datasets. Good architectures are studied and developed by engineers, based on 
the given problem and the actual knowledge available in the literature. Due to the black box nature of the 
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neural networks, right architecture search can be a tedious procedure, requiring various trial and error steps 
to find an optimal structure for a given problem and dataset. 

The main objective of neural architecture search is to automatize the architecture engineering step, providing 
algorithms that can search autonomously a set of architectures that provides good accuracy results for the 
considered problem. Even if NAS techniques were studied in the past, it is only recently that the topic gained 
lots of attention, thanks to the work of Zoph et al. [Zoph2017], that achieves state-of-the-art results on the 
CIFAR-10 dataset, a reference dataset for image classification problems, and the Penn Treebank dataset, a 
dataset used frequently as a benchmark for recurrent neural networks. NAS nowadays, considers the 
architecture search no more as a single-objective optimization problem, focused only on obtaining the best 
accuracy possible, but as multi-objective optimization problems, e.g., to reduce the time required by the NAS 
algorithm or to constraint the search on additional requirements like the latency or the memory required by 
the final architecture. 

 

4.2.1 NAS dimensions 
NAS algorithms can be extremely heterogeneous and are characterized by three dimensions: search space, 
search strategy, and performance estimation strategy [Elken2019]. In Figure 4.3, an abstract illustration of 
NAS methods is depicted. Search space A is defined by the set of operations defined by the NAS designer. 
Search strategies select architectures from A, that are then evaluated with a performance estimation strategy, 
estimating their accuracy on unseen data. 

 
Figure 4.3 - Overview of the workflow used by neural architecture methods [Elsken2019-2] 

 

Search space 

The search space defines the space of all the possible architectures that can be produced by the NAS 
algorithm. This is commonly defined by the algorithm designer, through a set of operations that are 
considered well-suited for the task addressed by the output architectures. Defining a set of operations a priori 
reduces the size of the search space, simplifying the search, and also introduces a human bias in the algorithm. 
This is in part beneficial, because operations chosen by designers are often extensively used in already existing 
neural architectures and that proved to achieve very good performance but can also be seen in a limitation in 
finding new building block not currently discovered in the literature, especially for problems where actual 
architectures still do not perform well enough. Recent works on NAS incorporate modern design elements 
known from hand-crafted architectures such as skip connections, which allow to build complex, multi-branch 
networks. Hand-crafted architectures usually find a performing combination of operation and inputs, forming 
a “building block” that is then repeated multiple times across the network to build the actual architectures. 

Also, NAS techniques embrace this motif repetition pattern, focusing on the search of good cells and blocks 
to be repeated inside the architecture, instead of searching for a whole architecture. Micro-search focuses on 
the cell structure that can be composed by multiple blocks combined in a multi-branch way. Usually, two types 
of cells are defined: a normal cell, that preserves the dimensionality of the input, and a reduction cell, which 
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reduces the spatial dimension. Macro-search focuses instead on how these cells are stacked to produce the 
final architecture. A common approach is to connect them in a single path chain-structured network, where 
multiple normal cells and single reduction cells are interleaved (see Figure 4.4). This search space has two 
major advantages: 

● The size of the search space is drastically reduced since cells can be comparably small 
● Cells can more easily be transferred to other datasets by adapting the number of cells used within a 

model  

 
Figure 4.4 - Cells Architecture. On the left, a normal cell (top) and a reduction cell (bottom). Micro-search focuses on finding the best 
structure for these two cells. These cells are then stacked together to form the neural architecture on the right, according to macro-

search results [Elsken2019-2] 

 

Search Strategy 

Search strategy is responsible for exploring the search space and selecting architectures to evaluate. Many 
different search strategies that have been employed, can be mainly organized in four categories: 

● Reinforcement learning (RL): Reinforcement learning is based on a controller, usually a recurrent 
neural network (RNN) like a LSTM. The controller receives a string embedding as input and generates 
a neural architecture as output, considered as the agent’s action, where the action space is the search 
space itself. The reward of the action is simply the performance estimation of the architecture 
produced. The main difference between approaches using reinforcement learning is how the 
controller learns to produce the architectures. The action reward is used in the agent’s policy that is 
chosen by the NAS designer: some examples are REINFORCE [Williams1992] [Zoph2016] and Q-
Learning [Beakcheol2019]. 

● Evolutionary algorithms (EA): Evolutionary methods use genetic algorithms to search for optimal 
architectures. Even if genetic algorithms can be used also to optimize the weights of an architecture, 
gradient-based methods like stochastic gradient descent (SGD) are usually employed as they are much 
faster. Evolutionary algorithms start from a population of promising architectures and gradually 
evolve them by crossover and mutation operations, to generate a new set of architectures to use in 
the next iteration of the algorithm. Neuro-evolutionary methods differ in how they sample parents, 
update populations, and generate offsprings. Usually, crossover and mutation rates are adaptive and 
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change during the search procedure, providing a way to balance exploration and exploitation at 
runtime. 

● Gradient-based: Gradient-based methods relax the constraints of the search space to a continuous 
one, allowing the application of gradient-based techniques also to optimize the architecture search. 
Using this type of architecture search makes it possible to optimize both architecture weights and 
search procedure using the same technique, simplifying the NAS algorithm. Gradient-based method 
was introduced by DARTS [Liu2019] and it has been a very popular choice for NAS algorithms since its 
introduction. 

● Bayesian optimization (BO): Bayesian optimization is the most popular method for hyperparameter 
optimization tools for neural networks, but it has not been applied too much in NAS algorithms 
because they are focused on low-dimensional continuous optimization problems, where instead NAS 
search space is high-dimensional and discontinuous. Bayesian optimization methods start from a prior 
Gaussian distribution of the objective function, which is updated at each iteration in a new Gaussian 
distribution, called posterior. The distribution update is based on the evaluation of the sample 
extracted from the distribution, also keeping track of the confidence interval of the estimations to 
enable an exploration-exploitation trade-off. 

 

Performance estimation strategy 

Performance estimation is a necessary step to guide the search strategy into finding the most promising 
architectures in the considered search space. In fact, neural architectures selected by the search strategy 
cannot be fully trained to provide an accurate validation error, because it would require an immense GPU 
time, considering that search spaces of the NAS algorithms can be in order of 10!"architectures or more and 
that therefore many searches must be done to find the best architectures. The main goal of the estimation 
phase is to correctly rank the accuracy, so that the best architectures can be selected for next iterations, or 
the controller can be awarded proportionally to the potential accuracy of the architecture after full training. 
Since the exact accuracy is not required for performing the search, various techniques exist for performing 
estimation strategy, providing shallower results but in a very fast time. 

The main ones are: 

● Low-fidelity estimation: Some strategies simply focus on providing lower fidelity estimates compared 
to a full network training, by training on lower resolution images, a subset of data and/or training for 
a small number of epochs, using a high learning rate to compensate a bit for the fast training. Even if 
the computational cost is drastically reduced, this approach introduces bias towards smaller and 
simpler architectures, because they train more easily and therefore provide good results even with a 
short training. There is study evidence in the literature that the relative ranking of the architectures 
can change drastically because of this intrinsic bias, making this method not well-suited for general 
use. 

● Learning curve extrapolation: Learning curve extrapolation methods focus on the initial learning 
curve, terminating the architectures that are predicted to perform poorly, speeding up the search. 

● Weight inheritance: Weight inheritance speed ups the performance estimation of an architecture by 
initializing its weights with the ones of another compatible architecture that was previously trained. 
One way to allow weight inheritance is through network morphism, a procedure that allows one to 
change an architecture to make it more similar to the one from which will inherit the weights, but 
without changing the function of the network. 

● Weight sharing through pretrained supernet (one-shot model): One-Shot Architecture Search is 
another promising approach for speeding up performance estimation, which treats all architectures 
as different subgraphs of a supergraph (the one-shot model) and shares weights between 
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architectures that have edges of this supergraph in common. Only the weights of a single one-shot 
model need to be trained (in one of various ways), and architectures (which are just subgraphs of the 
one-shot model) can then be evaluated without any separate training by inheriting trained weights 
from the one-shot model. This greatly speeds up performance estimation of architectures since no 
training is required (only evaluating performance on validation data). This approach typically incurs a 
large bias as it under-estimates the actual performance of architectures severely; nevertheless, it 
allows ranking architectures reliably, since the estimated performance correlates strongly with the 
actual performance. 

 

4.2.2 One-shot models 
Training thousands of models is difficult or impossible for a typical machine learning practitioner. One 
promising direction is sharing weights between models: rather than training thousands of separate models 
from scratch, one can train a single large network capable of emulating any architecture in the search space. 
The work in [Bender2018] is considered the baseline work for a comprehensive analysis of one-shot 
architecture. It provides a very simple example for grasping the main concepts of a supernet. 

In Figure 4.5, we can see that a set of 3 different operations is used: 3x3 convolution, 5x5 convolution and 
max pooling. A single network can be trained using all these 3 operations, instead of training 3 separate 
models. At evaluation time two paths can be zeroed, selecting an operation for the searched architecture. A 
complete search space is evaluated with the use of a large supernet composed of multiple cells; this approach 
is feasible also for quite large search spaces because an exponential growth of the search space is tied to a 
linear growth of the one-shot model. This can be intuitively seen in the example: stacking 4 cells would lead 
to 3# = 81 possible architectures but requires only x4 the memory of a single cell. 

 
Figure 4.5 - Simple example of a one-shot model. In a choice block, we have 3 different operations, during training all the weights are 

trained, while at runtime only one path is chosen [Bender2018] 

The main advantage of using a one-shot model is that, after the resource investment for training and storing 
the supernet, search space can be performed very efficiently thanks to weight sharing. Another interesting 
result of the paper is that neither a hypernetwork nor an RL controller are required to achieve good results. 
By properly training the supernet, the network focuses mainly on most important operations for having good 
results, so zeroing them lead to low rewards during search, instead zeroing out non-performing operations 
have a minor impact. This behaviour allows search strategies with gradient-based techniques, without 
controllers.  

The common procedure for one-shot architecture search can be summarized as follows: 

● Design a search space for the one-shot model. 
● Train the one-shot model to make it predictive of the validation accuracies of the architectures. 
● Evaluate candidate architectures on the validation set using the pre-trained one-shot model. 
● Re-train the most promising architectures from scratch and evaluate their performance on the test 

set. 
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One-shot models provide proxy evaluation metrics by activating subgraphs of the supernet. The one-shot 
model is a standard large neural network trained using SGD with momentum but requires some extra 
considerations to provide good evaluation results.  

The main problem is related to co-adaptation of model weights. Training naively the supernet leads to weights 
co-adapting during training, causing high accuracy drops also when removing unimportant operations during 
the model predictions. Incorporating path dropout during training mitigates this issue, allowing weights to 
train more independently. Dropout can alter the training speed and final accuracy, so should be tuned during 
training. Bender et al. [Bender2018] achieved good results by disabling path dropout at training start and 

gradually increasing over time, reaching 𝑟
!
"at the end of supernet training, where 0	 < 	𝑟	 < 	1 is a hyper-

parameter and 𝑘 is the number of incoming paths to a given network operation. In this way, the more inputs 
there are, the more likely they are to be dropped out, but the probability of dropping all inputs is constant to 
r for all operations. Training is very sensible to 𝑟, so it must be tuned properly (see Figure 4.6). 

 
Figure 4.6 - One-shot models trained with constant dropout rates. Left: model training with a constant dropout rate of	𝑟 = 10#$; 
paths in the network are retained more than 85% of the time. Middle: model trained with a constant dropout rate of 𝑟 = 0.01, a 

moderate value. Right: model trained with a constant dropout rate of 𝑟 = 0.3, a high value where some paths are retained only 15% 
of the time [Bender2018] 

Another problem is that training can be quite unstable. To stabilize training, batch normalization proved to be 
quite effective, but must be computed on the fly because during evaluation subgraphs will have different 
batch statistics. A variant of ghost batch normalization further stabilized the training in Bender work. The last 
addressed problem in the paper is over-regularization. To prevent over-regularization, L2 regularization is 
applied only to parts of the model that are used by the current architecture. Without this change, layers that 
are dropped out frequently are regularized more. 

Existing one-shot methods, however, are hard to train and not yet effective on large scale datasets like 
ImageNet. The work of Guo et al. [Guo2020] proposes single path one-shot models to address these 
challenges. One-shot models solve the problem of joint optimization of architecture search and supernet 
training (that cause bias towards simpler architectures in general), because the architecture search problem 
is decoupled from the supernet training and addressed in a separate step, in a sequential manner. Still, there 
are coupled weights in the supernet, making optimization complicated and sensitive to hyperparameters. Guo 
cites Bender work, focusing on solving the training sensitivity on dropout rate parameter, that makes supernet 
training hard for complex datasets. 

The key to the success of architecture search is that the accuracy of any architecture  on a validation set using 
inherited weight (without extra fine tuning) is highly predictive for the accuracy of a that is fully trained. This 
gives rise to the principle that the supernet weights should be optimized in a way that all architectures in the 
search space are optimized simultaneously. This can be expressed as: 
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𝑊𝒜 = 𝑎𝑟𝑔𝑚𝑖𝑛
%

𝐸&∼((𝒜) 2ℒtrain 4𝒩6𝑎,𝑊(𝑎):;< 

where 𝒜  is the search space, 	𝑊 are supernet weights, 𝑊𝒜  are optimal weights for the supernet, 
𝒩6𝑎,𝑊(𝑎): is a subgraph of the supernet (representing architecture 𝑎) and 	Γ(𝒜) is a prior distribution of  

𝑎 ∈ 𝒜. 

Guo proposes to structure the supernet so that each architecture is a single path, reducing weight co-
adaptation. This means that each choice block has only one choice, instead of multiple ones. Compared to 
dropout strategy, this approach allows an hyperparameter-free training, simplifying the procedure while 
achieving even better results. Also, only weights 𝑊𝒜  are activated and updated at each step, making memory 
usage efficient. It also proposes to use a uniform sampling as a fixed prior 	Γ(𝒜), instead of learning it like 
other existing approaches, that would lead to difficult optimization and more correlation among supernet 
weights and architecture parameters. 

 

4.2.3 HardCoRe-NAS: Hard Constrained diffeRentiable NAS 
A popular approach to find fitting networks is through constrained Neural Architecture Search (NAS), however, 
previous methods enforce the constraint only softly. Therefore, the resulting networks do not exactly adhere 
to the resource constraint and their accuracy is harmed. HardCoRe-NAS algorithm [Nayman2021] instead 
force hard constraints without any additional tuning required, achieving state of the art architectures. The 
motivation of the focus on hard constraints is motivated by the latest year's interest in deployment on edge 
devices and standard CPUs. These are more limited computing platforms, requiring lighter architectures that 
for practical scenarios have to comply with hard constraints on the real time latency or power consumption. 

HardCoRe-NAS propose a gradient-based approach, using a pretrained one-shot model. It searches the space 
for sub-networks by solving a hard constrained optimization problem while keeping the one-shot model 
pretrained weights frozen. The constrained optimization is solved via the block coordinate stochastic Frank-
Wolfe (BC-SFW) algorithm, which, according to tests, resulted faster in convergence than SGD, while also 
satisfying more tightly the constraints. The architecture search 𝒮 is parameterized by ζ ∈ 𝒮 , governing the 
architecture structure in a differentiable manner, and by 𝑤, the convolution weights. In the paper, it is 
explained how a latency-constrained NAS can be seen as a bilevel optimization problem, where the 
architecture chosen must minimize its error on validation set, while satisfying the latency constraint strictly. 
An architecture ζ = (α, β) is a subgraph of the supernet, where α is the set of parameters related to the micro-
search and β the set of parameters related to the macro-search. Also, strict resource constraints can be 
parameterized using these sets. 

Regarding micro-search, every block is an elastic version of the MBInvRes block, introduced in [Sandler2018], 
with expansion ratio 𝑒𝑟	 ∈ 𝐴01 = {3, 4, 6} of the point-wise convolution, kernel size 𝑘	 ∈ 𝐴2 = {3x3, 5x5} of 
the depth-wise separable convolution (DWS), and Squeeze-and-Excitation (SE) layer [Hu2018] 𝑠𝑒	 ∈ 𝐴30 = 
{on, off}. The blocks are configurable for each block 𝑏 of stage 𝑠. Regarding macro-search instead, the output 
of each block of every stage is also directed to the end of the stage as illustrated in the middle of Figure. 4.7. 
In conclusion, an architecture of the search space can be fully defined by an assignment of these boolean 
parameters α and β, that can be seen as a mask to select the architecture subgraph from the supernet. 
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Figure 4.7 - HardCoRe-NAS search space [Nayman2021] 

Any resource constraint can be estimated from the architecture configuration. 

	𝐿𝐴𝑇(α, β) = ∑ ∑ ∑ ∑ α4,636∈8
4%
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In the paper is presented this example about latency constraint, that can be seen as the sum of latency 
measurements 𝑡4,63  for each cell 𝑐, block 𝑏, depth 𝑏< and stage 𝑠. By replacing 𝑡4,63  with any other resource 
measurement, it is possible to define additional constraints and insert them into the optimization problem 
solved by the NAS algorithm. Optimal weights 𝑤∗ are obtained only once, by using a uniform sampling of the 
supernet. For every training dataset’s image in the batch multiple distinctive paths of the supernet are 
sampled, using the Gumbel-Softmax trick. For every feature x going through a block 𝑏 at stage 𝑠, two random 
variables 𝒰4,6,>

3 , 𝒰4,>
3  are sampled, governing the path taken by feature map: 
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This approach leads with high probability in sampling a number of paths as high as the batch size. Using 
multiple paths also reduces the variance of the gradients. 

Regarding objective constraints, HardCoRe-NAS do not use soft penalties in the loss function, instead it 
directly restricts the search space based on the budget limitations. For example, by imposing only a latency 
constraint: 𝑆?@A = QζRζ ∈ PB(S), LAT(ζ) ≤ TY. 𝑆?@A  is then relaxed to a discrete search space, where stochastic 
Frank-Wolfe (SFW) algorithm is applied to find the best architecture, i.e., the one that minimizes the error on 
the validation set. 
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At the end, a single feasible architecture is extracted by a discretization step. Setting 𝛼and 𝛽 parameters equal 
to 1 when argmax for a given block, cell, stage combination is not enough, because could violate resource 
constraints. HardCoRe-NAS proposes an alternative projection step: considering solution (𝛼∗, 𝛽∗) the credit 
assigned to each supernet configuration and a latency constraint LAT(ζ) ≤ T, it is possible to perform the 
discretization by solving two linear programs: 

max
8∈9&∗

α; ∗ α∗ 

max
7∈9'

β; ∗ β∗ 

This allows to maximize the credit while strictly satisfying the latency constraint. A theorem is provided by 
paper authors to guarantee that the projection produces a sparse solution, meaning that it represents a 
valid sub-graph of the one-shot model.  

 

4.2.4 CARS: Continuous Evolution for Efficient NAS 
CARS [Yang2020] proposes an efficient EA-based neural architecture search framework. A continuous 
evolution strategy is developed to maximally utilize the knowledge learned in the last evolution generation. 
CARS can provide a series of models on the Pareto front with high efficiency, by exploiting a supernet 
approach, which is initialized at search start and updated during the search, allowing to share the weight 
efficiently also in an evolutionary algorithm. 

CARS search stage is composed of two stages: parameter optimization and architecture optimization, which 
are conducted alternatively. Genetic Algorithm (GA) is used for architecture evolution, because GA maintains 
a set of well-performed architectures that cover a vast space. At each search step, a set of P architectures {𝐶1 
, ..., 𝐶C} is gradually updated according to the paper proposed pNSGA-III method. After that, the most 
promising 𝑃 architectures are retained for the next search step. 

Some experiments in the literature [Real2019] show that the evolutionary algorithm discovers better neural 
architectures than RL-based approaches, but the search cost of EA is much more expensive due to the 
evaluation procedure of each individual, i.e., a neural network in the evolutionary algorithm is independently 
evaluated. One of the main contributions of CARS is to adapt evolutionary algorithms for using a supernet 
approach, which is extremely dominant in recent works for its efficiency in search time. Initially, a parameter 
warm up step is required to correctly initialize the supernet and use it for efficient search. Since the shared 
weights of the supernet are randomly initialized, if the architectures in the population are also randomly 
initialized, the most frequently used operations for all the architectures would be trained more times 
compared with other operations. Thus, by following one-shot NAS methods, a uniform sampling strategy is 
used to initialize the parameters in the supernet. In this way, the supernet trains each possible operation with 
the same possibility. 

At each step, different networks 𝑁D  are sampled from the supernet 𝑁 having weights 𝑊. Each network 𝑁D  can 
be represented as a (𝑊D , 𝐶D), where 𝐶D  are binary connection parameters, used to mask connection in the 
supernet, while 𝑊D  are the weights of the architecture, obtained with formula: 𝑊D = 𝑊	⊙ 𝐶D. 

Parameters W are updated through the SGD algorithm. The gradients over a mini-batch of 𝐵 architectures are 
taken as an unbiased approximation of the averaged gradients of all the 𝑃 different individuals. The time cost 
for each update could be largely reduced, and the appropriate mini-batch size leads to a balance between 
efficiency and accuracy. 
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As for the architecture optimization procedure, the evolution algorithm is used together with a non-
dominated sorting strategy. The non-dominated strategy can be defined as follows: Considering two networks 
𝑁D  and 𝑁G  and a series of measurements {𝐹1 , ..., 𝐹H} we want to minimize. If: 

ℱ2(𝒩D) ≤ ℱ26𝒩G:∀𝑘 ∈ {1,… ,𝑀} 

ℱ2(𝒩D) < ℱ26𝒩G:∃𝑘 ∈ {1,… ,𝑀} 

𝒩D  is said to dominate 𝒩G  (𝒩D ⪯ 𝒩G). Applying the non-dominated strategy, it is possible to retain a set of 
non-dominated neural architectures, approximating the Pareto front. 

Authors tried to apply the NSGA-III [Deb2014] algorithm for evolving the generations of architectures. NSGA-
III (Non-dominated Sorting Genetic Algorithm) is an algorithm designed for general evolutionary multi-
objective optimization (EMO) problems. Many difficulties must be faced by EMO to work properly in a large 
dimensional space (multi-objective with ≥ 4 dimensions), in particular: 

● With a high number of objectives, a large fraction of the population becomes non-dominated. Most 
EMO algorithms emphasize non-dominated solutions in a population, trying to keep them between 
iterations. This can slow down the search process. 

● Recombination operation can become quite inefficient in case only a handful of solutions are found, 
because solutions are likely widely distant from each other. In that case, recombination between 
distant solutions will produce solutions distant from the parents, producing questionable results. A 
special recombination operator with mating restriction must be used to handle this case efficiently. 

 

Key idea used by NSGA-III and other EMO algorithms is to use a special domination principle that discretize 
adaptively the Pareto front, producing a set of finite points with similar distance between each other. This can 
result in quite difficult to achieve, so instead of searching the entire search space multiple targeted searches 
(reference points) can be set to alleviate this issue. Recombination issues are instead addressed with mating-
restriction schemes.  

In extreme synthesis, NSGA-III follows these steps: 

● Use a domination principle to select non-dominated solutions at each step. 
● At start, choose reference points equally distributed in the hyperspace or use user-defined ones. 
● Normalize the hyper-space based on extremes individuated by actual population members at each 

step, adapting to different scales of objective values in a flexible way. 
● Associate each member of the population to a reference point. 
● Since multiple members can be associated to the same reference point and some reference point can 

have no association, prune useless points and choose a single member randomly for each reference 
point with multiple associations. 

● Use crossover and mutation operations on randomly picked parents to generate an offspring. 
● Repeat for a given number of iterations. 

 

Note that NSGA-III is a parameter-less algorithm, only the classical genetic algorithm parameters must be 
defined such as the population size, termination parameter, crossover and mutation probabilities, and their 
associated parameters. 
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CARS authors tried to apply NSGA-III but found that it suffered from a “small model trap phenomenon”. This 
is caused by the fact that some smaller models with fewer parameters, but higher test accuracy tend to 
dominate those larger models which achieve a lower accuracy, but which have the potential for achieving 
higher accuracies later on. To solve this defect, CARS authors proposed the pNSGA-III method, an extension 
to the original NSGA-III algorithm. Besides, considering the number of parameters and accuracy, pNSGA-III 
also considers the increasing speed of the accuracy and the number of parameters. This allows to preserve 
larger promising models into the architecture generation of the evolutionary algorithm. 

 

4.2.5 Pareto-Frontier-aware Neural Architecture Generation for Diverse Budgets 
Many existing methods seek to design a model to obtain an architecture under a single budget. When 
considering diverse budgets, they have to conduct multiple search processes for each budget, which is very 
inefficient yet unnecessary. The proposed Pareto-Frontier-aware Neural Architecture Generator (NAG) 
instead takes an arbitrary budget as input and produces the Pareto optimal architecture for the different 
target budget under the input one. NAG considers the same search space when designing architectures for 
different budgets. Based on a common architecture under some budgets, it is possible to obtain promising 
architectures for a larger/smaller budget by slightly modifying some of its elements/layers. In this sense, it is 
possible to find effective architectures for diverse budgets simultaneously, exploiting the knowledge provided 
by other architectures to benefit the search process. 

NAG is composed mainly by an architecture generator, based on reinforcement learning techniques, and an 
architecture evaluator, that evaluates architectures under different budgets and utilizes a Pareto dominance 
rule to determine whether an architecture is better than another one. It is also based on a supernet approach 
to share weights. All resource constraints (e.g., latency and multiply-adds, MAdds) are defined in budget 𝐵. 
Given a search space Ω, for each architecture 𝛼	 ∈ 	Ω  it is possible to define 𝑐(𝛼) and 𝐴𝑐𝑐(𝛼) as cost and 
validation accuracy respectively. 

The architecture generator is based on an LSTM network. It takes a budget B as input and outputs an 
architecture 𝛼F that satisfies budget constraints (𝑐(𝛼F) ≤ 𝐵). The LSTM controller is updated based on the 
reward received after training.  

To approximate the Pareto front, the input budget is evenly sampled 𝐾 times. Budget embedding vectors are 
learnable and incorporated into the parameters of the architecture generator to train them jointly. To 
accommodate all the budgets that belong to a continuous space, an embedding interpolation method is used 
to represent a budget with any possible value. The interpolation formula is: 

𝑑(β!, βI, 𝐵) =

⎩
⎪
⎨

⎪
⎧ 1, 𝑖𝑓(𝑐(β!) ≤ 𝐵 ∧ 𝑐(βI) ≤ 𝐵) ∧ 6𝐴𝑐𝑐(β!) ≥ 𝐴𝑐𝑐(βI):;
−1, 𝑒𝑙𝑠𝑒	𝑖𝑓(𝑐(β!) ≤ 𝐵 ∧ 𝑐(βI) ≤ 𝐵) ∧ 6𝐴𝑐𝑐(β!) < 𝐴𝑐𝑐(βI):;

1, 𝑒𝑙𝑠𝑒	𝑖𝑓𝑐(β!) ≤ 𝑐(βI);
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝑏 = 𝑔(𝐵) = 𝜉𝑔(𝐵!) + (1 − 𝜉)𝑔(𝐵I), 𝑤ℎ𝑒𝑟𝑒	𝜉 =
F'JF
F'JF!

 

where 𝜉	 ∈ 	 [0, 1] is the weight of the interpolation. 

To guide the training of the NAG, an evaluator composed of three fully-connected layers is used to predict the 
performance of the trained network under the given budget. The evaluator makes use of a Pareto dominance 
function, which simply states that, given two architectures 𝛽1	and 𝛽2, 𝛽1dominates 𝛽2in case 𝑐(𝛽1) ≤ 𝐵 and 
𝑐(𝛽2) ≤ 𝐵 but 𝐴𝑐𝑐(𝛽1) ≥ 𝐴𝑐𝑐(𝛽2). Formally, we define the Pareto dominance function 𝑑(𝛽1, 𝛽2, 𝐵) to reflect 
the above rules.  
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The evaluator collects the results of M architectures at each training step, recorded as triplets 𝛽D, 𝑐(𝛽D), 
𝐴𝑐𝑐(𝛽D)∀𝑖 ∈ 1, . . , 𝑀, then trains using a pairwise ranking loss, based on the 𝑀(𝑀 − 1) pairs extracted. Figure 
4.8 illustrates the scheme of the NAG algorithm. 

 
Figure 4.8 - Recap of NAG algorithm. A budget 𝐵 (sampled from β) is given as input to the architecture generator, which produce an 
architecture 𝛼( . Both 𝛼(	and budget embedding 𝑏 are then used to generate the reward of the architecture, which is used for both 

architecture evaluator and architecture generator for training 

 

4.2.6 Weak NAS predictors 
Most recent NAS methods attempt to model the performance distribution over the whole architecture space 
using a strong predictor. However, since the architecture space is often exponentially large and highly non-
convex, modelling the whole space is very difficult. The work in [Wu2021] investigates the approach of utilizing 
a few weak predictors on small local spaces and progressively moving to the space where good architecture 
habits, based on the assumption that the search area is subdivided into some sort of clusters: some search 
space areas produce good architectures, while some areas produce relatively bad architectures. Similar 
architectures have been proved to have similar accuracies in studies of NAS-bench-101 and NAS-bench-201 
datasets. An effective representation is provided by Figure 4.9. 
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Figure 4.9 - t-SNE visualization of NAS-bench-201 on CIFAR100. Accuracies are encoded by color [Wu2021] 

Rather than expecting a strong predictor to model the whole space, weak NAS predictors method seeks a line 
of progressive evolving weak predictors that can connect a path to the best architecture. In this way, it greatly 
simplifies the learning task of each predictor. To ensure moving towards the best architecture along the path, 
at each iteration, the sampling probability of better architectures keep increasing through the guidance of the 
previous weak predictor. Then, the consecutive weak predictor with better samples will be trained in the next 
iteration. The iteration proceeds until it arrives at an embedding subspace where the best architectures reside. 
The weak predictor achieved at the final iteration becomes the dedicated predictor focusing on such a fine 
subspace and the best performing architecture can be easily predicted. 

As it is not possible to train all searched architectures to get their accuracy, predictor-based NAS try to learn 
a proxy predictor to approximate an architecture accuracy. This can be expressed as: 

𝑥 ∗	= 	𝑎𝑟𝑔max
>∈K

𝑓�(𝑥|𝑆) 

𝑠. 𝑡. 𝑓� = argmax
;,LM∈ℱO

∑ ℒ 4𝑓�(𝑠), 𝑓(𝑠);3∈;  

where ℒ is the loss of the predictor 𝑓�, ℱ�  is the set of all possible approximations and 𝑆 is the set of training 
pairs (architecture, accuracy) for predictor 𝑓� . 

Many predictor-based NAS methods attempt to learn a proxy predictor by sampling uniformly the search 
space. A biased sampling strategy is instead more desirable given previous considerations. Also, training such 
a predictor 𝑓	� is very complex because the architecture space is incredibly large and samples 𝑆 are limited. 
Predictor 𝑓� and sampling 𝑆 should therefore co-evolving. The paper proposes to jointly optimize sampling and 
learning stages progressively, which can be formulated as follows: 
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Sampling Stage:  𝑃�2 = Q𝑓2� (𝑠)R𝑠 ∈ 𝑋	\	𝑆2Y 

𝑆2P! = {𝑠D}D9!Q ∪ 𝑆2, 

                where   𝑓2� (𝑠D) ∈ TopR6𝑃�2:, 

 

      Learning Stage:  𝑥 ∗	= 	 argmax
>∈K

𝑓�6𝑥R𝑆2P!: 

𝑠. 𝑡. f�SP! = argmin
TM)∈ℱO

c ℒ4𝑓�(𝑠), 𝑓(𝑠);
3∈;"*!

 

Training is initialized by randomly sampling the search space 𝑋 to get 𝑆1 to train the initial predictor 𝑓1. After 
that, 𝑆2and predictor 𝑓2�  are jointly optimized for 𝐾 iterations. 

At iteration 𝑘 + 1, all architectures in the search space 𝑋 (excluding all the samples already in 𝑆2) are sorted 
according to predicted performance 𝑃�2 at the previous iteration. For the given sample budget, 𝑀 
architectures are randomly sampled from the top 𝑁 ranked architectures in 𝑃�2. Sampled architectures are 
then added to 𝑆2 to form 𝑆2P1. Predictor 𝑓�2P! is learned, such that it minimizes loss ℒ of the sampled 
architectures 𝑆2P1. All architectures in the search space are then evaluated by 𝑓�2P! to form 𝑃�2P!. Through 
these stages of alternate iteration, predictor 𝑓�2 guides the sampling process to zoom into the promising 
architecture samples. In addition, samples 𝑆2P1 improve 𝑓�2P! because they are focused on areas of promising 
architecture. 

 

4.2.7 FBnetV2: Differentiable NAS for Spatial and Channel Dimensions 
Differentiable Neural Architecture Search (DNAS) has demonstrated great success in designing state-of-the-
art, efficient neural networks. DNAS methods search space is small when compared to other search methods, 
since they are based on a supernet that must reside in memory. FBnetV2 [Wan2020] proposes a DNAS variant 
called DMaskingNAS, that supports searches over spatial and channel dimensions that are otherwise 
prohibitively expensive: input resolution and number of filters. Supernet approaches suffer from two 
significant limitations: 

● Memory costs bound the search space, as the supergraph must reside in GPU memory for training. 
● Cost grows linearly with the number of options per layer, limiting search dimension options. 

 

DMaskingNAS propose some optimizations, allowing a memory and computationally efficient DNAS that 
optimizes both macro-architectures (resolution, channels) and micro-architectures (building blocks) jointly in 
a 1014𝑥 larger search space using differentiable search. It also uses a masking mechanism and effective shape 
propagation for feature map reuse. This is applied to both the spatial and channel dimensions in DNAS. 

DMaskingNAS allows searching over spatial and channel dimensions. To support searches over varying 
numbers of channels, previous DNAS methods simply instantiated a block for every channel option in the 
supergraph. The main issues related to channel search are: 

● Incompatible dimensions: each cell output is a weighted sum of all operations that each the output. 
This means that all block outputs must align dimensions, disallowing different filter sizes. 

● Slower training, increased memory cost: each convolution with a different channel option must be 
run separately, resulting in a O(k) increase in FLOP cost. Furthermore, each output feature map must 
be stored separately in memory. 
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FBnetV2 proposes to consider convolution blocks that can have a different number of filters as blocks with 
fixed dimensions (max possible dimension) and use Gumbel Softmax output to mask the extra channels. Since 
all blocks have the same number of filters, they can be represented by a single convolution 𝑏 using weight 
sharing. Finally, when combining multiple convolution blocks, it is possible to aggregate also the Gumbel mask, 
running the computation only once on the block b (see Figure 4.10). Using these optimizations, it is possible 
to perform channel search with negligible cost. 

 
Figure 4.10 - Channel Search Challenges: Step A: Consider 3 convolutions with varying numbers of filters. Each output (gray) will have 

varying numbers of channels. Thus, the outputs cannot be naively summed. Step B: Zero-padding (blue) outputs allows them to be 
summed. However, both FLOP and memory cost increases sub-linearly with the number of channel options. Step C: This is equivalent 

to running three convolutions with equal numbers of filters, multiplied by masks of zeros (blue) and ones (white). Step D: We 
approximate using weight sharing – all three convolutions are represented by one convolution. Step E: This is equivalent to summing 
the masks first, before multiplying by the output. Now, FLOP and memory cost are effectively constant w.r.t. the number of channel 

options [Wan2020] 

As with channels, previous DNAS methods would simply instantiate each block with every input resolution. 
This approach has two main issues, which are addressed by FBnetV2: 

● Pixel misalignment: peripheral padding causes pixel misalignment in sum output. To handle pixel 
misalignment, FBnetV2 uses zero-pad such that zeros are interspersed spatially. For example, a 2x 
increase in size would involve zero-padding every other row and column. 

● Receptive field misalignment: since subsets of the feature map correspond to different resolutions, 
naively convolving over the full feature map would result in a reduced receptive field. To handle 
receptive field misalignment, FBnetV2 convolves over subsampled input instead. 

 

With the above insights (see also Figure 4.11), the input resolution search thus incurs constant memory cost, 
regardless of the number of input resolutions. On the other hand, computational cost increases sub-linearly 
as the number of resolutions grows. 
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Figure 4.11 - Spatial Search Challenges: A: Tensors with different spatial dimensions cannot be summed due to incompatible 

dimensions. B: Zero-padding along the periphery of the smaller feature map makes summing possible. However, the top-right pixels 
(blue) are not aligned correctly. C: Interspersing zero-padding spatially results in a sum that aligns pixels correctly. Note the top-right 
pixels of both feature maps are correctly overlapping in the sum. D: Say F is a convolution with 3x3 kernels. Convolving naively with 
the feature map, containing a subset (gray), results in reduced receptive field (2x2, blue) for the subset. E: To preserve the receptive 
field for all searched input resolutions, the input must be subsampled before convolving. Note the receptive field (blue) is still 3x3. 

Furthermore, note it is possible to achieve the same effect, without the need to construct a smaller tensor, with appropriately-strided 
dilated convolutions; subsampling is performed to avoid modifying the operation F [Wan2020] 

 

4.3  Federated Learning and Privacy Preservation  
TinyML implementation (see Section 3.2.1) paved the way to the idea of training ML algorithms by exploiting 
local data directly from the edge devices where it is acquired, leading to an emerging field of AI called 
Federated Machine Learning (FML or FL) [IEEEGuide2021]. FML defines a ML framework that allows a 
collective model to be constructed from data distributed across repositories owned by different organizations 
or devices. 

Companies and organizations are collecting increasingly more detailed information about users. This 
information is exploited by ML techniques to improve products, services, and welfare, and it is a consensus 
that valuable information can be extracted from raw data belonging to various organizations. However, due 
to the potential misuse and adversarial attacks, in a distributed ML paradigm as such there can be severe 
challenges to the protection of data privacy and security. FML represents a technology that aims to build and 
use ML models by collectively exploiting the data at each data owner’s location without compromising user 
privacy and information security. 

Data privacy and information security constitute significant challenges to the big data and AI community as 
these communities are increasingly under pressure to adhere to regulatory requirements like the European 
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Union’s General Data Protection Regulation (GDPR). Many routine operations in big data applications, such as 
merging user data from various sources to build a ML model, are considered to be illegal under current 
regulatory frameworks. The purpose of FML is to provide a feasible solution that enables ML applications to 
utilize the data in a distributed manner that does not exchange raw data directly and does not allow any party 
to infer the private information of other parties.  

 

4.3.1 Reference architecture 
FML represents a distributed machine-learning framework that enables multiple participants to 
collaboratively train and use a ML model for a given task, e.g., classification, prediction and recommendation. 
A FML framework consists of data, users, and systems as illustrated in Figure 4.12.  

 
Figure 4.12 - Federated Learning Framework 

In the FML framework, data are distributed across various repositories and are utilized to build FML sub-
models that are, subsequently, integrated to result in a federated model. All of this in a secure and privacy-
preserving manner. An FML user can be a person, a corporation, or other organizations with the legal capacity 
to participate in the FML framework. In addition, such users may play four roles, which are the data owners, 
the model users, the coordinators, and the auditors (see Figure 4.13). The FML system consists of multiple 
functional modules that provide FML services to users. 
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Figure 4.13 - Roles of Federated ML users 

 

4.3.2 Data view 
FML data is often stored in a standard database format, i.e., tables, whereby each row represents a data 
sample and each column represents a feature or label of the sample. In supervised learning, a complete 
training dataset consists of both features, denoted by 𝑋, and labels, denoted by 𝑌. A set of feature attributes 
are typically represented as a feature vector (𝑋1, 𝑋2 , ..., 𝑋E). Furthermore, a unique sample ID is associated 
with each data sample. In an FML system, data from multiple datasets may have overlaps in sample IDs and/or 
feature attributes. Depending on the extent of overlapping along either sample IDs or features, the following 
three cases are of interest for an FML framework: 

● The overlap of feature attributes (𝑋1, 𝑋2 , ..., 𝑋E) is substantially larger than the overlap of sample IDs 
(𝑈1, 𝑈2 , ..., 𝑈H) 

● The overlap of sample IDs (𝑈1, 𝑈2 , ..., 𝑈H) is substantially larger than the overlap of feature attributes 
(𝑋1, 𝑋2 , ..., 𝑋E) 

● The overlap of sample IDs (𝑈1, 𝑈2 , ..., 𝑈H) and the overlap of features (𝑋1, 𝑋2 , ..., 𝑋E) are both small 
 

In the list above, “substantially larger” (and “significant overlap”) is judged by whether the overlapping data 
can be utilized to build a high-quality ML model, where the measure of quality is determined by applications. 
Depending on the application scenarios, FML is categorized as Horizontal FML, Vertical FML, and Federated 
Transfer Learning. Also, depending on whether the datasets used have the same format or different formats, 
FML is categorized into homogeneous FML or heterogeneous FML. 

● Horizontal Federated Machine Learning: Horizontal FML (Figure 4.14) refers to building a model in the 
scenario where datasets have significant overlaps on the feature spaces (𝑋1, 𝑋2 , ..., 𝑋E) but not on 
the ID spaces. In this case, an FML model can be built as if the data are split and joined horizontally. 
Horizontal FML may apply to scenarios where the number of sample IDs from data owners is too small 
to build a high-quality model. An FML model should perform better than the sub-models built by one 
single dataset, and the performance of the FML model is very close to that of the model built when 
all data were put together in one location. 
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Figure 4.14 - Horizontal Federated Machine Learning [Yang2019] 

● Vertical Federated Machine Learning: Vertical FML, see Figure 4.15, refers to building a model in the 
scenario where datasets have significant overlaps on the sample space 𝐷, but not on the feature 
spaces (𝑋1, 𝑋2 , ..., 𝑋E). In this case, an FML model can be built as if the data is split and joined 
vertically. Vertical FML may apply to scenarios where there are insufficient features or labels to build 
a high-quality model. Still, An FML model should perform better than the sub-models built by one 
single dataset, and the performance of the FML model is very close to that of the model built when 
all data were put together in one location. 

 
Figure 4.15 - Vertical Federated Machine Learning [Yang2019] 

● Federated Transfer Learning: Federated Transfer Learning (FTL), see Figure 4.16, refers to the FML 
technique designed for application scenarios where datasets have no significant overlap on neither 
the sample space nor the feature space. FTL takes advantage of transfer learning techniques to exploit 
reusable knowledge across different feature domains, and consequently, results in high-quality FTL 
models despite small data and weak supervision difficulties. 
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Figure 4.16 - Federated Transfer Learning [Yang2019] 

 

4.3.3 Machine Learning View 
Figure 4.17 illustrates a reference hierarchical framework of FML, in which functional modules define 
elementary FML activities. Modules are grouped into layers according to the relevance of their activities, while 
modules in different layers can interact with each other through cross-layer functions. Note that depending 
on varying requirements in different use cases, functional modules may be included in or omitted from a 
specific FML framework. Note that any FML systems may include one or more modules encapsulated in each 
layer of the reference framework. 

 
Figure 4.17 - Hierarchical framework of Federated Machine Learning 
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For the purposes of the project, we do not go into the details of each one of the elements of this provided 
overview. Conversely, as a last analysis on FML, it is of paramount importance to highlight some concerns 
about privacy and security, model performance efficiency, and economic viability that FML users should take 
into account (see Figure 4.18). 

 
Figure 4.18 - Common concerns of Federated Machine Learning 

 

Privacy and Security 

Adhering to the privacy and security principles posed by both the ethical and regulatory requirements, this 
standard aims to provide a guide for the design, development, and implementation of FML frameworks. It 
should also be used as a baseline in the monitoring and measurement of performance, benchmarking, and 
auditing aspects of privacy and security management programs of a FML system. 

Adhering to the privacy principle means avoiding information leakage. The information received from the sub-
models does not leak the source data information, and attackers cannot infer the participants’ information by 
eavesdropping gradient during the training or inference stages. 

Adhering to the security principle means that a FML model should be sufficiently robust to defend against 
malicious attacks, such as testing time adversarial examples and training time data poisoning. Such a model 
should be robust to other threats such as backdoor attacks, which aim to induce the model over-fitting to 
backdoor patterns that trigger misjudgment or misbehavior of FML models. 

Adhering to the transmission security means that no private information about raw data and model 
parameters is tampered or disclosed under transferring procedure. Attackers cannot infer private information 
even if they captured the transferred data. 

 

Efficiency 

Adhering to the computational and communication efficiency means: 

● An FML algorithm should be analysed to determine its resource usage so that the user of the algorithm 
can have an early estimate of the possible overhead and be aware of appropriate resources 

● The design of the algorithm concerning the amount of data transferred and the computational logic 
utilized should be optimized according to the use case requirements 

● An FML algorithm is deemed efficient if its resource consumption, or computational cost, is at or 
below some acceptable level 

 

Benchmarks can be used to assist with gauging an algorithm’s relative performance. 
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Economic viability 

Beyond data security and privacy preserving consideration, FML may need to economically incentivize users 
to join and stay in the federation. The economic incentive calculation module determines how to reward 
contributions made by FML users, e.g., data owners. The objectives of this module include keeping all 
participants in the federation (individual rationality), leading to a non-negative profit for the coordinator 
(weak budget balance), maximization of the total utilities of all data owners (Pareto efficiency), incentivizing 
data owners to provide all their data (incentive compatibility), and equal unit price of effective data (fairness). 

Note that it is hard to attain all these objectives simultaneously. Depending on different use cases, FML 
coordinators should choose one or more objectives to optimize. The attainment of these objectives should be 
quantified by specific economic measures. 

 

Performance evaluation 

A performance evaluation scheme is introduced to confirm the conformance of the performance of FML 
ecosystems and algorithms. The performance evaluation scheme allows an FML system to be evaluated by 
using specific metrics, which are widely adopted by academic and industrial research, concerning efficiency, 
security as well as the performance of FML systems. Notice that measures specified in this clause are not 
exclusive and more testing specifications can be made for different settings of influential factors (like Dataset, 
hardware, deployment technique, etc.). 

Adhering to the quality principle means verifying that FML systems are well-behaved, up-to-date, adequate, 
and relevant for the purpose of use. It is, therefore, mandatory to establish evaluation mechanisms and 
periodically check the performance and quality of FML models through appropriate means. FML models are 
expected to achieve an equivalent or more competitive performance to that of a data centralized model, 
which is a model trained on the data collected from all parties. The difference, denoted as FML model 
performance discrepancy, between FML model performance with respect to that of the data centralized 
model, should be evaluated. Model performance in varying applications may be measured in terms of 
accuracy, precision, recall, image quality, or any other measures relevant to the application tasks. 

 

4.3.4 Implementations 
Numerous tools are available to facilitate the building and the maintenance of Federated Learning systems on 
edge devices. In the following, a brief overview of the main ones is provided.   

 

TensorFlow Federated 

TensorFlow Federated122 (TFF) is the open-source framework based on TensorFlow, which provides the main 
building blocks for enabling FL. TFF allows developers to deploy ML models and to train on decentralized data 
across multiple sources. In addition, TFF provides also support for non-learning computations, such as 

 
 
122 https://www.tensorflow.org/federated 
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Federated Analytics123, which re-uses the FL infrastructure to analyse decentralized data with data science 
methods. TFF interfaces are organized in two layers: Federated Learning API124 and Federated Core (FC) API125. 

FL API provides high-level interfaces to perform federated training, or evaluation, starting from TensorFlow 
ML models. The interfaces, defined in the tff.learning namespace, include three main components:  

● Models: provide the core functions to build models in TFF. This is done by defining custom models via 
subclassing tff.learning.Model, or simply wrapping an existing Keras model 
(tff.learning.from_keras_model). 

● Federated Computation Builders: provide the main functions for federated training and evaluation. 
● Datasets: provide collections of data that can be used in a simulated FL scenario at development 

stage, together with the functions to access local datasets. 
 

FC API represents the core of TFF, providing low-level interfaces through which developers can implement 
new functions and interfaces. It supports different types, such as Tensor, sequence, tuple and function types, 
and provides several programming abstractions, such as TensorFlow computations, federated operators, e.g., 
tff.federated_sum or tff.federated_broadcast, lambda expressions, i.e., the TFF equivalent of lambda or def in 
Python, placement literals, to define simple client-server computations, and functions invocations.  

 

PySyft 

PySyft126 is an open-source framework which enables FL with the main ML frameworks such as PyTorch, Keras, 
or TensorFlow. It provides support to implement and integrate privacy-preserving methods including multi-
party computation and differential privacy. PySyft allows to perform dynamic computation directly on 
decentralized data or to create static graph to be deployed at a later date on different compute. The PyGrid127 
library allows to deploy PySyft at scale, allowing data owners in the network to collectively train AI models 
and serving as a central server for conducting both model-centric and data-centric FL. At the moment, PySyft 
provides a set of tutorials, but a detailed documentation is still missing. 

 

Open Federated Learning 

Open Federated Learning128 (OpenFL) is a Python 3 library designed for conducting federated learning, thus 
enabling collaborative training among data owners. The framework was developed by Intel Labs and Intel 
Internet of Things Group and supports models developed with the main ML frameworks, i.e., PyTorch and 
TensorFlow. A remote data owner is defined in the OpenFL network as a collaborator node. A collaborator 
node hosts its own dataset and its hardware is used to train the models locally. Data remains on collaborator 
nodes, which share only weights and metrics through the aggregator node. Aggregator and collaborators 
connect through a mutually-authenticated transport layer security (TLS) network connection. The 
coordination of the federation is provided by the FL plan, which is a YAML file describing the collaborator and 

 
 
123 https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html 
124 https://www.tensorflow.org/federated/federated_learning 
125 https://www.tensorflow.org/federated/federated_core 
126 https://github.com/OpenMined/PySyft 
127 https://github.com/OpenMined/PyGrid 
128 https://github.com/intel/openfl 
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aggregator settings and other training parameters. In addition, the FL plan specifies the algorithm the 
aggregator will use to combine the updates from collaborators. 

 

KubeFATE 

KubeFATE129 manages federated learning workloads using cloud native technologies like Docker Compose and 
Kubernetes. KubeFATE enables federated learning jobs to run across public, private and hybrid cloud 
environments. FATE130 (Federated AI Technology Enabler) is an open-source project from Webank’s AI 
Department to provide a secure federated computing framework. It implements secure computation 
protocols based on homomorphic encryption and multi-party computation (MPC). FATE supports several FL 
algorithms, including horizontal and vertical FL, and federated transfer learning. Computation of ML 
algorithms, such as logistic regression and tree-based algorithms, is supported, together with DL models. The 
main components of KubeFATE are: 

● FATE Cloud131: an Infrastructure which enables FATE to be managed in multi-cloud, providing support 
for a secure federated data network across or within organizations.  

● FATE Serving132: is a high-performance serving system for federated learning models. It offers: 
• High-performance online FL algorithms 
• Dynamic loading federated learning models 
• Can serve multiple models, or multiple versions of the same model 
• Real-time inference  
• Support pre- and post-processing, and data-access adapters for obtaining host feature data 

 

4.4 AI Applications Performance Modelling  
DL popularity is steadily increasing thanks to its impact on many application domains (ranging from image and 
voice recognition to text processing) and DL application performance prediction has received a lot of interest 
from many academic and industrial groups.  Since usually both training and inference of NNs are run on GPUs, 
it is important to understand how such hardware can influence performance, but unfortunately only a few 
studies are available in the literature. 

Jia et al. [Jia2012] propose the Stargazer framework to build performance models for a simulator running on 
GPU, so as to correlate several GPU parameters to the simulator execution time. Given the daunting size of 
the design space (which considers very low-level parameters like the number of thread blocks concurrently 
running on one core or how many intra- and inter-warp memory requests may be coalesced into one memory 
access), authors exploit sparse random sampling and iterative model selection, thus creating step by step an 
accurate linear regression model. Another approach to the issue is proposed in [Liu2007], where the authors 
elaborate a detailed analytical model of general-purpose applications on GPUs. The proposed model consists 
of three general expressions to estimate the time taken for common operations, according to their 
dependence on data size or computational capabilities. Similar analytical modelling approaches, see, e.g., 
[Song2013], rely on micro-architecture information to predict GPU performance. As GPU architectures 

 
 
129 https://github.com/FederatedAI/KubeFATE 
130 https://github.com/FederatedAI/FATE 
131 https://github.com/FederatedAI/FATE-Cloud 
132 https://github.com/FederatedAI/FATE-Serving 
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continue to evolve, the main issue of analytical models is that a minor change in the architecture may require 
extensive work to adapt the model to hardware enhancements [Dao2015].  

Given the complexity of GPU hardware (due to the large number of processors, the thread context switching 
mechanism, and the on-board hierarchical memory subsystem), recently black box approaches based on ML 
are favoured over analytical models. Indeed, black box approaches can derive performance models from data 
to make predictions without a priori knowledge about the internals of the target system. On the other hand, 
ML models [Lu2017], [Gupta2018], [Peng2018], [Dube2019] require performing an initial profiling campaign 
to gather training data to learn the mapping among the features of an application and its execution time. An 
overview and a quantitative comparison among analytical and ML-based model proposals is reported in 
Madougou et al. [Madougou2016].  

The contribution closest to the approach we will follow in AI-SPRINT can be found in Dao et al. [Dao2015]. The 
work considers the OpenCL benchmark suite and obtains ε-SVR models able to predict each OpenCL kernel 
performance with an average 5– 10% error. However, the approach is rather low-level since it requires to 
instrument each kernel’s code and to identify, through an ad-hoc profiling activity, low-level features such as 
the maximum number of active work groups, the number of registers used per work item, the number of 
branches and divergent branches per work item. Moreover, for some specific kernels the error is up to 70 %. 
Kerr et al. [Kerr2010] profile and build models for a range of applications, run either on CPUs or GPUs, 
exploiting the Ocelot framework [Diamos2010]. Relying on 37 performance metrics, they exploit principal 
component analysis and linear regression in order to highlight those features that are more likely to affect 
performance on heterogeneous processors. The approach is rather general since the Ocelot infrastructure 
allows for simulating GPUs, gathering performance metrics, and instrumenting kernels. The work models 
CUDA kernels’ performance using only metrics that are available at compilation time. Unfortunately, the 
Ocelot infrastructure is not actively developed anymore, limiting its support to old GPU generations. Along 
the same lines, Gupta et al. [Gupta2018] propose an online modelling approach to predict the single frame 
processing time starting from GPU frequency and performance counters for mobile devices. In the DL 
applications area, Hadjis et al. [Hadjis2016] present solutions to minimize the total training time of CNNs, 
given the network architecture of the DL model, the data set used for training, the set of available 
computational resources and their throughput, and the network speed. The framework is able to identify the 
optimal split of the DL model across multiple compute groups and the optimal number of servers per group. 
They also propose a solution to improve the stochastic gradient descent momentum update to compensate 
for the staleness introduced by the adoption of multiple compute groups. However, their system cannot 
predict a priori the execution time of a given number of iterations nor the training time in experiments with 
different batch size, which will be one of AI-SPRINT goals.  A higher level approach, which considers matrix 
multiplication computation time as the core feature, is presented in Lu et al. [Lu2017] , where the authors 
focus on the deployment of CNNs on mobile devices. According to this consideration, they focus only on the 
forward pass, whose overall execution time is predicted starting from an estimate of the time taken by matrix 
multiplications when the CNNs are deployed on a CPU or a GPU. This approach entails extracting tensor sizes 
from network specifications and associating them to their expected response times, according to platform-
specific benchmarks. In the end, the approach is more accurate when CPUs are considered (the percentage 
error they obtained is in the range 6–15%, while they obtain 16–21 % for the GPU case). Similarly, in 
[Gianniti2018] which will be our starting point in AI-SPRINT, we derived linear regression models for estimating 
CNN training times by relying on the layers computational complexity in terms of simple primitives available 
on GPUs. This enables performance prediction even on networks never considered during the learning phase. 
However, our initial study is limited to CNNs trained on a single GPU with the Caffe framework. In a more 
recent work [Gianniti2019], we compared our per layer model in Gianniti et al. [Gianniti2018] with a pure 
black box ML end-to-end model, but the study was still limited to a single DL framework and could not 
generalize prediction to different GPU hardware. Finally, the work in Dube et al. [Dube2019] proposed AI 
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Gauge, a framework based on ML where models are continuously calibrated by processing job traces. The 
proposed models achieve less than 10% relative error on average, but, they are limited to single GPU 
deployments. 

More recently, authors in [Mendoza2021] developed ML models to predict the performance slowdown due 
to inference DL models colocation on the same hardware. Predicting the slowdown in inference serving 
system is extremely challenging since inference tasks have few milliseconds duration and determining what 
models can be safely co-located together on a hardware platform avoiding QoS violations would require a 
combinatorial growth of the profiling data (the system should assess how each DL model inference latency is 
affected by being co-located with one or more models across different machine types). Authors proposed a 
unified predictor based on random forests able to leverage similarity across machine types for accurate 
prediction which considers as main features the DL models metrics (e.g., CPU and GPU utilization, GPU Global 
buffer usage, PCIE read and write bandwidth) and machine encodings. In edge systems [Disabato2015], 
[Kang2017] propose some linear regression models to predict the execution time of DNN or their partitions in 
edge devices or mobile phones, respectively, by considering the number floating point operation per seconds 
(FLOPS) or simply the number of multiplications.   

The performance research community has also put a lot of effort in defining specific benchmarks for AI 
applications deployed in computing continua.  In particular, [Tianshu2019] proposed an EdgeAI bench which 
includes intensive care unit patient monitor, surveillance camera, smart home, autonomous vehicles, and a 
federated learning framework as reference applications with the purpose of measuring and optimizing 
computing continua architectures.  Similarly, EEMBC133 developed MLMark, a proprietary ML benchmark suite 
for embedded edge computing platforms including image classification, object detection, language 
translation, and speech recognition tasks. EdgeBench [Das2018] has a specific focus on Cloud providers edge 
solution and compares AWS Greengrass and Microsoft Azure IoT Edge while AI Benchmark [Ignatov2018] is a 
benchmark suite specific for smartphones. 

Broadening the scope of our analysis and considering general applications running in computing continua, 
traditional models based on Queueing Networks have demonstrated to be reasonably accurate for estimating 
the performance of edge systems.  In particular, [Bures2018] compared the performance of a QN model with 
a simulator of a Cyber-Physical Systems for parking slots monitoring achieving a percentage error between 6% 
and 31%, while [Tadakamalla2021] adopted M/G/1 queueing networks for studying the performance of an 
application counting the number of bicyclists in Seattle, monitoring the taxi trips in Chicago, and  monitoring  
GPS trajectories of Beijing taxis achieving an error below 11%.  

Finally, for what concerns microservices and FaaS system performance modelling, machine learning is 
becoming popular also in this area. In particular, [Grohmann2021] (extending the initial work in 
[Grohmann2019]) proposes SuanMing an integrated framework for learning regressors (based on random 
forest, 𝑘-Nearest Neighbor Regression, Ridge Regression, and Support Vector Regression) of microservice 
based systems running in public and private clouds. The final goal is to identify the root cause of performance 
degradation of complex application and the learned regressors are used to predict the violation of predefined 
thresholds. Similarly, [Gan2019] adopts deep learning (mixing fully connected layers, CNNs, and LSTMs) to 
predict QoS violations for microservices based applications by relying on distributed RPC-level tracing data 
and detailed low-level hardware monitoring. 

As an example of performance modelling of FaaS systems, [Mahmoudi2020a] proposes a temporal 
performance model to predict some performance metrics by considering the application average response 
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time for warm and cold requests, the requests arrival rate, and the system expiration threshold. The same 
authors also proposed a steady-state performance model in [Mahmoudi2020b] for improving the QoS and 
utilization of FaaS and reducing their operating costs. The proposed model provides a trade-off between the 
cost and performance by making the platform workload-aware. Authors leverage a continuous time Semi-
Markov Process (SMP), where each state represents a warm instance, and it is modelled with an M/G/m/m 
queuing system where m is the number of concurrent function instances. In this way, authors compute some 
parameters like cold start rate, arrival rate and server expiration rate. After computing the parameters for 
each function instance in the warm pool, they solve the SMP to calculate the steady-state characteristics like 
the probability of rejection, average response time, mean utilization, etc. They validate the proposed model 
on AWS Lambda.  Vice versa, [Gias2020] proposes a performance modelling technique based on layered 
queueing networks (LQN) for the FaaS platform and developed the COCOA approach, a sizing method for 
private FaaS platforms which rely on their LQN model to solve the cold start issue. Each function is modelled 
as a Continuous Time Markov Chain (CTMC) and the cold start probability is obtained by solving the CTMC. In 
this way an LQN model can predict the response time of each function.  

 

4.5 Edge Applications Components Placement and Design 
Exploration  

Component placement and design exploration in computing continua have recently received a lot of attention 
from the research community. A recent survey is provided in [Bellendorf2020] where authors propose a 
classification of the literature proposals according to the layers involved (cloud/fog-edge nodes/end devices), 
the purpose of the placement (e.g., end devices offload, fog nodes offload, fog nodes cooperation, data 
distribution among fog nodes or cloud, etc.), the decisions taken (e.g., tasks priority, resource to task 
assignment, hardware resources placement, etc.), the relevant metrics (e.g., latency, energy, profit-cost, and 
device-specific) and the general goal (e.g., energy minimization, latency-throughput trade-off, privacy and 
security of data). 

Many works focus on Mobile Edge Clouds (MECs) with a particular emphasis on the network resources.  For 
example, the work in [Xu2016] formulates a cloudlet placement problem in a Wireless Metropolitan Area 
Network (WMAN) as an Integer Linear Programming (ILP) which locates some cloudlets to some strategic 
locations in the WMAN minimizing the average delay between mobile users and the cloudlets. The authors 
propose a greedy heuristic algorithm to solve the ILP and provide also two approximation algorithms with 
guaranteed approximation ratios for two special cases where all cloudlets have identical or different resource 
demands. In MECs, user mobility is also particularly relevant.  Authors in [Balevi2018] consider a square planar 
where the cloud is located at its centre and n end-users device nodes are randomly and uniformly distributed 
around the cloud. The goal is to determine the number and the placement of fog nodes with additional 
computing capabilities so as to maximize the average data rate and minimize the transmission delay of the 
system. Authors consider a variable 0≤p≤1 and choose the number of fog nodes based on it: n0=n(1-p), n1=np 
where n0 is the number of end devices and n1 is the number of fog nodes.  At first, all nodes are ordinary, and 
the problem is how to find a unique optimum global value of p so as to minimize the transmission delay which 
is a concave function based on signal-to-interference-plus-noise-ratio and distance factors. Since the 
transmission delay is related to path loss exponents 𝛂, the authors solved the optimization problem for 𝛂=1, 
𝛂=2 and 𝛂=4 to obtain the optimal p for each case. 

Similarly, [Santoyo2018] models the service infrastructure placement problem in a fog computing 
environment as a latency and capacity-constrained location selection problem. The reference use case is a 5G 
scenario where the latency is the main metric to be addressed to support mission-critical and delay-sensitive 
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environments. To achieve this goal, service infrastructure placement optimization is needed in the interest of 
minimizing the delays in the service access layer. The placement problem in a Fog Computing/NFV 
environment is modelled as a Mixed-Integer Linear Programming (MILP) problem. The authors, considering 
5G mobile network requirements, proposed a heuristic solution based on Simulated Annealing (SA) algorithm 
mixed with a Tabu Search (TS) to take the advantage of the flexibility of SA and combining it with the memory 
structures used in TS.  

[Bahreini2017] and [Wang2017] are among the proposals closest to the problems we will face in AI-SPRINT. 
Authors in [Bahreini2017] formulate an offline version of a multi-component application placement problem 
(MCAPP) as a MILP which is solved by the CPLEX solver. The authors also propose an online algorithm and 
consider the solution of the offline problem as a lower bound to estimate the performance of the online 
version. The online solution is based on simple heuristic techniques such as iterative matching and local 
search. In particular, the online version first neglects component communication cost, and the best matching 
between components and the edge servers is determined through the Hungarian algorithm.  In a second step, 
the communication cost among the components is considered and a local search algorithm is applied to 
improve the solution.  

On the other hand, some works like [Wang2017] investigates the placement of multi-component applications 
only in the edge. Authors model the application components as an application graph and the physical devices 
on the edge as a physical graph and propose both online and offline algorithms to optimally map the 
application to the physical graph while providing performance guarantees for the end applications. In 
particular, an optimal offline algorithm maps a single application linear graph (i.e., including only sequential 
components). Another solution is provided for single or multiple applications with branches, modelled as  tree 
application graphs, however, under the assumption that the placements of all branch nodes are given.  Finally, 
another variant where the placement of only some branch nodes is given is also proposed.  

Component placement problems are considered also in FaaS systems. [Das2020b] proposes a scheduling 
framework for multi-function serverless applications over a hybrid public-private cloud. The authors assume 
that there is a batch of jobs with the same deadline and the objective is to minimize the cost of public cloud 
by scheduling the function executions over hybrid cloud. They proposed a greedy algorithm for their NP-hard 
problem by considering job priorities. If the priority is the job cost, the scheduler orders the jobs based on 
their execution cost and offloads the less expensive jobs to the public cloud first. If the priority is the 
processing time, the scheduler orders the jobs based on their processing time and offloads the jobs with longer 
processing time to the public cloud. On the other hand, some works consider both budget limitation and QoS 
in their systems. One example is proposed in [Lin2021], in which authors present an analytical model and 
optimize the performance and cost to reach a trade-off between limited budget and the desired QoS of 
serverless applications. They introduce a formal definition of the serverless workflow by considering four 
types of structures for the workflow composition (i.e., sequence, parallelism, branch, and loop). Then, they 
propose different analytical models to predict the average response time and cost of complex workflows. 
Furthermore, they present a heuristic approach to optimize performance and cost of serverless applications 
with four greedy algorithms and they evaluate their proposed approach on AWS Lambda and Step Functions. 

Finally, in [Elgamal2018] the goal is to optimize the cost of serverless applications in AWS Lambda while 
keeping the latency under a certain threshold. The authors fuse multiple functions together in order not to 
incur in the transition cost from one function to another. They propose a price model for AWS Lambda and an 
execution time model to estimate the response time of a function. Then, they define a cost graph in which 
each node represents a fused function and the weight of the edge between two nodes i and j includes two 
costs: 1) The price of fused function i and the transition cost from i to j, 2) Delay cost which is the execution 
time of node and the transmission time of output data from i to j. Each path in this graph represents a solution 
for function placement and fusion. Finally, they formulate the problem as a shortest path problem and 
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propose an algorithm (Dijkstra’s shortest path) to find the optimal application’s price solution with the 
threshold latency and vice versa.  

 

4.6 Gaps filled by AI-SPRINT   
AI-SPRINT will develop solutions to enable developers with limited ML expertise to train high-quality deep 
network models specific to their needs, also in terms of QoS requirements. Training DNNs and designing the 
right network topology is still a matter of art craft and designer experience and it becomes very challenging 
to jointly design the network architecture and to optimize its deployment, possibly on multiple layers of a 
continuum infrastructure. To this aim, the PyCOMPSs programming framework and the dislib library will be 
adopted to provide ready to use distributed training mechanisms. 

In AI-SPRINT, network architecture search, deep learning models partitioning, and components placement will 
be jointly addressed. AI-SPRINT will provide tools for developing learning as a service solutions, that, starting 
from a training set with labelled training examples (images or temporal data series which are of interest for 
use cases) will automatically identify the most accurate DNN which provides execution time guarantees. 
Moreover, AI-SPRINT will automatically identify the optimal partitioning of DNNs and their minimum cost 
deployment fulfilling a priori fixed deadlines for the execution time of single or multiple components 
considering also multiple devices candidate for the components execution and/or network settings. 

AI-SPRINT will leverage its design time and run-time tools to implement federated learning algorithms in a 
transparent manner for the user allowing for secure and privacy preserving training of deep models. As part 
of the contribution to federated learning, AI-SPRINT will design methods for the seamless update of models 
either via weights updates or via model redeployment. Network architecture search, deep learning models 
partitioning, and components placement will leverage performance models for estimating DNNs, or their 
partitions, execution time.  The performance modelling approach will be mainly based on ML. ML-based 
performance models will be developed to predict the execution time of AI applications running on 
heterogeneous multi-devices systems composed of IoT & AI enabled sensors, edge, and cloud resources. The 
tools will provide support and automate AI applications performance profiling. Solutions to identify the ML 
model providing the highest performance prediction accuracy supporting model selection and 
hyperparameters tuning will be also developed. 
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5. Runtime Frameworks for Computing   
Continua management  

Chapter 5 analyses the enabling technologies for the runtime management of computing continua. In 
particular, Section 5.1 provides an overview on virtualization, with a particular focus on container 
orchestration technologies. Section 5.2 is focused on deployment technologies and cloud orchestration while 
Section 5.3 addresses the topic of resources monitoring. The runtime management is presented in Section 5.4 
while scheduling solutions for GPU-accelerated clusters are described in Section 5.5. Finally, Section 5.6 
outlines the strategies and solutions that AI-SPRINT will propose to fill the gaps left in the proposed literature. 

 

5.1 Virtualization, Containers and Containers Orchestrators  
Virtualization techniques allow to run isolated operating systems on top of other operating systems (OS), or 
directly on the underlying hardware, by means of a hypervisor. There exist several hypervisor technologies by 
the most popular open-source alternatives are KVM and XEN. Its ability to provide isolation and fine-tuned 
performance has fostered the adoption of this technology to consolidate workloads and increase the 
utilization of hardware resources. This enabled the surge of Cloud Computing on which unused computer 
resources are offered on a pay-as-you-go basis, with prominent players such as Amazon Web Services (AWS), 
Microsoft Azure and Google Cloud Platform as discussed in Section 3.4. Indeed, new hypervisors are now 
available as a result of this trend. This is the case of AWS Nitro [AWSNitro], a lightweight hypervisor that 
provides performance indistinguishable from bare metal. Also, in the quest for combining lightweight 
virtualization but strong isolation, new developments have surged, such as Firecracker [FireCracker], an open-
source virtualization technology that is purpose-built for creating and managing secure, multi-tenant 
container and function-based services. This is the underlying technology employed in the commercial FaaS 
(Functions as a Service) offering from AWS Lambda. 

The trend towards lightweight virtualization paved the way for container technology to considerably evolve, 
exemplified by the advances in LXC and Docker. Linux containers are able to run multiple isolated processes 
in one host without the overhead caused by the hypervisor layer introduced by Virtual Machines in CPU, 
memory and storage. In particular, Docker turned containers into a mainstream technology, contributing: i) a 
global shared repository of Docker containers, i.e., Docker Hub; ii) a procedure to create Docker images out 
of Dockerfiles, and iii) the usage of a layered file system that reduces the footprint of Docker images. The 
ecosystem of tools around Docker has exploded in the last years, with contributions in many areas such as 
Continuous Integration/Continuous Delivery (CI/CD), application packaging and Container Orchestration 
Tools.  

Indeed, there are many applications to manage the execution of containers across multiple hosts (e.g., Docker 
Swarm, Nomad, Kubernetes). Docker Swarm represents the native clustering approach proposed by Docker, 
which controls a cluster of Docker hosts and exposes it as a single "virtual" host. This way, a container-based 
virtual cluster can be easily created on top of virtual or physical resources. However, the most widely used 
Container Orchestration Platform (COP) is Kubernetes, an open-source system for automating the 
deployment, scaling and management of containerized applications. The Kubernetes ecosystem has 
blossomed in the last few years, and it is turning into the de-facto standard for running fleets of containers at 
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scale. Indeed, the report “State of Container and Kubernetes Security”134 from StackRox revealed that 91% of 
respondents had adopted Kubernetes in favour of other alternatives such as Docker Swarm or Amazon Elastic 
Container Service. 

A good alternative to Docker, specifically designed for embedded and IoT devices is BalenaOS135. It puts 
emphasis on reliability over long periods of operation. By using Balena.io platform, a fleet of IoT devices with 
BalenaOS can be managed remotely. BalenaOS is an embedded operating system and shares architectural 
principles with many existing systems, but also aims to unify the approach to containers with Docker. 
BalenaOS has the added benefit of focusing on portability, with 20 device types already supported, and 
production-readiness, with thousands of devices already deployed for business purposes. For resource 
constrained devices, there also exist alternatives to Kubernetes like the minified Kubernetes k3s136.  

 

5.2 Deployment Technologies and Solutions  
The scientific exploitation of cloud resources is nowadays a reality. However, despite this large adoption, cloud 
computing still presents several functionality gaps that make it difficult to deliver its full potential, especially 
for scientific usage. Furthermore, in the last years, with the rise of edge computing, cloud orchestration is 
being considered more and more important, as it will play the role needed to perform the abstractions needed 
to deploy complex service architectures for a wide range of application domains. 

Cloud orchestration involves the automated arrangement, coordination, and management of cloud resources 
(i.e., compute, storage, and network) to meet user’s needs and requirements [Caballer2018]. It addresses the 
lack of elasticity and transparent interoperability and portability across different cloud technologies and 
infrastructures. It provides the users with seamless dynamic elasticity over a large pool of computing 
resources across multiple cloud and edge providers. 

Several open-source orchestration tools and services exist in the market, but most of them come with the 
limitation of only supporting their own Cloud Management Platforms (CMPs) as they are developed within 
those project ecosystems. As an example, we can cite some of them: OpenStack Heat [HEAT] and its YAML-
based Domain Specific Language (DSL) called Heat Orchestration Template (HOT), native to OpenStack. 
OpenNebula also provides its own JSON-based multi-tier cloud application orchestration called OneFlow 
[ONEFLOW]. Eucalyptus [EUCALYPTUS] supports orchestration via its implementation of the AWS 
CloudFormation web service. All of them are focused on their own CMPs and furthermore they rely on their 
own DSL languages (open or proprietary ones such as CloudFormation). 

However, the usage and promotion of open standards such as the Topology Open Specification for Cloud 
Applications (TOSCA) [TOSCA]) in the cloud is a way to obtain more interoperable, distributed, and open 
infrastructures. As a matter of fact, the European Commission recommended, back in 2004, the usage of Open 
Standards in its “European Interoperability Framework for pan-European eGovernment Services”. So, CMP-
agnostic tools tend to move away from specific DSLs in order to adopt open standards such as TOSCA.  

So, moving from the CMP specific tools and focusing on other open-source orchestration stacks that support 
Cloud standards we can find: Cloudify [CLOUDIFY], which provides TOSCA-based orchestration across different 
Clouds. Alien4Cloud [A4C] enables the composition of TOSCA templates and their deployment by means of a 

 
 
134 Kubernetes and Container Security and Adoption Trend. https://www.stackrox.com/kubernetes-adoption-
security-and-market-share-for-containers/ 
135 https://www.balena.io/os/ 
136 https://k3s.io 
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TOSCA runtime engine (Orchestrator). Alien4Cloud provides plugins to connect to external TOSCA runtime 
engines. In particular, it can delegate on Cloudify, but it also provides its own TOSCA runtime, Puccini in the 
initial versions, Yorc in more recent ones. Ystia Orchestrator (Yorc) [YORC] is a hybrid cloud/HPC TOSCA 
orchestrator that aims to support the whole application lifecycle, from deployment, scaling, monitoring, self-
healing, self-scaling to application upgrade, over hybrid infrastructures (IaaS, HPC schedulers, CaaS). TORCH 
[Tomarchio2021] is a very recent project, not mature enough and with a reduced number of cloud providers 
and topologies supported. Project CELAR used an old TOSCA XML version using SlipStream as the orchestration 
layer (this project has no activity in the last years and SlipStream is now deprecated by Nuvla) with the 
limitation of being opencore, thus not supporting commercial providers in the open-source version. The 
OpenTOSCA Container [OPENTOSCA] is the TOSCA Runtime Environment to deploy and manage Cloud 
applications. It enables the automated provisioning of applications that are modeled using TOSCA and 
packaged as CSARs. It still uses the old TOSCA XML version and also currently only supports OpenStack and 
EC2 providers. MiCADOscale [MICADO] is an application-level multi-cloud orchestration and auto-scaling 
framework centered on Kubernetes clusters. It uses Occopus [OCCOPUS] and Terraform as the orchestration 
tools. The SeaClouds platform is a multi-cloud orchestration based on a modified version of Apache Brooklyn 
[BROOKLYN] with TOSCA support. 

In contrast, the Infrastructure Manager (IM) [Caballer2015] which will be AI-SPRINT baseline, supports TOSCA-
based deployments over a wide variety of cloud backends including OpenNebula, CloudStack and OpenStack; 
commercial cloud providers such as Microsoft Azure, Amazon Web Services (AWS), Google Cloud Platform 
(GCP), Open Telekom Cloud (OTC), Linode, Orange Flexible Engine and the EGI Federated Cloud, the large-
scale pan-european federated IaaS Cloud to support scientific research.  

 

5.3 Monitoring  
Monitoring of resources in modern cloud deployments is a challenging task. The situation is even more 
complex when the edge devices are taken into consideration due to a bigger number of devices, bandwidth 
throughput limitation and often devices limitation. There are several aspects that may be analysed but the 
two most important are: (i) logs monitoring (e.g., Elasticsearch137 Logstash138 & Kibana139, and (ii) metrics 
calculation and gathering (e.g., Telegraf140, inFluxDB141, Grafana142). Additionally, there are tools focused on 
the analysis of machine generated data (e.g., Splunk143).  A second classification can consider the deployment 
model since there exist SaaS solutions (like DataDog144) or on premise/along private cloud deployments 
(Zabbix145, Nagios146). Next, tools can be divided into: open source ones and closed source/commercial tools. 
Finally, there is a set of tools connected with certain implementations of cloud, like Azure Monitoring147 or 
Amazon CloudWatch148. 

 
 
137 https://www.elastic.co/ 
138 https://www.elastic.co/logstash 
139 https://www.elastic.co/kibana 
140 https://www.influxdata.com/time-series-platform/telegraf/  
141 https://www.influxdata.com/products/influxdb/  
142 https://grafana.com/  
143 https://www.splunk.com/  
144 https://www.datadoghq.com/  
145 https://www.zabbix.com/  
146 https://www.nagios.org/  
147 https://azure.microsoft.com/en-us/services/monitor/  
148 https://aws.amazon.com/cloudwatch/  
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As the promotion of open-source tools and standards is an important principle, further analysis will be focused 
on the open source and cloud agnostic tools. Zabbix and Nagios are general purpose and versatile monitoring 
tools focused on metrics gathering and calculation. They have many predefined templates and as mature tools 
their integration is quick and painless. On the other hand, they were designed to work well with physical or 
virtual machines while working in edge and container-based deployments is rather challenging. Additionally, 
these tools are rather centralized and do not scale well. 

The next step of development in modern monitoring solutions was an ELK stack: ElasticSearch, LogStash, Beats 
and Kibana. ElasticSearch is a database that allows for rapid data searching and analysis and is used for storing 
data. An additional advantage is that ElasticSearch can be scaled easily.  Unfortunately, ElasticSearch is not 
prepared well for time series data storing and analysis, which is the case for many calculated metrics. The 
Beats is a set of small data gathering and sending tools specialized to send on data type. They can be easily 
installed on edge devices. On the other hand, LogStash allows for custom data transformation and routing. 
Kibana is a data and metrics visualization tool that provides dashboards and allows for visual analysis. Finally, 
this set of tools integrates well with container based and cloud deployments.  

Other important tools are the ones provided by AWS and Azure cloud. They are very comprehensive end to 
end solutions supporting both edge data collection, time series analysis, and seamless integration with 
containers and serverless tools. Unfortunately, their usage is limited only to a certain cloud provider which 
causes vendor lock in and removes them from further analysis. 

The most suitable solution for time series analysis are newest solutions like stacks build time series databases. 
The most comprehensive solution is the stack built on the InfluxDB. InfluxDB is a modern database specialized 
in computing, analysing and storing time series. It has its own domain specific language designed to support 
such operations - Flux DSL. One of the important aspects of the Flux language is built-in moving average 
calculation which is one of key aspects of resource monitoring. Another aspect is support for anomalies 
detection, e.g., Median Absolute Deviation algorithm. Another part of the InfluxDB stack is Telegraf. This is a 
plugin-driven server agent that is responsible for collecting and sending metrics and events from systems, 
edge devices, IoT sensors, and more. This is a lightweight tool that may be deployed as a Kubernetes Sidecar 
and can be easily integrated via plugins with multiple data sources. Metrics and data can be visualized on 
dashboards using Grafana which is a dashboarding solution having views focused on the time series data 
presentation. Finally, all mentioned tools have an open-source version that may be customized to specific 
project needs (automatic deployments, configuration injection, etc). 

Figure 5.1 illustrates the architecture of the monitoring solution based on the InfluxDB stack. 
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Figure 5.1 - InfluxDB architecture149 

The first step of monitoring is data collection. This is the responsibility of Telegraph which is a plugin-driven 
server agent for collecting and sending metrics. Telegraph provides many plugins that allow for seamless 
integration with many servers and applications. Moreover, Telegraf is written entirely in Go, and it compiles 
into a single binary with no external dependencies and a minimal memory footprint.  

Telegraf metrics are the representation used to model data during processing. Telegraph metrics are closely 
related to the InfluxDB data model and contain four main components: 

1. Measurement name: Description and namespace for the metric. 
2. Tags: Key/Value string pairs and usually used to identify the metric. 
3. Fields: Key/Value pairs that are typed and usually contain the metric data. 
4. Timestamp: Date and time associated with the fields. 

 

Telegraph behaviour is shown in Figure 5.2. As we can see, there are two steps in the monitoring process: the 
first is performed during data collection (transform, decorate, filter) while the second one is done during 
aggregation (to limit the amount of data pushed to InfluxDB). 

 
 
149 Figure source: https://www.influxdata.com/wp-content/uploads/APM-Diagram-1.png 
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Figure 5.2 - Telegraph Processing150 

Finally, monitoring data is stored into the InfluxDB time series database. Internally, InfluxDB has an 
organization that optimizes time-related queries. Data is organized in buckets which may be perceived as 
tables that resemble a column-like data organization style. Every measurement is called a point and has a 
timestamp and measurement name. Additionally, there are two key-value field types of metadata connected 
with a point: tags that are used for indexing and fields that are used for storing values. Points that share a 
measurement, tag set, and field key are organized into series. In other words, we can imagine that every 
measurement, tag set, and field key have they own key-values table associated with them. The framework is 
completed with a DSL declarative language, i.e., Flux which is built and optimized to query time related data. 
Additionally, there are tasks that help data processing and calculations. InfluxDB tasks are scheduled Flux 
scripts that modify or analyse data streams which are then stored in new buckets or are used to trigger other 
actions.  

The last data visualization step is supported by dashboards which can be implemented by multiple tools, e.g., 
Grafana, which provides multiple functionalities like zoom in/out, data marking, charting etc.  

 

5.4 Runtime Management  
Managing the runtime of the services deployed on distributed infrastructures becomes even more challenging 
when considering computing continua: mobility inherent to smart mobile devices adds dynamicity to the pool 
of available resources while variations of the number of users connected to the system lead to changes in the 
generated data volumes and workload fluctuations which might lead to edge resources saturation. 

As of today, all commercial solutions offered by the major cloud vendors simplify the technical challenge by 
making the edge totally reliant on the Cloud: Amazon IoT Greengrass [AWSGreengrass], Microsoft Azure IOT 
Edge [MSIotEdge] and Google Cloud IOT [GOOGLEIotCloud]) maintain the cloud as a necessary part and only 
allow the deployment and execution of some functions on edge devices. This problem reaches out also to 

 
 
150 Figure source: https://docs.influxdata.com/telegraf/v1.18/concepts/aggregator_processor_plugins/ 
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academic solutions like the Osmosis framework [Villari2019] which also follows this bottom-up approach. The 
developer defines microElements (MELs) and describes how these MELs relate to each other. From the cloud, 
Osmosis orchestrates MEL deployments and migrations considering resource availability, each MEL's QoS and 
the infrastructure topology. 

The edge should become autonomous and work even when disconnected from the Cloud. Ramachandran et 
al. identified the challenges to provide a peer-to-peer standing for the edge to the cloud [Ramachandran2019]. 
Departing from a real-world case study, Beckman et al. [Beckman2020] diagnose the technical shortcomings 
to implement a solution; they consider Twister2 for data analytics and indicate the necessary 
implementations. 

Also, the COMPSs ecosystem has taken steps towards the distribution of computation across Computing 
continua with Colony. This framework proposes to consider each device as an autonomous individual (agent) 
able to host events/data processing on its embedded computing resources in a FaaS manner. Such agents can 
interact with each other to share data and computing capabilities to tackle larger problems, achieve higher-
performance and, thus, enabling services otherwise not viable. For doing so, the framework proposes to 
establish a dynamic device hierarchy and define agent colonies, disjoint groups of agents sharing their 
workload and resources where one of the devices acts as the endpoint that other devices/colonies within the 
infrastructure contact to offload part of their computation onto the colony. The project natively includes 
support for the COMPSs programming model; thus, any function executed in an agent can be converted into 
a workflow and its inner tasks offloaded onto other devices of the infrastructure in the same FaaS manner. In 
turn these tasks can be further decomposed in other tasks and, thus, a single computation can flood 
throughout the whole infrastructure. 

Application component placement and resource allocation across the computing continuum are other 
important runtime problems. A recent survey of resource runtime management methods in edge-cloud is 
provided in [Hong2019]. Authors classify the literature proposals according to architectures, infrastructure, 
and algorithms for resource management in fog/edge computing. In this classification, architectures include 
dataflow (e.g., aggregation, sharing, offloading), control (e.g., centralized, distributed, hierarchical) and 
tenancy (e.g., single, multi), infrastructure includes hardware (e.g., computing equipment and network 
devices), system software (e.g., system and network virtualization) and middleware (e.g., volunteer edge 
computing, hierarchical fog/edge computing, mobile fog/edge computing, cloud orchestration management.) 
while algorithms include discovery (e.g., programming infrastructure, handshaking protocol, message 
passing), benchmarking (e.g., evaluating functional properties, application benchmarking, integrated 
benchmarking), load-balancing (e.g., cooperative load balancing, graph based, etc.) and placement (e.g., 
dynamic condition aware, iterative techniques). 

Many works focus on component placement only on edge during the runtime. One example is provided in 
[Skarlat2017a] that proposes a fog computing architecture. The architecture has some partitions, called fog 
cells, which are software components running on IoT devices, and control and monitor the virtualized 
resources of these devices. A control node and a few fog cells construct a fog colony which acts as micro 
datacentres and share services between its fog cells and other fog colonies. Fog colonies are connected to a 
fog computing management system that is a middleware running in the cloud. The authors model the Fog 
Service Placement Problem (FSPP) as an Integer Linear Programming optimization problem which is solved at 
runtime and aims to determine an optimal mapping between IoT applications and computational resources 
while considering QoS constraints like deadlines on the execution time of applications. The same authors in 
[Skarlat2017b] propose a deadline-aware optimization problem to model the placement of IoT applications 
over edge resources, maximizing the resource usage. This problem is solved directly, and through a first-fit 
greedy approximation and a genetic algorithm, and a comparison with existing approaches that run all services 
in a centralized cloud is also provided. Similarly, [Yi2017] proposes LAVEA, a system to offload computation 
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between client and edge nodes to reduce latency in video analytics tasks, adopting an edge-first design and a 
scheduling method based on an adaptation of flow job shop model and Johnson's rule. [Puthal2019] 
introduces a dynamic load-balancing technique to optimize resource utilization and response times in edge 
datacentres, considering a secure authentication method to identify the edge datacentre before the task's 
deployment.  

Vice versa, some works investigate the runtime component placement both on edge and cloud. Among them, 
[Souza2018] proposes a service placement approach for Fog-to-Cloud architectures with parallel and 
distributed execution. In order to improve the system performance, the proposed method guarantees higher 
quality of service in terms of transmission and processing delays, by splitting a large service into some sub-
services. In this way, the workload will be distributed between the fog and the cloud, and all the sub-services 
can be run on fog and cloud, in parallel. Similarly, [Taneja2017] presents a resource aware placement 
algorithm in fog-cloud. The algorithm first sorts the network nodes and application components ascendingly 
according to their capacity and requirement respectively, then places each component on an appropriate 
node that has enough resources, iteratively, starting from the available fog nodes to cloud. Finally, 
[Mouradian2019] focuses on application component placement in Network Function Virtualization (NFV)-
based hybrid cloud/fog systems. Authors implement application components as Virtual Network Function 
(VNFs) and model their execution sequences by a combination of substructures like sequence, parallel, 
selection, and loops. They formulated the application component placement problem as an Integer Linear 
Programming (ILP) problem which minimizes the weighted sum of execution time and cost and then they 
proposed a Tabu Search algorithm to find a suboptimal solution. 

In addition to component placement, resource allocation and scheduling are other important issues for 
runtime management and many works focus on this context. Among them, some works focus on cloud 
resources, such as [Bao2019] which develops performance modelling and task scheduling for independent 
microservices-based applications. Processing time (PT) is used as the main performance metric and authors 
formulate a Microservice-based Application Workflow Scheduling (MAWS) problem in the cloud-side under a 
user-specified budget constraint (MAWS-BC) to minimize end-to-end delay. Authors demonstrate that the 
MAWS-BC is essentially a multiple-choice knapsack problem which is NP-complete.  

Vice versa, some other works such as [Zhang2015] and [Guo2018] focus on resource allocation in edge 
resources while the others like [Du2018] investigate resource management in mixed edge and cloud. Authors 
in [Zhang2015], consider that a mobile application includes some sections, and each section can be executed 
in a local device or offloaded to the edge. They also consider that offloading failures can happen due to both 
user mobility and edge admission control. Therefore, the goal is to obtain an optimal offloading policy to 
minimize the mobile users' cost. In order to achieve the goal, authors propose a Markov decision process 
(MDP) based model to describe the optimal offloading problem, with a set of states and actions, describing 
the operating statuses and offloading decisions of the mobile user. Then, they formulate the MDP 
optimization problem by a Bellman equation and solve it by a value iteration algorithm. Authors assume that 
mobile user distribution follows a Poisson point process (PPP), and they consider mobility of users in the state 
transitions and cost function. They achieve successful offloading actions' probabilities and use these 
probabilities in the MDP. They prove the existence of the threshold policy and propose an equal-division 
decision making algorithm for mobile users. [Guo2018] proposes a queueing network to model a system in 
which a base station (BS) offers pure traditional cellular uplink transmission (UT) service, pure traditional 
cellular downlink transmission (DT) service and mobile edge computing (MEC) service at the same time. They 
consider three types of users who are served by different types of servers. Pure UT and DT users only need 
the service at queue UT servers and DT servers, respectively, while MEC users need service at all three queues. 
Since MEC users consume both UT and DT transmission resources to offload/download to/from the same BS, 
the admission control of MEC users becomes important. Given the utilization factor of each queue and 
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average delay requirement of each user class of each service type, they formulate a polynomial optimization 
algorithm to find the optimal admission control of MEC users that maximizes the revenue of service providers 
for providing MEC service. The underlying problem is NP-hard, and they obtained an approximate solution by 
applying GloptiPoly solver. Moreover, authors formulate another optimization problem to minimize the cost 
of all three types of servers, in which the decision variables are the number of the three server types to be 
deployed. The optimization problem is an integer programming problem and proposed a greedy algorithm to 
solve it.  

As an example, for resource allocation in both edge and cloud, in [Du2018] the authors’ goal is to make a 
decision for computation offloading and resource allocation to execute the mobile applications in mixed 
edge/cloud computing systems. In order to achieve their goal, they formulate the computation offloading 
problem as a mixed integer non-linear programming (MINLP) problem. To guarantee the fairness of all the 
users equipment (UEs), they try to minimize the maximum cost (weighted sum of energy consumption and 
latency) among all smart mobile UEs while a tolerable deadline for each application is guaranteed. They 
proposed an algorithm to solve the problem, called computation offloading and resource allocation algorithm 
(CORA). Then, they proposed a bisection method called BCRA to solve the nested resource allocation problem 
in CORA. Finally, they use fractional programming and Lagrangian dual decomposition to optimize radio 
bandwidth and transmit power allocation among all UEs. 

Moreover, some other works like [Lin2018] focus on the runtime network capacity and traffic allocation. In 
particular, [Lin2018] proposes a two-phase iterative optimization (TPIO) approach to adjust capacity and 
traffic allocation. Authors assume that the traffic arrival rate from each device follows a Poisson Process and 
each packet needs two services, one provided by the core and the other by the devices. They define four types 
of traffic among core (a single network device), edges and devices and their goal is to distribute the latency 
among these traffic types. According to the TPIO algorithm, the percentages of four types are initially set to 
be the same. Then, the algorithm computes the overall percentage of traffic and if it is less than a threshold, 
it starts the first phase and chooses the devices characterized by the percentage of traffic lower than a 
predefined threshold as a victim. Then the approach computes the amount of shifted traffic to the victims to 
adjust the traffic. The algorithm iterates the first phase until the overall percentage of traffic becomes greater 
than the threshold. Then it starts the second phase and computes the capacity of nodes and determines which 
capacity should be reduced. The algorithm will stop when the capacity reduction ratio is less than a small 
value.   

Finally, on the FaaS management side, [Das2020a] tackles the problem of determining which tasks should be 
deployed on edge or cloud resources, in the context of the FaaS paradigm. It proposes a dynamic task 
placement framework to minimize latency subject to cost constraints or to minimize costs subject to latency 
constraints. Similarly, in [Shahrad2020] authors characterize the FaaS workload of Azure Functions and then 
propose a resource management policy, called hybrid histogram policy, to decrease the number of cold starts 
while also minimizing the resource waste. The policy addresses some challenges such as hard-to-predict 
invocations, heterogeneous applications, applications with infrequent invocations, tracking overhead and 
execution overhead.  The policy is implemented and validated in Apache OpenWhisk. 

 

5.5 Accelerated Clusters for AI  
Artificial Intelligence (AI) and Deep Learning (DL) algorithms are extensively adopted nowadays to tackle 
increasingly complex problems in the context of, e.g., predictive maintenance, machine vision and healthcare. 
Massive datasets must be processed to train Deep Neural Networks before they achieve reasonable prediction 
accuracy and generality. The adoption of Graphic Processing Units (GPUs) to support General Purpose 
computation and massive parallelism is effective in increasing the set of previously intractable problems that 
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can be solved within a reasonable computing time, achieving speed-up factors in the range of 5-40x compared 
to the CPU-only systems [Bahrampour2015, Madougou2016]. Nevertheless, despite the clear advantages of 
GPU-accelerated clusters in terms of performance, these are characterized by high operational costs and 
energy footprint. Their effective management comes therefore with great challenges. Among these, designing 
efficient scheduling and resource allocation solutions is crucial to maximize performance and minimize 
operational costs of datacentres. Even if an increasing effort has been put in recent years in tackling both 
problems, they are often addressed separately, focusing either on jobs scheduling or on resource allocation. 
In the following, we briefly review previous work in both scenarios.   

The common way in which GPUs are used in high-performance supercomputers and datacentres is to install 
one or more of these accelerators at each node of a cluster. However, although this configuration is interesting 
from a performance point of view, from a power consumption point of view it is not efficient, since a single 
GPU can easily consume 25% of the total power of a computer, and GPUs are typically never used 100% of 
the time. In fact, average GPU utilization is typically not greater than 20%. Therefore, the configuration used 
today to exploit the computational resources of GPUs is very inefficient, both at the energy level and at the 
level of the acquisition cost of the equipment. A more interesting cluster configuration would be to reduce 
the number of GPUs installed in the cluster and to concurrently share the installed GPUs among applications. 
This would result in a higher utilization of the installed GPUs, a lower acquisition cost and also a lower energy 
consumption. Disaggregated hardware architectures offer to the existing applications the possibility of 
accessing several remote GPUs connected through a fast network. Enabling GPU sharing is particularly 
efficient when training simple models, as well as in the inference phase, where the average GPU utilization is 
significantly lower than 100%. 

Considerable attention has been devoted to GPU scheduling in HPC systems to improve load balance and 
performance of CPU and GPUs, but there are a handful of solutions targeting specifically DL training 
applications. A scheduling algorithm based on collocating CPU-only jobs with GPU-assisted jobs is presented 
in [Wu2013]. GPU scheduling in HPC is also considered in [Reaño2017]: it improves resource usage through 
an optimized scheduling algorithm allowing multiple applications to share the same GPU. 

The resource budget that needs to be shared among different applications encompasses different dimensions, 
such as time, GPU memory, bandwidth, and I/O channels. A mechanism that keeps track of all these multiple 
dimensions is developed in [Sheikhalishahi2016]. It analyses the scheduling process in the framework of multi-
dimensional bin-packing, which offers an efficient mechanism to treat the job scheduling process, determining 
the best deployment for applications while minimizing the used resources. 

A priority-based technique, named BR-SRS (Budget Reservation Spatial Resource Sharing) scheduling, is 
proposed in [Kang2017]. It bonds the number of GPU cores assigned to each application to its priority so that 
the number of resources allocated to high priority jobs is always more significant than the amount given to 
low-priority ones. The relation between assigned resources and priority will be also considered in AI-SPRINT, 
where jobs closest to the due date are processed first. However, BR-SRS does not admit pre-emption and 
determines a priori a fixed resource budget that should be statically reserved for high-priority jobs. 

Several algorithms start from the information provided by running applications to improve the scheduling 
process. An example is SLAQ [Zhang2017], a cluster scheduling system for ML jobs. It exploits a token-bucket 
algorithm to implement a resource allocation policy that, having designed a schedule for the current time 
period, collects resource usage information from running jobs. This information is used to determine how the 
resources assigned to different applications affect the model quality to generate a prediction for future 
iterations that improves the process effectiveness. 

A resource allocation strategy for DL training jobs is proposed in [Saxena2020]. Authors determine the optimal 
jobs batch size according to their scaling efficiency and combine a FIFO scheduling with a dynamic 
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programming algorithm to determine an effective solution. Similarly, Optimus [Peng2018] is a Kubernetes 
scheduler designed to manage DL jobs on a shared distributed containerized environment, which minimizes 
jobs training time by relying on online resource-performance models. DL2 [Peng2019], also based on 
Kubernetes, dynamically allocates resources by exploiting Deep Reinforcement Learning instead of relying on 
analytical performance models and job profiling. 

Domain-specific knowledge is exploited in Gandiva [Xiao2018], which focuses on tasks' recurrent behaviours 
during the sequence of mini-batches iterations and proposes a pre-emptive, time-sharing scheduler for DL 
jobs. It can operate in reactive mode, exploiting a job placement policy with oversubscription to deal with job 
arrivals, departures, and failures, and in introspective mode, continuously monitoring and adapting jobs 
placement to improve GPUs and nodes usage and reduce jobs completion time. 

Integrated frameworks supporting the whole training process are implemented in Tiresias [Gu2019], Philly 
[Jeon2019], and FfDL [Jayaram2019]. They deal with job submissions and execution and focus only on the 
scheduling of DL training jobs, while the resources to be assigned to all applications are specified by the users. 
Specifically, Tiresias has the primary goal of reducing jobs completion times, in a framework where the actual 
execution times are unpredictable. Moreover, it identifies and applies some model-specific criteria to 
determine when the worker GPU collocation constraints should be relaxed. Philly is a service in Microsoft for 
training machine learning models. Based on the data collected through it, the authors analyse how queueing 
delays and GPU utilization are influenced by local constraints and characterize the causes of failures in their 
system. Furthermore, FfDL is developed as a middleware between the deep learning frameworks and the 
hardware resources and supports scalability and fault tolerance of applications. 

Finally, [Chiang2021] proposes DynamoML to support efficient ML pipeline workload executions on GPU 
clusters. Implemented as an extended framework for Kubernetes, it involves three modular components: a 
fine-grained GPU allocator, that enables GPU sharing among light-loaded jobs, an application-aware scheduler 
and a performance-driven auto-scaling controller, which together cooperate in building a dynamic and pre-
emptive scheduler for heterogeneous workflows. 

GPU sharing is the main purpose of the vGPU [NVIDIA-vGPU] and MIG [NVIDIA-MIG] solutions recently 
proposed by NVIDIA. Basically, these two solutions virtualize GPUs in order to concurrently provide them to 
multiple applications. However, although these virtualization solutions effectively address the 
aforementioned concerns, it is possible to use a better approach: make use of the remote GPU virtualization 
mechanisms. Remote GPU virtualization adds flexibility and efficiency to the local virtualization solutions 
proposed by NVIDIA. 

 

Figure 5.3 - Typical architecture of remote GPU virtualization frameworks 
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Figure 5.3 shows how remote GPU virtualization works. Remote GPU virtualization frameworks follow a client-
server approach. The middleware server runs on the cluster computers where GPUs are installed, which serve 
the requests that come from the middleware clients. Clients run on the cluster computers that do not have a 
GPU and are presented to applications as the CUDA library. In this way, accelerated applications can be 
executed in any of the cluster nodes and when they need the services of a GPU they use the client library of 
their computer, in a transparent way from the application point of view, to send their requests to the actual 
GPU that is installed on another computer in the cluster. It should be noted that the application is not aware 
that it is interacting with a virtual remote GPU, but it believes that it has exclusive access to a real GPU installed 
on the local computer. Obviously, the overhead introduced by the remote GPU virtualization middleware 
depends on the capabilities of the network fabric connecting clients and servers. 

Among remote GPU virtualization solutions, we can name, for example, rCUDA [Reaño2017], [Reaño2015], 
vCUDA [Shi2009], GViM [Gupta2009], GVirtuS [Giunta2010], GridCUDA [Liang2011] and V-GPU [VGPU2021] 
(the latter only worked on InfiniBand) which pursue the virtualization of the CUDA runtime API (Application 
Programming Interface). In the case of OpenCL, VCL [Barak2010] and SnuCL [Kim2012] present work 
environments with similar characteristics to the environments created for CUDA. Regarding the environments 
focused on the CUDA API, it should be noted that, except for rCUDA (one of the most important AI-SPRINT 
asset in this area), the rest of the existing solutions only provide partial support for obsolete CUDA versions, 
what makes them non-interesting from a practical point of view and, at an industrial level, are not usable.  

In the case of rCUDA, it presents an overhead in the execution times of applications, when the InfiniBand high-
performance network is used, around 3% compared to the usual configuration in which the GPU is used locally 
with CUDA. rCUDA can also work with any TCP/IP compatible network and its overhead will depend on the 
performance capabilities of the underlying network. 

 

5.6 Gaps filled by AI-SPRINT 
For what concerns AI application deployment and continuous integration, AI-SPRINT will leverage the 
Infrastructure Manager (IM) developed by UPV, an open-source TOSCA compliant deployment environment 
which uses Ansible recipes to configure and update complex infrastructures automatically. Relying on this 
platform-agnostic tool, compatible with multiple providers and standards (including cloud OCCI), AI-SPRINT 
will ensure interoperability with most current public and private clouds, will avoid cloud vendor lock-in, and 
will ease the deployment on edge servers.  

To provide serverless support for compute-intensive applications, AI-SPRINT will leverage the open-source 
tool SCAR [SCAR][Pérez2018] which provides the ability to transparently execute containers out of Docker 
images in AWS Lambda, supporting complex generic applications in various areas and deep learning 
frameworks. SCAR relies on udocker [udocker], an open-source development that allows to execute 
containers from Docker images in user space, that is, without requiring any root privileges and without 
requiring a Docker installation, thus being able to run containers also on restricted execution environments. 
SCAR also supports automatic delegation of event-driven functions into AWS Batch jobs, for workloads that 
exceed the computing capabilities of AWS Lambda. This allows the automatic provisioning of an elastic 
compute cluster to execute long-running jobs or accelerated workloads using GPU-based computing 
[Risco2021]. 

On the other hand, to provide a portable and vendor agnostic FaaS approach we will use OSCAR [OSCAR] 
which supports the very same computing model offered by SCAR but within an on-premises CMP. OSCAR can 
be automatically deployed on multi-Clouds in order to create highly-parallel event-driven file-processing 
serverless applications that execute on customized runtime environments provided by Docker containers than 
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run on an elastic Kubernetes cluster. OSCAR uses both EC3 and the IM to automatically provision a configured 
Kubernetes cluster on several Cloud back-ends (including EGI FedCloud) that can dynamically scale in and out 
in terms of the number of virtual machines. In AI-SPRINT, OSCAR will be extended to run on minified 
Kubernetes distributions such as K3s and ARM-based processors in order to support inferencing of pre-trained 
Machine Learning models at the edge. Through the combination of SCAR and OSCAR we will support data-
driven inference-based workflows that can run along the Cloud continuum. 

Application components will be continuously monitored by a monitoring platform which will be based on an 
extension of the InfluxDB technology and ecosystem to support network partitioning and edge devices 
disconnections. The monitoring platform will be able to gather metrics at every layer (including the application 
level and AI models inference accuracy) of the computing continuum.  

Within AI-SPRINT, runtime management will leverage the PyCOMPSs runtime that will be extended to support 
the serverless computing paradigm through OSCAR, in a way application components or COMPSs workers will 
be run as event-triggered functions orchestrated within a workflow. Application components migration will 
leverage Krake (see AI-SPRINT D1.3 - Initial Architecture Design) which provides a central point to manage 
application components at any layer of the computing continuum and re-evaluates components placement at 
regular intervals. While Krake currently only supports infrastructure metrics (e.g., resource utilization, 
hardware energy efficiency) it will be extended to support performance-oriented application metrics and to 
be able to take optimal decisions on how many resources (e.g., number of Docker containers/total cores) need 
to be allocated to provide application components execution time guarantees.  

Finally, for what concerns the scheduling of accelerated cluster, AI-SPRINT will propose advanced techniques 
to solve the joint resource planning (i.e., how many GPUs to assign to a training job) and scheduling problems 
(i.e., determine the job ordering leading to optimal resource access) both for private and public clouds. The 
final goal is to obtain the efficient use of shared public cloud VMs/private infrastructures while observing the 
completion time goals of training jobs (taking into account, possibly, AI model partitioning between cloud and 
edge servers). GPU sharing and access mechanisms will be based on rCUDA.  
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6. Security and Privacy for Edge AI applications 
Chapter 6 is devoted to the security and privacy issues that arise in AI applications, and on the strategies that 
can be adopted to tackle and reduce them. 

In particular, the trusted execution environment is introduced and presented in Section 6.1. Section 6.2 is 
focused on the patch management, while Section 6.3 describes Secure Boot standard. The network security 
and attacks in edge systems are overviewed in Section 6.4, while Section 6.5 is focused on privacy concerns 
for AI applications. Finally, Section 6.6 presents the strategies adopted by AI-SPRINT to tackle such security 
and privacy issues, with a particular focus on how it addresses the shortcomings of the proposed literature. 

 

6.1 Trusted Execution Environment  
Edge computing infrastructure has been introduced to fulfil the low latency requirement of emerging 
applications. There are several studies on the performance and applications of the AI-edge computing 
paradigm [Tianshu2019], however, less studies have focused on the security and privacy issues of this 
paradigm. In addition, the complexity introduced by recent systems, makes the traditional security methods 
incapable of solving the new systems and applications’ security demands [Sabt2015].  

The software-based security approaches such as microkernels, sandboxes, and virtualizations cannot fulfil the 
desired security level for data confidentiality and integrity [Pinto2017]; therefore, nowadays, vendors have 
moved towards integrating hardware-assisted Trusted Execution Environment (TEE)s to the edge computing 
platform [Ning2018]. Trusted Execution Environment is a secure, integrity-protected environment with 
processing and storage capabilities which is isolated from the regular processing environment [Asokan2014]. 
TEE guarantees the confidentiality of the code, data and provides remote attestation to prove its 
trustworthiness for third-parties. It can resist against software and the physical attacks which are performed 
on the system main memory [Sabt2015]. 

Due to the heterogeneous architecture of edge nodes, the hardware vendors with different architectures 
provide several hardware-assisted TEEs such as Intel Software Guard eXtension (SGX), Arm TrustZone, and 
AMD Memory Encryption Technology [Ning2018]. In the following, we survey some of the studies on these 
popular hardware-assisted TEEs. 

SGX, which was introduced by intel in 2013, provides TEE for users and applications by applying a new memory 
access mechanism. The application in SGX is executed in a secure container called Enclave. The sensitive data 
and related functions of an application are placed inside the enclave which is safe from possible attacks by 
prohibition of the external access. SGX provides a small, trusted computing base (TCB) unlike the other TEE 
systems [Wei2021]. 

Haven introduced in [Baumann2015] is one of the first methods to use Intel SGX for isolation. In Haven, 
unmodified apps such as SQL Server and Apache can be run inside an enclave and kept protected from the 
host which can be the cloud operator’s OS, VM, and firmware. To keep the host safe from untrusted AI 
services, Haven also uses a secure container which does not have access to normal OS services 
[Meurisch2021]. Another beginner approach is Verifiable Confidential Cloud Computing (VC3) [Schuster2015] 
which uses the SGX enclave concept to protect the confidentiality and integrity of user data in distributed 
MapReduce computations in the cloud.  To provide this confidentiality and integrity in VC3, the unmodified 
running Hadoop, operating system and the hypervisor are kept out of the TCB. 

Using SGX, a secure cloud method is proposed in [Kelbert2017] as a layered architecture that provides 
functions such as secure creation and deployment of micro-services, the secure integration of individual 
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micro-services for big data applications and the safe execution of applications in untrusted cloud 
environments. In this work, authors handle security issues from a full stack perspective and the micro-services 
are deployed by donating a secure container at the top of the non-secure stack [Wei2021]. 

Focusing on securing file and network communication for non-encrypted applications, SCONE [Arnautov2016] 
reduces enclave transition costs by using asynchronous system calls. SCONE is a secure containerization 
method that uses the SGX to protect container processes from external attacks. It uses the C standard library 
inside the SGX enclave, and all system calls of the application are assigned to the non-secure host 
[Priebe2018]. 

TEEMon, presented in [Krahn2020], is a performance monitoring and analysis framework used to measure the 
overhead of Intel SGX frameworks such as SCONE [Arnautov2016]. This framework helps developers by 
providing the analysis to identify the performance bottlenecks caused, especially considering tight storage 
resources such as EPC and the expensive enclave operations [Pericas2020]. 

There are a few works which have considered AI services and algorithms in TEE. Chiron, implemented using 
SGX enclaves proposed in [Hunt2018], is a system for privacy-preserving ML as a service. The training data is 
kept hidden from the service operator and the user has no access to the training algorithm and the model 
structure and access to the user data is within an extended Ryoan sandbox. Two types of enclaves are 
determined in this work namely, training one containing the standard ML training toolchain (including the 
popular Theano framework and C compiler) and parameter enclave for exchanging AI model parameters 
[Meurisch2021]. Finally, authors in [Chandra2017] proposed a secure defence strategy while achieving higher 
computational efficiency and reduced performance overhead.  This method introduces proper resistance to 
side-channel attacks.  However, due to adding noise to the data, the accuracy of the AI algorithms is reduced 
[Meurisch2021]. 

 

6.2 Patch management  
Besides providing confidentiality and integrity protection for applications when running in untrusted public 
environments, it is equally important to provide secure means of software patch management such that the 
integrity of the used software artefacts can be always maintained. 

Although Intel SGX provides remote attestation which allows to verify if application code has not been 
modified while being loaded in the so-called enclave, there are currently no means to ensure that software 
upgrades such as transitioning to a newer version will not introduce security flaws due to malicious introduced 
code. 

One approach to achieve this, is the monitoring of the source code evolution as well as the compilation 
processes of the artifacts by a source code repository as provided through, e.g., git. These mechanisms allow 
establishing a verifiable and testifiable source code history through signed commits as well as a new 
mechanism, called secure boot, as compilation steps and intermediated outputs can be versioned as well. We 
will therefore review work in this area of providing a secure history utilizing TEEs as well as version control 
systems.  

A number of publications covered mechanisms for integrity protection of persisted data and how to provide 
secure application logging using secure file systems [Burns2005, Peterson2007, Opera2007]. For example, for 
Ext3Cow [Burns2005], Burns et al. describe techniques to provide secure audits and compute MACs 
incrementally while Oprea et al. [Opera2007] focus on aspects such as detecting integrity violations using 
Merkle-Trees. In AI-SPRINT, we plan to go beyond those works as we assume these techniques as state of the 
art, and we will utilize them either directly or indirectly. For example, we envision to use the mature LIBGIT 
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library [Lbgit2021] implementation that uses Merkle-Trees internally to detect integrity violations etc. that 
can help to detect injection of malicious code in source code or in intermediated output files as part of the 
compilation process. Note that, we plan also to use a trusted compiler chain such that the compilation process 
itself runs in enclaves and cannot be tampered as well. 

An alternative approach to our envisioned path was proposed by authors of SGX-Log Karande et al. 
[Karande2017] through the so-called secure system logs that utilizes a combination of security mechanisms 
of Intel SGX for sealing persisted data and hash-chaining for efficient integrity verification of logs. In AI-SPRINT 
we envision to use similar techniques, however, with the addition that we provide protection for arbitrary 
application data on file systems rather than solely system logs. Furthermore, our goal is to provide complete 
transparency and to stay application agnostic, such that we do not require any source code or application 
modification and we use well established algorithms for recording history. 

Secure patch management can also be considered as a service that requires the detection of integrity 
protection with each roll out of a new version. Hence, another approach that can be taken into consideration 
is the approach described by Aublin et al [Aublin2018]. The authors describe a tool to provide an auditing 
library for internet-based services that captures client-server interactions and securely logs them prior to 
relaying the messages to their destinations. The replying step could be considered as a final commit when 
rolling out a new release. Although this system is a promising direction as it provides an audit log that can be 
conveniently inspected, in AI-SPRINT we also require auditing on file system level rather than network 
traffic/interaction level as proposed in these works as compilation and source code modifications are solely 
occurring on file system level.  

 

6.3 Secure Boot 
Trusted computing mainly splits into two parts. The first part can be described as a hardware root-of-trust, 
whereas the second part is based mainly on software and is called Secure Boot. An example for hardware 
root-of-trust is the Trusted Platform Module (TPM). It is an industry standard and comes as a chip which uses 
cryptographic services like hashing and encryption to make sure each TPM device can be booted without being 
malicious [Microsemi2013, Smith2021]. There are also software-based TPM emulators that can be used, but 
it is said that such emulators offer nowhere near as much security benefit as a real hardware TPM 
[Keylime2021].   

Secure boot is a security standard that ensures that only trusted software is booted when turning on a 
computer by using signature verification. This software is often referred to as OEM (Original Equipment 
Manufacturer). To be able to use Secure Boot, it is necessary that the motherboard's firmware is running on 
UEFI (Unified Extensible Firmware Interface). The reason behind this is that Secure Boot is an industry 
standard developed by the non-profit UEFI Forum and was launched in 2012. When the computer is turned 
on, the firmware checks every signature of each boot software, including the UEFI firmware itself and the 
operating system via public/private key pairs. The developer of the software “signs” the code with their 
specific private key so that the matching public key can be used to check the software origin. This happens 
even before anything else in the software is running. However, the whole process can also be referred to as a 
chain-of-trust, where each segment is checked one after the other and, if one fails, the whole boot process is 
interrupted. If the checks are successful, the firmware gives the control to the booted operating system. The 
reason secure boot was invented in the first place is that some of the earliest viruses for PCs were boot sector 
viruses, hiding from the OS by taking action pre-boot. The general purpose of secure boot is to bring the 
system to a known and trusted state [Wilkins2013, Smith2021].  
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Besides secure boot in general, there are other mostly hybrid boot process security measurements. Sau et al. 
[Sau2017] mention some other forms of the secure boot process in their work like Trusted Boot, Certified 
Boot, Measured Boot, Verified Boot and Authenticated Boot. Whereas Trusted Boot refers to the hardware 
root-of-trust design mentioned in the first part of this section. It is described as taking integrity measurements 
in a system with the results stored in a TPM. Certified Boot, on the other hand, is described as the combination 
of both, Secure Boot and Trusted Boot. Measured Boot sits on top of Certified Boot and uses TPM’s Platform 
Configuration Register (PCR) to store its integrity measurements. It relies on the idea that each core code 
component is measured, like hashed with the information of the next component in the chain of trust and 
stored in the PCR before it is executed. Verified Boot is very similar to Trusted Boot in its functionality but 
developed from Google for Chrome OS. Authenticated Boot basically works like Certified Boot, but, in some 
papers, it is called differently [Sau2017]. 

Another work states that Secure Boot itself is not able to protect against all sorts of attacks or in that case 
against LoJax, a boot-kit [Kuzminykh2019]. The case is that LoJax is deployed to the SPI Flash of Secure Boot. 
However, because Secure Boot starts the "chain of trust" via the platform key that resides in the SPI Flash, 
Secure Boot only checks actions after the SPI Flash firmware is loaded. Thus, it is not able to defend against 
attacks that target the SPI Flash firmware. The authors also discuss alternative methods or extensions, such 
as Boot Guard or BIOS Guard, to boot the firmware securely, since Secure Boot alone is not enough. They also 
mention that with each additional security method, the system's boot mechanism is slowed down further. 
The conclusion is that they cannot give any universal recommendations for rootkit detection since there is not 
an optimal solution. The given solutions like Boot Guard or BIOS Guard work but need to be reconfigured 
manually for proper detection. However, their future research will be focused on developing proper security 
features.   

Due to the growth of IoT-related use cases today, many academic papers can be found that address this type 
of topic. Field Programmable Gate Arrays (FPGA) are mentioned again and again in the scientific papers of 
various authors. The reason for this is that these little "things" also bring new possibilities for attacking 
vulnerabilities with malware. FPGAs are edge devices on which, for example, sensor technology can be 
present. Siddiqui et al. [Siddiqui2019] mention several risks of attacks on FPGAs like IP cloning, hardware 
trojans or man in the middle attacks. There are ways to attack IoT devices directly on-site and remotely. The 
authors discuss further that with proper Secure Boot mechanisms, those dangers could be minimized. 
Therefore, they introduce a so-called Multilayer Camouflaged Secure Boot process that uses a unique device-
level physical unclonable function to unlock the design and update the look-up table (LUT) frame that is unique 
to each device to mitigate the security vulnerabilities of maliciously modifying the boot image of the 
programmable logic programming bitstream. This layered secure boot process allows the remote Attestation 
Server to mutually authenticate and verify the design running on the fabric with logic locking and LUT frame 
modification [Siddiqui2019].  

In another work by Elrabaa et al. [Elrabaa2019], a new scheme for providing secure enclaves on FPGAs for 
users' data and applications in data centres and clouds was developed. The proposed protocol provides FPGA 
authentication, protection of user application confidentiality and integrity, and confidentiality of their data. A 
full proof-of-concept prototype implementation by the authors has shown that the solution can be easily 
implemented on existing FPGAs. In addition, the solution is said to be efficient in terms of resource usage and 
take less time to boot compared to traditional software-based virtual machines. Thus, even on slower FPGA 
devices with, say, 100 MHz clock speed, a secure application should run faster on the FPGA than a switch 
version running on "bare metal" (i.e., without containerization, virtualization, or a secure enclave like Intel's 
SGX).  

There are also works which address booting speed based on Secure Boot mechanics. For example, Profentzas 
et al.  [Profentzas2019] mention potential attacks based on slow booting times due to Secure Boot methods, 
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like DoS attacks especially at the IoT level. They conclude that secure boot is one of the primary tools for 
securing IoT applications, but also find that software-based secure boot increases boot time by 4%, while 
hardware-based tools such as TPM increase boot time by 36%.  In the case of Secure Boot itself, Sarmah et al. 
use PCIe to improve booting times significantly, with up to 20 times faster booting compared to standard 
booting mechanisms [Sarmah2017].  

In addition, in a recent survey, Rashmi et al. [Rashmi2018] discuss various methods of Secure Boot. They 
address Secure Boot of embedded Linux, Secure Boot mechanisms of FPGA based IoT devices, Secure Boot 
based on Mobile Trusted Modules (MTM) and Secure Boot of wireless sensor networks and therefore provide 
additional references on this topic with a wide variety of works. This paper provides a good foundation for 
further development in the Secure Boot area.  

In another paper by Bashun et al. from 2013, the problems and security gaps of Secure Boot are discussed and 
summarised. For this purpose, each segment of the Secure Boot process was examined in more detail by the 
authors. They also discuss various threats and potential attacks on each segment or boot phase. The 
conclusion, as the title of the paper itself says (Title: Too Young to be Secure: Analysis of UEFI Threats and 
Vulnerabilities), is more negative than positive. It says that Secure Boot is mandatory, but also has enough 
disadvantages. For most of the drawbacks, the conclusion comes with a guideline on what needs to be 
addressed or implemented to ensure full security. This paper shows good starting points for further research 
to close some of the gaps. Figure 6.1 shows a summary of all potential danger spots with a brief explanation 
[Bashun2013]. 

 
Figure 6.1 - Summary of threats, threat level and phase or location of occurrence [Bashun2013] 
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It is worth mentioning at this point there is a scalable open-source trust system which uses TPM technology. 
This system is called Keylime; it is developed in python and is open source with Apache 2.0 license. It supports 
TPM 2.0 and can be used in Edge, Cloud and IoT environments. It also can be used with TPM emulated 
solutions, but the security is way weaker compared to hardware-based TPM solutions [Keylime2021]. The best 
way to describe Keylime is to cite the introduction from Keylime’s GitHub readme [Keylime-Github2021]: 
“Keylime provides an end-to-end solution for bootstrapping hardware rooted cryptographic trust for remote 
machines, the provisioning of encrypted payloads, and run-time system integrity monitoring. It also provides 
a flexible framework for the remote attestation of any given PCR (Platform Configuration Register). Users can 
create their own customized actions that will trigger when a machine fails its attested measurements.”  

 

6.4 Network Security and Attacks in Edge Systems  
The edge paradigm can be used on multiple, diverse network architectures. Consequently, the relevant 
security threats are multiple and diverse (see, e.g., Roman et al. [Roman2018]). The impact and feasibility of 
such threats is different depending on the specific edge architecture, i.e., whether the edge node is public, 
such as in Mobile Edge Computing or Mobile Cloud Computing [Suo2013], or it is private. 

A first group of security threats involve external attackers compromising the communications infrastructure. 
This group includes Denial-of-Service attacks, such as jamming of wireless channels, Man-in-the-Middle 
attacks, and Rogue Gateways. In the Man-in-the-Middle attack, an attacker takes control of part of the 
network and may eavesdrop or modify messages [Stojmenovic2016]. In the Rogue Gateway attack, an 
attacker deploys a malicious node and attracts legitimate traffic, similarly to the Man-in-the-Middle attack or 
can even inject malicious traffic to legitimate nodes. 

A second group of threats consists in compromising the service infrastructure. This group includes theft or 
misuse of resources, privacy leakage, service manipulation, up to rogue infrastructure. Examples of misuse of 
resources are the deployment of bots for mining cryptocurrencies, for sending spam, or for distributing 
malware. Since edge nodes tend to store more sensitive information, privacy leakage is a particularly 
dangerous attack [Yi2015]; in addition, the same data is also an appealing target for ransomware. Service 
manipulation consists in modifying the result of an in-cloud computation. Such an attack can be critical in the 
context of the Industrial IoT because it can result in misuse or damage of equipment or even in life threatening 
injuries. In a public service infrastructure, the attacker could deploy a rogue service and steal user information 
or inject bogus data. 

Finally, a last group of threats consists in compromising the user devices either by gaining control or a 
legitimate device or by inserting a rogue device in the system. Compromised devices can distribute bogus data 
and alter the result of a service. 

In order to address these threats, there has been growing interest in using the 5G network protocols and their 
extensive security features, also in a private setting [Parikh2020], [Pronto2020]. In order to address these 
threats, a number of countermeasures have been designed. Access control systems are essential to identify 
and authorize legitimate users. The common practice is based on centralized admission control and 
cryptographic exchange, which provide mutual authentication between the user or the user’s device and the 
network or the service. As the authentication server is remote, the authentication delay may be unacceptably 
high for edge computing applications. Recent literature introduces fast authentication mechanisms that 
leverage 5G procedures [Duan2015] or blockchain [Cui2020]. 

A second trend is the usage of micro-segmentation, which is a common technique to prevent lateral 
movement of attackers in datacenters [VmWare2014]. In the context of edge computing, micro-segmentation 
can be used to separate the data of different services or even of different users of the same service 
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[Mammela2016]. Micro-segmentation is also often used along with Zero-trust authentication, by which every 
node must be explicitly authorized to attach to a micro-segment. This can be achieved by using a policy server 
at each edge node [Kantola2016]. 

End-to-end security is then achieved by chaining micro-segments from multiple networks or network slices, 
which exposes multiple challenges such as guaranteeing consistent updates throughout the network is a 
critical issue for patch management [Foerster2018]; policy checking by injecting probe packets makes it 
possible to assess the behaviour of hybrid networks [Zhang2019]; automatic conflict resolution is a necessary 
tool to minimize the impact of security policies on network performance [Li2018]. 

Micro-segmentation results in significant demands on the network infrastructure because it requires 
pervasive policy checks. Therefore, many researchers have analysed offloading use cases of packet processing 
logic to programmable network hardware. Authors of [Sanvito2017] propose to optimize the load of Deep 
Packet Inspection (DPI) software by offloading the connection tracking logic on programmable switches based 
on the Open Packet Processor (OPP) model [Bianchi2016], [Petrucci2017] uses the same programming model 
to accelerate Linux iptables. Other works exploit the P4 Language as the means to offload the packet 
processing to programmable hardware. The authors of [Miao2017] offload the load balancing logic with P4 
implementing a key-value store on programmable switches. Other scenarios consider datacentre coordination 
services [Jin2018] or MapReduce acceleration [Sapio2017] by exploiting programmable data planes. 

Other relevant attacks that are worth mentioning are rollback attacks and remote attestation attacks. One of 
the risks when running applications in untrusted environments such as public clouds as well as on edge devices 
is the possibility of becoming a victim of a so-called rollback attack. Although TEEs as mentioned above provide 
measures to ensure confidentiality and integrity of application code and data, there is currently no support to 
detect if a root user provides the application with an older snapshot of data in order to drive so-called version 
downgrade attacks or to use e.g., expired licenses etc. [Möller2014, Chen2017, Alashwali2018]. Matetic et al. 
[Matetic2017] argue that Intel SGX is susceptible to rollback attacks and that hardware counters, such as 
TPMs, offer low performance. Their framework ROTE [Matetic2017] establishes a distributed counter service 
by incorporating multiple machines to safeguard the current value of a counter in the protected memory of 
distributed SGX enclaves. Through a sophisticated messaging protocol Matetic et al. reduce the number of 
necessary replicas to f + 1 compared to 3f + 1 in typical Byzantine fault-tolerant systems. An alternative would 
be the use of the so-called Lightweight Collective Memory (LCM) [Brandurger2017], which is a protocol that 
maintains sequence numbers and hashes to ensure that a TEE service’s data cannot be rolled back unnoticed 
by its clients. With each request, clients send their current context, consisting of a sequence number and a 
hash of all previous requests, to the TEE service on the untrusted server via an encrypted channel. Clients are 
trusted and never lose their latest context. The TEE service maintains the latest context of all clients and can 
ensure that it has not been rolled back before the previous request. However, the use of this service is quite 
cumbersome and requires developer effort while the approach in AI-SPRINT targets a transparent approach 
with no to only little developer effort. Finally, remote attestation is an important measure to ensure that the 
application running inside an Intel SGX enclave is indeed genuine. Unfortunately, several TEEs are currently 
vulnerable to so-called relay attacks which target the remote attestation procedure. In these types of attacks, 
an adversary can control the OS (or other software) on the target host/device to relay incoming attestation 
requests to another host/device. For example, in the context of TPM attestation, the relay attack is called 
cuckoo attack [Parno2008]. In this attack, the adversary uses malicious software on the target host to redirect 
the attestation to a host that he controls. Thus, the provisioning of confidential data is directed to the host 
controlled by the adversary. To handle this attack, several defence mechanisms have been proposed however 
they still contain several limitations [Fink2011]. Meanwhile, in another approach Flicker [McCune2008] attests 
to only a single application at the time, requiring shutting down the entire OS and all other services and also 
requires a trusted administrator. Recently, several attacks against Intel SGX remote attestation have been 
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presented: ProximiTEE [Dhar2020] presents a relay attack on SGX attestation, or SGAxe [Schaik2020] shows 
an attack that bypasses the SGX remote attestations. However, these attacks require to first perform micro-
architectural attacks such as side-channel attacks [Bulck2018, Chen2019, Kocher2019, Lipp2018], thereafter 
use the gained secrets to attack the remote attestation. In the context of AI-SPRINT, we target to implement 
techniques to circumvent an attack against TEEs remote attestation without requiring performing any 
microarchitectural attacks. 

 

6.5 Privacy issues in Edge systems for AI applications 
Data privacy is increasingly becoming one of the most relevant issues in the DL era. While it represents a 
fundamental right for the individual, it is also considered the most significant obstacle for sharing information, 
especially if sensitive, and thus also a limitation for learning purposes. 

In the context of Federated Learning (FL), see also Section 4.3, several scenarios are characterized by huge 
flows of information to centralized servers which can potentially disclose private or sensitive information. 
Despite the high-security levels to ensure safe data exchanges and the trustworthiness of the central server, 
it has been proved that DL models can leak information about learned data. Indeed, different privacy attacks 
have been developed with the goal of showing that unintended disclosure of training dataset information is 
possible. These attacks can be classified into two main families, respectively called Membership Inference 
[Shokri2017, Rahman2018] and Model Inversion [He2019] attacks. 

● Model Inversion, is an attack developed to find feature missing values in a dataset row, given all the 
remaining ones. The attack leverages access to the model, and in many cases, it is necessary also only 
its black-box knowledge. Further developments extend the attack to a full reconstruction of a dataset 
example, addressing two major themes: white-box decision tree attacks and black-box reconstruction 
attacks to facial recognition models. 

● Membership Inference, instead, is a kind of attack that, given a data record and black-box access to a 
model, tries to determine if that record belonged to the training dataset or not. This attack 
methodology builds different proxy training datasets, either mimicking the distribution of the original 
dataset or using other datasets closely related to the private one, used to train the target model. 
These datasets are also called shadow datasets. Membership Inference attacks have also been 
developed and customized for generative models. 

 

Another type of privacy attack, called the GAN-based Collaborative Learning attack [hitaj2017], has 
demonstrated the possibility of creating information leaks even in a Horizontal Federated Learning scenario: 
an attacker, as shown in Figure 6.2, with access to the sharing gradients party, could exploit the information 
contained in the models updates to reconstruct the training data by using a Generative Adversarial Network 
(GAN) [Goodfellow2014]. 
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Figure 6.2 - Schema of a GAN-based Collaborative Learning attack [Hitaj2017] 

One of the most adopted solutions to privacy attacks relies on the idea introduced by Abadi et al. [Abadi2016] 
which aimed at improving Differential Privacy (DP) and measuring it via the introduction of noise during 
different stages of neural networks training. 

DP [Dwork2006], [Dwork2014] is a privacy model providing strong guarantees against the disclosure of 
sensitive information related to individual samples. In detail, data can be considered differentially private if 
each system that deals with it can only share information that describes the patterns of the groups within it, 
keeping private any information linked to the individual. According to the definition introduced by Dwork et 
al., we call (𝜀, 𝛿)-DP a randomized mechanism 𝑀:	𝐷 → 𝑅 with domain 𝑀 and range 𝑅 which is satisfied if for 
any two adjacent inputs 𝑑, 𝑑′	 ∈ 	𝐷 and for any subset of outputs 𝑆	 ⊆ 	𝑅 it holds that: 

𝑃[𝑀(𝑑) 	∈ 	𝑆] 	≤ 𝑒𝑥𝑝 U𝑃[𝑀(𝑑ʹ) 	∈ 	𝑆] 	+ 	𝛿   

where 𝜀 is a privacy budget balancing the accuracy of the mechanism with sensitive disclosures. The smaller 
the budget, the higher the privacy guarantees. The 𝛿 parameter relaxes the constraints of (𝜀, 𝛿)-DP introduced 
in [Dwork2006] by allowing violations with probability 𝛿. 

In the DL field, several approaches have been proposed to integrate DP guarantees within training and 
inferential procedures. As anticipated, to protect the sensitivity of training data, Abadi et al. [Abadi2016] 
designed a Differentially-Private version of the Stochastic Gradient Descent algorithm (DP-SGD) for training 
deep neural networks with non-convex objectives. Papernot et al. [Papernot2016] addressed the problem of 
the implicit storage of sensitive training data within a machine learning model, proposing the PATE framework, 
which relies on the separation of teacher models, directly trained on disjoint sensitive datasets and not 
published, and student models, learning from the teachers to predict an output retrieved by noisy voting 
among them. 

Synthetic data generation is another important aspect from DP perspective. Deep generative models, e.g., 
GAN and Variational Autoencoder (VAE) [Kingma2013], are powerful tools learning to generate realistic data 
largely resembling the training datasets. While achieving high data utility, these models do not implement any 
countermeasure against the disclosure of sensitive data possibly provided during training. Chen et al. 
[Chen2018] introduced a Differentially-Private VAE-based generative model, while a Differentially-Private 
version of GAN is defined by Xie et al. [Xie2018].  Jordon et al. [Jordon2018] extended the PATE framework to 
GANs, while Mugunthan et al. [Mugunthan2021] applied Differential Privacy to the InfoGAN model.  

DP-auto-GAN, a framework for synthetic data generation applicable to unlabeled mixed-type data, has been 
proposed by Tantipongpipat et al. [Tantipongpipat2019] and it is able to combine the flexibility of GANs with 
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the dimensionality-reduction capabilities of VAEs. Torkzadehmahani et al. [Torkzadehmahani2019] applied 
Differential Privacy to Conditional GANs, relying on the recent Rényi Differential Privacy model 
[Mironov2017]. Takahashi et al. [Takahashi2020] showed that by customizing the VAE ELBO loss with different 
divergence terms, the sensitivity of the model to the noise introduced by DP-SGD scales with the batch size. 
To solve this issue, the authors define a novel training procedure, term-wise DP-SGD, that keeps the VAE 
sensitivity low when attaching divergence.  

Finally, Acs et al. [Acs2018], instead, separated the Differentially-Private data synthesis process in two steps: 
first they carry out Differentially-Private kernel K-means clustering over the sensitive training dataset, and 
then they train K separate generative models, one for each cluster, achieving higher data utility through the 
models mixture with respect to a single generative model. 

 

6.6 Gaps filled by AI-SPRINT  
The Trusted Execution Environment frameworks presented in the previous section address the execution of 
applications in secure enclaves but with significant limitations. AI-SPRINT will simplify the deployment, 
portability, and secure execution of applications on heterogeneous target platforms including GPUs.  In order 
to widen the security aspects not yet covered by the use of TEEs, AI-SPRINT will address the following attacks 
within the course of the project: 

● Rollback attacks: we will make use of TPM modules to safely store counter values across reboots and 
utilize a set of distributed machines comprising cloud as well as edge nodes to increase performance 
as well as minimizing the so-called vulnerability window, i.e., the number of transactions that can be 
rolled back. 

● Patch management: furthermore, we will develop novel techniques to provide a trusted compilation 
environment such that frequent software updates and patches can be trusted and attested. The 
attestation process will be hardened in order to avoid relay attacks. 

On the secure boot side, AI-SPRINT will ensure that every possible VM instance is secure boot-enabled. In 
addition, AI-SPRINT will possibly leverage hardware root-of-trust security such as TPM in the future. Secure 
Boot and TPM are security measures that have known and unknown vulnerabilities and must be well 
configured to provide adequate protection. Our approach will be to ensure that every single configuration 
and update aspect, as well as Secure Boot itself, is enabled and running at boot times to ensure a high level 
of security. Small gaps can lead to malicious behaviour of the booted software. Edge devices in particular, 
where Secure Boot can be enabled, should be included in an automated test procedure to boot securely. 
However, to successfully implement such high-security measures, there are some costs to overcome. Keylime 
or a similar system could also provide a good entry point into TPM-based secure boot mechanisms.  

For what concerns privacy protection AI-SPRINT will study novel techniques leveraging data generation which 
exploit the concept of generative privacy as an improvement beyond the current state of the art in differential 
privacy. Data generation via generative models, e.g., Variational AutoEncoders or Generative Adversarial 
Networks, allows exchanging an undefined number of samples without explicit disclosure of single individual 
information and it allows the synthetic increase and rebalancing of data when data scarcity is an issue.  

Finally, the AI-SPRINT secure network component will use the 5G authentication procedures to identify the 
end users, authorize them to access the allowed services, and automatically deploy the relevant traffic filtering 
rules, therefore, achieving microsegmentation in the access to edge services. It will also use smart contracts 
to provide access control to the data collected from IoT devices. 
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7. Conclusions 
In this deliverable, we have provided a comprehensive overview of the state-of-the-art in several areas related 
to the AI-SPRINT project including, but not limited to: AI development frameworks, hardware for intelligent 
sensors, deployment and management solutions for computing continua and performance, privacy, and 
security issues. One of the main takeaways that emerge from this deliverable is the breadth, heterogeneity 
and complexity of the challenges that exist in building AI applications running in computing continua:  

● First, we notice a generalised lack of abstractions for defining quality requirements (in terms of AI 
models accuracy and system performance). This will require AI-SPRINT to define novel abstractions to 
impose constraints on the, e.g., execution time of DN models or their partitions, or to predicate on 
the energy consumptions of devices running on the edge. 

● Next, the analysis on standardisation fills gaps in the ICT Standardisation Rolling Plan 2021, revealing 
that much of the work on edge computing is taking place around global mobile communications, 
primarily 3GPP and ETSI MEC. Standards are needed in this area to build solutions involving multiple 
stakeholders. Open source also plays a role in shaping and accelerating deployments of edge clouds, 
where a variety of cloud-related OS projects could equally apply to edge clouds. However, it is not yet 
clear if and how other standards organisations will ride the wave of the rapidly expanding edge-
related initiatives as the edge-cloud ecosystem is still being developed. Further work will continue in 
Task 6.2 Standards and Open Source Collaborations and Clustering as part of an on-going assessment.  

● Moreover, we observed that the technology stack of intelligent sensors and cloud technologies is very 
heterogeneous, and this poses the question on how a 3-years research project like AI-SPRINT could 
produce a useful contribution. In fact, AI and IoT technologies are evolving fast and it does not seem 
always possible to come up with general solutions. It seems therefore more interesting for AI-SPRINT 
to focus on a few technologies of clear impact and diffusion (e.g., Keras, TensorFlow, PyTorch, 
Tensorflow Lite, NVIDIA RT) rather than supporting a plethora of diverse technologies for the sake of 
comprehensiveness. Extensibility of the approach to other technologies should still be assessed and, 
where possible, supported via appropriate guidelines. 

● The investigation in Chapter 3 has led us to assess and compare the commercial offerings of the big 
cloud players and European cloud providers. Such solutions, lack in providing quality guarantees in 
the final models and limited support, especially in European scale providers, for advanced AI 
application design (e.g., DN partitioning or NAS) and performance guarantees for the final application.  

● Lastly, this review has led to outline the AI-SPRINT goals and to the definition of D1.2 - Requirement 
analysis deliverable, where a detailed requirement analysis is provided. Moreover, the analysis 
performed in this deliverable has led to the development of an initial architecture for AI-SPRINT, 
supporting the different areas of interest of the project. This has led to the definition of deliverable 
D1.3 - Initial Architecture Design, which provides an overview of the general technical approach. 

 

In conclusion, AI and computing continua are diverse and heterogeneous areas where AI-SPRINT can lead to 
significant innovation by providing novel tools for building AI applications with quality guarantees. 
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