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I. EXPERIMENTAL SETUP

All experiments presented were performed using a
home-build confocal microscope (see Fig. S1) working at
room temperature. 410 nm laser light is coupled into a
single mode polarization maintaining optical fiber to ob-
tain Gaussian mode profile. A polarizing beam splitter
(PBS) ensures only one linear polarization is incident on
the sample. Combined with the λ/2-plate right in front of
the objective lens, this allows measurements dependent
on excitation polarization. The fluorescence light is col-
lected via the same objective lens, split at a dichroic mir-
ror (Wavelengths shorter than 525 nm are reflected while
longer wavelengths pass through. This roughly splits the
spectrum of TR12 in two equal parts) and detected by
two single photon detectors which are based on the prin-
ciple of avalanche photo diodes (APDs). And additional
long pass (450 nm) is added to clear out the remaining
laser light before APD 1. The use of two APDS allows
for anti-bunching measurement of the fluorescence light.

FIG. S1. Schematic representations of the used home-built
confocal microscope.

Alternatively, the fluorescence can be deflected to a spec-
trometer. The collected light is focused through a 20µm
pinhole to ensure a high axial resolution and the confocal
nature of the setup.

II. COHERENT POPULATION TRAPPING

This section briefly introduces the basic theory of co-
herent population trapping (CPT) in a three-level sys-
tem. The considerations only cover what is needed for
the related manuscript. More extended analysis can be
found in [1–3], which are based on theoretical foundations
such as [4–6].

The observation of CPT, requires a three level system.
Its sates are labeled |Tx〉, |Ty〉 and |Tz〉 as in Fig. 1e.
The unperturbed Hamiltonian reads

H0 = ~ωx |Tx〉 〈Tx|+ ~ωy |Ty〉 〈Ty|+ ~ωz |Tz〉 〈Tz| , (S1)

were ~ωi is the energy for state |Ti〉. Let |Tz〉 be the
short-lived state while |Ty〉 and |Tz〉 are long-lived. If
both long-lived states are coupled to the short-lived state
via microwaves, this can be expressed as an additional
perturbation part in the Hamiltonian

H1 = −~
2

(
Ωpe

−iωpt |Tx〉 〈Tz|+ Ωce
−iωct |Ty〉 〈Tz|

)
+ H.c,

(S2)
where Ωp and Ωc are the two different Rabi frequencies
for the transition frequencies ωp = ωx−ωz and ωc = ωy−
ωz. The Schrödinger equation for the full Hamiltonian
H = H0 + H1 can be solved by applying a general ansatz
for the wave functions

|ψ(t)〉 = cx(t)e−iωxt |Tx〉+cy(t)e−iωyt |Ty〉+cz(t)e−iωzt |Tz〉 .
(S3)

The result is a simple set of differential equations for the
coefficient functions ci

ċx =
i

2
Ωpcz

ċy =
i

2
Ωccz

ċz =
i

2
(Ωpcx + Ωccy) .

(S4)
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It can be easily verified that (S5) is a solution to this
system of equations.

cx = cos(θ), cy = − sin(θ) and cz = 0 where

cos(θ) =
Ωc√

Ω2
c + Ω2

p

and sin(θ) =
Ωp√

Ω2
c + Ω2

p

.

(S5)

In other words, there is a dark state |ψD〉 =
cos(θ) · |Tx〉 − sin(θ) · |Ty〉, with no probability to
be in Tz or change to Tz although Tx and Ty are both
coupled to Tz via microwaves. The effect of population
being trapped in this dark-state is called coherent
population trapping.

The dark state, as superposition, inherits the long life-
time from Tx and Ty. Consequently, it has a rather nar-
row natural linewidth. In the experiment shown in Fig.
1f, this results in a broad resonance peak with linewidth
corresponding mostly to the lifetime of Tz with an addi-
tional fluorescence dip with linewidth corresponding to
the long lived states Tx and Ty. To complete the ar-
gument from the main-text (That the existence of this
additional dip confirms the existence of two long lived
states Tx and Ty rather than one long lived state Tz),
one must realize, that this effect would not occur if the
situation was reversed. If the positive contrast in Fig 1.d
would result from a long-lived state Tz being coupled to
one of the short-lived states Tx or Ty, no such dark state
could be formed, as any superposition making all deriva-
tives to zero, would involve at least one short lived state.
This superposition would therefore have short lifetime as
well and would not allow for any fluorescence quenching
with narrow linewidth. The existence of the narrow Flu-
orescence dip within the broader peak in Fig. 1f therefore
indeed confirms the existence of two long lived states Tx
and Ty.

III. STEADY STATE SOLUTION

The dynamics in the unperturbed system is simulated
using the matrix equation

ρ̇ = Mρ (S6)

with the vector of states
ρ = (ρg(S0), ρe(S1), ρx, ρy, ρz)tr and a Matrix

M =


−P Γ ΓX ΓY ΓZ

P −Γ− γx − γy − γz 0 0 0
0 γx −ΓX 0 0
0 γy 0 −ΓY 0
0 γz 0 0 −ΓZ


(S7)

defined by the transition rates within the electronic level
structure depicted in Fig. 1e. When combining this
matrix equation with ρ̇ = 0 (which equals finding the

eigenvector of matrix M to the eigenvalue EW = 0 (con-
servation of population)), the steady state solution can
be calculated. As the fluorescence is generated from the
transition S1 → S0, the fluorescence intensity is directly
proportional to the population of the excited state ρe(S1).

IV. RABI OSCILLATION

In order to simulate the fluorescence during a Rabi
oscillation, the equations in S7 are modified to include
the respective off-diagonal elements needed. Assuming
the coherent driving to take place between the states Tz
and Tx, the result reads

ρ̇g = −P · ρg + Γ · ρe + Γx · ρx + Γy · ρy + Γz · ρz
ρ̇e = P · ρg − (Γ + γx + γy + γz) · ρe

ρ̇x = γx · ρe − Γx · ρx +
iΩ

2
(σzx − σxz)

ρ̇y = γy · ρe − Γy · ρy

ρ̇z = γz · ρe − Γz · ρz +
iΩ

2
(σxz − σzx)

σ̇xz =
iΩ

2
(ρz − ρx)− σxz

(
Γx

2
+

Γz

2

)
σ̇zx =

iΩ

2
(ρx − ρz)− σzx

(
Γx

2
+

Γz

2

)
.

(S8)

For the simulation in Fig. 2c, the system is initialized
in the steady state at first using equation (S6) and then
evolved with the set of linear differential equations (S8).
As the the fluorescence measurement does not take place
instantaneously, the system further evolves during this
measurement. This is taken into account in the simula-
tion by also further evolving the system for the readout
time without Rabi oscillation(σxz = σzx = 0 in equation
(S8)) and averaging the brightness over this interval.

V. NV CENTER AS REFERENCE FOR
MAGNETIC MAPS

One major problem of magnetic maps as given in Fig.
2d, is the lack of any reference. While it is obvious that
changing the magnet position does change the magnetic
field strength and orientation, the exact values can not be
read out directly. Also simulating this orientation would
not provide a proper solution, as the magnet was cen-
tered above the sample rather coarsely which very much
reduces the precision of this approach. Instead the pro-
cess of taking magnetic maps is repeated for NV centers
which are known to have their orientation for z aligned
with [111] in diamond. In a magnetic map for NV center,
this orientation will appear as single bright spot serving
as clear reference. When marking the position of this
spot in a magnetic map for a TR12 center, a precise ref-
erence is given, which reveals the z-orientation of TR12
metastable triplet to be oriented along [111] in diamond
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FIG. S2. (a) Measured magnetic map for TR12 center with marked NV z-orientation [111] in diamond. (b) Measured magnetic
map for NV center used as a reference for orientation of the magnetic field. (c) Graphic display of the tetrahedron, to illustrate
diamond lattice along [111] revealing a threefold symmetry. After rotation by 120◦ the tetrahedron merges with itself.

as for NV (see Fig. S2a,b) with a maximum deviation of
about 5◦.

VI. SIMULATING MAGNETIC MAPS AND
ORIENTATIONS

As the z-orientation of TR12 metastable triplet is
known to be oriented along [111] in diamond, propos-
ing the existence of twelve different orientations is rather
straight forward. In diamond lattice there are four dis-
tinct orientations for [111] which automatically transfers
to four different z-orientations. Imaging the diamond lat-
tice along [111] (See Fig. S2c) a threefold symmetry for
rotations around z by 120 ◦ becomes obvious. There-
fore there are three possible orientations for x and y
sharing the same z-orientation. This results in twelve
inequivalent orientations which are intuitively sorted as
four triples.

In order to simulate magnetic maps, the magnetic field
in the plane of interest below the magnet is simulated at
first. Therefore the permanent magnet is approximated
as a cube consisting of uniformly distributed magnetic
dipoles. This simulated magnet is then moved virtually
above the sample as in the measurement and the result-
ing magnetic field is calculated at the centers position.
As TR12 centers can be oriented differently, the orienta-
tion of the magnetic field in the local frame of the cen-
ter is derived by simple 3d rotations. To simulated the
changes in brightness, the effect of this magnetic field on
the metastable triplet state is determined.

Without any magnetic field applied, the unperturbed
Hamiltonian of the triplet state reads

H0 = D(S2
z − S(S + 1)/3) + E(S2

x − S2
y) (S9)

with zero-field splitting parameters D and E and the Spin
matrices Sx, Sy and Sz for a spin 1 (S=1) system. This
Hamiltonian has three eigenvectors |Tz〉 = (0, 1, 0)tr,
|Tx〉 = (−1, 0, 1)tr and |Ty〉 = (1, 0, 1)tr with eigenvalues
EWz = −2D/3, EWx = D/3 − E and EWy = D/3 + E.

By defining EWi = ~ωi and expressing the Hamiltonian
by its eigenvectors, the form in equation (S1) is obtained.

When a static magnetic field is applied in addition,
the system Hamiltonian consists of Zero field splitting
part (equation (S9)) and Zeeman interaction part H1 =
gµBS ·B. The total Hamiltonian H = H0+H1 then reads

H =D(S2
z − S(S + 1)/3)

+ E(S2
x − S2

y) + gµBS ·B,
(S10)

with electron g-factor g = 2 and Bohr magneton µB .
This Hamiltonian again provides three eigenvectors |ϕi〉
which now depend on the magnetic field B. These new
eigenvectors can be expressed as linear combinations
of the eigenvectors |Ti〉 resulting from the unperturbed
Hamiltonian from equation (S9)

|ϕi〉 = αi · |Tx〉+ βi · |Ty〉+ ζi · |Tz〉 , (S11)

with mixing coefficients αi, βi and ζi.
To further proceed the transitions between the ground

state - excited state doublet and the unperturbed
metastable triplet have to be addressed first. The ex-
act interaction Hamiltonian responsible for the transition
from the excited state into the metastable triplet HeT

int

and out of the metastable triplet into the ground state

HTg
int are unknown. However, the transition rates out of

the metastable Triplet Γi = | 〈g|HTg
int |Ti〉 |2 are directly

measured and the transition rates into the metastable
Triplet γi = | 〈e|HeT

int |Ti〉 |2 are calculated in the main
text. By assuming that all cross terms average to zero

(〈g|HTg
int |Ti〉 〈Tj |H

Tg
int |g〉 = 〈e|HeT

int |Ti〉 〈Tj |HeT
int |e〉 = 0

for i 6= j), the new transition rates into (γ′i) and out of
(Γ′i) the metastable triplet can be calculated to be

γ′i =
∣∣〈e|HeT

int |ϕi〉
∣∣2

=
∣∣〈e|HeT

int |αi · Tx〉
∣∣2

+
∣∣〈e|HeT

int |βi · Ty〉
∣∣2

+
∣∣〈e|HeT

int |ζi · Tz〉
∣∣2

=|αi|2 · γx + |βi|2 · γy + |ζi|2 · γz

(S12)
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and

Γ′i =
∣∣∣〈g|HTg

int |ϕi〉
∣∣∣2

=
∣∣∣〈g|HTg

int |αi · Tx〉
∣∣∣2

+
∣∣∣〈g|HTg

int |βi · Ty〉
∣∣∣2

+
∣∣∣〈g|HTg

int |ζi · Tz〉
∣∣∣2

=|αi|2 · Γx + |βi|2 · Γy + |ζi|2 · Γz .

(S13)

Using these new transition rates, which inherit their mag-
netic field dependence from the states |ϕi〉, the steady
state solution can be calculated for every magnetic field
B.

As the reference given by the NV center fixes only
the z-orientation of TR12 triplet, the orientation of x-
and y-axis still have to be obtained. This is achieved
by rotating x- and y-axis around the z-orientation, al-
ways forming an orthogonal system. The resulting mag-
netic map is then graphically fitted to the real measure-
ment via this rotational angle. With a clear match the
y-orientation is found to lie in the plane formed by two
sigma bonds also fixing x-orientation. The respective lo-
cal frames for the remaining eleven orientations are ob-
tained by the described rotations by 120◦ and by reorient-
ing the z-orientation along another sigma bond ([111] in
Diamond). Using these local frames leads to the twelve
simulated magnetic maps in Fig. S3. For comparison,
examples for all measured maps are listed in the same

figure below.
From the fact that simulations and measurements

match almost perfectly, it can be concluded that the pro-
posed electronic structure (Fig. 1f) is indeed an accurate
description for TR12. As the example of the magnetic
map for a NV center (Fig S2b) shows, a different elec-
tronic structure would lead to a completely different mag-
netic map. This especially confirms the spin multiplicity
of the metastable triplet.

VII. SIMULATING ODMR CONTRAST

As the measurement of magnetic fields is one of TR12’s
strong sides, it seems reasonable to dig further into the
dependence of ODMR resonances on the magnetic field.

To simulate the ODMR contrast of TR12 centers,
start from equation (S7) with updated transition coef-
ficients γi → γ′i and Γi → Γ′i depending on the mag-
netic field B according to the previous section. The ac-
tual ODMR measurement can now be taken into account
by adding additional transitions rates M between two of
the triplet sub-levels |ϕi〉 and |ϕj〉 (equation (S14) for
{i, j} = {1, 2}). Driving this transition is achieved by
applying a microwave with frequency ω fitting the en-
ergy difference between |ϕi〉 and |ϕj〉. The result is the
same as in section IV. However, section IV was focused
on the dynamics of the system while now the only goal
is to calculate the resulting steady state and its excited
state population respectively. Therefore the dynamics of
Rabi oscillation in equation (S8) is replaced by a simple
transition rate.

M =


−P Γ Γ′1 Γ′2 Γ′3
P −Γ− γ′1 − γ′2 − γ′3 0 0 0
0 γ′1 −Γ′1 −M M 0
0 γ′2 M −Γ′2 −M 0
0 γ′3 0 0 −Γ′3

 (S14)

As in section III, finding the eigenvector of this matrix
to the eigenvalue EW = 0 (conservation of population)
equals finding the steady state solution. The population
of the excited state ρe proportional to the fluorescence in-
tensity will now be a function of the microwave intensity
(ρe=ρe(M)) which saturates for sufficiently large values
of M . The ODMR contrast of TR12 centers η which we
define as

η =
ρe(M)− ρe(M = 0)

ρe(M = 0)
(S15)

clearly saturates along with ρe(M). This value of satu-
ration is referred to as ODMR contrast in the main text
and supplementary.

In order to backwards calculate the magnetic field
strength from ODMR measurements, the frequency of

two transitions is required [7]. The effective ODMR con-
trast of a center for measuring magnetic fields is there-
fore given by its second strongest ODMR transition as
displayed in Fig. 4 in the main text. The exact orienta-
tion of the magnetic field can not be derived from ODMR
measurements on a single center, only a unique combina-
tion ∆ = D cos(2θ) + 2E cos(2φ) sin2(θ) [7]. However, by
combining the information of differently oriented centers,
it is a matter of pure trigonometry to receive the desired
vector. Full vector magnetometry using TR12 centers,
therefore requires 4 different ODMR frequencies belong-
ing to two differently oriented centers. If one wants to
give a measure, how good TR12 can be used for full vec-
tor magnetometry, it therefore seams reasonable to name
the lowest contrast of these 4 ODMR frequencies. For a
given magnetic field orientation one should therefor sim-
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ulated the ODMR contrast of all three transitions for all
twelve orientations of TR12. The contrast of each orien-
tation is defined as the second highest ODMR contrast
of all its transition. The ODMR contrast for Bulk mea-

surements is then defined equal to the contrast of the
orientation with second highest contrast. This procedure
results in plots such as Fig. 5 a,b in the main text. For
further illustration 2D plots are added in Fig. S4.
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FIG. S3. Simulated (top) and measured (below) magnetic maps for TR12. The axes display the magnet position in millimeters
while the brightness is displayed by coloring. The two missing maps have not been observed so far.
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FIG. S4. ODMR contrast of TR12 Bulk samples with (column 2) and without (column 1) cut-off depending on magnetic field
orientation φ (x-axis) and θ (y-axis). Column 3 show the bulk contrast for NV centers. For line 1 (30 mT) the cut-off was set
at 15 %. For line 2 (100 mT) and line 3 (1 T) it was set to 5 %. For TR12 the ODMR contrast was calculated as described in
section VII. For NV the picture displays simply the highest contrast of all NV orientations available.


