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Abstract—The increase of social media use in recent years has
shown potential also for the identification of specific trends in
the data that could be used to locate earthquakes. In this work,
we implemented a pipeline that uses Twitter data to identify
locations of earthquakes and use the information to trigger EO
data analysis. We tested the pipeline for almost a year over Japan,
an area where earthquake events are frequent, as well as the
use of social media in the population. Here we show the results
and discuss the potential development of such procedures. In the
future, considering the rapid development and the increase of
satellite constellations aimed at global coverage with revisit short
revisit times, algorithms of this kind could be used to prioritize
satellite acquisitions for the detection of the areas mostly affected
by earthquake damages.

Index Terms—Social Media, Earth Observation, Location Iden-
tification, Earthquake, Natural Disaster Management

I. INTRODUCTION

EARTHQUAKES are major natural hazards, which cause
every year severe damage and threat lives. The estimation

of the earthquake’s epicenter is usually achieved through the
analysis of data recorded in real time at several seismic
stations. This information, which can be retrieved in almost
real time, is very important to define the area hit by potential
damages and for planning a response in terms of disaster
management. The accuracy on the epicentre’s location de-
pends mainly on the seismic data quality, as well as on
the network density and geometry, which may differ across
different areas of the world. Due to the recent diffusion of
mobile devices (smartphones, tablets, etc.) and easier access
to the internet, peaks in the rate of connections have been
observed towards thematic websites and/or apps after an
earthquake, as well as the use of social media. Recently,
[1] reported that crowdsourced detection of seismic activity
provides reliable locations of earthquakes, in many cases faster
than established seismological protocols. Moreover, locations
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provided by “humans as sensors” have the advantage to
deliver information on areas where earthquake risk is higher.
Earth Observation (EO) data have been increasingly used to
identify and map permanent changes of the Earth’s surface
due to earthquakes and other geo-hazards. In this context,
satellite SAR data can provide valuable information day and
night and in any weather conditions. The recent developments
towards higher spatial and temporal sampling allows obtaining
quantitative measurements over areas hit by earthquakes with
an unprecedented level of detail.

The presented work has derived as an outcome of the
synergy between two completed EU Horizon 2020 projects
in the “EO Big Data Shift” topic1, namely EOPEN2, which
delivered an open, interoperable platform for unified access
and analysis of Earth Observation data, and BETTER3, which
provided an integrated Big Data intermediate service layer
devoted to harnessing the potential of EO data. In this work,
we implemented a pipeline that uses Twitter data to identify
locations of earthquakes (based on EOPEN’s Social Media
Crawlers) and use this information to trigger EO data analysis
(based on BETTER’s Data Pipelines), in particular SAR data
acquired by the ESA Copernicus Sentinel-1 [2].

The article is organized as follows. In Section II we discuss
related publications about the analysis of Twitter and EO data,
their combination, and their contribution to natural disaster
management. In Section III we present the two parts of the
proposed pipeline: the collection and automatic geo-tagging
of social media data and then the triggering of EO analysis.
Section IV follows with a summary of the results of the
proposed pipeline and discusses limitations and future work.

II. RELATED WORK

Since the early years of the wide adoption of the Twitter
social media platform, researchers have identified its value in
the domain of natural disaster management, which includes
the detection and damage estimation of earthquake incidents.
In 2010, [3] suggested Twitter as a social sensor for real-
time detection of events, such as earthquakes. The authors
produced a probabilistic spatiotemporal model, which runs on
tweets classified as relevant to a target event and uses Kalman
and particle filters to discover the center and the trajectory
of an earthquake’s location. The authors of [4] managed to

1https://cordis.europa.eu/programme/id/H2020 EO-2-2017
2https://eopen-project.eu/
3https://www.ec-better.eu/
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correlate the peaks in tweet-frequency time series, constructed
from tweets containing the word “earthquake”, with the origin
times of widely felt events, but stated that no accurate location
or magnitude can be assigned based solely on tweets. Other
works assessed the potential use of geolocated data streaming
from Twitter for earthquake detection and mapping the felt
area [5] and investigated geocoded tweets to find temporal
patterns of Twitter response as a function of distance from the
earthquake epicenter [6]. More recently, [7] proposed an online
method for detecting unusual bursts in discrete-time signals
extracted from Twitter, which only requires a one-off semi-
supervised initialization and can be scaled to track multiple
signals in a robust manner.

On the other hand, [8] applied Named Entity Recognition
(NER) on Twitter text and for each labeled location they used
a fuzzy string matching procedure in order to map the location
to its corresponding municipality. Then, they exploited these
locations to provide spatial reports in the Mercalli scale, a
qualitative measure to express the perceived intensity of an
earthquake in terms of damages. Similarly to our approach, [9]
combined language models based on NER techniques and a
Bidirectional Long Short-Term Memory (biLSTM) network to
geoparse specific locations in tweets and used them to monitor
natural disasters.

Another valuable source of information in disaster manage-
ment can derive from remote sensing and the use of satellite
images. [10] analyzed and discussed technical methods and
applications of optical technology for Earth Observation in
monitoring geological disasters, such as barrier lake breaches,
road damage, landslides, debris flows and numerous other
secondary disasters. Moreover, [11] presented how the analysis
of satellite images assisted the planning of disaster counter-
measures and the determination of the destruction extent over
large areas that could not be viewed from the ground or by
aircraft, with a focus on the 2011 Great East Japan Earthquake.

Regarding the combination of social media and EO data,
[12] described a two-step methodology where the real-time
monitoring of Twitter data prioritizes the collection of com-
mercial remote-sensing images, which are subsequently fused
with social media images for assessing the damage of trans-
portation infrastructure. Furthermore, [13] suggested that the
increased temporal resolution of crowdsourced data can par-
tially compensate for the limitations of satellite data and thus
presented a geostatistical analysis of combined satellite and
Twitter data for the delineation of flood extent. More recently,
social media data (Twitter text and images) have been fused
with Sentinel-1 images on the snow depth estimation problem
[14]. The use of relevant text and images that contain the
concept “snow” has shown that it can improve the estimated
snow depth, exploiting the massive ground observations from
in-situ social media posts.

In contrast to the above methodologies, our work transfers
the combination of satellite and social media data towards
the detection of earthquake damages. In addition, our solution
applies deep learning to extract the locations mentioned in the
tweets text, instead of using Twitter’s limited geoinformation,
and uses openly available remote-sensing data, rather than
commercial images.

III. PROPOSED PIPELINE

A. Collection and geotagging of social media data

Inspired by the various works that exploit social media data
to detect earthquakes, the first part of the proposed pipeline
focuses on the acquisition of relevant social media posts and
their automatic geotagging in order to identify the locations of
earthquakes. Among different social media platforms, Twitter
has been selected, since it has been proven to be very popular
in cases of natural disasters and it also provides a multitude
of API endpoints for easily retrieving public tweets.

In detail, Twitter’s Standard Streaming API4 provides access
to the public stream of Twitter data and tweets can be retrieved
in real time. In order to collect posts that are related to
earthquakes in Japan, which is our use case scenario in this
work, the Track request parameter has been used, i.e. a list
of terms that determine what tweets will be delivered on the
stream. Specifically, we have straightforwardly selected the
terms “earthquake” and “Japan”, thus only tweets whose text
contained both words have been retrieved. By establishing and
maintaining a continuous connection to the API for a whole
year, we have managed to collect more than 60 thousand
tweets from March 1, 2020 to February 28, 2021 that refer
to earthquake incidents in Japan (Table I).

Since the scope of this collection is to detect places of
seismic activity, it is evident that the retrieved tweets have to
be geotagged, i.e. to carry geographic information. Although
Twitter can provide such information, we do not rely on it for
two reasons: (i) since a policy change in 2019 [15], only a very
low percentage of tweets are geotagged, which is also the case
for our collection, as seen in Table I (just 1.2%), and (ii) there
is reason to suspect that the provided geoinformation does not
correspond to the users’ GPS coordinates anyway [15].

To this end, we perform an automatic geotagging methodol-
ogy, presented and evaluated in [16], that transforms English
tweets into georeferenced data by using their textual content
to detect mentioned locations. After proper preprocessing, we
employ Named Entity Recognition (NER) techniques in the
form of a pre-trained Bidirectional Long Short-Term Memory
(biLSTM)-based model [17] to retrieve location-type mentions
in the tweet’s text. Single-word or multi-word terms that are
recognized as places are then associated to a geographical
point (pair of coordinates) through a query to OpenStreetMap
(OSM) API5. Applying this methodology to the collection,
we have achieved to automatically geotag circa 65% of
tweets, in compliance with Twitter’s Developer Agreement
and Policy6, ensuring that the extracted locations are solely
associated with incidents and never with physical persons. The
collected dataset (tweet IDs) and their derived geolocations
have been publicly released to an online repository7, again in
full compliance with the aforementioned policy.

The next step is to use this real-time collection of geo-
tagged earthquake-related tweets to detect earthquake inci-
dents. Based on the assumption that the occurrence of a

4https://developer.twitter.com/en/docs/twitter-api/v1/tweets/filter-realtime/
5https://wiki.openstreetmap.org/wiki/API
6https://developer.twitter.com/en/developer-terms/agreement-and-policy
7https://github.com/MKLab-ITI/geotagged-tweets-japan-eq
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TABLE I
NUMBER OF COLLECTED TWEETS FOR A ONE-YEAR-LONG PERIOD AND
PERCENTAGES OF PROVIDED VERSUS EXTRACTED GEOINFORMATION.

Collected Geoinformation by Twitter Geoinformation extracted

61,563 787 (1.28%) 39,695 (64.48%)

Fig. 1. Daily fluctuation of tweets from March 1, 2020 to February 28, 2021.

real event will lead to higher activity on social media, we
expect that the daily consumption of tweets will increase
on a day when an earthquake happens. To prove this, we
present the daily fluctuation of collected tweets during the
examined year and attempt to associate peaks of the chart
with specific earthquakes. In Fig. 1 a line chart shows the
number of collected tweets per day and four main peaks are
quite visible: (A) June 14, 2020, (B) September 12, 2020, (C)
October 1, 2020, and (D) February 14, 2021. Although the
dates of immense Twitter activity have been detected, they still
have to be linked to locations. In order to visualize a spatial
distribution of this activity, we have prepared heat maps that
allow specific indication of which areas are most mentioned
in the collected tweets (red color), based on the extracted
coordinates. A separate heat map has been generated for each
date (all focused to the bounding box of Japan, which is the
use case of this work) and they can be seen in Fig. 2.

Viewing the most mentioned locations aids the identification
of the exact earthquake that happened on each date and all
four are given below. In order to validate that these results
are connected to real incidents, relevant links from a reliable
source, namely the Global Earthquake Monitor of the Volcano
Discovery website8, are also provided as footnotes. It should
be noted here that in most cases the activity on Twitter raises
the day after the incident. In detail, the identified earthquakes
are: (a) in Ryuku Islands on June 13, 20209, (b) in the Near
East Coast of Honshu on September 12, 202010, (c) in the
northeast of Sendai on September 30, 202011, and (d) in
Fukushima on February 13, 202112.

Since we have proven that earthquakes can be detected with
Twitter data, the next step is to feed these data into the second
part of the proposed pipeline, i.e. to trigger EO data analysis.

8https://www.volcanodiscovery.com/earthquake-monitor.html
9https://www.volcanodiscovery.com/earthquakes/2020/06/13/15h51/

magnitude6-Japan-quake.html
10https://www.volcanodiscovery.com/earthquakes/5907629/2020-09-12/

02h44/magnitude6-Japan.html
11https://www.volcanodiscovery.com/earthquakes/quake-info/5928378/

mag4quake-Sep-30-2020-Near-East-Coast-of-Honshu-Japan.html
12https://www.volcanodiscovery.com/earthquakes/6097807/2021-02-13/

14h07/magnitude7-Japan.html

Fig. 2. Heat maps with most mentioned locations for each date of high
Twitter activity: (a) June 14, 2020 - Ryuku Islands, (b) September 12, 2020
- Honshu & Tokyo, (c) October 1, 2020 - Sendai Airport, (d) February 14,
2021 - Fukushima

B. Triggering EO analysis

As mentioned in Section I, the framework for triggering
the EO data analysis was developed in the H2020 project
BETTER, whose aim was to deliver a fully integrated Big Data
intermediate service layer. This layer is dedicated to delivering
customized solutions denominated “Data Pipelines” for large
volume EO and non-EO datasets access, retrieval, processing,
analysis and visualisation. The collaborative work environment
(Ellip Solutions13) for assembling, testing, and validating these
Data Pipelines is a Cloud-based Platform-as-a-Service (PaaS),
to access flexible and scalable data processing resources.

The Data Pipeline used for this EO analysis is set such that
the whole procedure is automatic from earthquake detection
and selection of Sentinel-1 images to the production of EO
products. Thus, the end-user can focus on the analysis and
exploitation of said EO products. The overall flow and archi-
tecture can be divided into two sequential pipelines as seen
in Fig. 3. The Data Pipeline 1 expands the work performed
in [4] by using the data geotagged as described in Section
III-A to detect earthquake events, associating the respective
geo-localization and timestamps. This pipeline is time-driven,
i.e. it is set to be triggered at predetermined time intervals. The
Data Pipelines 2.1 and 2.2 focus on generating EO products for
the events detected in the previous pipeline. These pipelines

13https://ellip.terradue.com
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Fig. 3. Sequential Data Pipeline architecture.

are considered event-driven due to the fact that they are only
triggered when an earthquake incident is detected. It is worth
noting that only events (groups of tweets), and not single
tweets can trigger these pipelines, since millions of Twitter
users post in a daily basis and this would lead to a new trigger
every second and to multiple triggers for the same location.

In detail, the Data Pipeline 1 implements an event detector
that is triggered by a high frequency increase in the collected
tweets that are geotagged within Japan (the country where
a detected location belongs to is checked with OSM API).
The “Short-Time-Average through Long-Time-Average trig-
ger” (STA/LTA) algorithm is used. This algorithm continu-
ously keeps track of the amplitude of tweets, where the STA is
sensitive to current events, while the LTA provides information
about the temporal amplitude, thus being able to filter out
noise. Similar to [4], due to the specificity of the tweets
studied, additional parameters are added to the ratio, required
to account for low/null quantity of tweets. The characteristic
function used during this study can be defined as:

CF(t) =
STA

mLTA + b
(1)

Where the STA and LTA windows chosen were 1 hour
and 10 days, respectively. Additionally, in order to make
the algorithm more conservative, i.e. fewer false positive
detections, the values chosen for m and b are 2 and 1.

The algorithm considers a “detected event” when, during a
continuous time window, the ratio value exceeds the pre-set
value of 1. During this time window all the tweet locations are
registered. In Fig. 4, we can see that 3 out of the 4 earthquakes,
initially considered in Section III-A, were indeed detected,
while the earthquake on September 30, 2020 was not detected
due to the fact that the STA/LTA ratio was approximately 0.9,
indicating that the algorithm might be over-conservative with
the current parameters. However, in Fig. 4, we can also see
a detected event that was not clearly identified by the daily
count of tweets and matches with a magnitude 5.2 earthquake
southeast of Chitose, Hokkaido, on January 27, 202114.

The output of the Data Pipeline 1 is two different heat
maps, which can be used to visually check the geo-distribution
of tweets for each event similar to Fig. 2, and a CSV file
containing the locations and timestamps of the detected events.
This spatiotemporal information is then used to search for two
Sentinel-1 SAR images that cover the location, one before and
one after the event. Once the image pairs are found, the Data
Pipelines 2.1 and 2.2 are automatically triggered.

14https://www.volcanodiscovery.com/earthquakes/quake-info/6075056/
mag5quake-Jan-27-2021-Hokkaido-Japan-Region.html

Fig. 4. The STA/LTA ratio of collected tweets from May 1, 2020 to March
1, 2021.

The Data Pipeline 2.1 applies the DInSAR technique to
generate interferograms from Sentinel-1 SLC pairs. The in-
terferogram, a map of the difference in the phase between
said images, largely reflects the surface deformation of the
area illuminated by the radar during the period between the
two acquisition dates [18]. With this technique, centimetre
displacements can be measured; hence, it is one of the
main EO approaches to monitor seismic deformation. This
pipeline also computes the interferometric coherence (phase
correlation, i.e. quality of the differential phase measurement)
of the two SAR images, which is related to phase noise. It is
important to assess the interferogram quality and can also be
used to detect big changes in the surface morphology (loss of
coherence) caused for example by landslides.

The Data Pipeline 2.2 computes the Beta Nought (β0)
radar brightness coefficient change from Sentinel-1 SLC pairs.
Computed as natural logarithm of the ratio of β0 (Log-Ratio)
between the two acquisition dates, these changes can be used
to detect landslides based on the assumption that a landslide
episode alters the local land cover and some of its properties
(roughness and/or the complex dielectric value) affecting the
radar amplitude [19].

IV. SUMMARY AND CONCLUSIONS

The pipeline produced several differential interferograms
and coherence maps for all Sentinel-1 pairs acquired timely
across the earthquakes over the geographic regions identified.
Considering the relatively large depths (>30 km) of the four
earthquakes of this pilot test during the period of investigation,
no permanent surface deformation or damages were detected
in the EO results. Nevertheless, the pipeline provided auto-
matically a full set of results over the areas of interest without
any human intervention, allowing the end user to focus only
on the exploitation of the results rather than on EO dataset
identification, collection, processing, and interpretation. This
is extremely useful in a scenario where a large area needs to
be permanently monitored due to high earthquake risk.

Fig. 5 shows the visualization of the results (e.g. differential
interferograms) that can be initially explored and evaluated
online, as well as eventually downloaded for further analyses.
One of the limitations noticed at this stage is that the pipeline
has produced a very large number of results in areas that
are also far from the epicentre’s region. This is because after
the initial identification of an event (trigger of the processing
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Fig. 5. Pipeline results obtained for the event occurred on February 14,
2021. (left) Overview of the differential interferograms produced. No evidence
of widespread co-seismic surface deformation is identified. (right) Example
of thematic map (surface deformation) generated by downloading a specific
interferogram of interest covering the city of Tokyo.

pipeline) tweets continue to flow for several days afterwards
and in broader regions. Another possible limitation is that high
activity can relate to a past event (e.g. a disaster anniversary),
while falsely detected locations can lead to false triggers. Thus,
further tuning of the triggering procedure is needed to avoid an
excess of information in areas not affected by the actual event.
A suggested solution is to consider a multi-step location and
refinement of the area of interest, based initially on social data
and then adapted by considering the seismic data, i.e. similar
to what has been proposed by [1].

Other interesting research directions would be the develop-
ment of a NER model for Japanese, so as to geotag tweets in
the predominant language of the country, and the investigation
of how the accuracy of crowdsourced information changes
with regards to the proximity to the time that an earthquake
incident happens, e.g. during the seismic activity, some min-
utes/hours after the event, etc., also taking into consideration
the possibility of fake news being spread on social media.

In conclusion, our results show that the information pro-
vided by “humans as sensors”, through social media such as
Twitter, can be used to trigger specific EO processing. In the
future, considering the rapid development and the increase
of satellite constellations aimed at global coverage with short
revisit times, algorithms of this kind could be used to prioritize
satellite acquisitions over the areas mostly affected by a natural
disaster, as well as to produce systematically and rapidly
thematic maps of help for disaster risk management.
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