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Abstract—In this extended abstract, we propose a theoretical
framework for knowledge transfer between domains, e.g. from
simulation to the real world. The framework is based on the
concept of input-output abstraction, whose goal is to minimize
the distance between domains while keeping enough information
to solve the task. The value of this framework is twofold. First, it
provides the theoretical background for justifying the empirical
finding of prior work that intermediate representations are useful
for action. Second, it suggests a practical algorithm for zero-shot
simulation to reality transfer. We demonstrate this framework on
two challenging tasks: drone racing and high-speed navigation
in the wild. A video demonstrating the applications can be found
at: https://youtu.be/uTWcC6IBsE4.

I. THEORETICAL DERIVATION

Our approach to bridging the gap between simulation and
reality is to leverage abstraction [1]. Rather than operating
on raw sensory input, we propose to learn a sensorimotor
policy operating on intermediate representation produced by
a perception module [2]. This intermediate representations is
more consistent across simulation and reality than raw visual
input, but still has the information to solve the task.

We now formally show that training a network on abstrac-
tions of sensory input reduces the gap between simulation and
reality. Let M(z | s), L(z | s) : S→ O denote the observation
models in the real world and in simulation, respectively. Such
models describe how a raw sensor measurement z senses
a state s. We further define πr = Eor∼M(s)[π(or[k])] and
πs = Eos∼L(s)[π(os[k])] as the realizations of the policy π in
the real world and in simulation. The following lemma shows
that, disregarding actuation differences, the distance between
the observation models upper-bounds the gap in performance
in simulation and reality.

Lemma 1. For a Lipschitz-continuous policy π the simulation-
to-reality gap J(πr)− J(πs) is upper-bounded by

J(πr)− J(πs) ≤ Cπs
KEρ(πr)

[
DW (M,L)

]
, (1)

where K denotes the Lipschitz constant.

Proof. The lemma follows directly from the fact that

DW (πr, πs) = inf
γ∈Π(or,os)

E(or,os)[dp(πr, πs)]

≤ K inf
γ∈Π(or,os)

E(or,os)[do(or,os)]

= K ·DW (M,L),
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Fig. 1. We present a general approach to for zero-shot transfer of sensorimotor
policies from simulation (left) to real world (right). To account for the large
differences in appearance and physics, we propose to abstract the input and
output of the policy to minimize the distance between domains.

where do and dp are distances in observation and action space,
respectively.

We now consider the effect of abstraction of the input
observations. Let f be a mapping of the observations such
that

DW (f(M), f(L)) ≤ DW (M,L). (2)

The mapping f is task-dependent and is generally designed –
with domain knowledge – to contain sufficient information to
solve the task while being invariant to nuisance factors. In
our case, we use feature tracks as an abstraction of camera
frames. The feature tracks are provided by a visual-inertial
odometry (VIO) system. In contrast to camera frames, feature
tracks primarily depend on scene geometry, rather than surface
appearance. We also make inertial measurements independent
of environmental conditions, such as temperature and pressure,
by integration and de-biasing. As such, our input representa-
tions fulfill the requirements of Eq. (2).

As the following lemma shows, training on such representa-
tions reduces the gap between task performance in simulation
and the real world.

Lemma 2. A policy that acts on an abstract representation
of the observations πf : f(O) → U has a lower simulation-
to-reality gap than a policy πo : O → U that acts on raw
observations.

Proof. The lemma follows directly from (1) and (2).

The main question that remains open is how to find such
abstraction functions. We propose two ways to do it: either
learning them end-to-end with the task or pre-defining them
using domain knowledge.

II. APPLICATIONS

We apply the proposed framework to two tasks: drone
racing, where the abstraction function is learned jointly with
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Fig. 2. The perception block of our system, represented by a convolutional
neural network (CNN), is trained only with non-photorealistic simulation data.
Due to the abundance of such data, generated with domain randomization, the
trained CNN can be deployed on a physical quadrotor without any finetuning.

the sensorimotor policy, and high-speed navigation in the wild,
where the abstraction is pre-defined by the user. In both cases,
we use a convolutional neural network to compute a receding-
horizon trajectory, which we track with a model-predictive
controller [3]. Training was done by imitation learning on a
specifically designed expert policy with access to privileged
information about the state of the drone and of the environ-
ment.

For the first demonstrator, we use as expert a model-
predictive controller tracking a time-optimal trajectory [4]
passing through all the gates. We train the abstraction function
together with the policy by using domain randomization [5].
Specifically, we randomize all the features which are unimpor-
tant for predictions, i.e. illumination, gate shape, floor texture,
and background. A sample of the training data generated by
this process can be observed in Fig. 2. The abundance of sim-
ulated data makes our system more robust than its counterpart
trained with real-world data to changes of illumination and
gate appearance [5]. However, domain randomization requires
strong simulation engineering and expensive trial and error in
the real world to define the randomization bounds.

As a second demonstrator, we train a policy to fly a
quadrotor at high speeds in a variety of environments with
complex obstacle geometry. Similarly to the previous drone
racing task, we train the policy exclusively in simulation.
However, in contrast to the previous demonstrator, we pre-
define the input abstraction function to minimize the distance
between simulation and real world. Specifically, we utilize a
stereo matching algorithm to provide depth images as input
to the policy. At training time, disparities are computed on
simulated stereo frames. In the physical world, the policy
receives as input depth computed from an Intel RealSense
D435i. We empirically show that this input representation is
rich enough to safely navigate through complex environments
and abstract enough to bridge simulation and reality. In
addition, by using a stereo matching algorithm on simulated
frames, we guarantees a strong similarity of the noise models
between simulated and real observations. This gives our policy
robustness against common perceptual artifacts in the real

Fig. 3. Autonomous flight in the wild: we train a policy exclusively in
simulation by leveraging abstractions of the inputs pre-defined by the user.

depth sensor. A qualitative example of flight in the wild
is shown in Figure 3. Instead of learning them end-to-end,
pre-defining abstractions favors sample efficiency, simplifies
training, and promotes generalization [2]. However, due to
human biases, the user-defined abstractions could potentially
be suboptimal to the downstream task.

III. DISCUSSION

We have shown the validity of the proposed framework for
transfer learning via abstraction on two challenging applica-
tions: drone racing to high-speed navigation in unstructured
environments. The framework theoretically motivates why
input/output abstractions are effective in transferring knowl-
edge between domains. The main limitation of the proposed
approach is that it can only account for the differences
between domains that can be eliminated by abstractions, e.g.
interactions with other (artificial or biological) agents. Such
effects might be too complex or computationally intensive
to simulate. In these cases, the sensorimotor policies won’t
be able to generalize zero-shot to the real world. To address
this limitation, the policy will need an online adaptation to
the environment and task. Doing so in the real world could
be challenging due to the lack of privileged information or
explicit reward signals but could be supported, for example,
by self-supervised learning [6].
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