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Abstract—Hyperspectral imaging is a trending technology in
recent years. The growing interest in this technology is due to
the richer information that spectral data carries compared to
classic RGB imaging. To study the potential of this technology
for Smart Viticulture, we have built a robotic platform equipped
with three hyperspectral cameras and other classical sensors used
in autonomous mobile robotics to collect data in an experimental
vineyard and at a commercial vineyard. This data is targeted to
grape bunches counting and volume estimation, thus computing
yield predictions. The ongoing experimentation aims to use
hyperspectral images to estimate the sugar and anthocyanin
grape concentration and detect leaves exposed to biotic/abiotic
stresses.

Index Terms—hyperspectral imaging, smart agriculture, viti-
culture, artificial intelligence, mobile robotics

I. INTRODUCTION

Digital technologies are promising tools to make agricul-
tural practices more efficient and to reach the 17 sustainability
goals of the United Nations by 2030 [1]. In the context of
viticulture, robots are used to automatize many tasks and
they can improve productivity by supporting the decision-
making process of farmers and agronomists. We can find many
examples of smart viticulture applications in the literature,
from counting bunches through Deep Neural Networks [2],
to automatic pruning with a robot [3].

In recent years, hyperspectral imaging is a new trending
topic just appeared in the Smart Agriculture literature [4].
Hyperspectral cameras capture light in many wavelengths
beyond the usual red, green, and blue ones. With hyperspectral
imaging, richer information can be captured from the scanned
object as the reflected radiation also depends on the physical
and chemical properties of the object itself. By sampling
both the spatial and spectral domains, hyperspectral cameras
produce the so-called data cubes. Data cubes are rich in
information not present in the common RGB images and can
be exploited to give agronomists quantitative evidence upon
which they can decide. Indeed, by measuring the physical and
chemical properties of plant organs, the use of hyperspectral
cameras can avoid costly, laborious, and destructive biological
and chemical analyses [5].

The hyperspectral imaging research field is still in its in-
fancy, but it has been foreseen as a breakthrough innovation for
the future [6]. For instance, authors of [7] used a hyperspectral
camera to estimate the berry soluble solids and anthocyanin

concentration of grapes. They mounted a line-scan hyperspec-
tral camera on a rover to scan entire vineyard rows. Then,
they segmented images by exploiting the spectral signatures
of grapes to differentiate them from the leaves. Finally, they
found a correlation between the chemical parameters and spec-
tral reflectance. Another application of hyperspectral imaging
is explained in [8] where the authors wanted to early detect
vineyard viral diseases using hyperspectral images and Deep
Learning. In that case, they used a snapshot camera mounted
on a static tripod to collect pictures of diseased leaves. Then,
they analyzed the images with Deep Learning algorithms to
discriminate between the spectral signatures of healthy and
diseased leaves.

Besides this interest in hyperspectral data, little if any public
dataset is available for research. For these reasons, we have
built a robotic platform equipped with different hyperspectral
cameras (and other sensors) to scan vineyard plants and
collect datasets aimed at estimating yield, bunch volume, sugar
and anthocyanin grape concentration, and to detect leaves
subjected to biotic/abiotic stresses.

II. HYPERSPECTRAL DATA COLLECTION PLATFORM

Even if our research focuses on hyperspectral sensors and
the analysis of the multidimensional data they generate, other
information is needed to extract value from spectral data
in a close range scenario, e.g., to reconstruct a large scale
representation by merging several close-range views. Thus, we
built a data collection platform based on a four-wheeled skid-
steering robot and a sensor suite mounted on it. The sensors
we adopted are three hyperspectral cameras (a Senop HSC-2
camera and two Ximea cameras), two LiDAR sensors (a 2D
Sick LMS100, and a 3D 64 planes Ouster OS-1), two RGB-
D cameras (Intel Realsense D435), a GPS receiver (Emlid
Reach M2), three IMUs (a 3DR Pixhawk Mini, and other two
IMUs embedded in the camera and LiDAR), and a tracking
vision system (Intel Realsense T265). The hyperspectral cam-
eras are used to estimate some plants parameters like grape
maturity and the presence of diseases. The LiDAR sensors
are employed with the Realsense D435 cameras to build a
tridimensional reconstruction of the rows. The GPS receiver,
the IMU sensors, and the Realsense T265 camera information
are fused to obtain an accurate robot localization. Since our
present goal is data collection, this robot has been teleoperated
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(a) Experimental vineyard (b) Commercial vineyard

Fig. 1: Robot platform in two different experimental settings.

along vineyard rows to collect rich multi-sensor datasets. In
particular, we have collected data at two different sites with
multiple purposes.

The first site is an experimental vineyard at the Università
Cattolica del Sacro Cuore di Piacenza. In this setting, we had
two rows of plants accounting for 25 plants in total. Plants
were in a controlled outdoor environment, planted in pots
and on a flat cement floor, as can be seen from Figure 1
(a). Plants have been divided into two groups to test the
effect of a modified crop load (bunch thinning vs. control)
on grape growth and maturity. From pre-veraison to harvest,
five surveys have been planned. During each survey, plants
have been scanned with the sensors mounted on the robot.
We aim to analyze the data with Deep Learning algorithms
to detect the single bunches and estimate their volume, thus
giving a yield prediction that farmers can exploit to better plan
the harvest activities. Also, we aim to detect the sugar and
anthocyanin grapes content with hyperspectral cameras and
build machine learning models estimating the grapes’ maturity
state. In particular, we highlight the availability of ground truth
data consisting of laboratory physical and chemical analyses.

The second site of our experiments was an organic com-
mercial vineyard sited in Pianello Val Tidone (PC, Italy).
The vineyard consisted of rows of different lengths, with the
longest of about 200 m and the shorter of about 100 m. In this
vineyard, we thoroughly scanned with the sensors mounted on
the robot four rows. This activity aims at estimating the canopy
volume of vine plants that is a piece of useful information
correlated to the plant productivity and vineyard management.
Ground truth data will be provided in this case by manual
physical measures with agronomic tools. In the same vineyard,
we also scanned with hyperspectral cameras a part of a row
where symptomatic leaves were present together with healthy
plants. The aim is to predict the disease outbreak before it is
visible since a modification of the leaves’ chemical properties
(and thus of the reflected radiation) is already in place in the
early stages of the disease. Figure 1 (b) shows our robot in

the commercial vineyard of this second setting.

III. ONGOING AND FUTURE ACTIVITIES

We are currently exploiting Artificial Intelligence (AI) algo-
rithms to analyze the collected data. RGB images are going to
be segmented to detect bunches and grapes, and then, a relation
will be extracted between pixel area and measured ground
truth volume. Depth measure from the RGB-D cameras or
point clouds extracted by LiDAR sensors can also be exploited
to have greater accuracy. Once the season is over, it will be
possible to develop a model predicting the final yield starting
from data collected at the beginning and during the season.
Hyperspectral images will also be used to derive a relationship
between the fruit composition (i.e. total soluble solids and
anthocyanins) and the grape spectral signature. Regarding
the datasets collected in the commercial vineyard, LiDAR
information will be used to reconstruct the plant canopy and
compute its volume and hyperspectral images will be used to
distinguish healthy from diseased.

Despite its potential benefits, the analysis of hyperspectral
data poses some challenges. Indeed, the amount of information
associated to the hyperspectral acquisition comes at the cost of
an increased computational effort to elaborate them. A critical
point to solve is developing a hyperspectral data handling
pipeline to manage hyperspectral data complexity and make
this tool effective in supporting farmers and agronomists.
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