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Abstract. We propose a semi-supervised learning strategy for deep
Convolutional Neural Networks (CNNs) in which an unsupervised pre-
training stage, performed using biologically inspired Hebbian learning al-
gorithms, is followed by supervised end-to-end backprop fine-tuning. We
explored two Hebbian learning rules for the unsupervised pre-training
stage: soft-Winner-Takes-All (soft-WTA) and nonlinear Hebbian Princi-
pal Component Analysis (HPCA). Our approach was applied in sample
efficiency scenarios, where the amount of available labeled training sam-
ples is very limited, and unsupervised pre-training is therefore beneficial.
We performed experiments on CIFAR10, CIFAR100, and Tiny ImageNet
datasets. Our results show that Hebbian outperforms Variational Auto-
Encoder (VAE) pre-training in almost all the cases, with HPCA generally
performing better than soft-WTA.

Keywords: Hebbian Learning · Deep Learning · Semi-Supervised · Sam-
ple Efficiency · Neural Networks · Bio-Inspired.

1 Introduction

While deep learning has achieved outstanding results in a variety of domains,
ranging from computer vision [15] to language processing [10], and reinforcement
learning [41], learning algorithms are typically based on supervised end-to-end
Stochastic Gradient Descent (SGD) training with error backpropagation (back-
prop), which needs a large number of labeled training samples in order to achieve
high results. However, gathering labeled samples is expensive, as it requires a sig-
nificant amount of human work. On the other hand, gathering unlabeled samples
is relatively simple. Therefore, researchers started to investigate learning strate-
gies to exploit large amounts of unlabeled data, in addition to the fewer labeled
data, for sample efficient learning [5–7,9,18,21,27,37,40,45,47]. This led to the
semi-supervised learning approach, in which an unsupervised pre-training stage
is performed on all the available samples (but without using label information),
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and then it is followed by a supervised fine-tuning stage on the few labeled
samples only (in this case, the label information is used for supervision).

Note that backprop is not considered to be biologically plausible from the
neuroscientific community [34]. On the other hand, a biologically motivated
learning principle is represented by the Hebbian learning paradigm [12,14]. This
approach does not require supervision, nor backpropagation. Since biological
brains appear to be able to generalize from few samples, research on Hebbian
learning algorithms seems a promising direction.

In this work, we propose a semi-supervised learning approach, in which the
unsupervised pre-training step is performed by means of the Hebbian learning
paradigm. Two Hebbian learning variants are considered: soft-Winner-Takes-All
(soft-WTA) [31], and nonlinear Hebbian Principal Component Analysis (HPCA)
[19]. We test our approach in sample efficiency scenarios, performing experiments
on CIFAR10, CIFAR100 [23], and Tiny ImageNet [46] datasets. Different regimes
of sample efficiency are considered, comparing the results with another pop-
ular unsupervised pre-training method, namely the Variational Auto-Encoder
(VAE) [20]. The results show that our approach outperforms VAE pre-training
in almost all the cases, especially when the number of labeled samples available
for the successive supervised fine-tuning stage is low. Moreover, HPCA generally
performs better than soft-WTA.

Integration of Hebbian learning and deep learning is still an emerging topic.
However, our results are encouraging, motivating further interest in this direc-
tion.

The main contributions of this paper are the following:

– For the first time, Hebbian learning approaches are applied in a semi-supervised
scenario, in which an unsupervised pre-training stage, based on Hebbian ap-
proach, is followed by a supervised end-to-end fine-tuning stage based on
SGD and backprop;

– We provide extensive experimental evaluation of the approaches, from a
sample efficiency perspective, on different object recognition datasets;

The remainder of this paper is structured as follows: Section 2 gives an
overview on related work concerning semi-supervised training and Hebbian learn-
ing; Section 3 introduces the various Hebbian learning strategies that we ex-
plored; Section 4 illustrates the sample efficiency problem and defines our semi-
supervised approach based on Hebbian learning; Section 5 delves into the details
of our experimental setup; In Section 6, the results of our simulations are illus-
trated; Finally, Section 7 presents our conclusions and outlines possible future
developments.

2 Related work

In this section, we present an overview of related work concerning both semi-
supervised training and Hebbian learning.
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2.1 Semi-supervised training and sample efficiency

Early work on deep learning had to face problems related to convergence to poor
local minima during the training process. This led researchers to exploit a pre-
training phase that allowed them to initialize network weights in a region near
a good local optimum [5,27]. In these studies, greedy layerwise pre-training was
performed by applying unsupervised autoencoder models, layer by layer . It was
shown that such pre-training was indeed helpful to obtain a good initialization
for a successive supervised training stage.

In successive works, the idea of enhancing neural network training with an
unsupervised learning objective was considered [21, 37, 45, 47]. In [21], Varia-
tional Auto-Encoders (VAE) were considered, in order to perform an unsuper-
vised pre-training phase using a limited amount of labeled samples. Also [37]
and [47] relied on autoencoding architectures to augment supervised training
with unsupervised reconstruction objectives, showing that joint optimization of
supervised and unsupervised losses helped to regularize the learning process.
In [44], joint supervised and unsupervised training was again considered, but
the unsupervised learning part was based on manifold learning techniques.

Another approach, SimCLR [9], used a Contrastive Loss to perform the un-
supervised learning part. The approach relied on data augmentation, in order to
produce transformed variants of a given input. The unsupervised loss basically
encouraged hidden representations to match for transformed variants generated
from the same input.

In this paper, we focus our comparisons on similar methods based on unsu-
pervised pre-training, using VAE pre-training as baseline. Nonetheless, it is also
worth mentioning that different approaches to semi-supervised learning were also
proposed. For example, in [18, 40], graph-based methods were used to generate
pseudo-labels for unlabeled samples, which were then used as target during train-
ing. In [6,7,40], the mixup approach was also used: convex combinations of pairs
of input samples were generated, and a consistency criterion was imposed that
pushed the prediction for the combination to match the corresponding combi-
nation of predictions. It should be noticed that our method is not in contrast
with these other approaches, but rather they can be integrated together, as also
suggested in Section 7.

2.2 Hebbian learning

Several variants of Hebbian learning rules were developed over the years. Some
examples are: Hebbian learning with Winner-Takes-All (WTA) competition [13],
Hebbian learning for Principal Component Analysis (PCA) [4,14,19,39], Hebbian/anti-
Hebbian learning [35,36]. A brief overview is given in Section 3. However, it was
only recently that Hebbian learning started gaining attention in the context of
DNN training [2, 3, 25,26,42,43].

In [25], a Hebbian learning rule based on inhibitory competition was used
to train a neural network composed of fully connected layers. The approach
was validated on object recognition tasks. Instead, the Hebbian/anti-Hebbian
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learning rule developed in [36] was applied in [3] to train convolutional feature
extractors. The resulting features were shown to be effective for classification.
Convolutional layers were also considered in [42,43], where a Hebbian approach
based on WTA competition was employed in this case.

However, the previous approaches were based on relatively shallow network
architectures (2-3 layers). A further step was taken in [2, 26], where a Hebbian
WTA learning rule was considered. The learning rule was applied for training a
6-layer Convolutional Neural Network (CNN). The results suggested that Heb-
bian learning is suitable for training early feature detectors, as well as higher
network layers, but not very effective for training intermediate network layers.
Furthermore, Hebbian learning was successfully used to retrain the higher layers
of a pre-trained network, achieving results comparable to backprop. The advan-
tage was that Hebbian learning required fewer training epochs, thus suggesting
potential applications in the context of transfer learning (see also [8, 28,29]).

The novelty of our contribution w.r.t. previous work is that, for the first
time, we investigate unsupervised Hebbian learning in combination with super-
vised backprop training, in a semi-supervised fashion. In addition, extensive
experimental evaluation is performed.

3 Hebbian learning strategies

Consider a single neuron with weight vector w and input x. Call y = wT x the
neuron output. A learning rule defines a weight update as follows:

wnew = wold +∆w (1)

where wnew is the updated weight vector, wold is the old weight vector, and ∆w
is the weight update.

The Hebbian learning rule, in its simplest form, can be expressed as ∆w =
η y x (where η is the learning rate) [12, 14]. Basically, this rule states that the
weight on a given synapse is reinforced when the input on that synapse and
the output of the neuron are simultaneously high. Therefore, connections be-
tween neurons whose activations are correlated are reinforced. In order to pre-
vent weights from growing unbounded, a weight decay term is generally added.
In the context of competitive learning [13], this is obtained as follows:

∆wi = η yi x− η yi wi = η yi (x−wi) (2)

where the subscript i refers to the i’th neuron in a given network layer. Moreover,
the output yi can be replaced with the result ri of a competitive nonlinearity,
which allows to decorrelate the activity of different neurons. In the Winner-
Takes-All (WTA) approach [13], at each training step, the neuron which produces
the strongest activation for a given input is called the winner. In this case, ri = 1
if the i’th neuron is the winner and 0 otherwise. In other words, only the winner
is allowed to perform the weight update, so that it will be more likely for the
same neuron to win again if a similar input is presented again in the future.
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In this way different neurons are induced to specialize on different patterns.
In soft-WTA [31], ri is computed as ri = yi∑

j yj
. We found this formulation to

work poorly in practice, because there is no tunable parameter to cope with the
variance of activations. For this reason, we introduce a variant of this approach
that uses a softmax operation in order to compute ri:

ri =
eyi/T∑
j e

yj/T
(3)

where T is called the temperature hyperparameter (the name comes from statis-
tical mechanics, where this function was first introduced) [11]. The advantage of
this formulation is that we can tune the temperature in order to obtain the best
performance on a given task, depending on the distribution of the activations.

The Hebbian Principal Component Analysis (HPCA) learning rule, in the
case of nonlinear neurons, is obtained by minimizing the so-called representation
error [4, 14,39]:

L(wi) = E[(x−
i∑

j=1

f(yj) wj)
2] (4)

where f() is the neuron activation function. Minimization of this objective leads
to the nonlinear HPCA rule [19]:

∆wi = ηf(yi)(x−
i∑

j=1

f(yj)wj) (5)

It can be noticed that these learning rules do not require supervision, and
they are local for each network layer, i.e. they do not require backpropagation.
In the next section, we discuss how Hebbian learning is integrated with backprop
in a semi-supervised training approach.

4 Sample efficiency scenario and semi-supervised
approach based on Hebbian learning

Let’s define the labeled set TL as a collection of elements for which the cor-
responding label is known. Conversely, the unlabeled set TU is a collection of
elements whose labels are unknown. The whole training set T is given by the
union of TL and TU . All the samples from T are assumed to be drawn from
the same statistical distribution. In a sample efficiency scenario, the number of
samples in TL is typically much smaller than the total number of samples in T .
In particular, an s%-sample efficiency regime is characterized by |TL| = s

100 |T |
(where | · | denotes the cardinality of a set, i.e. the number of elements inside the
set). In other words, the size of the labeled set is s% that of the whole training
set (labeled plus unlabeled).

Traditional supervised approaches based on SGD and backprop work well
provided that the size of the labeled set is sufficiently large, but they do not ex-
ploit the unlabeled set. To tackle this limitation, we consider a semi-supervised
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approach in two phases. During the first phase, latent representations are ob-
tained from hidden layers of a DCNN, which are trained using unsupervised
Hebbian learning. Such approach, inspired by biology, has the advantage of be-
ing able to learn representations without requiring label information, nor back-
propagation. This unsupervised pre-training is performed on all the available
training samples, unlabeled and labeled (but without using label information in
the latter case). During the second phase, a final linear classifier is placed on top
of the features extracted from deep network layers. Classifier and deep layers
are fine-tuned in a supervised training fashion, by running an end-to-end SGD
optimization procedure using only the few labeled samples at our disposal (with
the corresponding labels).

5 Experimental setup

In the following, we describe the details of our experiments and comparisons,
discussing the network architecture and the training procedure3.

5.1 Datasets used for the experiments

The experiments were performed on the following datasets: CIFAR10, CIFAR100
[23] and TinyImageNet [46].

The CIFAR10 dataset contains 50,000 training images and 10,000 test im-
ages, belonging to 10 classes. Moreover, the training images were randomly split
into a training set of 40,000 images and a validation set of 10,000 images.

The CIFAR100 dataset also contains 50,000 training images and 10,000 test
images, belonging to 100 classes. Also in this case, the training images were
randomly split into a training set of 40,000 images and a validation set of 10,000
images.

The TinyImageNet dataset contains 100,000 training images and 10,000 test
images, belonging to 200 classes. Moreover, the training images were randomly
split into a training set of 90,000 images and a validation set of 10,000 images.

We considered sample efficiency regimes in which the amount of labeled sam-
ples was respectively 1%, 2%, 3%, 4%, 5%, 10%, 25% and 100% of the whole
training set.

5.2 Network architecture and training

We considered a six layer neural network as shown in Fig. 1: five deep layers plus
a final linear classifier. The various layers were interleaved with other processing
stages (such as ReLU nonlinearities, max-pooling, etc.). The architecture was
inspired by AlexNet [24], but with slight modifications in order to reduce the
overall computational cost of training. We decided to adopt a simple network

3 The code to reproduce the experiments described in this paper is available at:
https://github.com/GabrieleLagani/HebbianPCA/tree/hebbpca.
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Fig. 1: The neural network used for the experiments.

model in order to be able to evaluate the effects of different learning approaches
on a layer-by-layer basis. This choice also makes it more practical for other
researchers to reproduce the experiments.

For each sample efficiency regime, we trained the network with our semi-
supervised approach. First, we used the soft-WTA and the HPCA unsupervised
pre-training in the internal layers. This was followed by the fine tuning stage
with SGD training, involving the final classifier as well as the previous layers, in
an end-to-end fashion.

For each sample efficiency configuration we also created a baseline for com-
parison. In this case, we used another popular unsupervised method, namely the
Variational Auto-Encoder (VAE) [20], for the unsupervised pre-training stage.
This was again followed by the supervised end-to-end fine tuning based on SGD.
VAE-based semi-supervised learning was also the approach considered in [21].

5.3 Testing sample efficiency at different layer depths

In our experiments, in addition to evaluating the entire network trained as dis-
cussed above, we also evaluated the sample efficiency capability on the various
internal layers of the trained models. To this end, we cut the networks in cor-
respondence of the output of the various layers and we trained a new linear
classifier on top of each already pre-trained layer . For each configuration, the
supervised SGD training stage was performed using the labeled samples, thus
fine tuning the classifier, as well as the previous network layers. Then, the re-
sulting accuracy was evaluated. This process was done both for the Hebbian
trained networks, and the VAE trained network, used as baseline, in order to
make comparisons.

5.4 Details of training

We implemented our experiments using PyTorch. All the hyperparameters men-
tioned below resulted from a parameter search aimed at maximizing the valida-
tion accuracy on the respective datasets, following the Coordinate Descent (CD)
approach [22].
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Training was performed in 20 epochs using mini-batches of size 64. No more
epochs were necessary, since the models had already reached convergence at that
point. Networks were fed input images of size 32x32 pixels. Experiments were
performed using five different seeds for the Random Number Generator (RNG),
averaging the results and computing 95% confidence intervals.

In the Hebbian training, the learning rate was set to 10−3. No L2 regulariza-
tion or dropout was used, since the learning method did not present overfitting
issues. For soft-WTA training, images were preprocessed by a whitening trans-
formation as described in [23], although this step didn’t have any significant
effect for other training methods. The temperature parameter T of the softmax
operation used in soft-WTA was set to T = 0.02.

For VAE training, the network in Fig. 1, up to layer 5, acted as encoder,
with an extra layer mapping layer 5 output to 256 gaussian latent variables,
while a specular network branch acted as decoder. VAE training was performed
without supervision, in an end-to-end encoding-decoding task, optimizing the
β-VAE Variational Lower Bound [16], with coefficient β = 0.5

For the supervised training stage, based on SGD, the initial learning rate was
set to 10−3 and kept constant for the first ten epochs, while it was halved every
two epochs for the remaining ten epochs. We also used momentum coefficient
0.9, Nesterov correction, dropout rate 0.5 and L2 weight decay penalty coefficient
set to 5 · 10−2 for CIFAR10, 10−2 for CIFAR100 and 5 · 10−3 for TinyImageNet.
Cross-entropy loss was used as optimization metric.

To obtain the best possible generalization, early stopping was used in each
training session, i.e. we chose as final trained model the state of the network at
the epoch when the highest validation accuracy was recorded.

6 Results and discussion

In this section, the experimental results obtained with each dataset are pre-
sented and analyzed. We report the classification accuracy, along with the 95%
confidence intervals, in the various sample efficiency regimes, for the CIFAR10,
CIFAR100 and Tiny ImageNet datasets.

6.1 CIFAR10

Tab. 1 reports the top-1 accuracy results obtained on the CIFAR10 dataset. We
only report top-1 accuracy, given that CIFAR10 contains only 10 classes.

As we can observe, Hebbian approaches perform better than VAE in almost
all the cases. In particular, when low sample efficiency regimes are considered
(between 1% and 5%) Hebbian approaches achieve significantly higher results
than VAE. Only when the number of available labeled samples increases (beyond
10%), VAE pre-training starts to become competitive, obtaining results compa-
rable to Hebbian training. Overall, Hebbian pre-training appears to be more
effective than VAE, in particular when the number of available labeled samples
is relatively low (5% or less). The maximum improvement of Hebbian approaches
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Table 1: CIFAR10 accuracy (top-1) and 95% confidence intervals, obtained with
a linear classifier on top of various layers, for the various sample efficiency
regimes. Results obtained with VAE and Hebbian pre-training are compared.

Regime Pre-Train L1 L2 L3 L4 L5

1%
VAE 33.54 ±0.27 34.41 ±0.84 29.92 ±1.25 24.91 ±0.66 22.54 ±0.60

soft-WTA 35.47 ±0.19 35.75 ±0.65 36.09 ±0.27 30.57 ±0.36 30.23 ±0.37

HPCA 37.01 ±0.42 37.65 ±0.19 41.88 ±0.53 40.06 ±0.65 39.75 ±0.50

2%
VAE 37.65 ±0.35 39.13 ±0.40 36.52 ±0.47 29.39 ±0.32 26.78 ±0.72

soft-WTA 41.05 ±0.39 42.09 ±0.34 43.48 ±0.36 37.85 ±0.28 36.59 ±0.23

HPCA 41.60 ±0.28 42.12 ±0.24 46.56 ±0.38 45.61 ±0.19 45.51 ±0.43

3%
VAE 41.22 ±0.27 43.16 ±0.44 42.60 ±0.87 31.91 ±0.44 29.00 ±0.33

soft-WTA 44.67 ±0.37 46.12 ±0.27 48.08 ±0.42 43.22 ±0.31 41.54 ±0.50

HPCA 44.74 ±0.08 45.61 ±0.28 49.75 ±0.41 48.94 ±0.45 48.80 ±0.27

4%
VAE 44.39 ±0.30 45.88 ±0.39 46.01 ±0.40 34.26 ±0.21 31.15 ±0.35

soft-WTA 46.77 ±0.36 49.24 ±0.40 51.23 ±0.37 46.90 ±0.27 45.31 ±0.18

HPCA 47.10 ±0.25 48.26 ±0.09 52.00 ±0.16 51.05 ±0.29 51.28 ±0.28

5%
VAE 46.31 ±0.39 48.21 ±0.21 48.98 ±0.34 36.32 ±0.35 32.75 ±0.32

soft-WTA 48.34 ±0.27 52.90 ±0.28 54.01 ±0.24 49.80 ±0.16 48.35 ±0.26

HPCA 48.49 ±0.44 50.14 ±0.46 53.33 ±0.52 52.49 ±0.16 52.20 ±0.37

10%
VAE 53.83 ±0.26 56.33 ±0.22 57.85 ±0.22 52.26 ±1.08 45.67 ±1.15

soft-WTA 54.23 ±0.18 59.40 ±0.20 61.27 ±0.24 58.33 ±0.35 58.00 ±0.26

HPCA 54.36 ±0.32 56.08 ±0.28 58.46 ±0.15 56.54 ±0.23 57.35 ±0.18

25%
VAE 62.51 ±0.24 67.26 ±0.32 68.48 ±0.21 68.79 ±0.29 68.70 ±0.15

soft-WTA 61.29 ±0.23 68.23 ±0.31 70.09 ±0.41 70.01 ±0.17 69.85 ±0.37

HPCA 61.45 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 64.77 ±0.22

100%
VAE 67.53 ±0.22 75.83 ±0.31 80.78 ±0.28 84.27 ±0.35 85.23 ±0.26

soft-WTA 67.37 ±0.16 77.39 ±0.04 81.83 ±0.47 84.42 ±0.15 85.37 ±0.03

HPCA 66.76 ±0.13 75.16 ±0.20 79.90 ±0.18 83.55 ±0.33 84.38 ±0.22

over VAE is achieved in the 5% sample efficiency regime, in correspondence of
network layer 5, where a gap of almost 16% points is observed between VAE and
soft-WTA, and a gap of almost 20% points is observed between VAE and HPCA.
Moreover, in low sample efficiency regimes (10 % or less) it is possible to notice
that VAE and soft-WTA approaches suffer from a decrease in performance when
going deeper with the number of layers. This issue is common with unsupervised
methods, because the absence of a supervision signal (or still its scarcity, in case
of semi-supervised training) makes it harder to develop task-specific features on
higher layers, which is essential to achieve higher performances, as it emerges
from previous studies on deep CNNs [1]. With HPCA, this problem seems to
alleviate, and the accuracy remains pretty much constant with the number of
layers, again in the low sample efficiency regimes (10% or less), meaning that
the features produced by this approach are more meaningful for the classification
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Table 2: CIFAR100 accuracy (top-5) and 95% confidence intervals obtained
with a linear classifier on top of various layers, for the various sample efficiency
regimes. Results obtained with VAE and Hebbian pre-training are compared.

Regime Pre-Train L1 L2 L3 L4 L5

1%
VAE 21.69 ±0.10 21.70 ±0.30 17.61 ±0.54 13.45 ±0.54 12.28 ±0.50

soft-WTA 19.60 ±0.23 20.08 ±0.32 18.50 ±0.44 15.21 ±0.36 15.30 ±0.28

HPCA 22.30 ±0.38 22.28 ±0.63 23.58 ±0.21 21.70 ±0.61 22.63 ±0.55

2%
VAE 28.24 ±0.13 28.42 ±0.31 23.56 ±0.73 17.01 ±0.37 15.25 ±0.63

soft-WTA 26.73 ±0.34 26.67 ±0.20 25.48 ±0.20 20.22 ±0.32 20.76 ±0.24

HPCA 29.65 ±0.52 26.57 ±0.26 33.20 ±0.20 30.21 ±0.54 30.83 ±0.35

3%
VAE 31.28 ±0.54 31.71 ±0.27 27.46 ±1.23 18.26 ±0.24 16.44 ±0.12

soft-WTA 30.53 ±0.37 30.81 ±0.52 29.99 ±0.44 23.22 ±0.25 23.69 ±0.49

HPCA 32.81 ±0.18 33.08 ±0.55 37.75 ±0.38 35.02 ±0.36 35.04 ±0.17

4%
VAE 34.60 ±0.10 35.44 ±0.31 32.34 ±0.79 19.68 ±0.32 17.89 ±0.27

soft-WTA 33.51 ±0.26 34.15 ±0.21 32.85 ±0.18 25.78 ±0.21 26.91 ±0.24

HPCA 36.13 ±0.39 36.23 ±0.20 41.21 ±0.39 39.16 ±0.32 38.89 ±0.15

5%
VAE 36.68 ±0.17 37.26 ±0.26 35.33 ±0.81 20.55 ±0.44 18.48 ±0.26

soft-WTA 35.71 ±0.29 36.83 ±0.37 35.80 ±0.18 28.39 ±0.43 29.57 ±0.13

HPCA 38.03 ±0.20 38.02 ±0.25 43.76 ±0.33 41.66 ±0.20 41.42 ±0.23

10%
VAE 42.64 ±0.34 44.84 ±0.48 46.04 ±0.44 27.81 ±0.13 23.80 ±0.60

soft-WTA 41.91 ±0.27 45.61 ±0.29 44.98 ±0.28 36.39 ±0.27 38.26 ±0.46

HPCA 43.51 ±0.34 44.84 ±0.26 50.84 ±0.22 49.53 ±0.19 48.93 ±0.38

25%
VAE 53.53 ±0.12 57.63 ±0.52 62.16 ±0.57 55.29 ±0.68 52.59 ±1.02

soft-WTA 50.60 ±0.34 57.84 ±0.26 59.94 ±0.15 51.26 ±0.41 56.26 ±0.34

HPCA 51.51 ±0.31 54.22 ±0.23 59.60 ±0.44 58.29 ±0.29 58.70 ±0.18

100%
VAE 67.51 ±0.11 73.83 ±0.30 78.70 ±0.23 79.58 ±0.18 79.97 ±0.14

soft-WTA 64.00 ±0.23 73.06 ±0.20 76.39 ±0.12 76.07 ±0.12 79.80 ±0.11

HPCA 65.61 ±0.12 70.38 ±0.23 74.10 ±0.12 73.38 ±0.18 74.42 ±0.14

task. Furthermore, HPCA seems to perform generally better than soft-WTA, es-
pecially on higher layers, when low sample efficiency regimes are considered (5%
or less). The maximum improvement of HPCA over soft-WTA is achieved in the
1% sample efficiency regime, in correspondence of network layers 5 and 4, where
a gap of almost 9-10% points is observed.

6.2 CIFAR100

Since CIFAR10 contained just 10 different classes, to validate our observations
with a similar, yet more difficult scenario, we also performed tests with CI-
FAR100, containing 100 classes. In Tab. 2 the top-5 accuracy results obtained
on the CIFAR100 dataset are shown.

As we can observe, in low sample efficiency regimes (10% or less), Hebbian
approaches perform better than VAE in almost all the cases. In particular, soft-



Evaluating Hebbian Learning in a Semi-Supervised Setting 11

WTA generally performs better than VAE on higher network layers, and HPCA
generally performs better than both soft-WTA and VAE on all network layers.
Only when the number of available labeled samples increases (beyond 10%),
VAE pre-training starts to really kick in, obtaining higher results than Heb-
bian training in almost all the cases. The maximum improvement of Hebbian
approaches over VAE is achieved in the 10% sample efficiency regime, in cor-
respondence of network layer 5, where a gap of almost 15% points is observed
between VAE and soft-WTA, and a gap of over 25% points is observed between
VAE and HPCA. Moreover, in low sample efficiency regimes (10 % or less) it
is possible to notice that VAE and soft-WTA approaches suffer from a decrease
in performance when going deeper with the number of layers. As already ob-
served on the previous dataset, this is likely due to the lack of task-specificity of
higher layer features provided by unsupervised training. With HPCA, this prob-
lem seems to alleviate, and the accuracy remains pretty much constant with
the number of layers, again in the low sample efficiency regimes (10% or less),
meaning that the features produced by this approach are more meaningful for
the classification task. Furthermore, HPCA seems to perform generally better
than soft-WTA, especially on higher layers (except for the 100% regime). The
maximum improvement of HPCA over soft-WTA is achieved in the 4-5% sample
efficiency regimes, in correspondence of network layers 5 and 4, where a gap of
almost 12-13% points is observed. Overall, the results suggest that HPCA scales
better than other approaches with the complexity of the dataset, especially for
low sample efficiency regimes (10% or less), while VAE is generally preferable in
regimes when more labeled samples are available (25% or higher).

6.3 Tiny ImageNet

Further experiments on Tiny ImageNet allowed us to validate the scalability of
our previous observations to larger datasets. Tiny ImageNet has 200 classes and
the training set consists of 100,000 samples (90,000 of which are used for training
and 10,000 for validation). In Tab. 3 the top-5 accuracy results obtained on the
Tiny ImageNet dataset are shown.

As we can observe, in low sample efficiency regimes (10% or less), Hebbian ap-
proaches perform better than VAE. In particular, soft-WTA generally performs
better than VAE on higher network layers, and HPCA performs better than both
soft-WTA and VAE on all network layers. Only when the number of available
labeled samples increases (beyond 10%), VAE pre-training starts to really kick
in, obtaining higher results than Hebbian training. The maximum improvement
of Hebbian approaches over VAE is achieved in the 10% sample efficiency regime,
in correspondence of network layer 5, where a gap of over 3% points is observed
between VAE and soft-WTA, and a gap of almost 15% points is observed be-
tween VAE and HPCA. Moreover, in low sample efficiency regimes (10 % or
less) it is possible to notice that VAE and soft-WTA approaches suffer from a
decrease in performance when going deeper with the number of layers. As already
observed on previous datasets, this is likely due to the lack of task-specificity
of higher layer features provided by unsupervised training. With HPCA, this
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Table 3: TinyImageNet accuracy (top-5) and 95% confidence intervals obtained
with a linear classifier on top of various layers, for the various sample efficiency
regimes. Results obtained with VAE and Hebbian pre-training are compared.

Regime Pre-Train L1 L2 L3 L4 L5

1%
VAE 9.63 ±0.26 9.49 ±0.39 7.58 ±0.28 5.99 ±0.19 5.55 ±0.23

soft-WTA 9.25 ±0.20 9.63 ±0.29 8.71 ±0.12 6.54 ±0.29 6.20 ±0.20

HPCA 10.81 ±0.27 10.99 ±0.36 12.15 ±0.46 11.05 ±0.27 11.38 ±0.41

2%
VAE 12.94 ±0.37 13.06 ±0.23 10.86 ±0.28 7.40 ±0.27 6.74 ±0.20

soft-WTA 12.67 ±0.26 12.56 ±0.30 11.36 ±0.18 8.57 ±0.21 8.56 ±0.29

HPCA 14.12 ±0.23 14.32 ±0.31 16.89 ±0.61 15.28 ±0.28 15.71 ±0.47

3%
VAE 14.31 ±0.18 15.17 ±0.20 13.67 ±0.36 8.35 ±0.29 7.74 ±0.19

soft-WTA 14.66 ±0.17 14.50 ±0.33 13.71 ±0.18 9.95 ±0.25 10.26 ±0.18

HPCA 16.25 ±0.21 16.54 ±0.28 19.78 ±0.47 18.31 ±0.24 18.23 ±0.33

4%
VAE 16.09 ±0.20 17.05 ±0.20 16.83 ±0.51 8.86 ±0.11 8.45 ±0.21

soft-WTA 16.20 ±0.31 16.51 ±0.26 15.70 ±0.17 11.04 ±0.29 11.52 ±0.07

HPCA 17.70 ±0.44 18.33 ±0.24 21.95 ±0.57 20.86 ±0.32 20.55 ±0.28

5%
VAE 17.44 ±0.26 18.62 ±0.32 19.16 ±0.52 9.92 ±0.24 9.29 ±0.17

soft-WTA 17.72 ±0.17 18.06 ±0.49 17.03 ±0.30 12.15 ±0.19 12.55 ±0.15

HPCA 19.26 ±0.41 19.93 ±0.41 23.97 ±0.52 22.95 ±0.26 22.46 ±0.17

10%
VAE 21.62 ±0.25 23.83 ±0.19 27.42 ±0.18 16.69 ±0.18 13.51 ±0.34

soft-WTA 21.22 ±0.43 23.08 ±0.21 21.90 ±0.15 16.21 ±0.27 16.70 ±0.17

HPCA 22.82 ±0.33 24.34 ±0.29 28.69 ±0.36 28.79 ±0.26 28.13 ±0.38

25%
VAE 29.40 ±0.31 32.42 ±0.29 39.93 ±0.31 37.97 ±0.62 37.89 ±0.54

soft-WTA 26.36 ±0.48 31.31 ±0.28 32.54 ±0.13 22.39 ±0.11 24.96 ±0.23

HPCA 28.01 ±0.75 30.63 ±0.16 35.87 ±0.53 36.98 ±0.26 37.10 ±0.23

100%
VAE 42.32 ±0.16 48.54 ±0.53 58.31 ±0.12 59.60 ±0.23 60.23 ±0.65

soft-WTA 38.55 ±0.20 46.82 ±0.33 48.91 ±0.24 42.35 ±0.24 54.94 ±0.10

HPCA 40.34 ±0.31 45.00 ±0.40 53.12 ±0.26 52.95 ±0.28 53.96 ±0.43

problem seems to alleviate, and the accuracy remains pretty much constant or
slightly increases with the number of layers, again in the low sample efficiency
regimes (10% or less), meaning that the features produced by this approach are
more meaningful for the classification task. Furthermore, HPCA seems to per-
form generally better than soft-WTA, especially on higher layers (except for the
100% regime). The maximum improvement of HPCA over soft-WTA is achieved
in the 25% sample efficiency regime, in correspondence of network layers 5 and
4, where a gap of almost 13-14% points is observed. Overall, the results sug-
gest that HPCA scales better than other approaches with the complexity of the
dataset, especially for low sample efficiency regimes (10% or less), while VAE is
preferable in regimes when more labeled samples are available (25% or higher).
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7 Conclusions and future work

In summary, our results suggest that our semi-supervised approach based on
unsupervised Hebbian pre-training performs generally better than VAE pre-
training, especially in low sample efficiency regimes, in which only a small portion
of the training set (between 1% and 10%) is assumed to be labeled. In particular,
the HPCA approach appears to perform generally better than soft-WTA. More-
over, HPCA seems to scale better than other approaches when the complexity
of the dataset increases, especially when low sample efficiency regimes are con-
sidered. On the other hand, VAE pre-training seems to become more effective
in regimes where a larger portion of the training set (25% or higher) is labeled.
Therefore, our method is preferable in scenarios in which manually labeling a
large number of training samples would be too expensive, while gathering unla-
beled samples is relatively cheap.

In future works, further improvements might come from exploring more com-
plex feature extraction strategies, which can also be formulated as Hebbian learn-
ing variants, such as Independent Component Analysis (ICA) [17] and sparse
coding [32, 33, 38]. Moreover, Hebbian approaches can also be combined with
pseudo-labeling and consistency methods mentioned in Section 2 [6, 7, 18, 40].
In addition to the semi-supervised learning scenario considered in this paper, it
would also be interesting to investigate Hebbian approaches in a meta-learning
scenario. Hebbian learning already found application in the context of meta-
learning, with the differentiable plasticity model [30]. In this case, the simple
Hebbian learning rule, ∆w = η y x, was used, but further improvements might
come from applying more advanced Hebbian rules, such as those studied in this
paper. Finally, an exploration on the behavior of such algorithms w.r.t. adver-
sarial examples also deserves attention.
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