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Abstract. We explore competitive Hebbian learning strategies to train
feature detectors in Convolutional Neural Networks (CNNs), without su-
pervision. We consider variants of the Winner-Takes-All (WTA) strategy
explored in previous works, i.e. k-WTA e-soft-WTA and p-soft-WTA,
performing experiments on different object recognition datasets. Results
suggest that the Hebbian approaches are effective to train early feature
extraction layers, or to re-train higher layers of a pre-trained network,
with soft competition generally performing better than other Hebbian
approaches explored in this work. Our findings encourage a path of co-
operation between neuroscience and computer science towards a deeper
investigation of biologically inspired learning principles.
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1 Introduction

While deep learning has achieved outstanding results in a variety of domains,
ranging from computer vision [9] to language processing [4], and reinforcement
learning [24], there are still doubts about the biological plausibility of the learn-
ing algorithms in use, that are based on supervised end-to-end training with error
backpropagation (backprop). This strategy lacks biological plausibility, accord-
ing to neuroscientists [21]. This motivates investigation into different learning
approaches, inspired by mammalian plasticity, which might eventually lead to
improvements in machine learning models, as well as to a better understanding
of how the brain works.

In this article, we consider the biologically plausible Hebbian learning princi-
ple [6,8], coupled with different competitive learning strategies [7,17,18]. Specif-
ically, we consider variants of the Winner-Takes-All (WTA) strategy, namely
k-WTA, e-soft-WTA, and p-soft-WTA. In particular, the latter two strategies
are novel variants of the soft-WTA approach [18], that we introduce in order

* This work was partially supported by the H2020 project AI4EU under GA 825619
and by the H2020 project Al4Media under GA 951911.



2 G. Lagani et al.

to make soft competition suitable in practical scenarios. The respective learning
rules and details are described in the following sections. We provide an experi-
mental evaluation of the proposed strategies in the context of Deep Neural Net-
work (DNN) training on popular computer vision datasets, namely MNIST [16],
CIFARI10, and CIFAR100 [12]

Hebbian learning was explored in previous works, to train network layers for
computer vision tasks [2,14,22,25]. Nonetheless, only relatively shallow networks
were considered. Deeper network architectures were also considered in [1], but
still, a thorough investigation of the various competitive learning strategies is
missing. Our experiments on different object recognition datasets show that the
Hebbian approaches are effective to train early feature extraction layers, or to
re-train higher layers of a pre-trained network, when compared to supervised
backprop. Comparison with a popular unsupervised approach, the Variational
Auto-Encoder (VAE), also based on backprop, suggests that Hebbian learning
might represent a better unsupervised feature extraction strategy. Moreover, soft
competition strategies (e-soft-WTA and p-soft-WTA) perform generally better
than sharp variants (WTA and k-WTA).

Our work is the results of a cooperation between neuroscience and computer
science, suggesting that the collaboration between these two fields might bring
a promising potential. Our contributions can be summarized as follows:

— We explore the different competitive learning strategies (WTA, k-WTA, e-
soft-WTA, p-soft-WTA), to train Convolutional Neural Networks (CNNs)
for feature extraction and classification;

— Among the approaches that we explore, we propose two novel strategies,
namely e-soft-WTA and p-soft-WTA, inspired by the soft-WTA approach,
but aiming to make soft competition suitable for practical tasks.

— Experimental evaluation of the various approaches on different object recog-
nition datasets is performed.

The remainder of this paper is structured as follows: Section 2 presents some
related work on this field; Section 3 introduces the various competitive Hebbian
learning strategies that we explored; Section 4 describes the scenarios in which
we applied the above mentioned strategies; Section 5 goes into the details of our
experiments; Section 6 provides the results of our evaluation; Finally, in Section
7, we present our conclusions and hints for future directions.

2 Related work

In previous work, Hebbian learning was used together with k-WTA competi-
tion on computer vision tasks, but only on relatively shallow networks [14, 25].
Nonetheless, results were comparable to those achieved by backprop on networks
with similar structure, thus motivating further interest. In [2,22], a different ap-
proach based on Hebbian/anti-Hebbian learning was explored, which minimized
an unsupervised similarity matching objective, equivalent to Principal Compo-
nent Analysis (PCA) in the linear case. Hebbian PCA rules have also been widely
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Fig. 1: Hebbian updates with weight decay.

studied in literature [3,23]. Still, the experiments are limited to relatively shallow
networks. Deeper networks trained by Hebbian WTA were considered in [1], were
it was confirmed that the WTA approach was effective for training early feature
extraction layers, thus being suitable for relatively shallow networks, but also to
retrain higher layers of a pre-trained network (including the final classifier, by a
supervised Hebbian learning variant [15]), while requiring fewer training epochs
than backprop, thus suggesting potential applications in the context of transfer
learning [26]. Nonetheless, the results of this latter work were preliminary, and
involved a single approach (WTA) and a single dataset for testing (CIFARI10).

3 Competitive Hebbian learning strategies

Consider a single neuron with weight vector w and input x. Call y = w’ x the
neuron output. A learning rule defines a weight update as follows:

Whew = Woid + Aw (1)

where W, is the updated weight vector, w4 is the old weight vector, and Aw
is the weight update. According to the Hebbian principle, in its most basic form,
the latter term is computed as

Aw =nyx (2)

where 7 is the learning rate. Basically, this rule states that the weight on a given
synapse is potentiated when the input on that synapse and the output of the
neuron are simultaneously high, thus reinforcing connections between neurons
whose activations are correlated.

To prevent weights from growing unbounded, a weight decay term is generally
added. In the context of competitive learning [7], this is obtained as follows:

Aw =nyx —nyw =ny(x —w) (3)
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This rule has an intuitive interpretation: when an input vector is presented to
the neuron, its vector of weights is updated in order to move it closer to the
input, so that the neuron will respond more strongly when a similar input is
presented. When several similar inputs are presented to the neuron, the weight
vector converges to the center of the cluster formed by these inputs (Fig. 1).

‘When multiple neurons are involved in a complex network, the Winner-Takes-
All (WTA) [7] strategy can be adopted to force different neurons to learn dif-
ferent patterns, corresponding to different clusters of inputs. When an input is
presented to a WTA layer, the neuron whose weight vector is closest to the cur-
rent input is elected as winner. Only the winner is allowed to perform a weight
update, thus moving its weight vector closer to the current input (Fig. 2). If a
similar input will be presented again in the future, the same neuron will be more
likely to win again. This strategy allows a group of neurons to perform clustering
on a set of data points (Fig. 2).

WTA enforces a kind of quantized information encoding in layers of neural
network. Only one neuron activates to encode the presence of a given pattern in
the input. On the other hand, actual neural codes exhibit a sparse, distributed
representation, where multiple neurons activate combinatorially to encode dif-
ferent properties of the input, resulting in an improved coding power. The im-
portance of sparse, distributed representations was also highlighted in [5,20].

A more distributed coding scheme could be obtained by choosing more than
one winner at a time. In the k-WTA strategy [17], the k top-activating neurons
are selected as winners and allowed to perform the weight update. A soft form
of competition was also proposed in literature [18]. In this soft-WTA approach,
a reward is attributed to each neuron depending on the value of its activation,
so that neurons with higher activation also receive a higher reward. Neurons
perform update steps whose length is proportional to their reward. The reward
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Fig. 2: Hebbian updates with Winner-Takes All competition.
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r; for neuron i is computed as follows:

Yi
r; = (4)
' Zj Yj
So, basically, the reward is obtained as an L; normalization of the activations.
We found that this formulation actually worked poorly in practice, because there
is no tunable parameter to cope with the variance of activations. For this reason,
we introduce a variant of this approach that uses a softmaz operation in order
to distribute the reward:
evi/T

o Z] eYi /T

where T is the temperature hyperparameter. The advantage of this formulation
is that we can tune the temperature in order to obtain the best performance
on a given task, depending on the distribution of the activations. We refer to
this exponential form of soft competition simply as e-soft-WTA. We also ex-
plore a different formulation, based on L, normalization, in which the reward is
computed as:

()

T

Yy

D
Zj Y
In this case, the value p acts as (inverse) temperature parameter. We refer to
this power form of soft competition as p-soft-WTA.

(6)
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4 Deep competitive Hebbian learning
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Fig. 3: The neural network used for the experiments.

The core part of our experiments consisted in training the deep layers of
a neural network consisting of six layers: five deep layers plus a final linear
classifier. The various layers were interleaved with other processing stages (such
as ReLU nonlinearities, max pooling, etc.), as shown in Fig. 3. The architecture
was inspired by AlexNet [13], but one of the fully connected layers was removed
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and, in general, the number of neurons was slightly modified, in order to reduce
the computational cost of the experiments. The network was trained using the
k-WTA, e-soft-WTA and p-soft-WTA approaches, as well as backprop, in order
to compare the results.

Since the comparisons mentioned so far involve supervised models (backprop-
based) and unsupervised models (Hebbian), we also deemed interesting to com-
pare the Hebbian models with other unsupervised (but still backprop-based)
methods. Specifically, we considered a Variational Auto-Encoder (VAE) [11] :
the network model in Fig. 3, up to layer 5, acted as encoder, with a fully con-
nected layer mapping the output feature map to a 256 gaussian latent variable
representation, while a specular network branch acted as decoder.

In order to evaluate the quality of the features extracted from the various
layers of the trained models for the image classification tasks, we placed a lin-
ear classifier on top of each already trained layer , and we evaluated the accu-
racy achieved by classifying the corresponding features. This was done both for
the backprop trained network, for the Hebbian trained networks, and for the
VAE network. The linear classifier was trained with Stochastic Gradient De-
scent (SGD) in all cases. Notice that this does not raise biological plausibility
issues, because backpropagation is not required when SGD is used to train a
single layer. Even if the Hebbian approach is unsupervised, it is also possible to
apply a supervised variant [1,15] for training the linear classifier, although, at
this stage, we preferred to use SGD in all cases, in order to make comparisons
on equal footings. Indeed, the SGD weight update can be considered as a form
of supervised Hebbian update, modulated by a teacher signal. Later, we also
present a comparison of trained with SGD and with the supervised Hebbian
variant, placed on top of features extracted from various network layers, and
evaluated on different datasets.

We also implemented hybrid network models, i.e. networks in which some
layers were trained with backprop and other layers were trained with Hebbian
approach , in order to asses up to which extent backprop layers in our model
could be replaced with Hebbian equivalent without excessive impact on the accu-
racy. The models were constructed by replacing the upper layers of a pre-trained
network with new ones, and training from scratch using different learning algo-
rithms. Meanwhile, the lower layers remained frozen, in order to avoid adaptation
to the new upper layers. Various configurations of layers were considered.

5 Details of training

We implemented our experiments using PyTorch. 3 We used the network ar-
chitecture shown in Fig. 3. The model was fed with RGB images of size 32x32
pixels as inputs. The network was trained using Stochastic Gradient Descent
(SGD) with error backpropagation and cross-entropy loss, and with the com-
petitive Hebbian rules, in order to compare the results. For VAE training, we

3 The code to reproduce the experiments is available at:
github.com/GabrieleLagani/HebbianPCA/tree/hebbpca.
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used a network model with 256 gaussian latent variables and a specular decoder
structure w.r.t. the encoder. The decoder part was removed at test time and the
features extracted from encoder layers were used for classification. Training was
performed in 20 epochs (although, for the Hebbian approach, convergence was
typically achieved in much fewer epochs) using mini-batches of size 64.

For SGD training, the initial learning rate was set to 10~3 and kept constant
for the first ten epochs, while it was halved every two epochs for the remaining
ten epochs. We also used momentum coefficient 0.9, Nesterov correction, and
dropout rate 0.5. An L2 penalty was also used to improve regularization, with
weight decay coefficient set to 5 - 1072 for MNIST and CIFAR10, and to 10~2
for CIFAR100. The VAE was trained in the same fashion but, obviously, in an
unsupervised image encoding-decoding task, and no L2 penalty nor dropout was
used in this case.

During Hebbian training, the learning rate was set to 1073. No L2 regu-
larization or dropout was used in this case, since the learning method did not
present overfitting issues. Images were preprocessed by a whitening transforma-
tion as described in [1,15], although this step didn’t have any significant effect
for backprop training. A hyperparameter k is defined to control the behavior of
k-WTA, e-soft-WTA, and p-soft-WTA. For the k-WTA approach, the parameter
k is simply the number of neurons selected as winners. In e-soft-WTA, the pa-
rameter k is defined as the softmax temperature, i.e. k = T'. For the p-soft-WTA
approach, the parameter k is defined as the inverse of the exponent p used to
compute the L, normalization, i.e. k = 1 In this way, a common parameter k
controls how reward is distributed: roughly speaking, higher k corresponds to a
reward distributed among more neurons, while lower k corresponds to reward
distributed among fewer neurons, up to the special case of a single neuron being
the only winner, corresponding to simple WTA. In our experiments, we set k = 5
for k-WTA, k = 0.02 for e-soft-WTA, k = 0.05 for p-soft-WTA.

The linear classifiers placed on top of the various network layers were trained
with supervision using SGD in the same way as we described above for training
the whole network, with learning rate set to 1072, but the L2 penalty term was
reduced to 5- 1074,

All the above mentioned hyperparameters resulted from a parameter search
to maximize the accuracy in the respective scenarios.

Concerning the datasets that we used, the MNIST dataset contains 60,000
training samples and 10,000 test samples, divided in 10 classes representing hand-
written digits from 0 to 9. In our experiments, we further divided the training
samples into 50,000 samples that were actually used for training, and 10,000
for validation. The CIFAR10 and CIFAR100 datasets contain 50,000 training
samples and 10,000 test samples, divided in 10 and 100 classes, respectively,
representing natural images. In our experiments, we further divided the training
samples into 40,000 samples that were actually used for training, and 10,000 for
validation. In order to obtain the best possible generalization, early stopping was
used in each training session, i.e. we chose as final trained model the state of the
network at the epoch when the highest validation accuracy was recorded.
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Table 1: MNIST accuracy (top-1) and 95% confidence intervals on features ex-
tracted from convolutional network layers.

Layer BP VAE WTA 5-WTA |e-soft-WTA |p-soft-WTA
1 195.80 £0.02||98.67 +0.03]|98.16 +0.05 [98.19 +0.08| 98.15 +0.06 | 98.20 +0.05
2 197.26 40.01(|/98.90 £0.03| 98.52 40.06 |98.45 +0.07| 98.47 +0.08 | 98.47 +0.08
3 [98.77 +0.01]98.30 £0.02 | 98.55 40.02 |98.38 +0.08| 98.56 +0.02 | 98.51 +0.04
4 199.56 +0.01|| 94.68 +0.04 | 96.56 +0.04 [96.45 +0.07| 96.89 +0.10 | 97.07 40.04
5 199.59 40.02{90.32 £0.06 |97.15 £0.01|96.18 +0.08| 96.92 +0.06 | 97.09 +0.08
6 Results

In the following subsections, we present the experimental results on MNIST,
CIFARI10, and CIFAR100 datasets. We performed five independent iterations of
each experiment, using different seeds, averaging the results and computing 95%
confidence intervals.

6.1 MNIST

In this sub-section we analyze the behavior of Hebbian learning approaches in a
simple scenario of digit recognition on the MNIST dataset.

In Tab. 1, we report the MNIST test accuracy obtained by classifiers placed
on top of the various layers of the network. We compare the results obtained
on the network trained with supervised backprop (BP), VAE, and competitive
Hebbian approaches. We can observe that the Hebbian approaches reach higher
performance w.r.t. backprop for the features extracted from the first two lay-
ers, suggesting possible applications of Hebbian learning for training relatively
shallow networks.

Moreover, the Hebbian approaches seem to perform comparably to each
other. They also perform comparably or better w.r.t. the unsupervised VAE
approach, especially when higher level features are considered, with an improve-
ment of almost 7% points on the fifth layer.

In Tab. 2, we report the results obtained on the MNIST test set with hybrid
networks. In each row, we reported the results for a network with a different
combination of Hebbian and backprop layers (the first row below the header
represent the baseline fully trained with backprop). We used the letter "H” to
denote layers trained using the Hebbian approach, and the letter ”B” for layers
trained using backprop. The letter ”G” is used for the final classifier (corre-
sponding to the sixth layer) trained with gradient descent. The final classifier
(corresponding to the sixth layer) was trained with SGD in all the cases, in order
to make comparisons on equal footings.

Tab. 2 allows us to understand what is the effect of switching a specific layer
(or group of layers) in a network from backprop to Hebbian training. The first
row represents our baseline for comparison, i.e. the network fully trained with
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Table 2: MNIST accuracy (top-1) and 95% confidence intervals of hybrid network
models.

[L1[L2[L3[L4[L5[L6] Accuracy (%) |
[(B[B][B|[B[BJ[G] 99.59 +0.02 |
l WTA approach ‘ WTA 5-WTA ‘e-soft-WTA‘p-soft-WTA‘

99.48 40.03(99.53 +0.05| 99.45 +0.03 | 99.49 +0.04
99.48 40.05(99.42 4+0.02| 99.52 4+0.03 | 99.53 +0.03
99.55 40.02]{99.54 +0.03 | 99.55 +0.02 | 99.54 +0.04
99.61 +0.02| 99.59 +0.02| 99.58 +0.03 | 99.58 +0.02
99.66 +0.02| 99.61 4+0.01| 99.65 +0.03 | 99.64 +0.04
99.35 £0.02|99.30 £0.03| 99.36 +0.03 | 99.34 4+0.03
99.29 +0.02|99.28 +0.09| 99.31 +0.05 | 99.34 +0.03
99.42 40.02| 99.34 4+0.02| 99.37 +0.07 | 99.35 40.04
99.51 +0.01 [ 99.37 +0.02 | 99.58 +0.02 | 99.58 +0.02
99.22 40.05/99.12 4+0.03| 99.20 +0.04 | 99.19 +0.02
98.99 40.03|98.92 4+0.03| 99.04 4+0.05 | 99.07 +0.02
99.08 +0.02 | 98.51 +0.03 | 99.25 +0.01 | 98.98 40.02
98.45 +0.04 | 98.27 +0.08| 98.45 +0.07 | 98.47 +0.06
98.25 +0.06 | 97.28 +0.05 | 98.43 4+0.07 | 98.46 +0.04
97.15 40.01| 96.18 40.08| 96.92 +0.06 | 97.09 40.08

T 9| = 50| | | | 0| | | | 0| B3| O] =
usias] gusifiov]Jasi | Rve]fov] gax| au| Jus] fuc] fus] asifos)
us{as] gusifjas| jasi jus| Rvo]jus| gus| foc] Rus] fue] §un] fuclfus)
jus{as] gusifas{ Jusi o] Jusifasi fus] foe) Jus] Jasi fos] foclfos)
| | 0| | | 0| | oO| | O | O] o] o] 8
[olioliolialialislinlialialIolialIalin] Ialin]

backprop. In the next rows we can observe the results of a network in which a
single layer was switched. The Hebbian approaches exhibit comparable results
w.r.t. the baseline. A result slightly higher than the baseline is observed when
layer 5 is replaced, suggesting that some combinations of layers might actually
be helpful. In the successive rows, more layers are switched from backprop to
Hebbian training, and a slight performance drop is observed. The Hebbian ap-
proaches appear to perform comparably to each other, although it seems that
soft approaches (e-soft-WTA and p-soft-WTA) tend to behave better when ap-
plied to higher layers, while sharp approaches (WTA and 5-WTA)) seem to be
preferable for lower layers.

Tab. 3 aims to show that it is possible to replace the last two network layers
(including the final classifier) with new ones, and re-train them with Hebbian
approach (in this case, the supervised Hebbian algorithm [1,15] is used to train
the final classifier), achieving accuracy comparable to backprop, but requiring
fewer training epochs (1 vs 15, respectively). This suggests potential applications
in the context of transfer learning [26].

6.2 CIFARI10

In the previous sub-section, we considered a relatively simple image recognition
task involving digits. In this section, we aim at analysing Hebbian learning ap-
proaches in a slightly more complex task involving natural image recognition on
the CIFAR10 dataset.
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Table 3: MNIST accuracy (top-1), 95% confidence intervals, and convergence
epochs obtained by retraining higher layers of a pre-trained network.
[L1]L2[L3[L4[L5[L6] Method | Acc.(%) [Num. Epochs|

[(B[B][B[B[B[G] BP  [99.59 +0.02] 15 |
[B[B[B[B[B[H] SHC [99.62 +0.01] 1 |
WTA  99.55 +0.02 1
5-WTA ]99.54 +0.03 1
B|B|B|BIHH e-soft-WTA | 99.53 +0.03 1
p-soft-WTA| 99.53 +0.02 1

Table 4: CIFAR10 accuracy (top-1) and 95% confidence intervals on features
extracted from convolutional network layers.

Layer BP VAE WTA 5-WTA |e-soft-WTA |p-soft-WTA
1 |61.59 £0.08|[60.71 £0.16{64.79 +0.34/63.36 +0.20| 65.08 +0.41 | 65.00 +0.43
2 |67.67 +0.11{/56.32 4+0.31|64.35 +0.35/60.88 +0.16| 66.27 +0.42 | 66.20 +0.43
3 |73.87 £0.15(|41.31 +0.16/59.69 +0.16/55.28 +0.10| 63.94 +0.11 | 63.50 +0.29
4 |83.88 £0.04(|29.58 +0.07(48.56 +0.1743.51 +0.26| 54.94 +0.15 | 54.99 +0.17
5 |84.95 40.25(|26.95 4+0.12|46.88 +0.23(42.40 4+0.11| 52.31 4+0.15 | 51.99 +0.28

In Tab. 4, we report the CIFAR10 test accuracy obtained by classifiers placed
on top of the various convolutional layers of the network. We compare the results
obtained on the network trained with supervised backprop (BP), VAE, and
competitive Hebbian approaches. We can observe that the Hebbian approaches
reach comparable performance w.r.t. backprop for the features extracted from
the first two layers, suggesting possible applications of Hebbian learning for
training relatively shallow networks.

Moreover, soft Hebbian approaches seem to perform comparably to each
other, and better than sharp approaches. The most prominent difference appears
on layer 4, where soft Hebbian approaches reach an improvement of almost 7%
points over sharp approaches. Still, further research is needed in order to close
the gap with backprop also when more layers are added, in order to make the
Hebbian approach suitable as a biologically plausible alternative to backprop
for training deep networks. In fact, Hebbian approaches seem to suffer from a
decrease in performance when going further on with the number of layers. The
same holds also for the unsupervised VAE approach, although Hebbian features
appear to behave better than unsupervised VAE features, especially on higher
layers, with an improvement up to 25% points on the fifth layer.

In Tab. 5, we report the results obtained on the CIFAR10 test set with hybrid
networks. The table, which has the same structure as that of the previous sub-
section, allows us to understand what is the effect of switching a specific layer
(or group of layers) in a network from backprop to Hebbian training. The first



Competitive Hebbian Learning Approaches 11

Table 5: CIFAR10 accuracy (top-1) and 95% confidence intervals of hybrid net-
work models.
[L1[L2[L3|L4|L5]L6]

Accuracy (%) |
84.95 +0.25

[B[B[B[B[B[G]

l WTA approach WTA ‘ 5-WTA ‘e-soft-WTA‘p-soft-WTA‘
H|B|B|B|B|G|[84.30 +0.26/82.75 +0.22| 84.07 +0.32 | 84.07 +0.31
B|{H|B|B|B|G|81.40 +0.14|81.02 +0.15| 80.74 +0.40 | 81.07 +0.21
B|B|H|B|B|G|80.88 +0.02|79.39 +0.17| 78.30 +0.35 | 78.36 +0.49
B|B|B|H|B|G|81.09 +0.16/80.61 +0.24| 76.92 +0.25 | 76.98 +0.17
B|B|B|B|H|G|84.46 +0.07|84.42 +0.09| 84.36 +0.07 | 84.32 +0.15
H|H|B|B|B|G|79.97 +0.46|77.75 +£0.40| 78.87 +0.19 | 79.04 +0.29
B|H|H|B|B|G|68.13 +0.19 [66.26 +0.30| 74.20 +0.26 | 74.41 +0.15
B|B|H|H|B|G|73.43 +0.17|71.39 +0.22| 74.10 +0.21 | 73.85 +0.25
B|B|B|H|H|G]|78.53 +0.12|76.29 +0.22| 74.88 +0.26 | 74.92 +0.24
HIH|H|B|B|G|68.71 +0.18 |64.50 +0.21| 71.75 +0.20 | 71.75 +0.23
B|H|H|H|B|G|49.22 +0.21 [50.53 +0.21| 61.45 +0.22 | 62.65 +0.31
B|{B|H|H|H|G|68.26 +0.14 |64.72 +0.21| 67.96 +0.18 | 68.57 +0.21
HIH|H|H|B|G]|52.53 +0.18 |48.64 +0.35| 59.48 +0.29 | 59.27 +0.16
B|H|H|H|H|G|45.29 +0.05 [44.47 +0.28| 54.91 +0.13 | 55.87 +0.19
H H|H|H|H|G|46.88 +0.23(42.40 +0.11| 52.31 +0.15 | 51.99 +0.28

row represents our baseline for comparison, i.e. the network fully trained with
backprop. In the next rows we can observe the results of a network in which a
single layer was switched. Hebbian approaches exhibit comparable results w.r.t.
the baseline when they are used to train the first or the fifth network layer. A
small, but more significant drop is observed when inner layers are switched from
backprop to Hebbian learning. In the successive rows, more layers are switched
from backprop to Hebbian training, and a higher performance drop is observed.
Still, sharp approaches seem to be preferable when few layers are switched, but
soft approaches seem to perform better when more Hebbian layers are involved.
The most prominent difference appears when layers 2 to 4 are replaced with
Hebbian equivalent, in which case soft approaches show an increase of almost
12% points over sharp approaches.

Tab. 6 aims to show that it is possible to replace the last two network layers
(including the final classifier) with new ones, and re-train them with Hebbian
approach (in this case, the supervised Hebbian algorithm [1,15] is used to train
the final classifier), achieving accuracy comparable to backprop, but requiring
fewer training epochs (1 vs 12, respectively). This suggests potential applications
in the context of transfer learning [26].

6.3 CIFAR100

In this sub-section, we want to further analyse the scalability of Hebbian learning
to a more complex task of natural image recognition involving more classes,
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Table 6: CIFARI10 accuracy (top-1), 95% confidence intervals, and convergence
epochs obtained by retraining higher layers of a pre-trained network.
[L1]L2[L3[L4[L5[L6] Method | Acc.(%) [Num. Epochs|

[B[B[B[B[B[G] BP  [84.95 +0.25] 12 |
[B[B[B[B[B[H] SHC [84.59 +0.01] 1 |
WTA 82.48 +0.14 1
5-WTA |82.42 +0.11 1
B|B|B|BIHH e-soft-WTA | 82.67 +0.16 1
p-soft-WTA| 82.65 +0.14 1

Table 7: CIFAR100 accuracy (top-5) and 95% confidence intervals on features
extracted from convolutional network layers.

Layer BP VAE WTA 5-WTA |e-soft-WTA |p-soft-WTA
1 |66.57 £0.06|[58.46 +0.12{59.56 +0.13|59.01 +0.25| 60.77 +0.26 | 60.46 +0.22
2 |71.75 £0.19(|54.63 40.20|58.49 40.20|57.08 +0.28| 62.98 +0.16 | 62.65 +0.30
3 |75.05 £0.28(|39.46 +0.15|52.97 +0.22|52.07 +0.12| 57.89 +0.25 | 59.05 +0.30
4 |78.84 +0.18(|26.42 4+0.21(37.38 +0.12({38.20 +0.14| 44.02 +0.29 | 45.98 +0.13
5 |78.53 +0.38(|23.03 +0.12|37.87 +0.21({34.33 +0.18| 43.45 +0.26 | 44.89 +0.19

namely CIFAR100. In this case, we evaluated the top-5 accuracy, given that
CIFAR100 contains a much larger number of classes than the previous datasets.

In Tab. 7, we report the CIFAR100 top-5 test accuracy obtained by classifiers
placed on top of the various convolutional layers of the network. We compare the
results obtained on the network trained with supervised backprop (BP), VAE,
and competitive Hebbian approaches. We can observe that Hebbian approaches
reach competitive performance w.r.t. backprop for the features extracted from
the first two layers, suggesting possible applications of Hebbian learning for
training relatively shallow networks.

Moreover, soft Hebbian approaches seem to perform comparably to each
other, and better than sharp approaches. The most prominent difference appears
on layer 4, where soft Hebbian approaches reach an improvement of almost 8%
points over sharp approaches. Still, Hebbian approaches seem to suffer from a
decrease in performance when going further on with the number of layers. The
same holds also for the unsupervised VAE approach, although Hebbian features
appear to behave better than unsupervised VAE features, especially on higher
layers, with an improvement up to 21% points on the fifth layer.

In Tab. 8, we report the results obtained on the CIFAR100 test set with
hybrid networks. The table, which has the same structure as those of the previous
sub-sections, allows us to understand what is the effect of switching a specific
layer (or group of layers) in a network from backprop to Hebbian training. The
first row represents our baseline for comparison, i.e. the network fully trained



Table 8: CIFAR100 accuracy (top-5) and 95% confidence intervals of hybrid

network models.

Competitive Hebbian Learning Approaches

[L1]L2|L3|L4]L5[L6]

Accuracy (%)

[BIB[B[B[B[G]

78.53 £0.38

l WTA approach WTA 5-WTA ‘e-soft-WTA‘p-soft-WTA‘
H|B|B|B|B|G|76.84 +0.41|76.58 +0.27| 77.81 +0.25 | 77.07 +0.37
B|/H|B|B|B|G|75.80 +0.31| 73.82 +0.22| 75.30 +0.34 | 75.36 +0.53
B|B|H|B|B|G|77.29 +0.27|76.15 +0.35| 76.68 +£0.23 | 76.50 +0.28
B|B|B|H|B|G|74.42 +0.12|73.36 +0.21| 70.68 +0.38 | 71.56 +0.20
B|B|B|B|H|G|77.42 +0.07|77.77 +0.19| 76.99 +0.18 | 77.01 +0.15
H|{H|B|B|B|G|72.81 +0.28|72.22 +0.26 | 74.50 +0.33 | 73.98 +0.43
BIH|H|B|B|G|77.10 +0.24|65.15 +0.19| 71.79 +0.17 | 71.67 +0.22
B|B|H|H|B|G|65.89 +0.05|63.16 +0.17| 67.71 +0.33 | 67.90 +0.20
B|B|B|H|H|G|70.09 +0.13|65.61 +0.15| 68.90 +0.17 | 69.77 +0.20
H|{H|H|B|B|G|66.49 +0.42|62.99 +0.30| 69.21 +0.24 | 70.16 +0.30
B/H|H|H|B|G|51.85 +0.24|51.10 +0.24 | 58.80 +0.12 | 58.61 +0.13
B|B|H|H|H|G|57.61 +0.29|53.80 +0.33| 60.71 +0.20 | 60.77 +0.10
H|{H|H|H|B|G|42.88 +0.32|43.72 +0.28 | 52.49 +0.31 | 55.09 +0.32
B|H|H|H|H|G|41.42 +0.13|40.13 +0.14| 51.63 +0.26 | 51.21 +0.17
H|H|H|H|H|G|37.87 +0.21|34.33 +0.18| 43.45 +0.26 | 44.89 +0.19

with backprop. In the next rows we can observe the results of a network in
which a single layer was switched. The Hebbian approaches exhibit comparable
results with the baseline when they are used used to train the first, third, or fifth
network layer. A small, but more significant drop is observed when other layers
are switched from backprop to Hebbian learning. In the successive rows, more
layers are switched from backprop to Hebbian training, and a higher performance
drop is observed. Still, sharp approaches seem to be preferable when few layers
are switched, but soft approaches seem to perform better when more Hebbian
layers are involved. The most prominent difference appears when layers 1 to 4
are replaced with Hebbian equivalent, in which case soft approaches show an
increase of almost 13% points over sharp approaches.

Tab. 9 aims to show that it is possible to replace the last two network layers
(including the final classifier) with new ones, and re-train them with Hebbian
approach (in this case, the supervised Hebbian algorithm [1,15] is used to train
the final classifier), achieving accuracy comparable to backprop, but requiring
fewer training epochs (1 vs 7, respectively). This suggests potential applications
in the context of transfer learning [26].

7 Conclusions and future work

In conclusion, our results suggest that competitive learning approaches are effec-
tive for training early feature extraction layers, or to re-train higher layers of a
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Table 9: CIFAR100 accuracy (top-5), 95% confidence intervals, and convergence
epochs obtained by retraining higher layers of a pre-trained network.
[L1]L2[L3[L4[L5[L6] Method | Acc.(%) [Num. Epochs|
[B[B[B[B[B[G] BP  [7853 +0.38] 7 |
[B[B[B[B[B[H] SHC [79.45 +0.02| 1 |

WTA 63.62 +0.27 1

5-WTA |59.76 +0.38 1

1

2

B|B|B|B/H H e-soft-WTA | 70.44 +0.23

p-soft-WTA| 70.36 +0.26

pre-trained network, while requiring fewer training epochs than backprop, sug-
gesting potential applications in transfer learning [26]. In particular, Hebbian
approaches seem to produce better features than unsupervised VAE training
for the classification tasks, with soft competitive approaches (e-soft-WTA and
p-soft-WTA) generally performing better than sharp competitive learning vari-
ants (WTA and k-WTA).

In future works, we plan to explore other Hebbian approaches that are based
on sparse coding [19,20] and Independent Component Analysis (ICA) [10]. It
is also interesting to investigate strategies to combine Hebbian updates with
gradient descent updates, in a semi-supervised fashion, in order to combine the
task-specific knowledge given by supervised backprop training with the general
knowledge extracted by unsupervised Hebbian learning. Finally, an exploration
of competitive approaches w.r.t. adversarial examples also deserves attention.

We hope that our work can stimulate further interest and cooperation be-
tween the computer science and neuroscience communities towards this field.
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