
Noname manuscript No.
(will be inserted by the editor)

Comparing the performance of Hebbian against back-
propagation learning using Convolutional Neural Networks

Gabriele Lagani* · Fabrizio Falchi · Claudio Gennaro · Giuseppe Amato

Received: date / Accepted: date

Abstract In this paper, we investigate Hebbian learn-

ing strategies applied to Convolutional Neural Network

(CNN) training. We consider two unsupervised learning

approaches, Hebbian Winner-Takes-All (HWTA) and

Hebbian Principal Component Analysis (HPCA), which

are compared to Variational Auto-Encoder (VAE) train-

ing. We also consider a Supervised Hebbian Classifier

(SHC) approach, for training the final classification layer,

which is compared to Stochastic Gradient Descent (SGD)

training. The Hebbian learning rules are used to train

the layers of a CNN in order to extract features that are

then used for classification, without requiring backprop-

agation (backprop). We also investigate hybrid learning

methodologies, where some layers are trained following

the Hebbian approach, and others are trained by back-

prop. We tested our approach on MNIST, CIFAR10 and
CIFAR100 datasets. Our results suggest that Hebbian

learning is generally suitable for training early feature

extraction layers, or to retrain higher network layers in

This work was partially supported by the H2020 project
AI4EU under GA 825619 and by the H2020 project
AI4Media under GA 951911. Published version on
Springer Neural Computing and Applications - doi:
10.1007/s00521-021-06701-4

G. Lagani
University of Pisa, Italy, 56124
E-mail: gabriele.lagani@phd.unipi.it
* Corresponding author

F. Falchi
ISTI-CNR Pisa, Italy, 56124
E-mail: fabrizio.falchi@cnr.it

C. Gennaro
ISTI-CNR Pisa, Italy, 56124
E-mail: claudio.gennaro@cnr.it

G. Amato
ISTI-CNR Pisa, Italy, 56124
E-mail: giuseppe.amato@cnr.it

fewer training epochs than backprop. Our experiments

also show that HPCA performs generally better than

HWTA.

Keywords Hebbian Learning · Deep Learning ·
Neural Networks · Biologically Inspired

1 Introduction

The error backpropagation algorithm (backprop) has

been used with great success for training neural net-

works (e.g. [9,33]) on a variety of learning tasks. How-

ever, neuroscientists doubt that it is biologically plau-

sible and that it models the real learning processes of

the brain [25].

A possible biologically plausible learning mechanism
could be based on the so-called Hebbian principle: “Neu-

rons that fire together wire together”. Starting from

this simple principle, it is possible to formulate differ-

ent variants of the Hebbian learning rule which are in-

teresting also from the computer science point of view.

For example, Hebbian learning with Winner-Takes-All

(HWTA) competition [7] allows a group of neurons to

learn to perform clustering on a set of data. Another

interesting variant is Sanger’s rule [31], which allows

to perform Principal Component Analysis (PCA) on

the data in an online fashion. In essence, Hebbian algo-

rithms can be employed to extract features of interest

from data and provide a biologically plausible, efficient

and online solution for unsupervised learning tasks.

In the context of Convolutional Neural Networks

(CNNs), the various network layers act as feature ex-

tractors, with lower layers extracting low-level features

and next layers extracting progressively higher-level fea-

tures. Therefore, Hebbian learning algorithms could rep-

resent a promising option for training such networks.

2 G. Lagani et al.

Previous works [35,34,2] already showed that Heb-

bian learning variants are suitable for training relatively

shallow networks (with two or three layers), which are

appealing for applications on constrained devices. For

instance, in [1], preliminary results showed that HWTA

competition was effective to re-train higher layers of a

pre-trained network, achieving results comparable with

backprop, but requiring fewer training epochs, thus sug-

gesting potential applications in the context of transfer

learning.

In this work, we take a step further and apply Heb-

bian learning on deeper network architectures. We per-

form a more detailed investigation of the HWTA learn-

ing rule, and we analyze the Hebbian Principal Com-

ponent Analysis (HPCA) learning rule [31,13] to train

deep CNNs.

We compared Hebbian algorithms, which are unsu-

pervised, with another popular unsupervised (but backprop-

based) approach, namely the Variational Auto-Encoder

(VAE) [14]. We also deemed interesting to report the

results obtained with supervised backprop training on

an equivalent network, in order to give a more complete

picture of the impact of different learning methodolo-

gies on the training process.

Specifically, a six layer try-out network was consid-

ered. The network was trained using the various learn-

ing approaches on the MNIST [20], CIFAR10, and CI-

FAR100 [17] datasets. We evaluated the quality of the

features extracted from each layer by feeding these fea-

tures to linear classifiers and evaluating the resulting

accuracy. We decided to adopt a simplified network

model because the focus of this work is not to eval-

uate the performance of a new complex network model,
but rather to compare different learning approaches on

an appropriate architecture. The six layer try-out net-

work allows us to perform extensive experimentation,

and to get insights on the effect of different learning

paradigms on each network layer, evaluating the qual-

ity of the resulting feature extractors on a layer by layer

basis.

Furthermore, in order to assess the impact of switch-

ing from backprop to Hebbian training layer by layer,

we also considered hybrid models in which some net-

work layers are trained with backprop and others with

Hebbian learning. Such hybrid models were also stud-

ied in [1], but only preliminary results where presented

involving just the HWTA learning rule and just one

dataset. In this work, we provide a more comprehen-

sive evaluation of the HWTA rule, as well as the HPCA

rule, using more datasets in our experiments.

Although Hebbian learning is an unsupervised ap-

proach, supervised variants were also proposed in liter-

ature [28,32,19]. In the following, we will refer to classi-

fiers trained with such approach as Supervised Hebbian

Classifiers (SHCs). In this paper, we also provide an ex-

perimental evaluation of SHCs on the various datasets.

Results in this paper confirm that Hebbian learning

can be integrated with backprop, providing comparable

accuracy when used to train lower or higher network

layers, while requiring fewer training epochs. Moreover,

they show that the HPCA variant performs generally

better than HWTA.

The main contributions of this paper can be sum-

marized as follows:

– Hebbian Winner-Takes-All (HWTA) and nonlinear

Hebbian Principal Component Analysis (HPCA) learn-

ing rule variants, properly integrated with convo-

lutional layers (Convolutional HWTA/HPCA), are

applied to learn feature extractors in CNNs;

– The results on various datasets are compared with

those obtained by unsupervised VAE, and the po-

tentials and limitations of the methods are high-

lighted; we also deemed interesting to report the

results of supervised backprop training in our dis-

cussion;

– We also provide an experimental evaluation of hy-

brid neural network training (i.e. a scenario in which

some network layers are trained with backprop and

others with Hebbian approach) and Supervised Heb-

bian Classifiers (SHCs) on various datasets.

The remainder of this paper is structured as fol-

lows: Section 2 provides a background on the related

literature; Section 3 describes our scenario of investiga-

tion, including how Hebbian learning is integrated with

convolutional layers, hybrid network models and SHCs;

Section 4 delves into the details of our experimental
setup; In Section 5, the results of our simulations are

illustrated; Finally, Section 6 presents our conclusions

and outlines possible future developments.

2 Background and related work

Consider a single neuron with weight vector w and in-

put x. Call y = wT x the neuron output. The Hebbian

learning rule, in its most basic form, can be expressed

mathematically as [8]:

wnew = wold +∆w (1)

where wnew is the updated weight vector, wold is the

old weight vector, and ∆w is the weight update. The

latter term is computed, according to Hebbian learning,

as follows:

∆w = η y x (2)

Comparing the performance of Hebbian against back-propagation learning using Convolutional Neural Networks 3

where η is the learning rate. Basically, this rule states

that the weight on a given synapse is reinforced when

the input on that synapse and the output of the neu-

ron are simultaneously high. Therefore, connections be-

tween neurons whose activations are correlated are re-

inforced.

2.1 Hebbian WTA

To prevent weights from growing unbounded, a weight

decay term is generally added. In the context of com-

petitive learning [7,30,15], this is obtained as follows:

∆w = η y x− η yw = η y (x−w) (3)

This rule has an intuitive interpretation: when an input

vector is presented to the neuron, its vector of weights

is updated in order to move it closer to the input, so

that the neuron will respond more strongly when a sim-

ilar input is presented. When several similar inputs are

presented to the neuron, the weight vector converges to

the center of the cluster formed by these inputs (Fig. 1).

When multiple neurons are involved in a complex

network, the Winner-Takes-All (WTA) [7,30] strategy

can be adopted to force different neurons to learn dif-

ferent patterns, corresponding to different clusters of

inputs. When an input is presented to a WTA layer,

the neuron whose weight vector is closest to the current

input is elected as winner. Only the winner is allowed to

perform a weight update, thus moving its weight vector

closer to the current input (Fig. 2). If a similar input

will be presented again in the future, the same neuron

will be more likely to win again. This strategy allows a

group of neurons to perform clustering on a set of data

points (Fig. 2).

In recent works [35,34], WTA and the variant k-

WTA (in which the k neurons with highest activations

are elected as winners) were applied in the context of

computer vision to train a three layer CNN to extract

features from images, in order to perform classifica-

tion. Similar paradigms were also studied in the con-

text of Spiking Neural Networks (SNNs) [5,4]. These

works showed that the approach is suitable to train rel-

atively shallow networks (e.g. with two or three layers),

achieving accuracy around 65-70% on CIFAR-10 and

from 95% up to 98-99% on MNIST, which is compara-

ble to backpropagation-based approaches on networks

of the same depth.

In [1,19], the authors provided preliminary experi-

ments on a single dataset (CIFAR10), by applying Hebbian-

WTA learning to CNNs with up to six layers, com-

paring the results with those obtained by training the

same network with backprop. The WTA approach, as

it is, is unsupervised, but a supervised Hebbian learn-

ing variant was also proposed in order to train the final

classification layer. The results confirmed that the ap-

proach was effective for training shallow networks. It

was also found that the approach was effective for re-

training the higher layers (including the final classifier)

of a pre-trained network. In addition, the algorithm re-

quired much fewer epochs than backprop to converge.

The novel contributions of this work w.r.t. the pre-

vious one are that more extensive experimentation is

performed using multiple datasets (MNIST, CIFAR10,

CIFAR100), and a novel learning rule is also explored,

in addition to Hebbian WTA. This is the Hebbian PCA

learning rule, which is explained in the next sub-section.

2.2 Hebbian PCA

According to the definition given above, WTA enforces

a kind of quantized information encoding in layers of

neural network. Only one neuron activates to encode

the presence of a given pattern in the input. On the

other hand, neural networks trained with backpropaga-

tion exhibit a distributed representation, where multi-

ple neurons activate combinatorially to encode different

properties of the input, resulting in an improved coding

power. The importance of distributed representations

was also highlighted in [6,23].

A more distributed coding scheme could be obtained

by having neurons extract principal components from

data, which can be achieved with Hebbian-type learn-

ing rules [31,3]. In order to perform Hebbian PCA, a

set of weight vectors has to be determined, for the var-

ious neurons, that minimize the representation error,
defined as:

L(wi) = E[(x−
i∑

j=1

yj wj)
2] (4)

where the subscript i refers to the ith neuron in a given

layer and E[·] is the mean value operator. It can be

pointed out that, in the case of linear neurons and zero

centered data, this reduces to the classical PCA objec-

tive of maximizing the output variance, with the weight

vectors subject to orthonormality constraints [31,3,13].

From now on, we assume that the input data are cen-

tered around zero. If this is not true, we just need to

subtract the average E[x] from the inputs beforehand.

It can be shown that the following learning rule min-

imizes the objective in Eq. 4 [31]:

∆wi = ηyi(x−
i∑

j=1

yjwj) (5)

4 G. Lagani et al.

(a) Update step (b) Final position after convergence

Fig. 1: Hebbian updates with weight decay.

(a) Update step (b) Final position after convergence

Fig. 2: Hebbian updates with Winner-Takes All competition.

In case of nonlinear neurons, a solution to the problem

can still be found [13]. Calling f() the neuron activation

function, the representation error

L(wi) = E[(x−
i∑

j=1

f(yj) wj)
2] (6)

can be minimized with the following nonlinear version

of the Hebbian PCA rule:

∆wi = ηf(yi)(x−
i∑

j=1

f(yj)wj) (7)

Several variants of the Hebbian PCA approach were

explored in literature for the linear case [31,3,27,26],

and applied in the context of computer vision [2], but

only for relatively shallow networks. In our experiments,

we applied the nonlinear version of the Hebbian PCA

rule also on deeper networks, as explained in the fol-

lowing sections.

2.3 Supervised Hebbian learning

While the Hebbian approaches discussed so far are un-

supervised, Hebbian learning can also be adapted to the

supervised setting. The idea is based on the concept of

a teacher neuron [28,32,35], which ideally provides the

target signal to a trainable neuron. The teacher’s sig-

nal replaces the actual output of the neuron so that,

when the Hebbian principle is applied, it reinforces the

correlation between the input and the teacher-provided

Comparing the performance of Hebbian against back-propagation learning using Convolutional Neural Networks 5

output. In this way, when a similar input is presented

again, the neuron tends to produce a similar response.

The Supervised Hebbian Classifier (SHC) [19] is real-

ized by applying this principle in combination with the

learning rule in Eq. 3. More specifically, calling t the

teacher signal, the learning rule becomes:

∆w = η t (x−w) (8)

The teacher signal t should be 1 if the input’s class

correspond to that associated with the neuron, and 0

otherwise. The effect of this rule is that the neuron’s

weight vector will converge towards the centroid of the

cluster formed by only those inputs associated with the

target class that the neuron is supposed to detect.

3 Hebbian learning on deep CNNs

In the following, we describe our approach to use Heb-

bian learning with deep CNNs. We introduce the strat-

egy used for integrating Hebbian learning methods with

convolutional layers, and the technique used extend the

Hebbian learning approach to a supervised setting. In

addition we introduce the try-out neural network archi-

tecture used to evaluate our approach, and the hybrid

(Hebbian-backprop) learning modality.

3.1 Convolutional HWTA/HPCA

In order to be able to use the Hebbian rules with CNNs,

we had to define a proper way to integrate these rules

with convolutional layers. In particular, neurons at dif-

ferent horizontal and vertical offset of the convolutional

layer are constrained to have shared weights.

Previous works [34,2] handled convolutions with Heb-

bian learning by extracting random patches from the

images, or by processing patches sequentially, one at

a time, and feeding each patch to a single column of

convolutional filters. This approach is poorly paralleliz-

able, and does not exploit all the information contained

in the image.

In order to meet the convolutional constraints, we

considered a different approach, in which the learning

rule was adapted as follows: each set of neurons looking

at the same portion of the image computed their up-

dates by applying the desired rule, the input x being the

patch extracted from the image at the specific horizon-

tal and vertical position. We then averaged the updates

over the horizontal and vertical dimensions (Fig. 3).

The resulting update was applied to the kernel shared

by all the neurons at different horizontal and vertical

Fig. 3: Update averaging over horizontal and vertical

dimensions.

locations. When mini-batches of inputs were used dur-

ing training, the update averaging was performed also

over the mini-batch dimension.

3.2 Supervised Hebbian Classifier

In order to test the capability of Hebbian learning in

performing tasks of transfer learning, we defined Su-

pervised Hebbian Classifiers (SHC). SHC are trained

on top of the features extracted from pre-trained net-

works, freezing the already trained network layers.

SHCs are trained using the learning rule in Eq. 8.

The teacher signal was set to the target output that the

neuron was required to produce for a given input.

3.3 Network architecture and evaluation

The focus of this work is not to evaluate the perfor-

mance of complex network architecture. Rather we aim

at evaluating and comparing the effects of Hebbian learn-

ing approaches, supervised backprop, and VAE under

various settings.

Accordingly, we defined a try-out model, where it

is possible to perform a large number of experiments

and get insights about the effect of the learning ap-

proach on various network layers, by evaluating the

quality of the features extracted from the network on

a layer by layer basis. This architecture makes also the

experiments more practical to be reproduced by other

researchers. The following subsections illustrate the try-

out network architecture and the evaluation procedure.

3.3.1 Try-out neural network architecture

The deep neural network used in this work consists

of six layers: five layers plus a final linear classifier.

6 G. Lagani et al.

Fig. 4: The try-out neural network used for the experiments.

The various layers are interleaved with other process-

ing stages (such as ReLU nonlinearities, max pooling,

etc.), as shown in Fig. 4. The architecture is inspired to

the AlexNet [18], where one of the fully connected lay-

ers was removed and, in general, the number of neurons

was slightly modified, to allow a finer grained analysis of

the various learning approaches. In our experiments we

compared both HWTA and HPCA learning approaches,

with supervised backprop and VAE. Below, we also dis-

cuss more details of the VAE and supervised backprop

training.

3.3.2 Variational Auto-Encoder for unsupervised

learning

We compared the unsupervised Hebbian approaches with

another popular unsupervised method, namely the Vari-

ational Auto-Encoder (VAE) [14]. We considered the

VAE architecture shown in Fig. 5: the try-out network

model in Fig. 4, up to layer 5, acted as encoder, with a

fully connected layer mapping the output feature map

to a 256 gaussian latent variable representation, while

a specular network branch acted as decoder.

3.3.3 Backprop training for supervised learning

The first part of our experiments is mainly focused on

comparing unsupervised learning approaches, i.e. Heb-

bian learning and VAE. Nonetheless, we also deemed

interesting to include the results provided by super-

vised backprop learning in our discussion. For this pur-

pose, we also report the results obtained by training

a network with the same architecture as the try-out

model shown in Fig. 4, by using supervised end-to-end

Stochastic Gradient Descent (SGD) training on a cross-

entropy loss metric.

3.3.4 Evaluating internal network layers

As we will also discuss in Section 5, we aim at evalu-

ating how the Hebbian approach affects the capabil-

ity of learning feature extractors in the various lay-

ers of the try-out neural network, on a layer by layer

basis. In order to evaluate the quality of the features

extracted from the various layers of the trained mod-

els, we cut the try-out network, in correspondence of

the various layers, and we placed a linear classifier on

top of each already trained layer (for example, Fig. 6

shows a classifier on top of the first network layer).

Then, we evaluated the accuracy achieved by classify-

ing the corresponding features. This was done for the

Hebbian-trained networks and for the VAE network,

in order to compare the results, and also for the su-

pervised backprop-trained network, as we also deemed

interesting to include these results in our discussion.

3.3.5 Hybrid network models

We also implemented hybrid network learning, i.e. sce-

narios in which some network layers were trained with

backprop and others were trained with Hebbian ap-

proach (Fig. 7), in order to asses the impact on ac-

curacy when replacing backprop layers with Hebbian

equivalent. The models were constructed by replacing

the upper layers of a pre-trained network with new ones,

and training from scratch using different learning algo-

rithms. Meanwhile, the lower layers remained frozen,

in order to avoid adaptation to the new upper layers.

Various configurations of layers were considered.

Comparing the performance of Hebbian against back-propagation learning using Convolutional Neural Networks 7

Fig. 5: The encoder-decoder architecture for the Variational Auto-Encoder (VAE) experiments.

4 Details of training

We implemented our experiments using PyTorch. 1

All the hyperparameters discussed below, resulted

from a parameter search, based on Coordinate Descent

(CD) [16], to maximize the validation accuracy in the

respective scenarios. CD works as follows: starting from

an initially selected point in hyperparameter space, one

coordinate (i.e. hyperparameter) at a time is perturbed,

and the resulting hyperparameter configuration is eval-

uated. Hyperparameters are updated in the direction of

the perturbation that leads to an improvement in the

result. The steps are the following: 1) get hyperparam-

eter set according to CD based on previous validation

results; 2) train the model with the given hyperparam-

eters and record the resulting validation accuracy; 3)

repeat from point 1 until no further improvement is

obtained.

Concerning the datasets that we used, the MNIST

dataset contains 60,000 training samples and 10,000

1 The code to reproduce the experiments is available at:
github.com/GabrieleLagani/HebbianPCA/tree/hebbpca.

test samples, divided in 10 classes representing hand-

written digits from 0 to 9. In our experiments, we fur-
ther divided the training samples into 50,000 samples

that were actually used for training, and 10,000 for

validation. The CIFAR10 and CIFAR100 datasets con-

tain 50,000 training samples and 10,000 test samples,

divided in 10 and 100 classes, respectively, represent-

ing natural images. In our experiments, we further di-

vided the training samples into 40,000 samples that

were actually used for training, and 10,000 for valida-

tion. In order to obtain the best possible generalization,

early stopping was used in each training session, i.e. we

chose as final trained model the state of the network

at the epoch when the highest validation accuracy was

recorded.

4.1 Training the try-out network

We used the try-out network architecture shown in Fig.

4. The model was fed with RGB images of size 32x32

pixels as inputs. The network was trained using Stochas-

8 G. Lagani et al.

Fig. 6: Classifier placed on top of the first layer of the network.

tic Gradient Descent (SGD) with error backpropagation

and cross-entropy loss, with the HPCA rule in Eq. 7 (in

which the nonlinearity was set to the ReLU function),

and with the HWTA rule. During Hebbian training,

the final classifier was trained using the SHC approach,

according to Eq. 8.

Training was performed in 20 epochs (although, for

the Hebbian approach, convergence was typically achieved

in much fewer epochs) using mini-batches of size 64.

For SGD training, the initial learning rate was set

to 10−3 and kept constant for the first ten epochs, while

it was halved every two epochs for the remaining ten

epochs. We also used momentum coefficient 0.9, and

Nesterov correction [10].

Contrarily to standard momentum (which first cor-

rects the accumulated momentum with the current gra-

dient estimate and then updates the weight in the re-

sulting direction), Nesterov method first updates the

weights in the momentum direction, and then applies a

correction to the accumulated momentum given by the

gradient estimate at the new location. This look-ahead

strategy helps correcting optimization trajectories and

improves convergence.

Dropout rate was set to 0.5. L2 penalty was also

used to improve regularization. We recall that this is

a regularization term in the form λ |w|2 that is added

to the loss function, in order to penalize large weights.

Here, λ is the weight decay coefficient, which was set

to 5 · 10−2 for MNIST and CIFAR10, and to 10−2 for

CIFAR100.

In the HPCA and HWTA training, the learning rate

was set to 10−3. No L2 regularization or dropout was

used in this case, since the learning method did not

present overfitting issues. In case of HWTA training,

images were preprocessed by a whitening transforma-

tion as described in [17], although this step didn’t have

any significant effect for the other training methods.

4.2 VAE training

VAE training of the network in Fig. 5 was performed

in the same fashion as for the try-out network train-

ing but, obviously, in an unsupervised image encoding-

decoding task. Specifically, the model was trained us-

ing the β-VAE [11] Variational Lower-Bound unsuper-

vised criterion, with coefficient β = 0.5. No L2 penalty

nor dropout was used in this case. Note that the de-

coder part was removed at test time and the features

extracted from encoder layers were used for classifica-

tion.

Comparing the performance of Hebbian against back-propagation learning using Convolutional Neural Networks 9

Fig. 7: An example of hybrid network model.

4.3 Training of classifiers on top of internal layers

The SGD linear classifiers placed on top of the various

network layers, as shown in Fig. 6, were trained with

supervision, in the same way as we described above for

training the whole try-out network. Learning rate was

set to 10−3 and the L2 penalty term was reduced to

5 · 10−4.

The SHC linear classifiers placed on top of the var-

ious network layers were trained with learning rate set

to 10−3, but no learning rate scheduling nor L2 regu-

larization was needed.

4.4 Hybrid network training

Hybrid network models were trained using various com-

binations of Hebbian and backprop layers, as in Fig. 7.

Training was performed in a bottom-up approach, i.e.

we first started by training the base try-out network

with backprop, then we split the network at a desired

point, removing all the layers on top, and replacing

them with new Hebbian layers. The new Hebbian lay-

ers were trained using HWTA or HPCA, as described

above, while the bottom layers remained frozen. This

process produces a network whose bottom layers are

trained with backprop, and top layers are trained with

Hebbian. Again, a new splitting point can be chosen

among the Hebbian layers, in order to remove all the

Hebbian layers on top of the desired point, replacing

them with backprop layers. Retraining the new layers

with SGD, while the bottom layers are kept frozen, pro-

duces a network alternating backprop-Hebbian-backprop

layers, as in Fig. 7. SGD training for the first or the last

part of the hybrid networks (i.e. bottom layers or top

layers) was performed as described above, but using L2

penalty 5 · 10−4 for the top layers, when the last split-

ting point was right before the ultimate or penultimate

layer (hence, for retraining the last or the last two lay-

ers), and 5 · 10−2 in all the other cases.

5 Results

In the following subsections, we present the experimen-

tal results on MNIST, CIFAR10, and CIFAR100 datasets.
For each of these datasets, we present Tables 1, 5, 9,

showing the accuracy obtained by a linear classifier

trained on top of the features extracted from each net-

work layer, in order to asses the quality of the respec-

tive features in the classification task. We compare the

results of unsupervised HPCA, HWTA and VAE train-

ing. Even though we mainly focus on comparing un-

supervised methods, we also deemed interesting to re-

port the results of supervised backprop (BP) training

in our discussion. Tables 2, 6, 10, show the results of

hybrid training, in which part of the network layers are

trained by supervised backprop training, and part with

the Hebbian approach. We also report, in Tables 3, 7,

11, the results obtained when retraining higher layers

of a network pre-trained with backprop, together with

the required number of epochs to convergence, in or-

der to assess the potential of the considered approach

to tasks that involve retraining of higher network lay-

ers. Finally, Tables 4, 8, 12, shows the results of SHCs,

compared with SGD classifiers, trained on the features

10 G. Lagani et al.

extracted from the various layers of a pre-trained net-

work. We performed five independent iterations of each

experiment, using different seeds, averaging the results

and computing 95% confidence intervals.

5.1 MNIST

In this sub-section we analyze the behavior of Hebbian

learning approaches in a simple scenario of digit recog-

nition on the MNIST dataset.

5.1.1 Classifiers on top of internal layers

In Tab. 1, we report the MNIST test accuracy obtained

by classifiers placed on top of the various layers of the

try-out network. We report the results obtained on the

network trained with, respectively, supervised backprop

(BP), VAE, HPCA, and HWTA.

Unsupervised approaches typically suffer from a de-

crease in performance when going deeper with the num-

ber of layers. The reason is that they are not able to

exploit a supervision signal that enables the formation

of task-specific features that are essential to boost the

performance on higher layers. This can be observed

both for HWTA and VAE training. With the HPCA

approach, the problem seems to alleviate, and the ac-

curacy remains pretty much constant when we move to

deeper layers. In particular, the HPCA approach ex-

hibits an increase of almost 2% points w.r.t. HWTA

on the features extracted from the fourth convolutional

layer. The Hebbian features appear to behave compa-

rably or better than VAE features, especially on higher

layers, with an improvement up to 8% points on the

fifth layer. Moreover, we can observe that both Heb-

bian approaches reach higher performance w.r.t. back-

prop for the features extracted from the first two layers,

suggesting possible applications of Hebbian learning for

training relatively shallow networks.

5.1.2 Hybrid network models

In Tab. 2, we report the results obtained on the MNIST

test set with hybrid networks. In each row, we reported

the results for a network with a different combination

of Hebbian and backprop layers (the first row below the

header represent the network fully trained with back-

prop). We used the letter ”H” to denote layers trained

using the Hebbian approach, and the letter ”B” for

layers trained using backprop. The letter ”G” is used

for the final classifier (corresponding to the sixth layer)

trained with gradient descent. The final classifier (cor-

responding to the sixth layer) was trained with SGD

in all the cases, in order to make comparisons on equal

footings. The last two columns show the resulting ac-

curacy obtained with the corresponding combination of

layers.

Tab. 2 allows us to understand what is the effect of

switching a specific layer (or group of layers) in a net-

work from backprop to Hebbian training. The first row

represents the network fully trained with backprop. In

the next rows we can observe the results of a network

in which a single layer was switched. Both HPCA and

HWTA exhibit comparable results w.r.t. full backprop

training. A result slightly higher than full backprop

is observed when layer 5 is replaced, suggesting that

some combinations of layers might actually be helpful

to increase performance. In the successive rows, more

layers are switched from backprop to Hebbian train-

ing, and a slight performance drop is observed, but the

HPCA approach seems to perform generally better than

HWTA when more Hebbian layers are involved. The

most prominent difference appears when we finally re-

place all the network layers with Hebbian equivalent,

in which case the HPCA approach shows an increase of

more than 2% points over HWTA.

5.1.3 Re-training higher network layers

Tab. 3 aims to show that it is possible to replace the

last two network layers (including the final classifier)

with new ones, and re-train them with Hebbian ap-

proach (in this case, the supervised Hebbian algorithm

is used to train the final classifier), achieving accuracy

comparable to backprop, but requiring fewer training

epochs (1 vs 15, respectively). This suggests potential

applications in the context of transfer learning [36].

5.1.4 Comparison of SHC and SGD

Tab. 4 shows a comparison between SHC and SGD clas-

sifiers placed on the various layers of a network pre-

trained with backprop. The results suggest that SHC

is effective in classifying high-level features, achieving

comparable accuracy as SGD, but requiring fewer train-

ing epochs. On the other hand, SHC is not so effective

on lower layer features, although the convergence time

is still fast, suggesting that the supervised Hebbian ap-

proach benefits from the use of more abstract latent

representations.

5.2 CIFAR10

In the previous sub-section, we considered a relatively

simple image recognition task involving digits. In this

section, we aim at analysing Hebbian learning approaches

Comparing the performance of Hebbian against back-propagation learning using Convolutional Neural Networks 11

in a slightly more complex task involving natural image

recognition on the CIFAR10 dataset.

5.2.1 Classifiers on top of internal layers

In Tab. 5, we report the CIFAR10 test accuracy ob-

tained by classifiers placed on top of the various layers

of the network. We report the results obtained on the

try-out network trained with, respectively, supervised

backprop (BP), VAE, HPCA, and HWTA.

Also in this case, the HWTA and VAE approaches

suffer from a decrease in performance when going deeper

with the number of layers. With the HPCA approach,

this problem seems to alleviate, and the accuracy re-

mains pretty much constant when we move to deeper

layers. In particular, the HPCA approach exhibits an

increase of almost 5% points w.r.t. HWTA on the fea-

tures extracted from the fifth layer. Still, further re-

search is needed in order to close the gap with backprop

also when more layers are added, as it would be desir-

able to make the Hebbian approach suitable as a bio-

logically plausible alternative to backprop for training

deep networks. The Hebbian features appear to behave

better than VAE features, especially on higher layers,

with an improvement up to 24% points on the fifth

layer. Moreover, we can observe that both Hebbian ap-

proaches reach higher or comparable performance w.r.t.

backprop for the features extracted from the first two

layers, suggesting possible applications of Hebbian learn-

ing for training relatively shallow networks.

5.2.2 Hybrid network models

In Tab. 6, we report the results obtained on the CI-

FAR10 test set with hybrid networks. The table, which

has the same structure as that of the previous sub-

section, allows us to understand what is the effect of

switching a specific layer (or group of layers) in a net-

work from backprop to Hebbian training. The first row

represents the network fully trained with backprop. In

the next rows we can observe the results of a network

in which a single layer was switched. Both HPCA and

HWTA exhibit competitive results w.r.t. full backprop

training, when they are used to train the first or the

fifth network layer. A small, but more significant drop

is observed when inner layers are switched from back-

prop to Hebbian. In the successive rows, more layers

are switched from backprop to Hebbian training, and

a higher performance drop is observed, but the HPCA

approach seems to perform better than HWTA when

more Hebbian layers are involved. The most prominent

difference appears when we finally replace all the deep

network layers with Hebbian equivalent, in which case

the HPCA approach shows an increase of 15% points

over HWTA.

5.2.3 Re-training higher network layers

Tab. 7 aims to show that it is possible to replace the last

two network layers (including the final classifier) with

new ones, and re-train them with Hebbian approach (in

this case, the supervised Hebbian algorithm is used to

train the final classifier), achieving accuracy compara-

ble to backprop (with a peak performance drop of just

2-3% points when the last two layers are replaced), but

requiring fewer training epochs (1 vs 12, respectively).

This suggests potential applications in the context of

transfer learning [36].

5.2.4 Comparison of SHC and SGD

Tab. 8 shows a comparison between SHC and SGD clas-

sifiers placed on the various layers of a network pre-

trained with backprop. The results suggest that SHC

is effective in classifying high-level features, achieving

comparable accuracy as SGD, but requiring fewer train-

ing epochs. On the other hand, SHC is not so effective

on lower layer features, although the convergence time

is still fast, suggesting that the supervised Hebbian ap-

proach benefits from the use of more abstract latent

representations.

5.3 CIFAR100

In this sub-section, we want to further analyse the scal-

ability of Hebbian learning to a more complex task of

natural image recognition involving more classes, namely

CIFAR100. In this case, we evaluated the top-5 accu-

racy, given that CIFAR100 contains a much larger num-

ber of classes than the previous datasets.

5.3.1 Classifiers on top of internal layers

In Tab. 9, we report the CIFAR100 top-5 test accu-

racy obtained by classifiers placed on top of the vari-

ous layers of the try-out network. We report the results

obtained on the network trained with, respectively, su-

pervised backprop (BP), VAE, HPCA, and HWTA.

Again, VAE and HWTA approaches suffer from a

decrease in performance when going deeper with the

number of layers. With the HPCA approach, this prob-

lem seems to alleviate, and the accuracy remains pretty

much constant when we move to deeper layers. In par-

ticular, the HPCA approach exhibits an increase of al-

most 24% points w.r.t. HWTA on the features extracted

12 G. Lagani et al.

from the fourth convolutional layer. The Hebbian fea-

tures appear to behave comparably or better than VAE

features, especially on higher layers, with an improve-

ment of up to 36% points on the fifth layer. Moreover,

we can observe that both Hebbian approaches reach

competitive performance w.r.t. backprop for the fea-

tures extracted from the first three layers, with HPCA

in particular improving by 9% points over BP on the

first layer, suggesting possible applications of Hebbian

learning for training relatively shallow networks.

5.3.2 Hybrid network models

In Tab. 10, we report the results obtained on the CI-

FAR100 test set with hybrid networks. The table, which

has the same structure as those of the previous sub-

sections, allows us to understand what is the effect of

switching a specific layer (or group of layers) in a net-

work from backprop to Hebbian training. The first row

represents our network fully trained with backprop. In

the next rows we can observe the results of a network

in which a single layer was switched. HWTA exhibits

competitive results w.r.t. full backprop when it is used

to train the first or the fifth network layer. A small,

but more significant drop is observed when inner layers

are switched from backprop to HWTA. On the other

hand, the HPCA approach seems to perform generally

better than HWTA. In particular, it slightly outper-

forms full backprop (by 2% points), when used to train

the fifth network layer, suggesting that this kind of hy-

brid combinations might be useful when more complex

tasks are involved. In the successive rows, more lay-

ers are switched from backprop to Hebbian training,

and a higher performance drop is observed, but still,

the HPCA approach exhibits a better behavior than

HWTA. The most prominent difference appears when

we finally replace all the network layers with Hebbian

equivalent, in which case the HPCA approach shows an

increase of 22% points over HWTA.

5.3.3 Re-training higher network layers

Tab. 11 aims to show that it is possible to replace the

last two network layers (including the final classifier)

with new ones, and re-train them with Hebbian ap-

proach (in this case, the supervised Hebbian algorithm

is used to train the final classifier), achieving accuracy

comparable to backprop (with just a performance drop

smaller than 3% points when the last two layers are

re-trained with HPCA), but requiring fewer training

epochs (1 vs 7, respectively). This suggests potential ap-

plications in the context of transfer learning [36]. More-

over, it can be observed that HPCA performs better

than HWTA.

5.3.4 Comparison of SHC and SGD

Tab. 12 shows a comparison between SHC and SGD

classifiers placed on the various layers of a network

pre-trained with backprop. In this case, SHC achieves

comparable accuracy as SGD (even with a slight im-

provement of 6% points on layer 3), but requiring fewer

training epochs, suggesting that the approach might be

especially useful when more complex tasks are involved.

5.4 Pros and cons of Hebbian learning

We conclude this Section with a list of pros and cons

of Hebbian learning approaches, emerging from the ob-

served results.

Pros of Hebbian learning:

– Effective for training low-level feature extractors;

– Produces better features than VAE for the classifica-

tion task;

– Some hybrid combinations of Hebbian and backprop

help improving performance in some cases;

– Effective for re-training higher network layers in fewer

epochs than other approaches.

Cons of Hebbian learning:

– Not effective for training intermediate layers;

– Even though HPCA provides a reduction in the gap

between unsupervised and supervised methods, the lat-

ter are still preferable for end-to-end network training;

– Finding the best combination of Hebbian and back-

prop layers is not immediate and requires exploring var-

ious network configurations.

6 Conclusions and future work

In summary, our results suggest that the Hebbian ap-

proach is suitable for training early feature extraction

layers or to re-train the final layers of a pre-trained deep

neural network, requiring fewer training epochs than

other methods. This suggests potential applications in

the context of transfer learning, where an experimenter

wants to re-train or fine-tune higher network layers of

a pre-trained model on a new task.

The HPCA method appears to perform generally

better than HWTA, and also better than unsupervised

training based on VAE, reducing the gap between un-

supervised methods and supervised backprop training.

Some hybrid combinations of backprop and Heb-

bian layers appear to be helpful in some cases, offering

performance higher than either Hebbian or supervised

backprop alone.

Comparing the performance of Hebbian against back-propagation learning using Convolutional Neural Networks 13

Integration of Hebbian learning and deep learning

is still an emerging topic. However, our results are en-

couraging, motivating further interest in this direction.

In future works, further improvements might come

from exploring more complex feature extraction strate-

gies, which can also be formulated as Hebbian learn-

ing variants, such as Independent Component Analy-

sis (ICA) [12] and sparse coding [23,22,29]. It might

be promising also to apply Hebbian learning to en-

hance current state-of-the-art network architectures, ei-

ther as a stand-alone learning algorithm, or in combi-

nation with backprop, as an inductive bias for regular-

ization [24], in a semi-supervised fashion.

Hebbian learning already found application in the

context of meta-learning, with the differentiable plastic-

ity model [21]. In this case, the simple Hebbian learn-

ing rule, ∆w = η y x, was used, but further improve-

ments might come from applying more advanced Heb-

bian rules, such as those studied in this paper.

Finally, an exploration on the behavior of such al-

gorithms w.r.t. adversarial examples also deserves at-

tention.

Conflict of interest

The authors declare that they have no conflict of inter-

est.

References

1. Amato, G., Carrara, F., Falchi, F., Gennaro, C., Lagani,
G.: Hebbian learning meets deep convolutional neural
networks. In: International Conference on Image Analysis
and Processing, pp. 324–334. Springer (2019)

2. Bahroun, Y., Soltoggio, A.: Online representation learn-
ing with single and multi-layer hebbian networks for im-
age classification. In: International Conference on Artifi-
cial Neural Networks, pp. 354–363. Springer (2017)

3. Becker, S., Plumbley, M.: Unsupervised neural network
learning procedures for feature extraction and classifica-
tion. Applied Intelligence 6(3), 185–203 (1996)

4. Diehl, P.U., Cook, M.: Unsupervised learning of
digit recognition using spike-timing-dependent plasticity.
Frontiers in computational neuroscience 9, 99 (2015)

5. Ferré, P., Mamalet, F., Thorpe, S.J.: Unsupervised fea-
ture learning with winner-takes-all based stdp. Frontiers
in computational neuroscience 12, 24 (2018)

6. Földiak, P.: Adaptive network for optimal linear feature
extraction. In: Proceedings of IEEE/INNS Int. Joint.
Conf. Neural Networks, vol. 1, pp. 401–405 (1989)

7. Grossberg, S.: Adaptive pattern classification and univer-
sal recoding: I. parallel development and coding of neural
feature detectors. Biological cybernetics 23(3), 121–134
(1976)

8. Haykin, S.: Neural networks and learning machines, 3
edn. Pearson (2009)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learn-
ing for image recognition. In: Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778 (2016)

10. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.:
Bag of tricks for image classification with convolutional
neural networks. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
558–567 (2019)

11. Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot,
X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae:
Learning basic visual concepts with a constrained varia-
tional framework (2016)

12. Hyvarinen, A., Karhunen, J., Oja, E.: Independent com-
ponent analysis. Studies in informatics and control 11(2),
205–207 (2002)

13. Karhunen, J., Joutsensalo, J.: Generalizations of princi-
pal component analysis, optimization problems, and neu-
ral networks. Neural Networks 8(4), 549–562 (1995)

14. Kingma, D.P., Welling, M.: Auto-encoding variational
bayes (2013)

15. Kohonen, T.: Self-organized formation of topologically
correct feature maps. Biological cybernetics 43(1), 59–
69 (1982)

16. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by
direct search: New perspectives on some classical and
modern methods. SIAM review 45(3), 385–482 (2003)

17. Krizhevsky, A., Hinton, G.: Learning multiple layers of
features from tiny images (2009)

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet
classification with deep convolutional neural networks.
In: Advances in neural information processing systems
(2012)

19. Lagani, G.: Hebbian learning algorithms for training
convolutional neural networks. Master’s thesis, School
of Engineering, University of Pisa, Italy (2019). URL
https://etd.adm.unipi.it/theses/available/etd-03292019-
220853/

20. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.:
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE 86(11), 2278–2324 (1998)

21. Miconi, T., Clune, J., Stanley, K.O.: Differentiable plas-
ticity: training plastic neural networks with backpropa-
gation (2018)

22. Olshausen, B.A.: Learning linear, sparse, factorial codes
(1996)

23. Olshausen, B.A., Field, D.J.: Emergence of simple-cell
receptive field properties by learning a sparse code for
natural images. Nature 381(6583), 607 (1996)

24. O’reilly, R.C.: Generalization in interactive networks:
The benefits of inhibitory competition and hebbian learn-
ing. Neural computation 13(6), 1199–1241 (2001)

25. O’Reilly, R.C., Munakata, Y.: Computational explo-
rations in cognitive neuroscience: Understanding the
mind by simulating the brain. MIT press (2000)

26. Pehlevan, C., Chklovskii, D.B.: Optimization theory of
hebbian/anti-hebbian networks for pca and whitening.
In: 2015 53rd Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), pp. 1458–
1465. IEEE (2015)

27. Pehlevan, C., Hu, T., Chklovskii, D.B.: A hebbian/anti-
hebbian neural network for linear subspace learning: A
derivation from multidimensional scaling of streaming
data. Neural computation 27(7), 1461–1495 (2015)

28. Ponulak, F.: Resume-new supervised learning method for
spiking neural networks. technical report. In: Institute of
Control and Information Engineering, Poznan University
of Technology (2005)

14 G. Lagani et al.

29. Rozell, C.J., Johnson, D.H., Baraniuk, R.G., Olshausen,
B.A.: Sparse coding via thresholding and local competi-
tion in neural circuits. Neural computation 20(10), 2526–
2563 (2008)

30. Rumelhart, D.E., Zipser, D.: Feature discovery by com-
petitive learning. Cognitive science 9(1), 75–112 (1985)

31. Sanger, T.D.: Optimal unsupervised learning in a single-
layer linear feedforward neural network. Neural networks
2(6), 459–473 (1989)

32. Shrestha, A., Ahmed, K., Wang, Y., Qiu, Q.: Stable
spike-timing dependent plasticity rule for multilayer un-
supervised and supervised learning. In: 2017 interna-
tional joint conference on neural networks (IJCNN), pp.
1999–2006. IEEE (2017)

33. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al.: Mastering the
game of go with deep neural networks and tree search.
nature 529(7587), 484 (2016)

34. Wadhwa, A., Madhow, U.: Bottom-up deep learning us-
ing the hebbian principle (2016)

35. Wadhwa, A., Madhow, U.: Learning sparse, distributed
representations using the hebbian principle (2016)

36. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How trans-
ferable are features in deep neural networks? (2014)

Comparing the performance of Hebbian against back-propagation learning using Convolutional Neural Networks 15

Table 1: MNIST accuracy (top-1) and 95% confidence intervals on features extracted from convolutional network

layers. Underline represents best overall result. Bold represents best result among unsupervised methods. The

Hebbian approaches appear to be comparable or superior to VAE, especially when higher layer features are

considered. Moreover, HPCA improves over HWTA on higher layer features. It is also possible to observe that

Hebbian training achieves higher results than supervised backprop when lower layer features are concerned.

Layer BP Acc.(%) VAE Acc. (%) HPCA Acc.(%) HWTA Acc.(%)
1 95.80 ±0.02 98.67 ±0.03 98.23 ±0.09 98.16 ±0.05

2 97.26 ±0.01 98.90 ±0.03 98.47 ±0.09 98.52 ±0.06

3 98.77 ±0.01 98.30 ±0.02 98.47 ±0.09 98.55 ±0.02

4 99.56 ±0.01 94.68 ±0.04 98.48 ±0.08 96.58 ±0.04

5 99.59 ±0.02 90.32 ±0.06 98.53 ±0.08 97.15 ±0.01

Table 2: MNIST accuracy (top-1) and 95% confidence intervals of hybrid network models. The first six columns

describe the network configuration: H denotes a Hebbian layer, B denotes a backprop layer, G is used for the

final classifier, trained by Gradient Descent but without the need for backpropagation. The first row refers to the

network fully trained with backprop, the other rows compare HPCA and HWTA approaches.

L1 L2 L3 L4 L5 L6 HPCA Acc.(%) HWTA Acc.(%)

B B B B B G 99.59 ±0.02 99.59 ±0.02

H B B B B G 99.61 ±0.02 99.48 ±0.03

B H B B B G 99.51 ±0.03 99.48 ±0.05

B B H B B G 99.58 ±0.02 99.55 ±0.02

B B B H B G 99.60 ±0.02 99.61 ±0.02

B B B B H G 99.61 ±0.02 99.66 ±0.02

H H B B B G 99.42 ±0.02 99.35 ±0.02

B H H B B G 99.35 ±0.06 99.29 ±0.02

B B H H B G 99.50 ±0.03 99.42 ±0.02

B B B H H G 99.54 ±0.02 99.51 ±0.01

H H H B B G 99.23 ±0.04 99.22 ±0.05

B H H H B G 99.16 ±0.07 98.99 ±0.03

B B H H H G 99.30 ±0.04 99.08 ±0.02

H H H H B G 99.04 ±0.06 98.45 ±0.04

B H H H H G 98.63 ±0.03 98.25 ±0.06

H H H H H G 98.53 ±0.08 97.15 ±0.01

Table 3: MNIST accuracy (top-1), 95% confidence intervals, and convergence epochs obtained by retraining higher

layers of a pre-trained network. Supervised backprop (BP), the HPCA approach, and the HWTA approach are

compared. It can be observed that Hebbian learning achieves comparable results to BP, but in fewer training

epochs.

L1 L2 L3 L4 L5 L6 Method Acc.(%) Num. Epochs

B B B B B G BP 99.59 ±0.02 15

B B B B B H SHC 99.62 ±0.01 1

B B B B H H
HPCA + SHC 99.55 ±0.03 1
HWTA + SHC 99.55 ±0.02 1

16 G. Lagani et al.

Table 4: MNIST accuracy (top-1), 95% confidence intervals, and convergence epochs of SHC and SGD classifiers

on top of various network layer features. It can be observed that SHC achieves comparable classification accuracy

as an SGD classifier, when placed on top of higher layer features, while requiring fewer training epochs.

Layer Method Acc. (%) Num. Epochs

1
SGD 95.80 ±0.02 14
SHC 89.06 ±0.04 10

2
SGD 97.26 ±0.01 13
SHC 95.08 ±0.03 11

3
SGD 98.77 ±0.01 13
SHC 98.47 ±0.01 3

4
SGD 99.56 ±0.01 5
SHC 99.56 ±0.01 6

5
SGD 99.59 ±0.02 15
SHC 99.62 ±0.01 1

Table 5: CIFAR10 accuracy (top-1) and 95% confidence intervals on features extracted from convolutional network

layers. Underline represents best overall result. Bold represents best result among unsupervised methods. The

Hebbian approaches appear to perform better than VAE, especially when higher layer features are considered.

Moreover HPCA improves over HWTA on higher layer features. It is also possible to observe that Hebbian training

achieves comparable results with backprop when lower layer features are concerned.

Layer BP Acc.(%) VAE Acc. (%) HPCA Acc.(%) HWTA Acc.(%)
1 61.59 ±0.08 60.71 ±0.16 64.69 ±0.29 64.79 ±0.34

2 67.67 ±0.11 56.32 ±0.31 65.92 ±0.14 64.35 ±0.35

3 73.87 ±0.15 41.31 ±0.16 64.43 ±0.21 59.69 ±0.16

4 83.88 ±0.04 29.58 ±0.07 61.24 ±0.21 48.56 ±0.17

5 84.95 ±0.25 26.95 ±0.12 61.12 ±0.33 46.88 ±0.23

Table 6: CIFAR10 accuracy (top-1) and 95% confidence intervals of hybrid network models. The first six columns

describe the network configuration: H denotes a Hebbian layer, B denotes a backprop layer, G is used for the

final classifier, trained by Gradient Descent but without the need for backpropagation. The first row refers to the

network fully trained with backprop, the other rows compare HPCA and HWTA approaches.

L1 L2 L3 L4 L5 L6 HPCA Acc.(%) HWTA Acc.(%)
B B B B B G 84.95 ±0.25 84.95 ±0.25

H B B B B G 82.84 ±0.17 84.30 ±0.26

B H B B B G 81.91 ±0.10 81.40 ±0.14

B B H B B G 79.01 ±0.29 80.88 ±0.02

B B B H B G 79.20 ±0.24 81.09 ±0.16

B B B B H G 84.69 ±0.09 84.46 ±0.07

H H B B B G 77.29 ±0.45 79.97 ±0.46

B H H B B G 76.54 ±0.27 68.13 ±0.19

B B H H B G 75.53 ±0.24 73.43 ±0.17

B B B H H G 74.49 ±0.19 78.53 ±0.12

H H H B B G 72.30 ±0.28 68.71 ±0.18

B H H H B G 71.00 ±0.17 49.22 ±0.21

B B H H H G 69.53 ±0.23 68.26 ±0.14

H H H H B G 68.17 ±0.15 52.53 ±0.18

B H H H H G 63.40 ±0.27 45.29 ±0.05

H H H H H G 61.12 ±0.33 46.88 ±0.23

Comparing the performance of Hebbian against back-propagation learning using Convolutional Neural Networks 17

Table 7: CIFAR10 accuracy (top-1), 95% confidence intervals, and convergence epochs obtained by retraining

higher layers of a pre-trained network. Supervised backprop (BP), the HPCA approach, and the HWTA approach

are compared. It can be observed that Hebbian learning achieves competitive results w.r.t. BP, but in fewer training

epochs.

L1 L2 L3 L4 L5 L6 Method Acc.(%) Num. Epochs

B B B B B G BP 84.95 ±0.25 12

B B B B B H SHC 84.59 ±0.01 1

B B B B H H
HPCA + SHC 81.48 ±0.16 1
HWTA + SHC 82.48 ±0.14 1

Table 8: CIFAR10 accuracy (top-1), 95% confidence intervals, and convergence epochs of SHC and SGD classifiers

on top of various network layer features. It can be observed that SHC achieves comparable classification accuracy

as an SGD classifier, when placed on top of higher layer features, while requiring fewer training epochs.

Layer Method Acc. (%) Num. Epochs

1
SGD 61.59 ±0.08 16
SHC 48.36 ±0.17 1

2
SGD 67.67 ±0.11 17
SHC 58.87 ±0.08 1

3
SGD 73.87 ±0.15 15
SHC 70.94 ±0.05 2

4
SGD 83.88 ±0.04 12
SHC 82.78 ±0.03 1

5
SGD 84.95 ±0.25 12
SHC 84.59 ±0.01 1

Table 9: CIFAR100 accuracy (top-5) and 95% confidence intervals on features extracted from convolutional network

layers. Underline represents best overall result. Bold represents best result among unsupervised methods. The

Hebbian approaches appear to perform better than VAE, especially when higher layer features are considered.

Moreover HPCA improves over HWTA on higher layer features. It is also possible to observe that Hebbian training

achieves competitive results w.r.t. backprop when lower layer features are concerned.

Layer BP Acc.(%) VAE Acc. (%) HPCA Acc.(%) HWTA Acc.(%)
1 51.67 ±0.10 58.46 ±0.12 60.94 ±0.09 59.56 ±0.13

2 60.84 ±0.19 54.63 ±0.20 62.24 ±0.15 58.49 ±0.20

3 67.01 ±0.13 39.46 ±0.15 64.17 ±0.22 52.97 ±0.22

4 78.85 ±0.10 26.42 ±0.21 61.27 ±0.24 37.38 ±0.12

5 80.74 ±0.05 23.03 ±0.12 59.51 ±0.20 37.87 ±0.21

18 G. Lagani et al.

Table 10: CIFAR100 accuracy (top-5) and 95% confidence intervals of hybrid network models. The first six columns

describe the network configuration: H denotes a Hebbian layer, B denotes a backprop layer, G is used for the final

classifier, trained by Gradient Descent but without the need for backpropagation. The first row refers to the

network fully trained with backprop, the other rows compare HPCA and HWTA approaches.

L1 L2 L3 L4 L5 L6 HPCA Acc.(%) HWTA Acc.(%)
B B B B B G 80.74 ±0.05 80.74 ±0.05

H B B B B G 76.46 ±0.34 76.84 ±0.41

B H B B B G 77.41 ±0.30 75.80 ±0.31

B B H B B G 78.44 ±0.18 77.29 ±0.27

B B B H B G 77.97 ±0.17 74.42 ±0.12

B B B B H G 82.46 ±0.11 77.42 ±0.07

H H B B B G 72.32 ±0.34 72.81 ±0.28

B H H B B G 75.41 ±0.29 77.10 ±0.24

B B H H B G 75.12 ±0.26 65.89 ±0.05

B B B H H G 76.03 ±0.15 70.09 ±0.13

H H H B B G 70.26 ±0.20 66.49 ±0.42

B H H H B G 69.13 ±0.22 51.85 ±0.24

B B H H H G 69.61 ±0.13 57.61 ±0.29

H H H H B G 66.34 ±0.21 42.88 ±0.32

B H H H H G 62.27 ±0.12 41.42 ±0.13

H H H H H G 59.51 ±0.20 37.87 ±0.21

Table 11: CIFAR100 accuracy (top-5), 95% confidence intervals, and convergence epochs obtained by retraining

higher layers of a pre-trained network. The network fully trained with backprop (BP), the HPCA approach, and

the HWTA approach are compared. It can be observed that HPCA performs better than HWTA, and achieves

competitive results w.r.t. BP, but in fewer training epochs.

L1 L2 L3 L4 L5 L6 Method Acc.(%) Num. Epochs

B B B B B G BP 80.74 ±0.05 7

B B B B B H SHC 79.45 ±0.02 1

B B B B H H
HPCA + SHC 77.66 ±0.09 1
HWTA + SHC 63.62 ±0.27 1

Table 12: CIFAR100 accuracy (top-5), 95% confidence intervals, and convergence epochs of SHC and SGD classifiers

on top of various network layer features. It can be observed that SHC achieves comparable classification accuracy
as an SGD classifier, while requiring fewer training epochs.

Layer Method Acc. (%) Num. Epochs

1
SGD 51.67 ±0.10 14
SHC 51.70 ±0.12 1

2
SGD 60.84 ±0.19 11
SHC 63.67 ±0.06 1

3
SGD 67.01 ±0.13 15
SHC 73.99 ±0.30 1

4
SGD 78.85 ±0.10 15
SHC 79.98 ±0.04 1

5
SGD 80.74 ±0.05 7
SHC 79.45 ±0.02 1

