Run the program as follows: python one_run.py {method} {dataset} {multiset/minimal #f threshold} {random seed} e.g. if you want to test the diabetes dataset using mrmr you call "python one_run_corrected_crossfold.py 6 2 0.96 42" Call script with the following arguments: Dataset: 1: "breast_cancer" 2: "diabetes" 3: "diabetes_mrmr" 4: "medical_cognition" 5: "medical_frail" 14: "parkinsons" 15: "lungcancer" 18: "lymphography" 20: "heart_disease" 21: "sick" 22: "primary_tumor" Feature selection method: 1: "none" 6: "mrmr" 17: "deltadebugging_new_dd" 18: "deltadebuggingshuffle_new_dd" 42: "POSS" 43: "hho_test" Example output: You call the script as "python one_run_corrected_crossfold.py 18 15 1.0 42" You will recieve an output as follows: --------------------------------------------------------------------- lungcancer_deltadebuggingshuffle_new_dd_False_1 Best accuracy: 0.87143 Feature reduction: 54 --> 6 Total Time taken for tuning ML + FS: 43158.10238 seconds Number of multisets: 49 Avg Size of multisets: 23.26530612244898 Minimal feature set size: 2 --------------------------------------------------------------------- Best split: 20 Best features: ['attribute57', 'attribute21', 'attribute28', 'attribute18', 'attribute7', 'attribute53'] You can then repeat this for another 4 seeds and average the result to replicate the results in the paper. We used seeds 42, 43, 44, 45, 46