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Abstract—Nowadays, services in the framework of 

Cooperative Intelligent Transport Systems (C-ITS) are evolving 

to tackle more complex scenarios. The State-of-Art C-ITS 

messages focus on the sharing of information about specific 

events, hazards or about the position and dynamic status of 

connected vehicles. New C-ITS services are currently being 

developed to enable connected road actors to share detailed 

information gathered from local sensors. The aim is to create a 

Collective Perception that provides a better knowledge of the 

surrounding environment at the vehicle-side. In this paper, we 

focus on a collective perception service that a roadside unit 

implements to provide information from fixed sensors to 

connected vehicles. The contribution of this paper is the 

implementation of a prototype of a collective perception service 

according to ETSI standards. The prototype includes the 

development of a platform that processes the sensors’ raw data 

to obtain usable information to share along with a 

communication facility for sharing the information through 

specific C-ITS messages. Further contribution concerns the 

assessment of the end-to-end latency of this service in the 

developed prototype. The measurements show that the required 

time to provide the information from the roadside unit to the 

vehicle is below the threshold recommended in relevant 

standards. A latency of 250 ms has been estimated for first-time 

detected objects, while the latency of already tracked objects is 

of 157 ms. This confirms the viability of the prototype for 

effectively providing useful information to connected vehicles. 

Keywords— Collective Perception, CAV, C-ITS, V2I, latency, 

prototype 

I. INTRODUCTION 

A driving vehicle can be defined fully autonomous if it can 
drive in an environment without requesting the intervention of 
a human driver. An autonomous vehicle has to decide the 
route it should follow (Path Planning), to determine how to 
achieve the desired route (Guidance), to understand where it 
is (Navigation), and to actuate the proper commands to 
achieve the desired route (Control) [1]. 

The Guidance of the vehicle also includes the exploitation 
of the information about obstacles that are received from the 
vehicle’s perception system. Knowing the obstacles present in 
the surrounding environment is indeed required to refine the 
trajectory of the vehicle avoiding potential collisions. The 
identification of obstacles is very challenging since their type, 
dimension and dynamic status can significantly vary. Further 
complexity is provided by the unknown behaviors that other 
road actors (e.g., vehicles, pedestrians, animals) can have. 

The perception system of an autonomous driving vehicle 
is usually made by several sensors, based on different 
technologies (e.g., camera, LiDAR, RADAR), that can 
provide different kinds of information for different ranges. 
The ideal perception system should be able to identify 
obstacles at 360° at specific distances. However, there are 
some situations in which a perception system cannot detect 
obstacles due to physical constraints. For example, 
obstructions, due to buildings or to vehicles, can limit the 
range of the perception system being a serious issue for safety. 

A possible solution, which can mitigate the possible 
vulnerabilities of a perception system, is the cooperation 
among the road actors (e.g., vehicles and road-side 
infrastructure). The exchange of information using vehicular 
communication (V2X) can help in the identification of 
potential obstacles. This is the basis of Cooperative Intelligent 
Transport Systems (C-ITS). The CAR 2 CAR Communication 
Consortium identifies three main categories of information 
that can be exchanged in the context of C-ITS [2]: 

• Awareness Driving: it concerns the exchange of 
information about vehicles’ dynamics (e.g., position, 
speed, direction) and of well-defined events (e.g., 
accident, adverse weather conditions, ...), the 
exchanged information is only related to connected 
road actors; 

• Sensing Driving: road actors share the information 
provided by their own sensors, in this case the shared 
information can permit to identify also non-connected 
road actors; 

• Cooperative Driving: the interactions among road 
actors are not limited to the sharing of information, 
but they can coordinate their maneuvers to ensure 
enhanced safety. 

The possibility to exchange information from sensors is 
particularly relevant for enhancing safety in autonomous 
driving. The “Awareness Driving” use cases have been 
already explored and testbeds have been implemented [3], 
while “Sensing Driving” use cases have only been recently 
approached. The 5G Automotive Association (5GAA) 
introduced the “High Definition Sensor Sharing” use case for 
improving the perception of the environment by exploiting 
information from other vehicles [4]. The sharing of processed 
sensors’ information using V2X messages is targeted by the 
Collective Perception Service (CPS) that is a C-ITS service 
firstly proposed in [5] and currently under-going ETSI 
standardization as detailed in Sect. III.  



This paper focuses on the sharing of information from 
road-side fixed sensors to Connected and Automated Vehicles 
(CAVs). This work deals with this approach since it has been 
developed within the framework of the European H2020 
project ICT4CART whose main goal is to foster autonomous 
driving to higher levels of automation thanks to the support of 
an ICT road-side infrastructure. 

The main contribution of this paper consists in the 
development of a complete prototype of a CPS framework. 
This prototype includes the development of a Perception 
Processing Platform (3P) and of an ETSI-compliant CPS at 
the roadside. The 3P framework is a system for processing 
road-side sensors’ data to feed the CPS with the required 
information. This system exploits data from camera to 
identify, track and predict the dynamics of selected road actors 
(i.e., vehicles, bicycles, pedestrians, and animals). Further 
contribution is related to the assessment of the end-to-end 
latency of the overall application. The end-to-end latency is 
computed as the interval between the time instant at which 
sensors’ data are available and the time instant at which the 
information is processed at the receiving CAV. 

The following of the paper is structured as follows. Sect. II 
introduces related works on collective perception and on 
tracking solutions, while Sect. III provides some insights 
about the CPS. In Sect. IV, the 3P platform is detailed. The 
fine-tuning of the main configuration parameters of the 
platform is introduced in Sect. V where latency assessment 
results are also provided. Further works and conclusions are 
outlined in Sect. VI. 

II. RELATED WORKS 

The concept of collective perception is of particular 
interest for vehicles or robots that autonomously move in an 
unknown environment [5],[6]. The sharing of information can 
help to identify obstacles not perceived by all actors and it can 
ease the navigation of the environment. Collective perception 
is currently a trending topic in the C-ITS context. CAVs, 
infrastructure and V2X-enabled actors can share the 
information of sensors to enhance the knowledge of every 
single actor. The exchange of information can be limited 
among connected vehicles [5] or it can be performed between 
vehicles and artificial intelligence placed on the 
infrastructure [7]. Alternatively, as proposed in [8], 
information sharing can involve several connected actors such 
as infrastructure, body-worn mobile devices, and vehicles. 

Raw data from sensors need to be processed to retrieve 
information about type, position, and dynamics of objects. In 
our implementation, the 3P platform provides this information 
to the CPS exploiting detection and tracking algorithms. 

Object detection is a well-studied topic. In this work, we 
do not aim to introduce new object detection methods, but we 
exploit existing State-of-Art solutions as basis for the 
development of the 3P platform. We refer to the 
surveys [9], [10] for further details about object detection. 

A Multiple Object Tracking (MOT) approach is required 
in the context of Collective Perception since multiple objects 
need to be followed. The MOT problem can be divided in two 
main tasks: i) identify the objects to track and ii) follow the 
objects over time. Several MOT solutions have been proposed 
in the literature. We refer to [9], [11], [12] for detailed surveys 
on these solutions. The MOT problem can adopt two different 
methods for following objects: a computer vision approach or 

a point-based problem approach. In the first case, visual 
information from images is used frame by frame for predicting 
the object position along the whole video (e.g., comparing an 
appearance model at each frame) as done in [13]. In the 
second case, only information about the object position is 
required. For example, [7] proposes a generic interface which 
enables different types of sensors to be connected for 
providing object positions that are exploited for tracking the 
objects using a Labeled-Multi-Bernoulli Filter based method. 

The MOT algorithm that we use for developing the 3P 
platform is based on different solutions that we exploited to 
create a personalized MOT method that best matches the 
requirements of our context. The details about the 
implemented tracking solution are provided in Section IV. 

III. C-ITS COLLECTIVE PERCEPTION SERVICE 

The specification of the C-ITS CPS indicates which 
information retrieved from sensors’ data can be shared and 
how. The specification does not include how to retrieve 
information from raw data’ sensors (i.e., object detection and 
tracking). This aspect is not standardized, and it is considered 
manufacturer-dependent. The ETSI Technical Specification 
103 324, which is currently under drafting at the time of 
writing this paper, aims to specify the CPS. ETSI already 
publicly released the Technical Report 103 562 as preliminary 
document for the description of the CPS [14]. We refer to this 
document for the details, while in the following of this section 
we outline main characteristics and features of the CPS. 

The CPS specification defines the new C-ITS message 
named Collective Perception Message (CPM), for sharing 
perception information. The CPM contains information of the 
ITS-Station generating it, the available sensors at that ITS-
Station and the objects detected. Further information that can 
be optionally provided in the CPMs are the free space areas 
detected. The CPMs are generated by the CPS periodically 
providing information of newly detected objects or of moving 
objects. The CPS broadcasts the CPMs generated and 
processes the received CPMs. The CPM is basically an object-
based representation of an environmental perception model. 
The object-related information to be inserted into a CPM 
concerns the type, the position, and the dynamics (e.g., speed 
and heading) of an object. Additional information can also be 
provided such as the volume occupancy and the acceleration. 

IV. PERCEPTION PROCESSING PLATFORM 

The 3P platform provides information about objects to the 
CPS. Exploiting sensors’ raw data, the 3P platform identifies 
objects, determines their position, and computes their 
dynamics. Our implementation is based on a camera as the 
main sensor for the perception of road objects. The processing 
of the information must be accurate and fast since this 
information is used by CAVs to decide their maneuvers. Not 
precise or old information can negatively impact their 
decisions. The 3P platform is made of two main components: 
the Object Detection (OD) unit and the Multiple Object 
Tracking (MOT) unit. 

A. Object Detection unit 

The OD unit takes as input the image frames from the 
camera to detect objects in the field of view of the camera. The 
output of the OD unit for each frame consists of a list of the 
identified objects, specifying their types and their position in 
the frame (i.e., a bounding box of the portion of the frame in 
which the object is to be recognized). The OD unit is based on 



the open-source neural network framework Darknet and the 
You Only Look Once v3 (YOLOv3) that is a real-time high-
performant object detections system based on deep-
learning [15]. 

B. Multiple Object Tracking unit 

The MOT unit is based on a scalable multi-threading 
approach like the one proposed in [16]. In detail, the MOT 
unit launches a program thread for tracking each object. We 
refer to this tracking thread with the name of Thread Tracker. 
A certain Thread Tracker tracks the assigned object as it was 
the only one in the frame. We selected this approach since it 
guarantees the scalability to easily follow all identified objects 
whose number can continuously change at each frame. 

The tracking algorithm performed by each Thread Tracker 
is the Kernelized Correlation Filter (KCF) [17]. The selected 
KCF algorithm is an on-line and computer-vision based 
solution. The on-line feature is a mandatory choice since on-
line tracking can provide results at each frame as envisaged 
for the CPS that requires input information with low latency. 
The KCF algorithm is a computer-vision approach since it 
applies a correlation filter on the image in the surrounding of 
the last known position of the object. The correlation filter 
technique is performed in the frequency domain allowing the 
tracking algorithm to easily achieve high frame per second 
rate. Detailed explanations about correlation filter tracking 
can be found in [18]. 

The MOT unit implements a partial detection-based 
approach. The detection information provided by the OD unit 
is used to start the tracking of new objects and to realign the 
already tracked objects. The KCF algorithm uses its own 
tracking predictions to update the correlation filter to better 
follow the object, but this approach accumulates errors 
resulting in a drift in the object tracking. This issue can be 
solved by re-initializing the KFC algorithm with the 
information received from the OD unit. A fully detection-
based tracking approach was not selected since detection 
times may be too high due to the deep-learning based 
approach for the object detection. Thus, we preferred to 
provide low latency information to the CPS taking care to 
reduce as much as possible the inaccuracies by periodically 
realigning detection and tracking results. 

The inner structure of the MOT unit is shown in Fig. 1. 
The MOT unit receives in input the image frames from the 
camera and the object detection information from the OD unit. 
The output of the MOT consists in tracking information (e.g., 
position of the tracked objects) to the CPS. The main modules 
of the MOT unit are described in the following subsections.  

1) Start Thread Tracker 
This module launches a new Thread Tracker for each 

newly detected object. The notification of a new object is 

received from the Tracking and Detection Matching module 
that provides the information about the bounding box 
coordinates of the object to track. The Thread Tracker 
initializes the tracking filter of the KCF algorithm extracting 
color-based features of the bounding box area. At the start of 
the MOT unit, since no object is tracked, this module launches 
a Thread Tracker for each detected object. 

2) Tracking and Detection Matching 
This module receives as input the information of the 

detected objects from the OD unit, and it matches them with 
the currently tracked ones. In case that this module identifies 
a newly detected object, it sends the object information to the 
Start Thread Tracker module, otherwise it provides the 
matching and the detection information to the Thread 
Trackers Update module. 

The matching between detected and tracked objects is 
based on a score computed on geometrical features of their 
bounding boxes. This score is the normalized and weighted 
sum of several metrics (e.g., the distance between the centers 
of the bounding boxes, the ratio of the dimensions, etc.). The 
optimal matching solution is determined by applying the 
Hungarian algorithm, which is widely used in the tracking 
field [18], [19]. It is a combinatorial optimization algorithm 
that solves the problem in polynomial time finding an optimal 
assignment. This matching procedure aims to minimize 
incorrect assignments, but these may still happen. For 
example, if a tracked object does not have its corresponding 
detection and a new object is detected enough close to it. 

3) Thread Trackers Update 
Each Thread Tracker receives in input the frames from the 

camera, and it updates the position of the tracked object based 
on the output of the KCF algorithm. If the algorithm cannot 
provide the new object position with an adequate confidence 
level (e.g., due to an occlusion), the Thread Tracker updates 
the position of the tracked object considering its estimated 
trajectory based on previous frames. 

Each Thread Tracker receives also in input the information 
about the matching with detected objects from the Tracking 
and Detection Matching module. If a detected object is 
assigned to the specific tracked object, the Thread Tracker use 
this information to refine the position of bounding box and to 
reinitialize the tracking filter of the KCF algorithm. 

4) Stop Thread Tracker 
The Thread Tracker defines a tracked object as leaving the 

scene considering these two conditions: 1) the bounding box 
of the tracked object is close to the borders of the image frame 
and its estimated trajectory is going outwards the frame; 2) the 
tracked object does not match with any detection for n 
consecutive detections provided by the OD module. In this 
work, the value of n has been fixed to 5. If at least one 

 

Fig. 1. Inner structure of the MOT unit. 



condition is satisfied the Stop Thread Tracker module 
terminates the thread and free the associated resources. 

V. IMPLEMENTATION 

A Road Side Unit (RSU) hosts the 3P platform, the CPS, 
the ITS-G5 communication stack, and associated services. 
The RSU implements the connection with the camera and it 
manages the transmission of C-ITS messages with a ITS-G5 
modem. All the software modules and related algorithms are 
implemented on the RSU. The RSU is based on a Nvidia 
Jetson AGX Xavier board that is a high-end embedded board 
offering “a 512-core Volta GPU with 64 Tensor Cores, a 8-
core Carmel ARM v8.2 64-bit CPU, and a 32GB 256-Bit 
LPDDR4x memory”. The vehicle is equipped with an On-
Board Unit (OBU) based on an ARM embedded board. The 
OBU and the RSU are running the ITS communication stack 
developed by LINKS Foundation. The OBU processes the 
received C-ITS messages and provides information to relevant 
applications, such as a Human-Machine Interface (HMI) or 
the autonomous driving module. 

The image frames are provided by an IP camera in the 
same local network of the Xavier board using Real Time 
Streaming Protocol (RTSP). The information among the 
different modules of the 3P platform is exchanged through a 
Message Queue Telemetry Transport (MQTT) message 
broker that runs on the Xavier board. 

VI. RESULTS 

In the first subsection, we introduce the tuning of the main 
parameters of the 3P platform. The goal is to find the best 
trade-off between accuracy and latency. The tuning has been 
done considering an offline recorded video to test the different 
combinations of parameters in the same situation. 

In the second subsection, we provide the assessment of the 
end-to-end latency that corresponds to the interval between 
the instant at which a frame is provided to the 3P platform and 
the instant at which the information is provided to the HMI or 
Advanced Driving Assistance Systems (ADAS) on the 
receiving vehicle. The end-to-end latency has been measured 
considering a live video. 

A. Sensitivity analysis of 3P platform’s parameters 

The parameters of the OD unit are the size of the input 
layer of the YOLOv3 neural network and the resolution of the 
received images. The MOT unit has only the video resolution 
as input configuration parameter. Following sizes of input 
layers have been tested: 320x320, 416x416, 608x608, and 
832x832. The offline video is considered with the following 

resolutions 0.5, 1, 2, 4, and 8 MP for the OD unit and 0.3, 0.5, 
and 1 MP for tracking operations in the MOT unit. The offline 
video lasts 10 seconds with a frame rate of 25 fps. The ground 
truth of object detection has been generated by running the 
YOLOv3 network with a 1600x1600 input layer and using an 
image resolution of 8 MP. The tracking ground truth has been 
created performing offline the tracking with the detection 
information of the ground truth received at each frame. 

Fig. 2 shows the percentage of the average number of 
detected objects in all the video for each possible combination 
of resolution and input layer size with respect to the ground 
truth. The average time employed by YOLOv3 to process one 
frame is depicted in Fig. 3 for the same set of cases. 

The increase of the image resolution is more impacting on 
the percentage of detected objects when the size of the neural 
network is larger. The impact of the resolution on the detection 
time is instead negligible. Considering these results, the image 
resolution for the object detection shall be at least 2 MP. 
Higher image resolutions can also be used since they do not 
impact the detection latency, while they slightly improve the 
accuracy of the object detection. 

In Fig. 2 it is possible to notice that the percentage of 
detected objects increases with the size of the neural network. 
This behavior is expected due to the working principle of 
YOLOv3 [15]. The percentage gap with respect to the ground 
truth is mainly due to vehicles in the background of the scene 
that are identified only when they get closer to the camera. We 
estimated that the 608x608 and the 832x832 neural networks 
can detect objects approximately at 400 and 500 meters. Both 
distances can be considered sufficient to not impair the 
effectiveness of the CPS even at high speeds. 

The higher accuracy of larger input layers has the 
drawback of a significant increase of the processing time 
required by the object detection as shown in Fig. 3. This time 
directly impacts on the performance of the MOT since it 
delays the instant at which the MOT unit can exploit the 
detection information to reduce the tracking errors. However, 
the tracking performance is also conditioned by the object 
detection accuracy. A trade-off between these two aspects 
needs to be found. It is necessary to evaluate if the tracking 
can provide better results if it receives less accurate detection 
information but sooner or if it receives more accurate 
detections after a longer time period. 

This evaluation is performed considering the MOT unit to 
receive input detection information with different delays 
depending on the size of the neural network used. In the 
specific, considering the computed object detection latencies 

 
Fig. 2. Percentage of average number of objects detected for each 

input layer dimension and image resolution with respect to 

the ground truth. 

 
Fig. 3. Average processing time of the object detection for 

each input layer size and image resolution. 



shown in Fig. 3 and that the time between two consecutive 
frames is of 40 ms in the offline video (i.e., the frame rate is 
25 fps), the delay in the communication of detection 
information between the OD unit and the MOT unit results to 
be of 1, 2, 3 and 4 frames for respectively 320x320, 416x416, 
608x608, and 832x832 neural networks. The object detection 
is performed keeping fixed the image resolution to 4 MP, 
while the MOT unit uses a 1 MP resolution of the video. 

The tracking results are compared with respect to the 
tracking ground truth. The comparison has been done by 
measuring the pixel distance between the tracking position 
and the tracking ground truth position for each object. To 
provide more understandable results, we convert the pixel 
distance to meter distance. The conversion is done considering 
that the bounding box of the object is around 1.8 meters since 
the object is a car that is seen from an almost frontal visual 
perspective. It was not possible to perform a georeferentiation 
of the objects since the camera position and its calibration 
parameters are not available for the offline video.  

Fig. 4 introduces the results of the comparison for tracking 
performed considering the previously illustrated object 
detection configurations. “Match 1” provides the results for 
tracking with object detection based on 320x320 neural 
network, “Match 2”, “Match 3” and “Match 4” for 
respectively 416x416, 608x608, and 832x832 neural 
networks. The four plots report the average distance error of a 
tracked object with respect to the tracking ground truth for 22 
different objects tracked along the video. The average error is 
below one meter in all cases. The peaks that it is possible to 
notice are vehicles whose identifier is not correctly assigned 
to the correct object during the matching algorithm phase. 
This is due to low-quality detection information (e.g., 
duplicated detected objects) or to lately received detection 
input providing outdated information (e.g., detected object 
located in an old position too different from the actual one). 
The average distance errors for the different cases are 0.44 m 
for “Match 1”, 0.36 m for “Match 2”, 0.26 for “Match 3”, and 
0.37 m for “Match 4”. These results indicate that the smaller 
neural networks provide object detection with low accuracy 
impairing the performance of the tracking algorithm, while the 
high delay of the largest neural network makes the 
performance of the tracking to degrade since information even 
if accurate is received too late. The performed analysis points 
out that the neural network size of 608x608 should be 
selected. This configuration is a good compromise between 
object detection latency and accuracy resulting in more 
accurate tracking performance. 

Another parameter that impacts both accuracy and latency 
of the tracking algorithm is the resolution of the video used by 
the MOT unit. The tracking algorithm is indeed based on a 
KCF filter that adopts a computer vision approach that 
performs pixel-level operations. The analysis of this 

parameter has been done considering that the object detection 
configuration has been kept fixed with a neural network of 
608x608 and an image resolution of 4 MP. We report the 
average latency per object since the KCF filter initialization 
has to be performed for each object making the tracking time 
to be dependent on the number of the objects in a frame. The 
average latency for 1 MP resolution is of 2.4 ms per object. 
Decreasing the image resolution, the objects are characterized 
by a smaller number of pixels reducing the time need by the 
MOT unit to perform the tracking. A video resolution of 
0.5 MP has a tracking latency of 1.6 ms and a resolution of 
0.3 MP has a 1.2 ms latency. 

The impact of the different image resolutions on the 
tracking accuracy has been evaluated comparing the results of 
tracking with 1 MP with those provided by using lower 
resolutions. Using the 0.5MP video the tracking accuracy is 
characterized by an average distance error of about 6.5 cm and 
standard deviation of 3 cm with respect to the tracking results 
obtained with the 1 MP. Considering tracking with a 0.3 MP 
video resolution the average distance error becomes 13.5 cm 
with a standard deviation of 15 cm. This significantly higher 
standard deviation means that tracking is not able to correctly 
follow the cars due to not correct matching during the update 
phases. Thus, the tracking algorithm can be run also receiving 
in input a 0.5 MP video lowering its latency and only slightly 
worsening its accuracy. 

B. Assessment of the End-to-End Latency  

The measurement of the end-to-end latency has been done 
considering a live video from the IP camera Vivotek IB9387-
HT. The OD unit has been configured to use a 608x608 neural 
network and a 5 MP video stream with a frame rate of 30 fps. 
The MOT unit receives in input a 0.5 MP video stream with a 
frame rate of 30 fps. The latency measurements have been 
based on 500 consecutive frames. 

The end-to-end latency is made by the following 
contributions: 1) the object detection latency, 2) the tracking 
latency, 3) the latency introduced by the CPS to create CPM 
messages, 4) the latency for coding, transmission at the RSU 
side and for the decoding at the OBU side. The latency 
contribution of the object detection should be considered just 
for objects that are detected the first time. After the initial 
detection, information about objects is directly updated by the 
MOT unit reducing the overall latency. 

The measured object detection latency has an average 
value of 93 ms. The higher detection time is mainly due to the 
different image frame proportions with respect to the offline 
video used in the sensitivity analysis. However, this latency 
allows to provide detection information to the MOT unit with 
three frames of delay that guarantees the best tracking 
accuracy as found in the sensitivity analysis. 

 
Fig. 4. Average distance error for the tracking results of the tracked objects (Tracker ID) for different object detections obtained with neural 

network of size 320x320, 416x416, 608x608, and 832x832 for respectively “Match 1”, “Match 2”, “Match 3” and “Match 4”. 



The tracking latency of the live video is on average 30 ms. 
In the specific, about 30 objects have been tracked 
corresponding to an average latency per object of 1 ms. The 
small difference with respect to the offline video is due to the 
different scenes that are analyzed. In the live video, objects 
have smaller dimensions with respect to the overall image 
frame size due to the different visual perspective. This reduces 
the time employed by the KCF filter lowering the latency 
introduced by the MOT unit. The tracking information 
provided by the MOT unit is received by the CPS that 
processes it for preparing the CPM messages that are then 
coded and sent using an ETSI standard compliant ITS 
communication stack.  The CPS takes on average 1.25 ms 
since the reception of the tracking information to prepare the 
CPMs to be sent. The encoding/decoding operations and the 
transmission operations at the RSU and the OBU side account 
for a total amount of 25 ms on average. 

The overall latency is then around 150 ms for the first-time 
detected object, while the information about objects that were 
already detected in previous frames can be provided to 
connected vehicles in about 57 ms. These values do not 
consider the intergeneration time between two CPMs that 
needs to be observed as defined in the ETSI standard.  The 
minimum value of intergeneration time is equal to 100 ms. 
Considering the worst case in which the information is 
provided to the CPS just after a CPM is sent, the previous 
values should be incremented of 100 ms becoming 250 ms for 
first-time detected objects and 157 ms for already known 
objects. The obtained latency values indicate that the 
information provided by the CPS can be exploited by the 
receiving vehicles since standard threshold value for collision 
risk warning applications is 300 ms as defined in the standard 
ETSI TS 101 539-3.  Higher values are not acceptable since 
the received information may be too old to allow prompt 
response from AD systems or human driver to take actions. 

VII. CONCLUSIONS AND FUTURE WORKS 

In this paper, we presented a prototype of a roadside unit 
implementing a Collective Perception Service that shares 
information from road sensors to vehicles. The prototype 
includes a Perception Processing Platform (3P), which is used 
to process data from sensors, and the C-ITS service that 
broadcasts the information retrieved from the platform to the 
connected vehicles using standard C-ITS messages. 

We performed an assessment of the end-to-end latency for 
evaluating the effectiveness of the implemented service to 
provide information to connected vehicles. The results show 
that our implementation can satisfy the latency requirements 
indicated in relevant standards. Information about first-time 
detected objects can be provided to vehicles in 250 ms, while 
157 ms is the time needed for already detected objects. 

Future works will concern the improvement of the 3P 
platform. One objective is to include a LiDAR sensor that can 
provide accurate distance measurements of the detected 
objects. A further challenge is to integrate multiple cameras to 
provide the view from different perspectives. This can 
enhance the accuracy of the Collective Perception model, but 
information integration must be done accurately to avoid 
duplicates. Other objectives are to include in the 3P platform 
new modules for retrieving additional data such as free space 
areas, geographic coordinates and spatial occupancy of the 
detected objects. 
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