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Abstract— Autonomous vehicles need precise knowledge on
dynamic objects in their surroundings. Especially in urban
areas with many objects and possible occlusions, an infras-
tructure system based on a multi-sensor setup can provide the
required environment model for the vehicles. Previously, we
have published a concept of object reference points (e.g. the
corners of an object), which allows for generic sensor ”plug
and play” interfaces and relatively cheap sensors. This paper
describes a novel method to additionally incorporate multiple
hypotheses for fusing the measurements of the object reference
points using an extension to the previously presented Labeled
Multi-Bernoulli (LMB) filter. In contrast to the previous work,
this approach improves the tracking quality in the cases where
the correct association of the measurement and the object
reference point is unknown. Furthermore, this paper identifies
options based on physical models to sort out inconsistent and
unfeasible associations at an early stage in order to keep the
method computationally tractable for real-time applications.
The method is evaluated on simulations as well as on real
scenarios. In comparison to comparable methods, the proposed
approach shows a considerable performance increase, especially
the number of non-continuous tracks is decreased significantly.

I. INTRODUCTION

Accurate modeling of dynamic objects in the environment
of Autonomous Vehicle (AV) is an essential task for their
reliable and safe operation. However, despite of many re-
search carried out in that field, there are still many open
questions, e.g. regarding the computational tractability, the
level of detail objects are to be described, or the method
of choice in tracking applications [1], especially in mass
market scenarios where cheap sensors are used [2]. The early
stage of detection and tracking of dynamic objects, e.g. other
vehicles, pedestrians or other road users, though, is of great
importance, since errors propagate through the system and
can lead to failures of later stages.

Besides an environment detection by sensors on-board an
AV, as described e.g. in [3], infrastructure sensors can be an
additional source of information to assist the AV especially
in complex scenarios like urban intersections [4]. As realized
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(a) Frontal view of camera 1 (b) Side view of camera 2

Fig. 1. Challenging scenario due to occlusion of the trailer in camera 1.

in the project MEC-View [5], this even allows for merging
scenarios without a direct line of sight [6].

Realizing such a functionality poses multiple requirements
to the infrastructure system, like low latency or reliability
[7], and the perception task itself. Besides the number and
position of objects, also information on their type, their
dynamic state and their extent state are crucial, e.g. to
determine if a gap between two vehicles is suitable to merge
into it. Fig. 1 shows an example of the infrastructure based
system of [5], which demonstrates the challenge of the
estimation of the extent in occluded scenarios. Even in case
of perfect detectors, it is impossible for the first camera to
predict the existence of a trailer, which can be seen in the
image of the second camera. Thus, camera 1 can not measure
the length of the van or, in the worst case, delivers biased
measurements. However, unbiased measurements are a basic
requirement for Multi Target Tracking (MTT) approaches,
whose defiance introduces additional errors. Using the MTT
filter proposed by us in [8], such scenarios can be handled
naturally by only using pure position measurements of the
object reference points (corners). Performance issues in the
special case of unknown association of such measurements
and the object reference points are addressed in this paper
and solved by the proposed extension.

A. Related Work

There are multiple approximative methods available for
tracking of multiple dynamic objects with multiple sensors,
as Multi-Hypothesis Tracking (MHT) [9], Probability Hy-
pothesis Density (PHD) [10], or Cardinality Balanced Multi-
Target Multi-Bernoulli (CB-MeMBer) [11]. A rigorous ex-
tension of the single object Bayes filter [12] is known as the
Multi-Object Bayes filter [13], which, similar to the Kalman
filter, has an analytical solution under specific circumstances,
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namely the Generalized Labeled Multi-Bernoulli (GLMB)
filter proposed by Vo and Vo [14]. The Labeled Multi-
Bernoulli (LMB) filter [15] is an approximation of the latter,
which constitutes a good compromise between computational
tractability and performance.

In the case of extended targets, where the extent of objects
cannot be neglected, the extent itself or the parameters of a
model describing the extent or shape of an object have to
be estimated, too. [16] gives an overview on extended object
tracking and basically distinguishes between two different
strategies. First, there are methods that estimate the shape of
an object based on single measurements, which is tracked
and refined over time. Often simple models, as rectangles or
circles are used, but also more complex ones. Hereby, the
object state is augmented by the model parameters which
need to be estimated by the sensors. Second, methods known
as extended target tracking are available, which differ from
the latter by allowing an object to give rise to more than one
measurement. The estimation of an object’s shape from a
single measurement, though, is often not possible. However,
both strategies require high computational effort.

Our approach [8] combines ideas of both strategies. While
the method sticks to the standard multi-object measurement
model that prohibits multiple measurements per object, it
does not require the estimation of the shape of an object
in a single measurement. Nevertheless, the estimation of
an object’s extent over time is possible without any sensor
being capable to do so on its own. This is based on the
highly flexible concept that the extent of a rectangle can be
estimated from the knowledge of the corner positions of an
object. Thus, the problem of biased extent measurements is
obsolete.

A method to consider multiple measurement hypotheses is
proposed in [17], which is mathematically similar to our ap-
proach. While their approach treats the problem that typical
preprocessing algorithms sometimes violate the requirements
of the standard measurement model, our approach tackles the
problem of unknown association of measurements to object
reference points. Both approaches may be used together and
complement each other.

B. Contributions

This paper bases on the previously published work [8]
and has a twofold contribution. First, the performance weak-
nesses of the original method in situations of large noise and
unknown measurement to object reference point association
are discussed and second, a substantial improvement is
presented, which overcomes those. It is shown that the use of
the proposed method reduces the number of non-continuous
trajectories tremendously, which is due to a probabilistic
modeling of multiple reference point associations within
the filter update. This prevents the filter from incorporation
of erroneous information due to incorrect association, and
allows for continuous trajectories even in case of ambiguous
associations. The proposed extensions are mathematically
proven and evaluated in a series of Monte Carlo simulations
and a complex real scenario.

The present paper recapitulizes the fundamental idea of
the previous LMB filter in Section II, which also elaborates
the challenges of scenarios with ambiguous generic measure-
ments. In Section III we present our novel extension to the
mentioned filter that is able to cope with such situations.
Finally, our paper discusses ideas to reduce the increased
computational costs of the presented method in Section IV
and closes with an extensive evaluation on simulated and real
data in Section V, as well as a conclusive review in Section
VI.

II. MULTI-OBJECT TRACKING WITH OBJECT
REFERENCE POINT ASSOCIATION

The proposed method builds upon the specific measure-
ment model of [8], which is referred to as Single Hypothesis
Method with Maximum Likelihood Decision (MAX) in the
following and summarized here shortly, especially emphasiz-
ing points which are important for the presented extensions.1

A. Object Model

All objects are described by a probabilistic box model,
using multivariate Gaussian mixtures [18] within a two-
dimensional coordinate frame, based on the assumption of a
flat world. Such object is completely described by the feature
vector o = [p(x̂), ζ, r, `, k]

T , where the probability density
function p(x̂) describes a box’s spatial state and ζ ∈ A′
is the object reference point, which describes the position
at which the spatial distribution is originated. A′ consists
of A′ = {C,FL,FR,BL,BR}, thus the geometrical center,
front left, front right, back left and back right corner. Further,
r = p(∃x) denotes the existence probability of an object, ` is
a unique label and k is a time index. The spatial distribution
follows

p(x) =

J∑
j=1

w(j)N
(
x; x̂(j), P (j)

)
, (1)

where the weights sum up to one
∑J
j=1 w

(j) = 1 and
0 ≤ w(j) ≤ 1. Hereby, all mixture components are inde-
pendent, the elements of the state vectors x ∈ R8 are x̂ =
[x(ζ), y(ζ), ϕ, ϕ′, v, a, w, l]T , and P ∈ R8×8 is the respective
covariance matrix. x(ζ) and y(ζ) describe the position of the
object reference point, ϕ is the yaw angle and ϕ′ the yaw
rate, v the absolute velocity, a the absolute acceleration and
w and l the width and length, respectively. Note that within
the LMB filter all objects are transformed into the center
object reference point in order to ensure correct prediction.

B. Measurements

Sensor measurements are modeled very similar to objects
using a probabilistic box model, though using a multivariate

1Note that albeit the presented approach can easily be adapted to other
multi-sensor multi-object filters, derivations base on the LMB filter, hence
notation follows [14]. Further, note that the structure of H(ζ)(x) and
definition of A′, depend on the arrangement of the vectors x and z, as well as
on the dimension of the overall coordinate system. Adaptions to applications
with distinct settings, e.g. a three dimensional coordinate system, are easily
possible.



Gaussian probability density function and allowing for in-
complete measurements. This means all features in a sensor
measurement are optional except the position [x(ζ), y(ζ)]T

(where ζ may be unknown) and the time index k, of course.
Thus, a measurement is described by the feature vector
o = [p(x̂), ζ, r, `, k]

T , too, but the spatial distribution is
defined as p(x̂) = N (x; x̂, P ) and appropriate features being
optional. Further, note that all measured features must be
complemented by an estimation of their uncertainty.

C. Structural Aspects

In order to enable estimation of the extent of dynamic
objects only two conditions have been made, of which each
is sufficient. Either a sensor is able to reliably measure all
questioned features or the object in question is observed in
all object reference points by a set of sensors. Moreover,
the rules of Bayesian inference and Finite Set Statistics
(FISST) apply, especially the conditions of the measurement
model have to be met, e.g. an object gives rise to at most
one measurement. Overall, a unilateral communication takes
place, where sensors send preprocessed measurements to the
centralized LMB filter, as shown in Fig. 2 in [8].

D. Multi-Object Multi-Sensor Tracking using a Labeled
Multi-Bernoulli filter

The standard multi-object likelihood [19] used within the
LMB filter [15] is defined as

g(Z|X) = e−〈κ,1〉κZ
∑

θ∈Θ(L(X))

[ψZ(·; θ)]X , (2)

where

ψZ(x, `; θ) =

{
pD(x,`)g(zθ(`)|x,`)

κ(zθ(`))
, if θ(`) > 0

1− pD(x, `), if θ(`) = 0 .
(3)

In [8] the single object likelihood g(z|x) of a measurement
z given an object with state x was defined by

g(z|x) = max
ζ∈A
N
(
z;H(ζ)x,R

)
, (4)

where A = A′ \ C or A = ζ, if ζ is specified by the sensor.
This measurement model evaluates the probability of all

possible object reference point associations and decides for
that ζ which maximizes the likelihood of the measurement
and predicted measurement association, based on the Maha-
lanobis distance [20] between both.

Actually, the measurement matrix H(ζ)(x) ∈ Rd×n is a
function, since it depends on the yaw angle of the object,
and is non-linear due to this dependency. It specifies the
transformation of a probability density from the center to
a corner object reference point and is used to calculate the
predicted measurement z(`,j,ζ)

+ . Hereby, d is the number of
measured features and n the overall number of features of
the mean vector.

In order to construct the measurement matrix H(ζ), the
full transformation matrix H̃

(ζ)
(x) ∈ Rn×n is defined first,

by

H̃
(ζ)

(x) =

[
I ∆(ζ)(x)
0 I

]
, (5)

where ∆(ζ)(x) ∈ R2×n−2 is responsible for the correlation
between position and extent of an object and is

∆(ζ)(x) =
[
0 f (ζ)(x)

]
, (6)

with

f (ζ)(x) =
1

2
·
[
− sin (ϕ) cos (ϕ)
cos (ϕ) sin (ϕ)

]
◦
[
δ γ
δ γ

]
, (7)

where ◦ denotes the element-wise multiplication and

δ =

{
1 if ζ = BL,FL ,

−1 if ζ = BR,FR ,
γ =

{
1 if ζ = FL,FR ,

−1 if ζ = BL,BR .
(8)

Finally, if d < n, i.e. a sensor measures a subset of the
full state space only, the respective rows of H̃

(ζ)
are to be

deleted to obtain H(ζ).

E. Challenges due to Generic Measurements

Evaluations in [8] showed that the MAX method performs
poor in noisy situations where sensors provide position mea-
surements only, i.e. the feature vector equals o = [x̂, P , k]

T

with x̂ =
[
x(ζ), y(ζ)

]T
, where the object reference point

ζ is not specified. Since the determination of the object
reference point in the innovation process of the LMB filter is
irreversible, erroneous decisions propagate through time and
degrade the performance of the LMB filter tremendously.
This effect can be seen in Fig. 2, which shows a vehicle
(green), moving to the right and a sensor under the influence
of heavy noise, that measures the position of the vehicle’s
front left corner (red). Both, the upper and lower image, show
the same situation, but the association of the first measure-
ment is done differently. In the upper image the maximization
leads to an erroneous association of the measurement to the
front right corner, while the true association to the front left
corner is shown in the lower image. Obviously, the erroneous
association leads to a large error in the estimation (blue) in
the upper image, while the estimation in the lower image
is only shifted and twisted slightly. In the end, the overall
Mahalanobis distance in the lower image is smaller than in
the upper due to the large extent error. Even worse, the
probability of subsequent measurements falling out of the
gating range is increased in the upper image, which can lead
to track termination and non-continuous trajectories.

Very similar effects occur if the detector’s specification of
the object reference point ζ is inaccurate.

III. INCORPORATION OF MULTIPLE OBJECT REFERENCE
POINT ASSOCIATION HYPOTHESES

In order to tackle the performance problems of the filter in
case of unknown association of measurements to an object
reference point, our proposed method, referred to as Multiple
Hypothesis (MH) method, avoids the deterministic choice on
a specific object reference point. It rather incorporates all
possible object reference points and is defined as

g(z|x) =
∑
ζ∈A

w(ζ)N
(
z;H(ζ)x,R

)
. (9)
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Fig. 2. The scenario points out the effect of an erroneous track to
measurement association, as it can happen in challenging scenarios and
demonstrates the presented approach.

Here, A = A′ \ C denotes the set of object reference
points whose association is in question and H(ζ) is the
respective measurement matrix, which transforms the spatial
distribution p(x, `) of a track ` into the respective object
reference point ζ (see (5)). Obviously, if ζ is specified by a
sensor, MH and MAX are equal.

Proposition 3.1: If the likelihood for a measurement z
given a single object with state x follows the form of (9),
the updated posterior density yields

p(θ)(x, `|Z)

=

J
(`)
+∑
j=1

∑
ζ∈A

w(`,j,θ,ζ)(Z)N
(
x; x̂(`,j,θ,ζ), P (`,j,ζ)

)
,

(10)

where

w(`,j,θ,ζ)(Z)

=
pD(x, `)

κ(zθ(`))η
(θ)
Z (`)

w
(`,j)
+ w(ζ)N

(
zθ(`); z

(`,j,ζ)
+ , S(`,j,ζ)

)
(11)

and

S(`,j,ζ) = H(ζ)P
(`,j)
+

[
H(ζ)

]T
+R , (12)

z
(`,j,ζ)
+ = H(ζ)x̂

(`,j)
+ , (13)

x̂(`,j,θ,ζ) = x̂
(`,j)
+ +K(`,j,ζ)

(
zθ(`) − z

(`,j,ζ)
+

)
, (14)

K(`,j,ζ) = P
(`,j,ζ)
+

[
H(ζ)

]T [
S(`,j,ζ)

]−1

, (15)

P (`,j,ζ) = P
(`,j,ζ)
+ −K(`,j,ζ)S(`,j,ζ)

[
K(`,j,ζ)

]T
. (16)

Proof: If the predicted spatial density of track x with
label ` follows a Gaussian mixture, the updated posterior
spatial distribution, following [15] equals

p(θ)(x, `|Z) =
p+(x, `) · ψZ(x, `; θ)

η
(θ)
Z (`)

, (17)

with the generalized measurement likelihood for object x and
association θ being

ψZ(x, `; θ) =
pD(x, `)g(zθ(`)|x, `)

κ(zθ(`))
, (18)

and the normalization constant

η
(θ)
Z (`) = 〈p+(·, `), ψZ(·, `; θ)〉 . (19)

Substituting (9) into (17) and (18) and using the Gaussian
identities of [12] yields

p(θ)(x, `|Z)

=
pD(x, `)

κ(zθ(`))η
(θ)
Z (`)

J
(`)
+∑
j=1

w
(`,j)
+ N

(
x; x̂

(`,j)
+ , P

(`,j)
+

)
∑
ζ∈A

w(ζ)N
(
z;Hζx,R

)
(20)

=

J
(`)
+∑
j=1

∑
ζ∈A

w(`,j,θ,ζ)(Z)N
(
x; x̂(`,j,θ,ζ), P (`,j,ζ)

)
.

(21)

In contrast to the standard form of the LMB updated
posterior density the number of mixture components of the
spatial distribution is increased within the innovation step.
But (10) still represents a Gaussian mixture since it can be
rewritten

p(θ)(x, `|Z) =

J̃(`)∑
j=1

w(`,j,θ)(Z)N
(
x; x̂(`,j,θ), P (`,j)

)
, (22)

where J̃ (`) = J
(`)
+ ·|A|. The updated posterior density is thus,

still of the form of an LMB distribution.
If no further information is available the weight of all

associations is equally set to w(ζ) = (|A|)−1.

IV. TRUNCATION OF TRACKS VIA VALIDATION GATE

If not truncated, the number of mixture components in-
creases rapidly even in the standard LMB filter. The proposed
measurement model, however, further increases the number
of mixture components and depends on the survival of many
components, since the idea is to keep even improbable
components for some time to overcome weak sensor mea-
surements. It is, thus, all the more important to develop a
strategy to reduce the number of mixture components to a
tolerable level. To do so, we suggest using a twofold strategy
based on a traditional pruning of components and truncation
via a model based gating, which we call validation gate.

A. Pruning of Mixture Components

Investigation of the updated posterior densities of the
proposed filter have shown that most mixture components
are very close to each other and can be merged or pruned.
However, in cases of large noise, where false associations
lead to high component weights of false components, the
correct components are often separated clearly from others.
Hence, it showed that setting the pruning level to very low
values, while setting a moderately high maximal merging
distance constitutes a good compromise, where a sufficient
suppression of components takes place, while unlikely, but
important components survive.



B. Validation Gate

Irrespective of other truncation and pruning strategies we
propose a special kind of gating, named validation gate. The
idea bases on the ideas of measurement validation procedures
[21], where, based on the Mahalanobis distance between
measurements and possibly associated tracks, a gating region
is defined, within which a measurement has to lie to be con-
sidered. The validation gate evaluates the posterior density
after the innovation and compares the density with model
constraints. Association of measurements to object reference
points, which lead to invalid posterior densities are thrown
away. Therefore, the measurement model (9) is adapted, such
that

Ã = {ζ ∈ A : fu(x) 6= 0 ∀u ∈ U} (23)

where U is the set of all model constraints that apply.
Hereby, f(x) is a function, which tests the respective esti-

mate x̂(`,j,θ,ζ) on arbitrary model constraints. The following
is a set of such, which apply to vehicles and are used within
the evaluation of this paper.

1) Vehicle Extent: The extent of a vehicle is, of course,
lower bounded. Due to the coupling of the position and the
object’s extent, however, the updated posterior density may
have a negative length or width (in 3D extensions the height
may also be negative). Thus, the evaluation function is

fe(x) =

{
1 if x(w) ≥ 0 and x(l) ≥ 0

0 otherwise .
(24)

2) Vehicle Extent Ratio: The length of typical consumer
road vehicles is much larger than their width. Therefore, the
length to width ratio r = l/w of vehicles on the market
is typically lower and upper bounded and can be used to
validate a track. Thus, the evaluation function, based on
vehicle dimensions of Smart Fortwo and Ford Super Duty,
is

fr(x) =

{
1 if 1.5 ≤ r ≤ 4

0 otherwise .
(25)

3) Yaw Rate: Typical vehicles are not able to turn when
stationary and the yaw rate is upper bounded by the vehicle’s
physical dimensions and speed. Based on the single track
model [22], the velocity v and a maximum steering angle
of γ = 75◦, the minimum turning radius is calculated, from
which the maximum yaw rate of ϕ′max = vγ/l follows. Thus,
the evaluation function is

fϕ′(x) =

{
1 if |x(ϕ′)| ≤ ϕ′max

0 otherwise .
(26)

4) Acceleration: The acceleration of a vehicle is more or
less upper bounded, too. Here, an upper limit of amax =
10 m s−2 is used, which equals the average acceleration of
a vehicle which accelerates from 0 km h−1 to 100 km h−1 in
under 2.8 s. Thus, the evaluation function is

fa(x) =

{
1 if x(a) ≤ amax

0 otherwise .
(27)
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Fig. 3. Simulation scenario with three vehicles observed by three sensors.

5) Velocity: The velocity of vehicles can be lower
bounded from practical reasons, a lower bound of vmax =
−5 m s−1 is assumed, which results in an evaluation function

fv(x) =

{
1 if x(v) ≥ vmax

0 otherwise .
(28)

V. EVALUATION

The performance of the proposed method, considering
multiple concurrent object reference point hypotheses, is
evaluated in a simulation and a real world demonstration.
Furthermore, an examination of the computational costs is
given to assess the real time capability.

A. Simulation

In order to work out the improvements of the proposed
method a simulation has been carried out, that equals the one
of [8], i.e. a five seconds lasting scenario with three vehicles,
as can be seen in Fig. 3, observed by three distributed
sensors. The vehicles’ starting points are marked by circles,
the trajectories’ ends by a triangle. As in [8], the sensors are
set up such that the measurement vector equals o = [x̂, P , k]

with x̂ =
[
x(ζ), y(ζ)

]T
, where ζ is unknown. All objects

are measured in random object reference points, such that
the conditions made in Section II-C hold. The particular
covariance matrices of the sensor measurements are R =
diag(σ2

x, σ
2
y), where σ = σx = 2σy expresses the standard

deviation of the measurement error in longitudinal and lateral
direction in sensor coordinates. Furthermore, a measurement
is missed by a chance of 1−pD = 0.05 and clutter events are
Poisson distributed with the expected number of such being
λc = 0.1, which are distributed equally over the measure-
ment space ([xmin, xmax, ymin, ymax] = [−30, 30,−10, 10]).
Tracks are predicted using a Constant Turn Rate and Accel-
eration (CTRA) model with parameters σj = 1 m s−3 (jerk),
σϕ = 0.5 rad s−2 (turn acceleration), and pseudo noise in the
extent of σe = 0.1 m. The scenario is repeated four times,
where the measurement error is varied in steps of 0.5 m from
σ = 0.5 m to 2.0 m and each scenario is repeated in a Monte
Carlo simulation with 100 trials.

Some modifications to [8], though, have been made. The
adaptive birth process, introduced in [15], was improved,
setting up multiple position and orientation hypotheses of
a track and the process model was revised, as well as the
parameters of the Unscented Kalman Filter (UKF) filter.
Since the MH method requires the incorporation of multiple
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Fig. 4. Comparison of the OSPAT errors for the different methods.

hypotheses the pruning and merging parameters of the LMB
filter had to be adjusted, too. Hereby, a trade-off between
optimality and computational manageability has been cre-
ated, which seems to guarantee a fair comparison between all
methods. The LMB filter prunes components having weights
less than 10−5, hence keeps most of them, and merges every
two components having a Bhattacharyya distance closer than
1. Further, a maximum number of 30 components is allowed,
which is guaranteed by additionally pruning supernumerous
components of lowest weights. Finally, the OSPAT [23] is
used to evaluate the performance, where the parameters are
also modified in order to highlight the improvements in the
cardinality error as well as the localization error. Here, the
OSPAT order p = 1, cut-off c = 10 and label change penalty
α = c have been chosen.

Fig. 4a shows a comparison of the OSPAT errors of the
proposed MH method and the 2019 MAX method, where
it can clearly be seen that the overall performance of MH
is better. Even in bad situations with heavy measurement
noise, where MAX mostly fails, MH yields good estimation
results, yet as good as estimation results of the σ = 0.5
scenario of MAX. More detailed analysis points out that
both the localization and the cardinality error are improved,
where the number of non-continuous trajectories is reduced
significantly by 30 % to 50 %. Thus, it is of great interest to
compare the proposed method with the optimal estimation,
where the LMB filter exactly knows the measured object
reference point, referred to as Single Hypothesis Method
with exactly measured object reference point (MEAS). Such
a comparison can be seen in Fig. 4b, where the MEAS
method outperforms MH, as expected. It is even in the worst
case superior to MH in the most advantageous scenario with
σ = 0.5 m. The reasons are manifold but two main aspects
are important. First, the number of hypotheses is strictly
bounded and therefore, MH can not exploit its full power, and
second, MH always extracts the most probable component
of the estimated LMB density, which is often an incorrect
one. More intelligent extraction rules, thus, may improve the
proposed method further.

Finally, a possible performance difference between MH
and the MHC is examined in Fig. 4c. As can be seen the
constraint check does not degrade performance, it rather
leads to a performance increase in some cases, especially
when noise is severe. This happens since the most likely
association often leads to illegal states, which are rejected,
while the correct components obtain increased weights and
therefore dominate in the extraction, which increases the
overall performance.

Due to the specific design of the simulated scenario, with
a simple and non-ambiguous situation in the beginning that
turns into a very complex one, it can be concluded that the
presented method counteracts the mentioned ambiguity of
the track to measurement association, whereas it does never
decrease precision (which has also been tested in different
scenarios). This is achieved only by the cost of computational
effort, which increases around 77.9 % and 102.2 % between
the MAX method and the MH method. These numbers
have been measured on a standard desktop PC and can
therefore only roughly indicate the dimension of the increase.
The increase of the computational effort correlates to the
increase of the measurement noise, which is simply due to
the fact that the number of ambiguous situations increases
and, with that, the number of relevant mixture components
in the update. Moreover, the model based thinning of MHC
showed to reduce the computational costs by about 10 %
compared to the MH method. Further reductions of the
computational effort could be achieved by a parallelization
of the innovations and the group updates. Additionally, the
approach can be used in combination with Gibbs sampling
[17] for a further reduction. Finally, a dynamic switching
between MAX and MHC based on statistical characteristics
(e.g. similar to [24]) could be implemented.
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Fig. 5. Simulation scenario with three vehicles observed by seven
distributed sensors.

B. Real Data

Real data from a test site in Ulm-Lehr [5] has been used
to proof the applicability of the proposed method to real
world scenarios. A complex scenario with multiple vehicles
has been chosen, where ground truth information of one
test vehicle was available, shown in green in Fig. 5. The
reference vehicle leads a group of three consecutive vehicles
and turns left at the intersection, as the third vehicle does.
Seven sensors have been distributed around the test site of
which two are lidars (A,B) with 16 static beams and five
are monocular cameras (C-G) [4], whose positions are also
marked in Fig. 5. All sensors measure the position of the
objects in an unknown object reference point and in order
to fulfill the requirements, the cameras measure length and
width of the vehicles, too.

As can be seen in Fig. 5, the filter can follow all vehicles
as long as those are within the system’s range, and the
cardinality estimation is correct, too. The average location
error between the ground truth track (green) and its esti-
mation (vehicle 1, red) is ε̄d = 1.13m with a maximum
of εd,max = 4.01m, which occurs in the track initialization
due to the unknown reference point ζ. Again, the track
initialization plays a decisive role and superposes the location
error. The average error is in the range of the sensor error,
which has been evaluated from test vehicle’s ground truth
data.

VI. CONCLUSIONS

Motivated by performance issues of the LMB filter of
[8] in the case of unknown association of measurements
and object reference points, an improvement was developed
and proposed in this paper. It could be shown that the
incorporation of multiple concurrent object reference point
hypotheses solves those issues, however, at the cost of
increased computational burden. Those, however, have been
addressed in a model based thinning that showed the ability
to again reduce the increased computational costs without
performance degradation. The proposed method has success-
fully been applied to a real urban and complex scenario
with multiple vehicles and sensors, showing good results and
improving the underlying measurement model significantly.
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