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The effect of instantaneous spectral diffusion (ISD) on gate operations in rare-earth-ion-doped
crystals is an important question to answer for the future of rare-earth quantum computing. Here
we present a microscopic modeling that highlights the stochastic nature of the phenomenon, and use
it to investigate ISD errors on single-qubit gate operations. Furthermore, we present a method to
estimate the total error from many different error sources by only studying subsystems containing
one error source at a time. This allows us to estimate the total ISD error from all non-qubit dopants
in the vicinity of a qubit. We conclude that optical pumping techniques must be used to empty
the frequency regions around the qubit transitions from absorption (transmission windows) in order
to suppress the ISD errors. Despite using such windows, there remains a roughly 0.3% risk that a
qubit has an ISD error larger than the error from other sources. In those cases, the qubit can be
discarded and its frequency channel can be reused by another qubit. However, in most cases the
ISD errors are significantly smaller than other errors, thus opening up the possibility to perform
noisy intermediate-scale quantum (NISQ) algorithms despite ISD being present.

I. INTRODUCTION

Rare-earth-ion-doped crystals are versatile materials
that have been used in, e.g., quantum memories [1–12],
conversion between optical and microwave signals [13–
15], and quantum computing [16–27]. This has in large
part been thanks to their long life- [28] and coherence
times [29–31], and their capacity to store large amounts
of information.

In these systems, spectral diffusion, which causes shifts
to the transition frequencies of ions, can often be an un-
wanted effect. In this work, we study a form of spectral
diffusion called instantaneous spectral diffusion (ISD),
where an incident light field alters the excitation of an
ion which in turn shifts the optical transitions of other
nearby ions [29, 32–36]. A good overview of the history
of ISD for rare-earth-ions can be found in, e.g., Ref. [37].
Since most experiments so far have been performed on en-
sembles of rare-earth-ions, the theoretical investigations
of ISD mostly describe the effect on average [33, 37–39],
where it is observed as a dephasing mechanism that de-
pends on the degree of excitation. However, for applica-
tions that rely on single ions, e.g., the future of rare-earth
quantum computing [21, 40], ISD must be analyzed on
the microscopic scale of the individual ions.

This work consists of two main parts. First, Secs. II
and III show how one can simulate ISD, how ISD af-
fects a gate operation in an idealized system, and present
the Qubit Bloch vector estimation based on Independent
Error Sources (QBies) method, which is used to estimate
the total error from many different error sources. This
part is more general, especially the QBies method which
can be used to investigate any system where errors from
different sources are mostly independent.
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The second part, presented in Secs. IV and V, use the
QBies method to study ISD in one possible implemen-
tation of a rare-earth quantum computer. Specifically,
we investigate how ISD affects a single-qubit (SQ) NOT
operation using the pulses designed in Ref. [27]. Our
intention is that the work presented in this part can act
as a foundation on how to study the effects of ISD on a
single-ion level even when considering more complicated
gate operations. Finally, to set the stage for this part
we end the introduction by providing a brief overview of
the relevant parts of the envisioned rare-earth quantum
computer, for more information see Ref. [40].

A Y2SiO5 crystal (or nanocrystal or thin film) is ran-
domly doped with 153Eu dopants at the percent level.
Two ground states of a single Eu ion can form a qubit,
and gate operations can be performed via an excited
state. At high concentrations qubits can be spaced at
nanometer separation in three dimensions, thus provid-
ing very high qubit densities. The tight spacing also al-
lows for strong dipole-dipole interactions between many
nearby qubits, which is very beneficial as it provides a
method to perform two-qubit or multi-qubit gate opera-
tions [18, 19, 41–43], and leads to high connectivity be-
tween qubits in rare-earth quantum computers [44].

The linewidth of the optical transitions are roughly a
kHz, and since the surrounding of each dopant is slightly
different, there is an inhomogeneous broadening causing
different ions to absorb at different frequencies. This
broadening can be in the order of 100 GHz [28]. Thus,
the laser used to control a qubit only interacts with a
small subset of all dopants. Despite this, there could
still be several thousands of non-qubit Eu ions within the
focus size and bandwidth of the laser. When those non-
qubit ions are excited, dipole-dipole interactions with the
qubit ion can cause ISD, thus reducing the fidelity of gate
operations performed on the qubit. To reduce this risk,
optical pumping techniques [19, 45–47] and more compli-
cated procedures [21] can be utilized. In Secs. IV and V
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FIG. 1. a) Shows the energy level structure for a qubit (blue) and a non-qubit (green) ion, including the two-color pulses
driving each of the two ions. The ions can be different elements, but we assume that they are the same. However, the optical
transitions of the non-qubit ion are detuned from the qubit by ∆. When either of the two ions are excited, the other experiences
a frequency shift, ∆ν, of its optical transitions. The fields driving the qubit can also be the fields driving the non-qubit, but
they drive the transitions off-resonantly with a detuning of ∆. Therefore, the coloring of the fields should mostly be used as
a visual aid to easier identify which ion is driven on the various transitions. b) Shows the equivalent two-qubit energy level
structure for the two ions. Note that the shift ∆ν of the |ee〉 two-qubit state is a permanent energy level shift in this description.

we evaluate the ISD error such non-qubit dopants cause
on a SQ gate operation.

Lastly, the present work do not make any assumptions
on how the state of a single-ion qubit is read out. How-
ever, a possible method is to use dedicated readout ions
[21, 23, 40], which are co-doped with the qubit dopants
but at a much lower concentration.

II. MICROSCOPIC TREATMENT OF
INSTANTANEOUS SPECTRAL DIFFUSION

ISD can occur when a non-qubit ion is excited and
causes an unpredicted frequency shift, ∆ν, of the optical
transitions of the qubit, as seen in Fig. 1a. This fre-
quency shift leads to additional errors on gate operations
performed on the qubit. The ISD can be simulated by
constructing the Hamiltonian for the combined system as
shown in Fig. 1b, where the excitation-dependent shift,
∆ν, comes in as a permanent shift of the |ee〉 energy level.

To separate the errors due to ISD from other er-
ror sources such as decay, decoherence, and internal
crosstalk, we here investigate an idealized three-level
lambda system where no decay or decoherence exist, and
the pulses only drive the intended transitions, i.e., the
pulse driving |0〉 → |e〉 only drives that transition, but
does so for both the qubit and the non-qubit ion. SQ
gate operations are performed using 2 two-color opti-

cal pulses resonant with the transitions |0〉 → |e〉 and
|1〉 → |e〉, see more information in Appendices B and
C 1, and Ref. [27]. To focus our investigation on how
ISD scales and can be understood, we only examine the
case where a NOT operation is performed and all ions
start in |0〉 + i|1〉. This case was chosen since the NOT
operation acts non-trivially on the initial state, but other
cases would have been equally valid. If no ISD occurs in
this idealized system, gate operations have no errors.

The simulations in this article numerically solve the
Lindblad master equation [48], see Appendix A for more
information. The error of the qubit operation is calcu-
lated by first reducing the density matrix of the full sys-
tem, ρfull, which describes the qubit and all non-qubit
ions, into the density matrix ρ which only describes the
qubit [49];

ρ =
∑
s

〈I ⊗ s|ρfull|I ⊗ s〉 (1)

where I is the identity matrix operating on our qubit,
and the sum goes over all states s of the non-qubit ions.
The error of the operation, ε, can then be calculated as

ε = 1− 〈Ψ|ρ|Ψ〉 (2)

where Ψ is the target state of our qubit after the NOT
operation has been applied, i.e., Ψ = |0〉 − i|1〉. The
additional SQ gate error due to ISD with one non-qubit
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FIG. 2. The gate error due to ISD is seen as a function of
both the shift ∆ν and detuning ∆ of one ion interacting with
the qubit. Generally, there is an error if the non-qubit ion is
excited and ∆ν is non-negligible. When the detuning is larger
than the gate bandwidth, the additional error is low for most
shifts. However, when ∆ν ≈ −∆ large errors still occur, since
in these cases the non-qubit ion is shifted into resonance when
the qubit is excited during the gate operation, thus affecting
the evolution of the qubit.

ion is shown in Fig. 2 as a function of both the shift ∆ν
and the detuning ∆ of the non-qubit ion.

The Bloch vector of the qubit, a = (u, v, w), is defined
as; 

u = ρ01 + ρ10
v = i(ρ01 − ρ10)

w = ρ00 − ρ11
(3)

where ρ is the qubit density matrix obtained from Eq.
1. How this Bloch vector is altered when ISD occurs can
be seen in Fig. 3. The qubit begins in a = (0, 1, 0) and
the NOT operation ought to rotate this into (0,−1, 0),
which happens when no ISD is present. However, when
∆ν 6= 0 the non-qubit ion affects the operation in two
different ways. First, the Bloch vector changes direction
and no longer solely has a v component, i.e., the state
vector is rotated. Second, the length of the Bloch vector,
|a|, is reduced as the qubit and the non-qubit ion become
entangled. This is an unwanted entanglement since we
do not keep track of the state and evolution of the non-
qubit ion. The shrinkage of the Bloch vector occurs when
we trace out the non-qubit system in order to examine
only the qubit system as described in Eq. 1. Note that in
the case when a qubit interacts with two non-qubit ions
with opposite shifts, i.e., ∆ν2 = −∆ν1, the two rotations
mostly cancel each other, but the qubit still becomes en-
tangled with the two non-qubit ions so an additional error
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FIG. 3. A NOT operation is performed on a qubit initially in
|0〉+ i|1〉 (black arrow) under the following circumstances: no
ISD (green); ISD with one non-qubit ion with either ∆ν1 =
100 kHz (blue) or ∆ν1 = −100 kHz (red); and ISD with two
non-qubit ions with ∆ν1 = 100 kHz and ∆ν2 = −100 kHz
(yellow). The non-qubit ions are resonant with the qubit (∆ =
0 MHz). The length of the qubit Bloch vector is reduced due
to entanglement with the non-qubit ions. This error persists
even though two non-qubit ions with opposite shifts interact
simultaneously with the qubit (yellow).

still occurs. The effects of ISD are discussed further in
Appendix C, where a theoretical approach is used.

III. QBIES METHOD - QUBIT BLOCH
VECTOR ESTIMATION BASED ON
INDEPENDENT ERROR SOURCES

In general, a qubit Bloch vector can change in two
ways: a rotation away from the target Bloch vector, and a
reduction in the length of the Bloch vector. If N different
error sources exist, then the QBies method assumes that
the rotations and shrinkages for different error sources
are independent and estimates the qubit Bloch vector a
in the following way:

a =

N∏
n=1

(|an|Rn) · a0 (4)

where a0 is the Bloch vector obtained when no error
is present, |an| and Rn are the length of the qubit Bloch
vector and the rotation matrix required to turn the target
state into the obtained Bloch vector, respectively, when
the qubit is only disturbed by error source number n.

Generally, rotation matrices do not commute, so the
order in which one applies them can matter. In this work,
the rotations are applied starting with the ion causing



4

the largest rotation before moving onto smaller rotations.
Rotations do, however, commute if they rotate around
the same axis, and in the case of the ISD investigated here
the rotation axes are often quite similar. Furthermore,
even for rotations around different axes the error due
to them not commuting is small as long as the rotation
angles are small.

In the case of ISD, N represents the number of non-
qubit ions interacting with the qubit. Consequentially,
error source number n represents the ISD interaction be-
tween the qubit and only the nth non-qubit ion. How the
results of the QBies method compares to running the full
simulation in this case is discussed in Appendix D. Note
that the full simulation of one qubit interacting with N
non-qubit ions requires a Hamiltonian containing LN+1

energy levels, where L is the number of energy levels per
ion, whereas the QBies method can be performed using
N simulations of only L2 energy levels since the effect of
each non-qubit ion is treated separately. This means that
the QBies method yields an exponential reduction in the
number of energy levels required in the simulations.

When studying ISD in Secs. IV and V, the QBies
method relies on the assumption that the ISD errors from
different non-qubit ions are independent and that we can
neglect any interaction that might occur between differ-
ent non-qubit ions. It also relies on the assumption that
we can separate the effects of ISD from decay, decoher-
ence, and internal crosstalk. Both of these assumptions
are validated in Appendix D, where we conclude that the
QBies method works really well in the vast majority of
cases, but when the errors become large this method of
estimating ISD becomes worse. If the errors are small,
the non-qubit ions have low probabilities to be excited or
they only interact weakly with the qubit. Therefore, in
the vast majority of cases, the ISD error from one non-
qubit ion is not significantly affected by the status of
other non-qubit ions. Conversely, if the errors are large
there is a higher probability that the non-qubit ions af-
fect each other and the errors become dependent. In such
cases, one might be forced to simulate the full system for
the subset of interactions yielding a large error before
applying the QBies method to the smaller errors. How-
ever, for applications concerning quantum computing the
cases with small errors are the most relevant ones.

IV. HOW TO ESTIMATE THE EFFECT OF
INSTANTANEOUS SPECTRAL DIFFUSION

This section explains how to estimate the effect of ISD
on SQ gate operations due to dipole-dipole interactions
with all randomly doped ions in the vicinity of the qubit.
The interaction occurs since the static electric dipole mo-
ments of the ground and excited states are different, see
Appendix E, which is generally considered as the main
contribution to ISD for non-Kramers dopants. In this
work we examine the specific case of 153Eu:Y2SiO5 site 1
(europium doped into yttrium orthosilicate), whose prop-

erties can be found in Fig. 4a-b.
ISD is a stochastic phenomenon as the ISD error of

a specific qubit strongly depends on the properties of
the ions surrounding the qubit, e.g., their detunings and
their dipole-dipole interactions with the qubit, as well as
which ground states they initially reside in. Therefore,
there is no single answer to how large the ISD error is for
all qubits. Instead, we gather statistics to build a proba-
bility distribution over the risk that a single qubit suffers
from ISD errors of different magnitudes. For each inves-
tigation we make, this is achieved by performing 1000
simulations, where we in each case first randomize the
properties of the ions surrounding a qubit and then es-
timate the ISD error they cause. Note that in a real
crystal there can be correlations between the surround-
ings of different qubits if they are sufficiently close to each
other. However, due to the strong spatial dependence of
the dipole-dipole shift (∆ν ∝ 1/|r|3) and the fact that
the different qubits have different transition frequencies,
we argue that the probability that a certain ISD error
occurs can be estimated using our method of studying
independent qubit surroundings. The details of how the
properties of the surrounding ions are randomized and
how the ISD error is evaluated can be found in Appen-
dices F and G, but the general idea is presented in the
rest of this section.

First, a fraction, ctotal, of the yttrium ions within a
sphere of 50 nm radius centered around the qubit are
replaced with Eu dopants, half of which are assumed to
belong to site 1. Note, that the crystals themselves do
not need to be this small, instead this radius was picked
because ions further away than this had a negligible con-
tribution to the total ISD error, see Appendix I. After
doping the regions, the dipole-dipole shifts between any
two ions can be calculated using Eq. E1 in Appendix E.

Second, each ion randomly obtains an optical transi-
tion frequency according to a Lorentzian line shape of the
inhomogeneous absorption profile as seen in Fig. 4c. The
full-width-at-half-maximum, Γinh, is assumed to grow lin-
early depending on the total doping concentration:

Γinh = Γ0 + Γc · ctotal (5)

where Γ0 = 1.8 GHz is a concentration independent
linewidth, Γc = 1800 GHz [51, 52], and ctotal specifies
the total atomic doping concentration between 0 and 1,
where 1 would be a fully doped stoichiometric crystal.
Note, that this linear scaling is only valid for sufficiently
low doping concentrations, but all concentrations used in
this work (ctotal ≤ 5%) fall into this regime.

Following this, the |0〉 → |e〉 transition frequency of the
qubit we investigate, from this point forward denoted by
qubit index 0, is set to be at the center of the inhomoge-
neous absorption profile. Furthermore, we assume that
there exist other qubits and number them symmetrically
growing outwards from this central frequency as is shown
in Fig. 4d.

ISD can be minimized by using spectral hole burning
techniques [19, 45–47] to optically pump dopants between
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FIG. 4. a) Energy level structure for 153Eu:Y2SiO5 site 1 [50], including the two optical driving fields with strengths Ω0 (solid
line) and Ω1 (dashed line), and phases φ0 and φ1, respectively. b) The relative oscillator strengths of the different transitions
[47]. c) The environment surrounding each dopant is slightly different which leads to inhomogeneities in the optical transitions
of the dopants, as is indicated by the inhomogeneous absorption profile seen in the figure. The width of the profile, Γinh, is
concentration dependent, see Eq. 5, and can be up to hundred GHz broad [28]. Here we use ctotal = 1% as an example. d)
We assume that each qubit reserves a frequency bandwidth of 1 GHz and label the qubits and their corresponding frequency
channel as indicated in the figure. Qubit q has a frequency channel that goes from −335 MHz to 665 MHz relative to the
|0〉 → |e〉 transition frequency, νq, of the qubit. Frequency channel q contains only qubit q, but it can contain many non-
qubit ions, and these ions are assumed to only interact with the gate pulses performed on qubit q, since pulses controlling
other qubits are assumed to be too far detuned. e) By using spectral hole burning and optical pumping techniques one can
remove all non-qubit ions absorbing in the frequency regions around the two optical transitions used in a qubit. Here such
zero absorption transmission windows with widths of roughly 18 MHz and 50 MHz, respectively, are shown as a function of the
relative frequency ν − νq.

ground states so that the frequency regions close to the
two qubit transitions |0〉 → |e〉 and |1〉 → |e〉 become
free from absorption. Such semipermanent transmission
windows can be seen in Fig. 4e, and the process to create
them is described further in Appendix H. In order to
create transmission windows for all qubits, each qubit
must reserve a frequency bandwidth of roughly 1 GHz,
as indicated in Fig. 4d.

In our model, all ions inside the reserved frequency
range of a qubit only interact with the pulses control-
ling that qubit. Therefore, only the ions inside the re-
served frequency range of qubit 0 directly interacts with
its pulses. However, other ions, which may be far detuned
in frequency but spatially close to qubit 0, can still cause
ISD if they are partly excited before the gate operation
on qubit 0 is performed. Such ions can be excited when
the qubits with indices 1 to Q perform G gate operations,
and in Sec. V the additional ISD error is studied as Q
and G varies.

Lastly, two different cases are studied in regards to
the initial ground states of the ions. First, each ion is
randomly placed in one of the three ground states with
equal probabilities. Second, transmission windows are
created for each qubit. Thus, the probability of which

ground state an ion initially resides in depends on its
detuning from its corresponding qubit.

In summary, the ISD error of a single-ion qubit is es-
timated in the following way:

1. Create the qubit surrounding by randomly doping
a limited spatial region around the qubit (we doped
spherical regions with a radius of 50 nm and con-
centrations ranging from ctotal = 0.01%→ 5%)

a. Assign a position and static dipole moment
direction to all ions, including the qubit

b. Randomly assign optical transition frequen-
cies to all ions, and set the |0〉 → |e〉 tran-
sition frequency of qubit 0 to the center of the
inhomogeneous absorption profile

c. Determine the initial ground state for each
non-qubit ion depending on whether transmis-
sion windows are used or not (in this work
qubit 0 starts in |0〉+ i|1〉)

2. Determine what rotation and shrinkage of the qubit
0 Bloch vector each non-qubit ion causes due to
ISD. Depending on if a non-qubit ion is inside or
outside the frequency channel of qubit 0, see Fig.
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4d, different methods are used to determine these
rotations and shrinkages, see more information in
Appendix G

3. Use the QBies method described in Sec. III and
Eq. 4 to estimate ISD due to all non-qubit ions or
only a subset of them depending on what analysis
is being made

V. THE EFFECT OF INSTANTANEOUS
SPECTRAL DIFFUSION ON SINGLE-QUBIT

GATE OPERATIONS

This section studies how a gate operation is affected by
ISD from non-qubit ions. The gate operations are per-
formed using the pulses described in Appendix B, which
are optimized to reduce the impact of ISD [27]. If other
gate parameters are used, the effect of ISD can be signif-
icantly worse compared to what is presented here.

The first case we investigate is the dependence on dop-
ing concentration when no transmission windows are cre-
ated. Furthermore, no ions are excited before the qubit
operation on qubit 0 is attempted. Thus, only ions within
the reserved frequency range of qubit 0 cause ISD. The
results are shown in Fig. 5a. For all doping concen-
trations except the lowest, the majority of the simula-
tions result in an additional ISD error that is at least
in the same order of magnitude as the SQ gate error
obtained when only considering decay, decoherence, and
internal crosstalk. Initially, the error grows rapidly with
increasing concentration. However, above a critical con-
centration, about 0.5% for Eu:Y2SiO5, the increase in er-
ror slows down since instead of adding significantly more
dopants per frequency channel as the concentration in-
creases, the width of the inhomogeneous absorption pro-
file mostly broadens, see Eq. 5. Finally, note that these
estimates of ISD are performed in the center of the inho-
mogeneous absorption profile and the effect is smaller in
the wings.

Fig. 5b studies the same case except now transmis-
sion windows are used. Once more the concentration
only matters below a critical value. However, ISD is now
heavily suppressed thanks to the isolation of the qubit
ion in frequency space. Therefore, we conclude that the
usage of transmission windows is very important to limit
the additional error due to ISD.

Furthermore, in Fig. 5b only about 0.5% (or 0.3%)
of all simulations had qubits where the ISD errors were
larger than 10% (or 100%) of the normal SQ gate error.
However, these estimates assume that all ions begin in
one of their ground states, and thus only ions within the
reserved frequency range of qubit 0 cause ISD. There-
fore, this corresponds to the expected effect of ISD when
running the first gate operation on the first qubit in the
quantum computer. When running subsequent gate op-
erations, even if those are on other qubits and even if the
operations run sequentially, the assumption that all ions
begin in one of their ground states is no longer true. In
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FIG. 5. The additional SQ gate error due to ISD caused by
all non-qubit ions inside the reserved frequency range of qubit
0 is estimated by performing 1000 different simulations (hor-
izontal axes) for each investigation we perform. Each simu-
lation starts with a single qubit and estimates the ISD error
by following steps 1-3 presented in the list in Sec. IV. The
simulations are then ordered after the magnitude of the ISD
error obtained. In a) no transmission windows are prepared,
i.e., the non-qubit ions are equally likely to start in any of the
three ground states. In b) the transmission windows shown
in Fig. 4e are used, i.e., the probability that a non-qubit
ion starts in a specific ground state depends on its detuning
from the qubit. The inset zooms in on the simulations with
the highest error. Several different doping concentrations are
investigated, and both figures use the concentration labels
shown in b). The dotted black lines show the SQ gate error
due to decay, decoherence, and internal crosstalk for a NOT
operation when no ISD is present.

Fig. 6 the ISD error on qubit 0 is studied when up to
10 NOT operations are performed on up to 50 different
qubits (i.e., 500 operations in total) before the NOT op-
eration on qubit 0 is attempted. The general conclusions
are presented here and a more detailed analysis is found
in Appendix J.

In the worst case studied here, 5% doping concentra-
tion and running 10 gate operations on 50 additional
qubits, the additional error due to ISD in the vast ma-
jority of the simulations is still below the SQ gate error
obtained from the other error sources of decay, decoher-
ence, and internal crosstalk. But it does increase the gate
error by roughly 30% to 60%. Thus, quantum computing
using randomly doped rare-earth crystals is still feasible,
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FIG. 6. Shows the ISD error as a function of the ordered simulation number (see the caption of Fig. 5 for more information).
The total doping concentration ctotal varies from 0.01% → 5% in figures a)-f). In all cases, two transmission windows (shown
in Fig. 4e) are created for each qubit. The solid blue lines show the same results as Fig. 5b, i.e., no gate operations were
performed before the NOT operation on qubit 0 was attempted. The other colors indicate how many other qubits, with indices
q = 1 → Q, have undergone G NOT operations before the NOT operation on qubit 0 was attempted. The qubits with low
indices are closest to the center of the inhomogeneous absorption profile as shown in Fig. 4d. In our simulations, G is either
1 (solid lines) or 10 (dashed lines), and the colored regions span the interval between performing 1 and 10 NOT operations on
each additional qubit.

despite all the numerous non-qubit ions in the vicinity of
the qubits. However, it is again important to note that
the gate operation pulses studied here are designed to
also minimize the risk of ISD occurring [27]. Hence, the
ISD errors being lower than errors from all other sources
is heavily dependent on the limited frequency bandwidth
used by the gate operation pulses studied here and is not
a general conclusion.

For high doping concentrations, the ISD error increases
by roughly 4 · 10−7 for each gate operation that is per-
formed on another qubit before the gate operation on
qubit 0 is attempted. Hence, the error scales linearly
with the total number of gate operations. Furthermore,
the error per gate can be reduced by broadening the in-
homogeneous absorption profile without increasing the
doping concentration, e.g., by co-doping with another
rare-earth species [53]. Therefore, the ISD errors can
be reduced even further compared to the results shown
in Fig. 6.

We now turn to investigate how the initialization of
the qubit ions might affect the ISD error. After transmis-
sion windows have been prepared, the qubit ion is in the
|aux〉 ground state and must be transferred to either |0〉
or |1〉. This is done using resonant optical pulses, but in

this process some non-qubit ions can also be transferred,
thus creating a small ensemble peak of ions with absorp-
tion inside the transmission windows. These ions would
interact strongly with the gate operation pulses, and thus
most probably be excited during gate operations. How-
ever, they still need to spatially lie sufficiently close to the
qubit in order to cause any significant ISD. The width
of this peak, and thus how many such non-qubit ions
are transferred, depend on the frequency width of the
pulses used to perform the transfer. For more informa-
tion about how these initialization pulses are performed,
see Appendix H. Fig. 7 shows how the ISD error changes
as a function of the frequency width of these pulses. As
can be seen, the non-qubit ions in the ensemble peak can
cause a significant additional error when compared to the
0 kHz case where it is assumed that only the qubit ion
is transferred. Fortunately, there are schemes to remove
such non-qubit ions [21]. Furthermore, if the ions are suf-
ficiently spread out in frequency space, one alternative is
to use transfer pulses with narrow frequency bandwidths
such that only the qubit ion is transferred.
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FIG. 7. The ISD error as a function of the ordered simulation
number when using a doping concentration of 5% is shown
for a few different frequency widths of the qubit initializa-
tion pulses (colors). In the 0 kHz case only the qubit ion is
transferred by the initialization pulses. In the solid lines no
gate operations were performed on other qubits before the
NOT operation on qubit 0 was attempted. In contrast, the
dashed lines show the results when 10 NOT operations were
performed on each of the qubits labeled 1 → 50 before at-
tempting the NOT operation on qubit 0.

VI. CONCLUSION

In order to investigate how ISD affects gate opera-
tions on single-ion qubits in rare-earth crystals, where
the stochastic behavior of the phenomenon is important,
we have presented a microscopic treatment of ISD by
modeling the dipole-dipole interactions between ions.

In order to avoid the exponential scaling of the system
size when examining ISD due to many non-qubit ions,
we introduced the QBies method which can be used to
estimate the total error from many error sources. The
method is based on simulations only including one error
source at a time, and works best when the errors are
independent and small.

ISD is then investigated under various conditions. It
is concluded that transmission windows covering the two
qubit transitions |0〉 → |e〉 and |1〉 → |e〉 are necessary
in order to suppress the ISD errors. When using trans-
mission windows, only about 0.3% of the qubits have an
additional error due to ISD that is larger than the er-
ror from other sources. However, for the majority of the
qubits the ISD errors will be much lower. Thus, it is
possible to construct gate operations with SQ gate errors
of roughly 3 · 10−4 to 5 · 10−4 even when the additional
error due to ISD is considered. Furthermore, the upper
bound occurs only for the highest doping concentrations
when several hundred gate operations have already been
applied to other qubits in the quantum computer. Ad-
ditionally, we discuss a way to further reduce the effect
of ISD by reducing the number of non-qubit ions per fre-
quency channel, e.g., by co-doping the crystal with an-
other dopant to broaden the inhomogeneous absorption
profile.

The effect of the qubit initialization pulses is also stud-
ied. It is important to either perform such pulses in a
precise way to reduce the number of non-qubit ions that
are unintentionally transferred into the transmission win-
dows when the qubit is initialized, or alternatively clean
up the non-qubit ions after they have been transferred, to
prevent additional ISD errors from such non-qubit ions.

In summary, the current investigations show that it is
possible to perform NISQ algorithms in randomly doped
rare-earth crystals. Still, to determine the exact effect of
ISD in the long-term usage of the quantum computer a
more detailed analysis is required, but the current work
provides a solid foundation to build upon. Furthermore,
even if some qubits, due to the stochastic nature of the
interaction, exhibit large ISD errors, one can choose not
to use those qubit ions and therefore free up their fre-
quency channels to be used by other qubit ions which
have smaller ISD errors.
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Appendix A: Information about the simulations

All simulations where the effect of ISD is analyzed were
performed by evolving the Lindblad master equation [48]
using MATLAB’s explicit Runge-Kutta ode45 function
[54, 55]. In all simulations the qubit starts in |0〉 + i|1〉
and a NOT operation is attempted. When simulating the
153Eu:Y2SiO5 system described in Fig. 4 we also assume
a zero magnetic field in the sense that the hyperfine levels
are doubly degenerate, i.e., |+1/2g〉 overlaps with |-1/2g〉
and are therefore treated as one single level, |±1/2g〉. In
most simulations studied here, decay, decoherence, and
internal crosstalk effects are not included as those error
sources are assumed to be independent from the ISD er-
rors. One exception is when the SQ gate error due to only
these sources and not ISD is evaluated. In that case the
assumed optical life- and coherence times are T1 = 1.9 ms
and T2 = 2.6 ms, respectively [29]. Note that these values
were obtained using a 10 mT magnetic field but we do
not include the small splitting this magnetic field inflicts
on the otherwise degenerate energy levels. Finally, de-
cay and decoherence processes between hyperfine states
are always assumed to be negligible as they occur on
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time scales much longer than their optical counterparts
[28, 31, 56, 57].

The Hamiltonians consisted of Lqubit ·LNion energy lev-
els, where Lqubit and Lion are the number of energy lev-
els for the qubit and non-qubit ions, respectively, and N
is the number of non-qubit ions that cause ISD to the
qubit. Lqubit = 3 was always used for the qubit except
for a single simulation when the SQ gate error due to de-
cay, decoherence, and internal crosstalk was investigated
where instead Lqubit = 6 was used. The non-qubit ions
used Lion = 3 in Sec. II where ISD was investigated in
an idealized system. The simulations underlying the re-
sults in Sec. V used Lion = 6 for ions inside the reserved
frequency range of qubit 0 and Lion = 2 for ions outside.
These simulations are described in Appendix G.

The relative and absolute tolerances for the ode45
MATLAB function were varied based on requirements:
Figs. 2, 3, and 9-12 used 10−10, whereas Figs. 14 and 15
used 3 · 10−14. The global error of the simulation is esti-
mated to be roughly 10 times the local tolerances when
running one SQ gate operation. The results of Figs. 5-7
and 17-18 are based on the simulations underlying the
results shown in Figs. 14, 15, and 16b.

Appendix B: Pulse shape of the SQ gate operations

The SQ gate operations used in this work are per-
formed using 2 two-color optical pulses resonant with
the transitions |0〉 → |e〉 and |1〉 → |e〉. The two
driving fields have the same cut Gaussian pulse shape,
Ω0(t) = Ω1(t) = Ω(t):

Ω(t) =

{
C1 · exp(− (t−tg/2)2

2σ2 )− C2 0 ≤ t ≤ tg
0 otherwise

(B1)

where tg = 1.68 µs is the cut-off pulse duration, σ =
4.16 µs is the standard deviation of the Gaussian, C1

is chosen so that a pulse area of π/
√

2 is achieved, and
C2 enforces the shape to start and end at zero. These
parameter values were optimized to achieve a low SQ
gate error while also taking heed to minimize the risk of
ISD occurring, as is discussed and motivated in Ref. [27].
The pulse shape can be seen in Fig. 8. Since two pulses
are required to perform a gate operation [27] the total
gate duration is 2tg = 3.36 µs.

Using a different pulse shape or different pulse param-
eters can affect the ISD errors. In Appendix C, we dis-
cuss how the ISD errors change as the pulse duration
is altered. Furthermore, changing the pulse also affects
errors from decay, decoherence, and internal crosstalk.
Therefore, designing the optimal pulse is a complex op-
timization problem that is not analyzed further in this
work.
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FIG. 8. Shows the Rabi frequency envelope used for each of
the two components of the two-color pulse. The pulse param-
eters in Eq. B1 are: tg = 1.68 µs and σ = 4.16 µs.
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FIG. 9. a) Shows the ISD error as a function of the shift ∆ν
when the qubit interacts with one resonant (∆ = 0) non-qubit
ion (solid blue line). The theoretical error based on Eq. C1,
where te = 1.40 µs was optimized to give the best fit, is shown
in the dashed black line. The theory assumes that both ions
are excited despite the shift that occurs, i.e., it is only valid
for small shifts, in this case |∆ν| less than roughly 100 kHz.
The inset zooms in around ∆ν = 0 kHz. b) Shows the length
and components of the qubit Bloch vector a = (u, v, w) for
the same simulation as in a).

Appendix C: ISD from an idealized theoretical point
of view

This section studies the effect of ISD under the as-
sumption that all non-qubit ions are resonant with the
qubit, i.e., ∆ = 0 for all ions. This investigation is per-
formed in order to build intuition in regards to ISD. First,
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FIG. 10. Shows the ISD error from two non-qubit ions, both resonant with the qubit (∆ = 0) but with varying shifts, ∆ν1 and
∆ν2, based on a) simulations, and b) the theoretical expression derived in Appendix C 1, where the duration te = 1.40 µs was
determined from the data of Fig. 9. c) Shows the deviation between simulation and theory by dividing the ISD error obtained
from the simulation by the error obtained from the theory.

the ISD error from one non-qubit ion as a function of the
shift ∆ν is investigated, see Fig. 9a.

In general, the transitions to the |ee〉 two-qubit state
are driven off-resonantly due to the shift, see Fig. 1b,
resulting in phase and population errors on such trans-
fers. However, when these errors are sufficiently low, i.e.,
the shift is much less than the frequency bandwidth of
the pulse, one can assume that the pulses excite/deexcite
both the qubit and the non-qubit ions regardless of the
shifts that occur. Under these assumptions the interac-
tion only comes in as a phase evolution on the shifted
states, which in our case is the |ee〉 state. A theoretical
expression for the ISD error when N non-qubit ions in-
teract with the qubit under these assumptions is derived
in Appendix C 1. For the case of just one non-qubit ion,
when both it and the qubit start in |0〉+ i|1〉 and a NOT
operation is performed, the error can be written as:

ε =
1

4
− 1

4
cos(2πte∆ν) (C1)

where te is the duration during which the two ions
evolve their phase in the shifted |ee〉 two-qubit state,
which is approximately equal to the pulse duration tg,
but also depends on the other gate parameters. The the-
oretical error is shown in the dashed black line of Fig.
9a, where te = 1.40 µs was optimized to give the best fit.

As can be seen from the theoretical expression, a
shorter pulse, yielding a shorter te, decreases the error
due to ISD for a given shift since it spends less time in
the |ee〉 state. However, one must also consider that if
the shorter pulse requires a larger frequency bandwidth,
then it might interact with more non-qubit ions, and al-
though each individual ion might give a lower additional
error, the combined effect of all non-qubit ions might
not. Furthermore, an increased frequency bandwidth in-
creases the risk of finding an ion that has a stronger in-
teraction and thus shifts the qubit transitions more.

A simple investigation can be made if we assume that

the shifts occur due to dipole-dipole interactions, see
Appendix E, that the frequency bandwidth is inversely
proportional to te, and that all frequency channels are
equally likely to be populated by a non-qubit ion. If te
is decreased by a factor of x, then the bandwidth is in-
creased by that same factor, as are the number of ions
within the pulse bandwidth that may disturb the qubit.
Because the ions are assumed to be randomly doped, the
average distance from the closest non-qubit ion to the
qubit scales as |r| ∝ 1/x1/3. However, since the strength
of the dipole-dipole shift scales as 1/|r|3, the shift, ∆ν,
increases by a factor of x. Therefore, provided that the
assumptions are valid, to first order te∆ν, and thus the
additional error from the closest non-qubit ion, stays con-
stant even if the pulse duration is changed. However,
if the number of ions per frequency channel is not the
same everywhere, then this is no longer true. For exam-
ple, if transmission windows are used, then decreasing
the pulse duration decreases the error due to ISD as long
as the pulse is not interacting with the ions outside the
transmission windows in a significant way.

Let us now study the ISD error as a function of two
non-qubit ions, both still resonant with the qubit and
having shifts of ∆ν1 and ∆ν2, respectively. The results
can be seen in Fig. 10. If each ion interacts with the
qubit alone they in general cause different rotations and
length reductions of the qubit Bloch vector, see Fig. 9b.
Interestingly, when the shifts have opposite signs, the
two rotations of the qubit Bloch vector originating from
the interaction with each of the two ions partially can-
cel each other. If the shifts are completely opposite, i.e.,
∆ν1 = −∆ν2, the two rotations more or less cancel each
other fully. However, in all cases the qubit still becomes
entangled with the two non-qubit ions. Therefore, even
in the case where the shifts are opposite an error still oc-
curs. When the shifts have the same sign, the rotations
from the two ions are in the same direction which gives
an error that is larger than the sum of the individual er-
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rors originating from each ion interaction with the qubit
alone. As can be seen in Fig. 10b-c, the theory predicts
the correct additional error due to ISD to within a few
percent for these relatively small shifts.

1. Theoretical error due to ISD for resonant ions
with small shifts

In this section we derive a theoretical expression of the
additional SQ gate error due to ISD under the assump-
tions that the non-qubit ions are resonant with the qubit
and that the gate operation pulses always excite both the
qubit and all non-qubit ions regardless of the shifts that
occur. This theoretical expression is therefore only valid
for resonant cases and when the shifts are small com-
pared to the frequency width over which the pulses can
reliably transfer the ion from the ground to excited state
and vice versa. The derivation in this section assumes
that the gate operations are performed using 2 two-color
pulses [27, 58], but it is possible to derive similar expres-
sions for other gate protocols.

When using two-color pulses, the qubit system has two
superpositions, called bright and dark, which are coupled
and uncoupled, respectively, to the excited state. These
superpositions are defined as follows [58]:

|B〉 =
1√
2

(
|0〉+ e−iφ|1〉

)
|D〉 =

1√
2

(
|0〉 − e−iφ|1〉

)
(C2)

where φ = φ1 − φ0 is the relative phase between the
two Rabi frequencies of the two-color pulse, see Fig. 4a.
Both colors of the second two-color pulse have additional
phases of φ0/1 = φ0/1 + π − θ. The 2 two-color pulses
transfers the bright state to the excited state and back
again with an additional phase of eiθ while leaving the
dark state unaffected. For a more detailed description
see Ref. [27].

The theoretical expression is derived in the bright/dark
state basis and the core idea of the derivation is listed
below:

1. The two-color pulses work as intended for both the
qubit and the non-qubit ions, i.e., they transfer
|B〉 → |e〉 and back again without errors

2. Each state, e.g., |BDD...DB〉, acquires an addi-
tional phase of eiθ for each B component in the
state after the operation is completed

3. Each state, e.g., |BDD...DB〉, also acquires an ad-
ditional phase due to ISD between the ions. This
phase depend on how much the state |eDD...De〉 is
shifted due to ISD, i.e., the initial state except all
bright components have been excited

To begin the derivation we list the initial state:

|Ψi〉 =

2N∑
s=1

ABs|Bs〉+ADs|Ds〉 (C3)

where ABs and ADs are the coefficients for starting
in state |Bs〉 and |Ds〉, respectively, with the B and D
denoting the qubit state, and s is the state of all N non-
qubit ions, which can be any of the 2N combinations of
them starting in B or D.

After the gate operation is performed the state is;

|Ψf 〉 =

2N∑
s=1

ABse
iα(Bs)|Bs〉+

ADse
iα(Ds)|Ds〉 (C4)

where α(x) is the phase;

α(x) = θ · nB(x)− 2πte
∑

i,j=B in x

∆νij (C5)

where nB(x) is the number of B components in state
x, te is a duration which is proportional to the gate dura-
tion, tg, and ∆νij is the shift between ions i and j, mea-
sured in Hz. The sum goes over all combinations of ions
i, j that are B in state x, e.g., state x = |BDBBD〉 re-
sults in the combinations (i, j) = (0, 2), (0, 3), and (2, 3).

In order to trace out the non-qubit ions we must first
define the density matrix of the full system, ρfull, and our
qubit, ρ;

ρfull = |Ψf 〉〈Ψf | (C6)

ρ =

2N∑
s=1

〈I ⊗ s|ρfull|I ⊗ s〉 (C7)

Using the expression for |Ψf 〉 from Eq. C4 we get;

ρ =

2N∑
s=1

(
ABse

iα(Bs)|B〉+ADse
iα(Ds)|D〉

)
·
(
A∗
Bse

−iα(Bs)〈B|+A∗
Dse

−iα(Ds)〈D|
)

(C8)

We can now transform back to the qubit system of |0〉
and |1〉 using Eq. C2 and then calculate the Bloch vector
components;

u =ρ01 + ρ10

v =i(ρ01 − ρ10)

w =ρ00 − ρ11 (C9)

This results in;

u =

2N∑
s=1

cos(φ)(|ABs|2 − |ADs|2) + 2 sin(φ)Im(ξ(s))

v =

2N∑
s=1

− sin(φ)(|ABs|2 − |ADs|2) + 2 cos(φ)Im(ξ(s))

w =

2N∑
s=1

2Re(ξ(s)) (C10)
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where

ξ(s) = ABsA
∗
Dse

iβ(s) (C11)

where β(s) = α(Bs)− α(Ds), which can be simplified
to;

β(s) = θ − 2πte
∑

j=B in s

∆ν0j (C12)

where the summation now only looks at the interac-
tions between the qubit, with index 0, and the non-qubit
ions in state |B〉, e.g., state s = |DBBD〉 results in the
combinations (0, j) = (0, 2), and (0, 3), i.e., β(s) does not
include the interaction between non-qubit ions. Remem-
ber that state s only includes the states of the non-qubit
ions, whose first index is 1.

The expressions in Eq. C10 work for any number of
non-qubit ions, N , any initial state, ABs and ADs, and
arbitrary gate operations, φ and θ. For the case of one
non-qubit ion interacting with the qubit with a shift of
∆ν, when both ions start in |0〉+ i|1〉 and a NOT opera-
tion, φ = π and θ = π, is performed, the results simplifies
to;

u = 0

v = −1

2
− 1

2
cos(2πte∆ν)

w =
1

2
sin(2πte∆ν) (C13)

Since the initial state has v = 1 and a NOT operation
is performed, the target state is v = −1 and the error of
the operation can be calculated as ε = (1 + v)/2, i.e.,

ε =
1

4
− 1

4
cos(2πte∆ν) (C14)

Appendix D: Validating the QBies method

This section explores the validity of the QBies method
presented in Eq. 4. To start, Fig. 11 shows a comparison
between running the full simulation and using the QBies
method for a qubit interacting with two non-qubit ions.
In all cases shown, the true additional error due to ISD
is at most ±20% compared to the error obtained using
the QBies method. Furthermore, this ratio approaches 1
when the errors are low, i.e., when the detunings of the
non-qubit ions are large or when the shifts are small. This
is good for the case of rare-earth quantum computing,
since in a real crystal there are many more ions that
are far detuned from the qubit or have weak interactions
due to the 1/|r|3 scaling of the dipole-dipole shift, see
Appendix E, and the fact that the number of ions at a
certain distance |r| scales as |r|2.

We now continue by investigating the following as-
sumptions: 1) ISD errors can be separated from
the other error sources of internal crosstalk and de-
cay/decoherence, and 2) ISD errors from different non-
qubit ions interacting with the qubit can be separated

from each other, and shifts between different non-qubit
ions can be neglected.

These issues are investigated by first running full sim-
ulations where everything is included at once, and then
comparing those results to when one uses the QBies
method based on running simplified systems where the
different error sources are separated. In these simulations
a NOT operation is performed on the qubit ion, which
begins in |0〉+ i|1〉, and is described by a partly idealized
system with three energy levels, |0〉, |1〉, and |e〉. We let
the qubit interact with N additional non-qubit ions, that
each have a 50% chance of being described by the same
three-level system as the qubit and also interact with
the gate pulses, and a 50% chance of being described by
a simplified two level system with only one ground and
one excited state, not interact with the gate pulses, and
instead have some initial population in the excited state.
The detunings of the non-qubit ions (only relevant if they
are interacting with the gate pulses), are randomized by
a logarithmic uniform distribution between 1 kHz and
100 MHz, i.e., the randomized values are 10x Hz, where
x is uniformly distributed between 3 and 8. Similarly,
the shifts between the qubit and non-qubit ions, as well
as between different non-qubit ions, are randomized by
a logarithmic uniform distribution between 100 Hz and
10 MHz. The non-qubit ions that do not interact with
the gate pulses have an initial excited state population
that is randomized by another logarithmic uniform dis-
tribution now between 10−9 → 10−4, where, e.g., 10−4

means that the ion starts in a mixed state with a 10−4

probability to be in the excited state. All these ranges
were picked to validate the assumptions over a large range
of different values, and to make sure that each individual
variable could affect the results in a significant way, while
simultaneously resulting in total errors that span a large
range. In each investigation we perform 1000 different
simulations where all parameters are randomized again.

First, the separation of ISD errors from errors due to
internal crosstalk is investigated. Here the qubit only in-
teracts with one non-qubit ion, and the partly idealized
systems have no decay or decoherence. However, when
running the simulation of the full system the gate oper-
ation pulses are allowed to drive all transitions, and the
two ground states are separated by a frequency drawn
from the logarithmic uniform distribution of 100 kHz to
100 MHz. Then a second simulation is performed with
exactly the same randomized values, but where the gate
operation pulses only drive the intended transitions. This
simulation gives the rotation and shrinkage of the qubit
Bloch vector due to errors of ISD only. A third simulation
is then performed were the gate operation pulses once
more interact with all transitions, but it only contains
the qubit ion, i.e., there is no ISD. This last simulation
provides a Bloch vector that only contains the errors due
to internal crosstalk. Eq. 4 is now used to estimate the
total error due to both ISD and internal crosstalk where
the rotation and shrinkage are obtained from the second
simulation listed above, and a0 is the Bloch vector ob-
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FIG. 11. The ISD error on a qubit due to interaction with two non-qubit ions is shown. The shifts, ∆ν1 and ∆ν2, are varied
along the horizontal and vertical axes of each graph, respectively. The different columns show the results for different detunings
(∆1, ∆2) of the two non-qubit ions, where a zero detuning means that the non-qubit ion is resonant with the qubit. The
results are shown based on a) simulations of the full system including the qubit and the two non-qubit ions, and b) the QBies
method presented in Eq. 4, which is based on two separate simulations using only the qubit and a single non-qubit ion in each
simulation. c) Shows the deviation between the simulation and the QBies method by dividing the simulation results by the
QBies results.

tained from the third simulation listed above. Finally,
the total error obtained from the first full simulation due
to both internal crosstalk and ISD is compared with the
error estimated based on the last two simulations. This
is repeated 1000 times and the results can be seen in Fig.
12a. As can be seen, the ratio of the error obtained from
the full simulation divided by the error obtained from the
QBies method is roughly equal to 1 for the vast majority
of cases. Furthermore, the deviations from this mostly
occur when the total SQ gate error is high.

A similar investigation is performed to validate the as-
sumption that ISD errors can be separated from errors
due to decay and decoherence. The procedure is similar
to that listed above, except instead of driving multiple
transitions decay and decoherence is included or not. To
validate the assumption over a large range of errors the
excited state lifetime, T1, is randomized from a logarith-
mic uniform distribution between 100 ns and 1 s. The
results can be seen in Fig. 12b. Here the QBies method

works even better and the difference between it and run-
ning the full simulation is negligible.

Lastly, the assumption that ISD errors from N = 2→
5 non-qubit ions can be separated from each other is in-
vestigated. There is no decay, decoherence, or internal
crosstalk in any of these investigations, the results can
be seen in Fig. 12c-f, and the conclusions are similar as
those written above.

In summary, it is possible to separate different error
sources such as internal crosstalk, decay and decoherence,
and ISD originating from different non-qubit ions in the
vast majority of cases, especially when the total SQ gate
error is low.
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FIG. 12. This figure validates the assumption that in the vast majority of cases the rotation and shrinkage of the qubit Bloch
vector caused by ISD from one non-qubit ion is independent from the rotations and shrinkages caused by internal crosstalk,
decay and decoherence, and ISD from other non-qubit ions. The graphs show the ratio between the total error obtained when
either running the full simulation of the entire system or using the QBies method described in Eq. 4 in order to estimate the
total error. The horizontal axes show the total SQ gate error obtained in the full simulation. Six different investigations are
performed: a) separating the errors of ISD from errors of internal crosstalk; b) separating the errors of ISD from errors of decay
and decoherence; c-f) separating the errors of ISD from N = 2→ 5 different non-qubit ions interacting with the qubit. In each
investigation we simulate 1000 different cases, shown as half-transparent circles. In all investigations the QBies method yields
very similar results in the vast majority of cases when compared to running the full simulation, i.e., most circles lies close to 1
on the vertical axes. Furthermore, most deviations occur when the total SQ gate error is high.

Appendix E: Dipole-dipole interactions

The ISD considered in this article is modeled as a
dipole-dipole interaction occurring since the static elec-
tric dipole moments of the ground and excited states, µg
and µe, are different. Thus, when an ion is either excited
or deexcited, its charge distribution is modified and the
resulting electric field change affects nearby ions. The
frequency shift, ∆ν, on the optical transitions of such
nearby ions due to this interaction can be calculated as
follows [59];

∆ν =
k

|r|3
(∆µA ·∆µB − 3(∆µA · r̂)(r̂ ·∆µB))

k =
(ε(0) + 2)2

9ε(0)

1

4πε0h
(E1)

where r is the spatial vector pointing from ion B to ion
A, r̂ is the normalized spatial vector, and ∆µA/B is the
difference µg − µe for ions A and B, respectively. The
first term in the constant k is a local field correction due
to the crystal [60], where the dielectric constant for DC
fields, ε(0), is equal to 11 for the case of yttrium orthosil-
icate (Y2SiO5) [61, 62]. ε0 is the vacuum permittivity
and h is Planck’s constant. Implicit in this equation is
the reasonable assumption that the static dipole moment
difference remains the same regardless of the states of
other ions.

Appendix F: Host crystal and unit cell

In order to understand how the positions and orienta-
tions of dopants are obtained, this section discusses the
structure of the host crystal, whose unit cell is described
in Fig. 13a and Tab. I, where the relation to the princi-
pal axes D1, b, and D2 is also indicated. Each unit cell
contains 8 basic molecules of Y2SiO5 as seen in Fig. 13b.
The Eu dopant can replace either of the two Y ions in
the basic molecule of Y2SiO5, denoted by the numbers 1
and 2 in the figure. These crystal sites differ in that the
Y ions in 1 have 6 nearby oxygen, whereas ions in 2 have
7 (coordination numbers of 6 and 7, respectively). Note
that these crystal sites are the same as the sites normally
referred to when discussing spectral properties, e.g., op-
tical transition wavelengths, hyperfine energy level split-
tings, etc. However, to the best of the authors knowledge
there hasn’t been a clear demonstration of which crystal
site (6 or 7 nearby oxygen) correspond to which spectral
site for the high temperature phase X2 crystal structure
of Y2SiO5, and the definition varies between Refs. [65–
68]. We here assume that the spectral site denoted by
1 with the properties shown in Fig. 4a-b has a coordi-
nation number of 6. This is assumed since spectral site
1 has larger crystal field splittings [28] which indicates
that it corresponds to coordination number 6 where the
distances between the dopant and the nearby oxygens
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FIG. 13. a) Shows the unit cell of Y2SiO5 in the C2/c (base-centered) space group, see Tab. I for values of the parameters.
The figure also indicates the connection to the principal axes D1, C2 which is more often denoted by b, and D2. b) Shows the
layout of the 8 basic Y2SiO5 molecules that each unit cell contains constructed using the atom coordinates of Ref. [63] and the
symmetries of the C2/c space group. Note that the connections shown are only there to indicate which basic molecule the ions
belong to. Two yttrium crystal sites exist with coordination numbers of 6 and 7, which we label as site 1 and 2, respectively.
We assume that the static electric dipole moment difference, |∆µ| = 7.6 · 10−32 Cm [64], points in the D1 direction for the site
1 yttrium ion belonging to the bottom left basic molecule. Since the basic molecules are oriented differently, we indicate the
direction of ∆µ by black arrows for all site 1 yttrium ions.

are shorter, following the same reasoning as in Ref. [69].
Note that even if this assumption is wrong the general
results of Sec. V are still valid since using the crystal
site with coordination number 7 generates very similar
results.

The 8 basic molecules in each unit cell are oriented in
four different ways resulting from the crystal symmetries
of identity, inversion, mirror of b, and the combination
of inversion and mirror of b. These orientations are in-
dicated by the black arrows of Fig. 13b, which show the
assumed direction of the static electric dipole moment
difference ∆µ used to calculated the dipole-dipole shift
from Eq. E1. The magnitude |∆µ| = 7.6 · 10−32 Cm is
known [64], but to the best of the authors knowledge the
direction in relation to the basic molecule is not. We here
assume that the direction is along the D1 principal axis
for the basic molecule shown in the bottom left corner
of Fig. 13b. Note that this choice was an arbitrary one.
However, once more the general results of Sec. V are still
valid even if this assumed direction is wrong.

TABLE I. Unit cell parameters for the high temperature phase
X2 crystal structure of Y2SiO5, see Fig. 13a, written in the
C2/c (base-centered) space group [52, 70]. Note that the
parameters are sometimes given in the I2/c (body-centered)
space group instead.

Distances Angles
a = 1.44137 nm α = 90◦

b = 0.6719 nm β = 122.235◦

c = 1.040 nm γ = 90◦

A qubit surrounding is created by first randomly re-
placing a fraction of the site 1 Y ions with 153Eu ions.
In experiments the total doping concentration, ctotal, of
replacing the Y ions in either site 1 or site 2 is often
cited, but to the best of the authors knowledge the ex-
act relative occupation of these two sites is unknown.
There are indications that the substitution favors the site
with higher coordination number [67, 68], i.e., site 2 us-
ing our definition of crystal sites. However, this might
be more important for dopants such as praseodymium or
cerium which are larger than the yttrium ion they replace
[66, 67, 71]. For europium, whose size is more compara-
ble with yttrium, the site occupation may be more equal
[28, 71]. Regardless, since the exact relative occupation
is still unknown we here assume that they are equal, i.e.,
half of the total number of dopants are in site 1 and half
are in site 2. To be consisted with the experimental con-
centration values often quoted in articles, the concentra-
tion values used throughout this work refers to the total
number of 153Eu ions in the crystal, but only half of those
are assumed to be in site 1 and those are the only ions
that are used to evaluate ISD. After all ions have been
placed their positions in space is known, and the dipole-
dipole shift between any two ions can be calculated using
Eq. E1.

Appendix G: Estimating ISD from non-qubit ions

To use the QBies method described in Eq. 4, the rota-
tion and shrinkage of the qubit 0 Bloch vector that each
non-qubit ion causes must first be determined. However,
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there are millions of ions to investigate, and even though
the fast QBies method is used it would take prohibitively
long time to simulate everything if a new simulation is
done for each non-qubit ion. Fortunately, one can use
interpolation to heavily reduce the computational time.
How this interpolation is performed differs for non-qubit
ions inside or outside the reserved frequency range of
qubit 0, and is explained further in the following sub-
sections.

1. Non-qubit ions inside the reserved frequency
range of qubit 0

In order calculate how ISD affects the SQ gate error in
a realistic case, the pulses intended to drive the |0〉 → |e〉
and |1〉 → |e〉 transitions of the qubit are now allowed
to drive any of the nine optical transitions in the non-
qubit ion, i.e., all six energy levels of the non-qubit ion
are now included in contrast to how it was treated in
the idealized case studied in Sec. II. Note however, that
the pulses still only drive the intended transitions in the
qubit to be able to separate the errors due to internal
crosstalk from ISD. The fact that the non-qubit ion now
has nine optical transitions complicates how ISD depend
on the dipole-dipole shift and detuning as can be seen in
Fig. 14 where the ISD error is seen for the case of one
non-qubit ion. Here the non-qubit ion starts in one of
the three ground states |1/2g〉, |3/2g〉, or |5/2g〉, has a
detuning of ∆ relative to the qubit, and interacts with a
dipole-dipole strength of ∆ν. As before the qubit starts
in |0〉+ i|1〉 and a NOT operation is attempted. In each
of the three graphs six horizontal lines of high errors can
be seen. These correspond to detunings where the pulses
driving |0〉 → |e〉 or |1〉 → |e〉 in the qubit are also res-
onant with an available transition in the non-qubit ion,
i.e., a transition from the the starting ground state of
the non-qubit ion to any of the three excited states. The
differences in thickness between these lines come from
differences in the relative oscillator strengths of the tran-
sitions being driven and the intended transitions. Fur-
thermore, the six horizontal lines in the |3/2g〉 case are
shifted by −90 MHz compared to the lines in the |1/2g〉
case since the splitting between the two hyperfine levels
is 90 MHz. When the non-qubit ion is far detuned from
the optical pulses, the effect of ISD is low, except when
the dipole-dipole shift is such that it compensates for the
detuning, which can be seen in the diagonal lines show-
ing high errors. In these cases the error is large since the
initially detuned non-qubit ion is shifted into resonance
through the dipole-dipole interaction when the qubit ion
is excited during the gate operation. The combinations
of dipole-dipole shifts and detunings that cause a signif-
icant additional error due to ISD are in the vicinity of
these horizontal and diagonal lines.

For non-qubit ions inside the −335 MHz to 665 MHz
reserved frequency range of qubit 0, we estimate the qubit
0 Bloch vector using a bilinear interpolation of the data

FIG. 14. Shows the additional SQ gate error for a qubit due to
ISD from one non-qubit ion. The dipole-dipole shift, ∆ν, and
the detuning, ∆, of the non-qubit ion are varied on the hor-
izontal and vertical axes, respectively, and the three graphs
show the situation for different initial states of the non-qubit
ion: |1/2g〉, |3/2g〉, and |5/2g〉, respectively. In all cases the
qubit starts in |0〉+ i|1〉 and a NOT operation is attempted.

underlying the results of Fig. 14. After the Bloch vec-
tor is determined the rotation and shrinkage compared
to the targeted state can easily be calculated. This
interpolation is used for all non-qubit ions within the
reserved frequency range listed above except for those
few cases where the non-qubit ion had a dipole-dipole
shift magnitude larger than 100 MHz. Note that it is
unlikely that ions cause larger dipole-dipole shifts than
±100 MHz, e.g., in several thousand different simulations
where each simulation, depending on concentration, con-
tains between 500 and 7000 ions within the reserved fre-
quency range of qubit 0, only 13 ions had a dipole-dipole
shift magnitude larger than 100 MHz. For the ions with
large shifts, new simulations with their specific detunings
and shifts were performed to obtain the resulting Bloch
vector of qubit 0.

The reserved frequency range of−335 MHz to 665 MHz
was picked for two different reasons. First, it covers all
the diagonal lines of high errors shown in Fig. 14 for
dipole-dipole shifts of ±100 MHz with roughly 25 MHz
to spare. Where, again, it is relatively unlikely for an ion
to cause a shift greater than 100 MHz. Second, the total
reserved frequency range is 1 GHz, which is equal to the
separation between different qubits, thus making it easy
to assign each non-qubit ion to the corresponding qubit
whose pulses can affect them, as is shown in Fig. 4d.
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FIG. 15. A non-qubit ion is assigned a corresponding qubit based on its detuning from qubit 0 as shown in Fig. 4d. The
non-qubit ion can be off-resonantly excited by the pulses intended to perform G NOT operations on its corresponding qubit. a)
Shows the total population in the excited states as a function of the detuning of the non-qubit ion to its corresponding qubit,
whose frequency of its |0〉 → |e〉 transition is νq. The detuning of the non-qubit ion always lies in the range of −335 MHz to
665 MHz, since it would otherwise be assigned to a different corresponding qubit. The complex dependence on the detuning
comes from the fact that the initial state of the non-qubit ions depend on their detuning due to the creation of transmission
windows surrounding the two qubit transitions in the same way as described in Sec. IV and Appendix H. b) A non-qubit ion
causes an additional SQ gate error on qubit 0 due to ISD if it is partly excited when the gate operation on qubit 0 is performed.
This additional error is shown in the graph as a function of the dipole-dipole shift ∆ν (horizontal axis) between the non-qubit
ion and qubit 0, and as a function of the total excited state population (vertical axis) of the non-qubit ion before the gate
operation on qubit 0 is attempted.

2. Non-qubit ions outside the reserved frequency
range of qubit 0

Non-qubit ions outside the reserved frequency range
of qubit 0 are assumed to not interact with the pulses
intended to drive qubit 0. However, such ions can still
cause ISD to qubit 0 if they are partly excited before
the gate operation on qubit 0 is attempted. This section
describes how the contribution of ISD from such non-
qubit ions is estimated.

First, we determine which qubit index each non-qubit
ion belong to, e.g., an ion with a detuning of 2.4 GHz
from qubit 0 belong to qubit index 3 as shown in Fig.
4d. Then the detuning between the non-qubit ion and its
corresponding qubit is used to determine the probabilities
of starting in the three different ground states, for more
information see Appendix H.

Second, we estimate how large fraction of the non-
qubit ion population is in the excited state after G gate
operations have been performed on its corresponding
qubit. This is done using a linear interpolation based
on simulations where the non-qubit ions had detunings
between −335 MHz to 665 MHz. We only keep the in-
formation of how large fraction of the population there
is in total in any of the three excited states, since this
is the only factor which impacts the effect of ISD. This
total population in the excited states as a function of
detuning is shown in Fig. 15a for the cases when 1 or
10 gate operations were performed. These simulations
included the effects of decay, decoherence, and internal
crosstalk to also model the slight decay which occur when
performing multiple gate operations.

Third, new simulations are performed to estimate the
ISD error on qubit 0 due to dipole-dipole interaction with

non-qubit ions that are initially partly excited, but does
not interact with any pulses during the gate operation
performed on qubit 0. In these simulations the effect
of different dipole-dipole shifts is studied as normal, but
the amount of excitation of the non-qubit ion, which now
only has one ground and one excited state, is also varied.
To be able to isolate the ISD errors these simulations did
not include decay, decoherence, and internal crosstalk.
The results from these simulations can be seen in Fig.
15b. As can be seen, the error is constant for large mag-
nitudes of the dipole-dipole shift. Simulations were per-
formed up to ±100 MHz and any non-qubit ion causing
a shift larger than this was assumed to affect the qubit
Bloch vector in the same way as an ion with a 100 MHz
shift.

In summary, the detuning of the non-qubit ion from
its corresponding qubit gives a probability distribution
to be in the three ground states, which together with the
detuning determines how large fraction of the population
is excited after G gate operations have been performed
on the corresponding qubit, see Fig. 15a. The fraction
of the population which is in the excited states is then
used to estimate the qubit 0 Bloch vector due to ISD
from the non-qubit ion through a linear interpolation of
the simulation data underlying the results shown in Fig.
15b. Finally, the rotation and shrinkage of the qubit
0 Bloch vector when compared to the targeted state is
calculated.

Appendix H: Creating transmission windows

In this section we describe the procedure to simulate
the creation of the transmission windows seen in Fig. 4e
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FIG. 16. a) Shows the probability to transfer an ion from one
ground state to one excited state as a function of the relative
frequency of that transition, ν, when compared to the center
frequency of the incoming light pulse, νc. Here we show the
example of pulse #1 in Tab. II for the |0〉 → |5/2e〉 transition.
The probability is calculated using Eq. H1. The transfer is
most efficient within a frequency range of νscan as is show in
the inset, which shows the same transfer probability but in
linear scale. The maximum transfer efficiency (here shown
as 60%) depends on which transition is being driven which is
explained further in Tab. II. b) Shows the probability to be in
each of the three ground states as a function of the detuning
∆ from the |0〉 → |e〉 transition frequency, νq, of qubit q.
Here νinit = 0 kHz is used. These ground state population
probabilities results in the transmission windows seen in Fig.
4e.

using spectral hole burning techniques. First, one can
calculate the largest possible widths of such transmis-
sion windows by iterating through all inhomogeneously
broadened ions and placing them in the ground state
whose transitions to all excited states are as far away
as possible from the frequencies of the two qubit tran-
sitions [27]. For site 1 153Eu:Y2SiO5 the empty regions
surrounding the two optical transitions, |0〉 → |e〉 and
|1〉 → |e〉, range from −9.0 MHz to 9.1 MHz, and −35.9
MHz to 14.6 MHz, measured from the center of the re-
spective transitions. Based on this knowledge we send in
frequency scanning pulses to empty these regions from
any absorbing ions. However, since we assume that our
pulses have some widths and can also off-resonantly ex-
cite ions we make the frequency scanning regions roughly
1 MHz narrower compared to the values listed above.

Performing such hole burning simulations using the

Lindblad master equation would take prohibitively long
time since it needs to keep track of several hundreds of
thousands of ions for several thousand incoming light
pulses. Therefore, these simulations are performed in a
simplified way where we do not keep track of any coher-
ence and instead assume a specific transfer efficiency for
each pulse that is applied. The simulations keep track of
the population in all six energy levels as a function of the
detuning from the qubit, ranging from −335 MHz to 665
MHz. Any light pulses that are sent in have a probability
as a function of frequency to transfer the population to
an excited state as seen in Fig. 16a. This probability is
calculated in the following way:

P1(ν)=
tanh

(
ν−(νc− νscan

2 )

νslope

)
− tanh

(
ν−(νc+

νscan
2 )

νslope

)
2

P2(ν)=
γ2

(ν − νc)2 − γ2
P (ν)= εi ·max(P1(ν), P2(ν)) (H1)

where ν is the frequency of the transition being exam-
ined for a certain ion, and ν = 0 MHz for the |0〉 → |e〉
transition frequency of the qubit ion. Furthermore, νc
and νscan are the center and scanning frequencies of an
incoming light pulse. These determine the frequency re-
gion within which the transfer is efficient as can be seen
in the inset of Fig. 16a. νslope determines the slope
of the transfer probability outside the νscan frequency
range. P1(ν) models the transfer distribution for fre-
quencies close to the light frequency, but in order to also
model the off-resonant excitation, which might occur for
ions that are heavily detuned from the light pulses, we
assume a Lorentzian fall off which is specified in P2(ν)
where γ = 1/T2 and T2 = 2.6 ms. Lastly, we assume
that the probability to transfer a specific ion on a spe-
cific transition i is given by P (ν) where εi is the scaled
transfer efficiency for that specific transition, which is
explained further in Tab. II.

All pulses used are defined in Tab. II, and the order
in which they are applied is described in Tab. III. The
transmission windows are created in the following way.
The frequency regions surrounding the two qubit tran-
sitions, |0〉 → |e〉 and |1〉 → |e〉, are emptied of almost
all absorbing ions. This is done in two steps, where the
first also tries to empty ions with frequencies close to the
qubit |aux〉 → |3/2e〉 transition. Since it is impossible to
remove ions from all ground states simultaneously, this
first step only removes ions that are far detuned from
the qubit ion. The second step only cleans the regions
around the two qubit transitions, which is possible for all
ions, thus creating two transmission windows with very
little absorption. After these steps the qubit ion is in
the |aux〉 state and must be transferred back into |0〉.
This is done by first exciting on |aux〉 → |3/2e〉 and then
deexciting on |0〉 → |3/2e〉. These initialization pulses
can create some residual absorption in the second trans-
mission window surrounding |1〉 → |e〉, and the last step
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TABLE II. Specification of the pulses used to prepare the transmission windows. Each pulse scans a frequency region of
νc ± νscan/2, where νc is the center frequency which is given relative to the frequency of the |0〉 → |e〉 transition of the qubit,
and νscan is the total frequency range. The qubit initialization pulses, #4 and #5, are examined for a few different frequency
widths: νinit = 100 kHz, 75 kHz, 50 kHz, 25 kHz, and 0 kHz. When νinit = 0 kHz no initialization pulses (#4 and #5) are
used and only the qubit ion is transferred. νslope sets the slope of the transfer probability distribution outside the νscan range
as seen in the inset of Fig. 16a. The last two columns specifies what transfer efficiency the pulse have for a specific transition.
The efficiency of transferring population along another transition, εi, is scaled linearly with the ratio of the square root of the
relative oscillator strengths for the new transition relative the designed transition, where the maximum transfer efficiency is
capped at 100%. In Tab. III the hole burning pulse sequence is shown.

Pulse # Name νc ± νscan/2 (MHz) νslope (kHz) Design transition Efficiency for transition
1 Window |0〉 0± 17/2 250 |0〉 → |5/2e〉 60%
2 Window |1〉 79.35± 49.3/2 250 |0〉 → |5/2e〉 60%
3 Clear |aux〉 −50.8± 1/2 250 |aux〉 → |3/2e〉 60%
4 Qubit excite −50.8± νinit/2 νinit/4 |aux〉 → |3/2e〉 99.9%
5 Qubit deexcite −260± 10 · νinit/2 10 · νinit/4 |0〉 → |3/2e〉 99.9%

TABLE III. Shows the pulse sequence used to create transmission windows. Information about the various pulses can be seen
in Tab. II. If decay is included any population in the excited states after a pulse is completed is fully transferred to the ground
states using branching ratios that are equal to the relative oscillator strengths shown in Fig. 4b. If decay is not included
the population in the excited state remains and can thus be transferred back to the ground state via subsequent pulses. The
sequence is applied in the following way: For each goal, the first pulse is applied to all qubits, then if decay is included any
excited state population decays, before the second pulse is applied to all qubits. This continues until all pulses have been
applied, and is then repeated a certain number of times before moving onto the next goal. After all five goals have been
completed the transmission windows for all qubits have been prepared.

Goal Pulses (#) Repetitions of each pulse Include decay
Clear windows and |aux〉 1, 2, 3 20 true
Clear windows 1, 2 500 true
Excite qubit 4 1 false
Deexcite qubit 5 1 false
Clear second window 2 100 true

therefore cleans this second window.

After creating the transmission windows of qubit 0 the
residual absorption remaining in the windows depend on
how many other qubits have been prepared. We assume
that the qubits are separated by 1 GHz and number them
as shown in Fig. 4d. If we prepare each qubit after one
another, i.e., prepare qubit 0 first, then qubit 1 etc., the
residual absorption in the transmission windows of the
first qubit is growing to unacceptable levels. However,
one can instead apply the hole burning pulses in an in-
terleaved way, i.e., the first burning pulse in the sequence
described in Tab. III is applied for all qubits before mov-
ing onto the second burning pulse in the sequence. If this
interleaved burning is used, then the residual absorption
saturates at an negligible level after preparing a few tens
of qubits. In our final simulations we send in light pulses
to prepare transmission windows for 51 qubits, but only
keep the population distribution for the central qubit,
i.e., qubit 0. Since transmission windows are created for
each qubit and we use the same population distribution
for all cases, the probabilities as a function of detuning is
periodic with a period of 1 GHz. An example of this pop-
ulation distribution can be seen in Fig. 16b, where the
frequency width of the initialization pulses are νinit = 0
kHz. This population distribution is used to determine

the probabilities of a non-qubit ion starting in each of
the three ground states as a function of detuning from
its corresponding qubit ion.

Appendix I: ISD dependence on the number of ions
contributing and their distances from the qubit

This section studies how large the ISD errors are if
only the N ions with the largest individual ISD errors are
considered, or if only the ions that spatially lie within a
radius rmax from the qubit are considered. The results
of these investigations can be seen in Fig. 17. In gen-
eral, more ions contribute to the total error when the
concentration is high or when the number of previous
gate operations are high. In contrast, the spatial radius
within which the ions that cause the largest fraction of
the ISD error lies, is shorter when the concentration or
the number of previous gate operations are high. The
results in Fig. 17 can be used to estimate the qubit sur-
rounding size and how many ions need to be included
in future simulations to give a good estimate of the ISD
error.
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FIG. 17. Shows the percentage of the total ISD error that
on average is accounted for when a) only the N ions with
the largest ISD and b) only the ions within radius rmax con-
tribute to the error. Colors indicate different total doping
concentrations. Solid (dashed) lines show the results when 0
(10) gate operations were performed on each of the qubits la-
beled 1→ 50 before attempting the NOT operation on qubit
0.

Appendix J: Detailed analysis of the ISD error

This section provides a detailed analysis of Fig. 6. A
few things should be noted.

First, for low doping concentrations the ISD error when
running G gate operations on 10 or 50 additional qubits
is roughly the same. This is because for low doping con-
centrations the inhomogeneous absorption profile is rela-
tively narrow, see Eq. 5. Therefore, qubits with large in-
dices q which are heavily detuned from the center of the
inhomogeneous absorption profile, see Fig. 4d, do not
have many ions within their reserved frequency range.
Fewer ions are thus partly excited and hence no signifi-
cant ISD error is added due to running gate operations on
those qubits. However, as the concentration increases the
number of ions belonging to qubits with high q-indices
grows, and thus the additional ISD errors also grow.

Second, some curves showing the ISD error as a func-
tion of the ordered simulation number have steeper slopes
than others, meaning that the ISD error can vary dras-
tically depending on the exact surrounding of the qubit.
This occurs when the total number of ions involved in
causing ISD is relatively low, e.g., when the doping con-
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FIG. 18. Shows the ISD error divided by G · Q, i.e., how
much error is on average added due to performing a single
gate operation on one other qubit before the gate operation
on qubit 0 is attempted. The total doping concentration is
ctotal = 5%.

centration is low or when Q is low. This is true even if
G is large, since G does not change how many ions con-
tribute. However, when the doping concentration is high
and Q is large, all simulations yield roughly the same ad-
ditional error, see, e.g., the purple data of Fig. 6f. This is
reasonable since in this case there are many ions that can
potentially cause ISD, thus averaging out the statistical
likelihood that a certain error occurs.

A third observation is made when studying the higher
concentrations where all qubits have roughly the same
number of ions within their reserved frequency range.
The observation is that the additional error due to ISD
is increased by roughly 4 · 10−7 for each gate operation
that is performed on another qubit before the gate op-
eration on qubit 0 is attempted, as can be seen in Fig.
18. In other words, for high concentrations the ISD error
scales linearly with the total number of gate operations
performed before the gate operation on qubit 0 is at-
tempted.

This linear scaling is in our model reasonable since
more gate operations lead to more excitation which in
turn lead to higher ISD errors. However, in a realistic sit-
uation the ions would eventually decay from the excited
state due to the limited lifetime, and therefore no longer
cause an additional ISD error. This is not fully included
in our model where the limited life- and coherence times
of the ions are only included during the up to ten gate
operations applied on its corresponding qubit. In other
words, it is as if the ten gate operations on the up to 50
qubits are applied in parallel before the gate operation
on qubit 0 is attempted. In reality such gate operations
would most likely have to be performed sequentially to
prevent unwanted dipole-dipole interactions between dif-
ferent qubits.

Fortunately, one can estimate when the decay of ions
starts to affect the results shown in Fig. 6 based on the
SQ gate duration of 3.36 µs and the assumed optical life-
time of 1.9 ms [29]. With no downtime between gate
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operations the total duration to perform G gate opera-
tions on Q qubits is G ·Q · 3.36 µs. Fig. 6 do not study
ISD for more than 10 operations on 50 different qubits
because the total duration needed to apply those gates is
1.68 ms, which means that already in this case the decay
of ions would probably start to affect the results.

At first glance one might therefore expect a satura-
tion in the fraction of excited non-qubit ions, and thus
a saturation in the ISD error due to previous gate op-
erations. Unfortunately, an ion might not return to its
original ground state after decaying. In the worst case,
an ion originally absorbing outside the transmission win-
dows could after being excited decay into another ground
state which has a transition frequency inside the trans-
mission windows. Thus heavily increasing the risk that
the ion is excited once more. Despite this, it is reason-
able to assume that the linear growth of the ISD error
slows down somewhat when more gate operations are per-
formed, since there is still a chance that the excited ions
decay back into their original ground states. However, we
note that more simulations are needed to correctly esti-

mate the long-term ISD error in a rare-earth quantum
computer when running even more gate operations.

A fourth and final note can be made when one con-
siders that the inhomogeneous absorption profile can be
widened without increasing the doping concentration,
e.g., by co-doping with another rare-earth species [53].
In this case the number of ions within the reserved fre-
quency range of each qubit decreases, thus reducing the
average ISD error that occur per gate operation. This
reduction in ISD error can be seen by studying the dif-
ferent concentrations in Fig. 6 since decreasing the con-
centration below roughly 0.5% results in fewer ions per
reserved frequency range. For example, the error shown
in the red data, which shows between 1 and 10 gate op-
erations being applied on only 1 qubit, decreases as the
concentration is lowered from the critical value of around
0.5%. When this reduced error per gate is combined with
the linear scaling discussed above and the potential sat-
uration of the ISD error due to the limited lifetime of the
excited state, it seems possible to reduce the ISD errors
compared to the results shown in Fig. 6.

[1] M. Nilsson and S. Kröll, Solid state quantum memory
using complete absorption and re-emission of photons by
tailored and externally controlled inhomogeneous absorp-
tion profiles, Optics Communications 247, 393 (2005).

[2] B. Kraus, W. Tittel, N. Gisin, M. Nilsson, S. Kröll,
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