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Abstract—In mathematics, the Riemann hypothesis is a con-
jecture that the Riemann zeta function has its zeros only
at the negative even integers and complex numbers with
real part 1

2
. In 2011, Solé and and Planat stated that the

Riemann hypothesis is true if and only if the inequality∏
q≤qn

(
1 + 1

q

)
> eγ

ζ(2)
× log θ(qn) is satisfied for all primes

qn > 3, where θ(x) is the Chebyshev function, γ ≈ 0.57721 is
the Euler-Mascheroni constant and ζ(x) is the Riemann zeta
function. We call this inequality as the Dedekind inequality.
We can deduce from that paper, if the Riemann hypothesis is
false, then the Dedekind inequality is not satisfied for infinitely
many prime numbers qn. Using this argument, we prove the
Riemann hypothesis is true when θ(qn)

1+ 1
qn ≥ θ(qn+1) holds

for a sufficiently large prime number qn. We show this is
equivalent to show that the Riemann hypothesis is true when

(1− 0.15
log3 x

)
1
x ×x

1
x ≥ 1+

log(1− 0.15
log3 x

)+log x

x
is always satisfied for

every sufficiently large positive number x. Using the Puiseux
series, we check by computer that (1 − 0.15

log3 x
)

1
x × x

1
x is

1 +
log(1− 0.15

log3 x
)+log x

x
+ O

((
1
x

)2) in the series expansion at
x = ∞.

Index Terms—Riemann hypothesis, prime numbers, Dedekind
function, Chebyshev function, Riemann zeta function

1. Introduction

The Riemann hypothesis is a conjecture that the Rie-
mann zeta function has its zeros only at the negative even
integers and complex numbers with real part 1

2 (Borwein
et al., 2008). The Riemann hypothesis belongs to the David
Hilbert’s list of 23 unsolved problems (Borwein et al., 2008).
Besides, it is one of the Clay Mathematics Institute’s Millen-
nium Prize Problems (Borwein et al., 2008). In mathematics,
the Chebyshev function θ(x) is given by

θ(x) =
∑
p≤x

log p

with the sum extending over all prime numbers p that are
less than or equal to x (Nicolas, 1983). We denote the nth
prime number as qn. We know the following properties for
the Chebyshev function:

Theorem 1.1. For all n ≥ 2, we have (Ghosh, 2019):

n× (1− 1

log n
+

log log n

4× log2 n
) ≤ θ(qn)

log qn+1
.

Theorem 1.2. For every x ≥ 19035709163 (Axler, 2018):

θ(x) > (1− 0.15

log3 x
)× x.

Besides, we define the prime counting function π(x) as

π(x) =
∑
p≤x

1.

We also know this property for the prime counting function:

Theorem 1.3. For every x ≥ 19027490297 (Axler, 2018):

π(x) > ηx

where

ηx =
x

log x
+

x

log2 x
+

2× x

log3 x
+

5.85× x

log4 x

+
23.85× x

log5 x
+

119.25× x

log6 x
+

715.5× x

log7 x
+

5008.5× x

log8 x
.

In mathematics, Ψ = n ×
∏

q|n

(
1 + 1

q

)
is called the

Dedekind Ψ function, where q | n means the prime q divides
n. Say Dedekind(qn) holds provided∏

q≤qn

(
1 +

1

q

)
>

eγ

ζ(2)
× log θ(qn).

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant,
log is the natural logarithm and ζ(x) is the Riemann zeta
function. The importance of this inequality is:

Theorem 1.4. Dedekind(qn) holds for all prime numbers
qn > 3 if and only if the Riemann hypothesis is true (Solé
and Planat, 2011).

We define H = γ − B such that B ≈ 0.2614972128
is the Meissel-Mertens constant (Mertens, 1874). We know
from the constant H , the following formula:

Theorem 1.5. We have that (Choie et al., 2007):∑
q

(
log(

q

q − 1
)− 1

q

)
= γ −B = H.

We know this value of the Riemann zeta function:

Theorem 1.6. It is known that (Edwards, 2001):

ζ(2) =

∞∏
k=1

1

1− 1
q2k

=

∞∏
k=1

q2k
q2k − 1

=
π2

6
.



We check the following result from the web site https:
//www.wolframalpha.com/input:

Theorem 1.7. Using the Puiseux series, we have that

(1− 0.15
log3 x

)
1
x × x

1
x is 1+

log(1− 0.15
log3 x

)+log x

x +O
((

1
x

)2)
in

the series expansion at x = ∞ (A Wolfram Web Resource,
2022).

Putting all together yields another evidence for the Rie-
mann hypothesis using the Chebyshev function.

2. Results

Theorem 2.1. If the Riemann hypothesis is false, then
there are infinitely many prime numbers qn for which
Dedekind(qn) do not hold.

Proof. If the Riemann hypothesis is false, then we consider
the function (Solé and Planat, 2011):

g(x) =
eγ

ζ(2)
× log θ(x)×

∏
q≤x

(
1 +

1

q

)−1

.

We know the Riemann hypothesis is false, if there exists
some x0 such that g(x0) > 1 or equivalent log g(x0) >
0 (Solé and Planat, 2011). We know the bound (Solé and
Planat, 2011):

log g(x) ≥ log f(x)− 2

x

where f is introduced in the Nicolas paper (Nicolas, 1983):

f(x) = eγ × log θ(x)×
∏
q≤x

(
1− 1

q

)
.

From the same paper (Nicolas, 1983), we know when the
Riemann hypothesis is false, then there is a 0 < b < 1 such
that lim supx−b × f(x) > 0 and hence lim sup log f(x) ≫
log x, where the symbol ≫ means “much greater than” (Solé
and Planat, 2011). In this way, if the Riemann hypothesis is
false, then there are infinitely many natural numbers x such
that log f(x) ≥ log x (Nicolas, 1983), (Solé and Planat,
2011). Since 2

x = o(log x), the result follows because there
would be infinitely many x0 such that log g(x0) > 0 (Solé
and Planat, 2011).

The following is a key theorem.

Theorem 2.2.∑
q

(
1

q
− log(1 +

1

q
)

)
= log(ζ(2))−H.

Proof. If we add H to∑
q

(
1

q
− log(1 +

1

q
)

)

then we obtain that

H +
∑
q

(
1

q
− log(1 +

1

q
)

)
= H +

∑
q

(
1

q
− log(

q + 1

q
)

)
=

∑
q

(
log(

q

q − 1
)− 1

q

)
+
∑
q

(
1

q
− log(

q + 1

q
)

)
=

∑
q

(
log(

q

q − 1
)− log(

q + 1

q
)

)
=

∑
q

(
log(

q

q − 1
) + log(

q

q + 1
)

)
=

∑
q

(
log(

q2

(q − 1)× (q + 1)
)

)
=

∑
q

(
log(

q2

(q2 − 1)
)

)
= log(

π2

6
)

= log(ζ(2))

according to the theorems 1.5 and 1.6. Therefore, the proof
is done.

This is the main insight.

Theorem 2.3. Dedekind(qn) holds for all prime numbers
qn > 3 if and only if the inequality∑

q

1

q
> B +

∑
q>qn

log(1 +
1

q
) + log log θ(qn)

is satisfied for all prime numbers qn > 3.

Proof. We start from the inequality:∏
q≤qn

(
1 +

1

q

)
>

eγ

ζ(2)
× log θ(qn).

If we apply the logarithm to the both sides of the inequality,
then

log(ζ(2)) +
∑
q≤qn

log(1 +
1

q
) > γ + log log θ(qn).

This is the same as

log(ζ(2))−H +
∑
q≤qn

log(1 +
1

q
) > B + log log θ(qn)

which is∑
q

(
1

q
− log(1 +

1

q
)

)
+
∑
q≤qn

log(1 +
1

q
) > B+log log θ(qn)

according to the theorem 2.2. Let’s distribute the elements
of the inequality to obtain that∑

q

1

q
> B +

∑
q>qn

log(1 +
1

q
) + log log θ(qn)



when Dedekind(qn) holds. The same happens in the reverse
implication.

This is a new criterion based on the Dedekind inequality.

Theorem 2.4. The Riemann hypothesis is true if the in-
equality

θ(qn)
1+ 1

qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn.

Proof. The inequality∑
q

1

q
> B +

∑
q>qn

log(1 +
1

q
) + log log θ(qn)

is satisfied when∑
q

1

q
> B +

∑
q≥qn

log(1 +
1

q
) + log log θ(qn)

is also satisfied. Since in the inequality∑
q

1

q
> B +

∑
q≥qn

log(1 +
1

q
) + log log θ(qn)

only changes the value of∑
q≥qn

log(1 +
1

q
) + log log θ(qn).

Hence, it is enough to show that

log(1 +
1

qn
) + log log θ(qn) ≥ log log θ(qn+1)

for all sufficiently large prime numbers qn according to the
theorems 2.1 and 2.3. Certainly, if the inequality

log(1 +
1

qn
) + log log θ(qn) ≥ log log θ(qn+1)

is satisfied for all sufficiently large prime numbers qn, then
it cannot exist infinitely many prime numbers qn for which
Dedekind(qn) do not hold. By contraposition, we know that
the Riemann hypothesis should be true. This is the same as

log

(
(1 +

1

qn
)× log θ(qn)

)
≥ log log θ(qn+1).

That is equivalent to

log log θ(qn)
1+ 1

qn ≥ log log θ(qn+1).

Therefore, the Riemann hypothesis is true when

θ(qn)
1+ 1

qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn.

Theorem 2.5. The Riemann hypothesis is true when (1 −
0.15
log3 x

)
1
x × x

1
x ≥ 1 +

log(1− 0.15
log3 x

)+log x

x is satisfied for all
sufficiently large positive numbers x.

Proof. Because of the theorem 2.4, we know that the Rie-
mann hypothesis is true when

θ(qn)
1+ 1

qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn. This
is the same as

θ(qn)
1+ 1

qn ≥ θ(qn) + log(qn+1)

which is
θ(qn)

1
qn ≥ 1 +

log(qn+1)

θ(qn)
.

We use the theorem 1.2 to show that

θ(qn)
1
qn > (1− 0.15

log3 qn
)

1
qn × q

1
qn
n

for a sufficiently large prime number qn. Under our assump-
tion in this theorem, we have that

(1− 0.15

log3 qn
)

1
qn × q

1
qn
n ≥ 1 +

log(1− 0.15
log3 qn

) + log qn

qn
.

Using the theorems 1.1 and 1.3, we only need to show that

θ(qn)

log qn+1
≥ n× (1− 1

log n
+

log log n

4× log2 n
)

> ηqn × (1− 1

log n
+

log log n

4× log2 n
)

>
qn

log qn + log(1− 0.15
log3 qn

)

for a sufficiently large prime number qn where

ηqn =
qn

log qn
+

qn

log2 qn
+

2× qn

log3 qn
+

5.85× qn

log4 qn

+
23.85× qn

log5 qn
+

119.25× qn

log6 qn
+

715.5× qn

log7 qn
+

5008.5× qn

log8 qn
.

However, this implies that

log(1− 0.15
log3 qn

) + log qn

qn
>

log(qn+1)

θ(qn)

which is equal to

1 +
log(1− 0.15

log3 qn
) + log qn

qn
> 1 +

log(qn+1)

θ(qn)

and finally, the proof is complete.
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3. Discussion

The practical uses of the Riemann hypothesis include
many propositions which are known as true under the Rie-
mann hypothesis, and some that can be shown equivalent to
the Riemann hypothesis (Borwein et al., 2008). Certainly,
the Riemann hypothesis is close related to various mathe-
matical topics such as the distribution of prime numbers,
the growth of arithmetic functions, the Lindelöf hypoth-
esis, the large prime gap conjecture, etc (Borwein et al.,



2008). Indeed, a possible proof of the Riemann hypothesis
could spur considerable advances in many mathematical
areas, such as the number theory and pure mathematics in
general (Borwein et al., 2008). We hope this paper could
contribute in some way to this goal considered as the Holy
Grail of Mathematics by several authors (Borwein et al.,
2008).
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