
Appendix to Diaframe: Automated Veri�cation

for Fine-Grained Concurrency in Iris

Ike Mulder
1
, Robbert Krebbers

1
, and Herman Geuvers

1

1
Radboud University Nijmegen

December 8, 2021

1 De�nition of token counter
For various programs for which we prove functional correctness, it is useful to have a

notion of a ‘token-counting’ object. �ree kinds of resources are associated with this

object:

• the token-requirement resource 𝑃 1, representing full ownership of some re-

source

• a token token 𝑃 𝛾 , which represents fractional ownership of the above resource
associated to ghost-name 𝛾

• the token-counter resource counter 𝑃 𝛾 𝑝 , which states that there are exactly

𝑝 > 0 tokens in existence that are associated to ghost-name 𝛾 . Additionally,

this resource holds the remaining part of the ownership of the req resource.

• the no-tokens resource no tokens 𝑃 𝛾 𝑞, stating the knowledge that no tokens

currently exist associated to ghost-name 𝛾 , and that we own 0 < 𝑞 ≤ 1 of that

knowledge. �e no tokens 𝑃 𝛾 from the paper stood for no tokens 𝑃 𝛾 1

2
.

�e rules we need for token-counting object are shown in Figure 1. We will now show

how we de�ne such objects.

1.1 Instantiating token counters
In our foundational se�ing we have to prove there exist token-counting objects that

satisfy the above rules. To do so, we can use an authoritative resource on an optional

pair of positives and positive fractions that are ≤ 1, both with addition as operation.

�e de�nition is as follows:

token 𝑃 𝛾 , ∃𝑞. ◦ Some (1, 𝑞) 𝛾 ∗ 𝑃 𝑞

counter 𝑃 𝛾 𝑝 , ∃𝑞1𝑞2. • Some (𝑝, 𝑞1)
𝛾 ∗ 𝑃 𝑞2 ∗ p𝑞1 + 𝑞2 = 1q

no tokens 𝑃 𝛾𝑞 , •{𝑞} None 𝛾

1

` ¤|V∃𝛾 . no tokens 𝑃 𝛾1 𝑃 1 ∗ no tokens 𝑃 𝛾1 ` ¤|Vcounter 𝑃 𝛾 1 ∗ token 𝑃 𝛾

counter 𝑃 𝛾 𝑝 ` ¤|Vcounter 𝑃 𝛾 (𝑝 + 1) ∗ token 𝑃 𝛾

𝑝 > 1

counter 𝑃 𝛾 𝑝 ∗ token 𝑃 𝛾 ` ¤|Vcounter 𝑃 𝛾 (𝑝 − 1)

counter 𝑃 𝛾 1 ∗ token 𝑃 𝛾 ` ¤|Vno tokens 𝑃 𝛾1 ∗ 𝑃 1

token 𝑃 𝛾 ∗ no tokens 𝑃 𝛾 𝑞 ` False counter 𝑃 𝛾 𝑝 ∗ no tokens 𝑃 𝛾 𝑞 ` False

Figure 1: Required rules for token-counting objects.

When increasing the counter, we can always give away half our access to 𝑃 . �e

ghost-reasoning when decreasing the counter is more interesting. It crucially relies

on the following compatibility rule:

• Some (𝑝, 𝑞1)
𝛾 ∗ ◦ Some (1, 𝑞2)

𝛾 ` p𝑝 = 1 ∧ 𝑞1 = 𝑞2q ∨ p𝑝 > 1 ∧ 𝑞1 > 𝑞2q

�is causes a fraction to be le� when decreasing the counter from 𝑝 > 1 to 𝑝 − 1,

while ensuring all fractions are recovered when decreasing from 1 to noTokens.

2 Notes on proof search strategy
�eactual proof search strategy employed byDiaframe is a tadmore complicated than

presented in the paper. For one thing, the symbolic execution rule is not baked into

the strategy, and is actually an abduction hint. For another thing, we support more

modalities than just |VE1 E2
– for example, ¤|V and id also work �ne. �e extended

grammar on which Diaframe operates can be found in Figure 2. It also includes 𝜀0,

the �rst hypothesis. It can be used to phrase simpli�cation hints.

2.1 De�nitions
We de�ne an abduction hint as:

𝐻 ∗ [𝑁] � [𝑀] ; ®𝑦;𝐴 := 𝐻 ∗ 𝑁 ` 𝑀 (∃®𝑦. 𝐴)

As in the paper, terms between square brackets [] are outputs, rest is input.
Abduction hints 𝐻 ∗ [𝑁] � [𝑀] ; ®𝑡 ;𝐴 do not have an acquired extra resource, but

allow the new goals to be more complicated: 𝑁 instead of 𝐿. We look for abduction

hints when our goal is just a lone atom 𝐴, like wp 𝑒 {Φ}. For example, we can give

the hint:

abd-hoare-spec

SPEC ®𝑥, {𝐿} 𝑒 {®𝑦, RET 𝑣 ; 𝐻𝑅}
𝜀0 ∗

[
|V> >∃®𝑥 . 𝐿 ∗ ⊲(∀®𝑦. 𝐻𝑅 −∗ |V> >wp 𝐾𝑣 {𝑤. 𝐵})

]
� [id] ; ;wp 𝐾𝑒 {𝑤. 𝐵}

2

atoms 𝐴 ::= 𝜒 | . . .

le�-goals 𝐿 ::= p𝜙q | 𝐴 | 𝐿 ∗ 𝐿 | ∃𝑥 . 𝐿

unstructureds 𝑈 ::= p𝜙q | 𝐴 | 𝑈 ∗𝑈 | ∃𝑥 . 𝐿 | ∀𝑥 . 𝑈 | 𝐿 −∗ 𝑈 | |VE1 E2𝑈 | ⊲𝑈

extended 𝐻 ::= 𝜀0 | 𝜀1 | 𝑈

extended atoms 𝐴𝐸 ::= 𝜀0 | 𝜀1 | 𝐴

clean hypotheses 𝐻𝐶 ::= 𝐴 | 𝐿 −∗ 𝑈 | ∀𝑥 . 𝑈 | |VE1 E2𝑈 | ⊲𝐻𝐶

raw hypotheses 𝐻𝑅 ::= p𝜙q | 𝐻𝐶 | 𝐻𝑅 ∗ 𝐻𝑅 | ∃𝑥 . 𝐻𝑅

environments (1) Γ ::= ∅ | Γ, 𝑥 | Γ, 𝜙 Λ ::= ∅ | Λ, 𝐻

environments (2) Δ ::= 𝜀0,Λ, 𝜀1

modalities 𝑀 ::= |VE1 E2 | ¤|V |id

introduction 𝐼 ::= ∀𝑥 . 𝐺 | 𝐻𝑅 −∗ 𝐺 | ⊲ 𝐼

raw/right goals 𝑅 ::= ∃®𝑥 . p𝜙q | ∃®𝑥 . 𝐴 | ∃®𝑥 . 𝐿 ∗ 𝑅 | ∃®𝑥 . 𝐿 ∗ 𝐼 if FV(𝐿) = ®𝑥

basic/both goals 𝐵 ::= 𝐼 | 𝑅

natural goals 𝑁 ::= 𝐵 | 𝑀 𝐵

goals 𝐺 ::= 𝑁 | 𝑀1𝑀2 𝐵 | ‖𝑀 ‖ ∃®𝑥 . 𝐿 ∗𝐺 if FV(𝐿) = ®𝑥

Figure 2: Extended grammar.

3

�is abduction hint will not be applied on the goal Δ ` wp 𝐾 [𝑒] {Φ} ∗ 𝐺1, since the

new goal 𝑁 ∗𝐺1 is not always in 𝐺 .

For all modalities𝑀 , we require that they are strong functors, meaning:

mod-mono

∀𝑃 . 𝑃 ` 𝑀 𝑃

mod-strong

∀𝑃 𝑄. 𝑃 ∗𝑀𝑄 ` 𝑀 (𝑃 ∗𝑄)

We de�ne (split(𝑀1) = [𝑀2, 𝑀3]) , ∀𝑃 . 𝑀2𝑀3 𝑃 ` 𝑀1 𝑃 with 𝑀2 and 𝑀3 output.

We also de�ne the operation (𝑀1 	𝑀3 = 𝑀2) , ∀𝑃 . 𝑀2𝑀3 𝑃 ` 𝑀1 𝑃 . In this case, only

𝑀2 is output. Let us see some examples:

split(|VE1 E2) = [|VE1 ?E3 , |V?E3 E2]
split(¤|V) = [¤|V, ¤|V]
split(id) = [id, id]

|VE1 E2 	 |VE3 E2 = |VE1 E3

|VE1 E2 	 ¤|V = |VE1 E2

|VE1 E2 	 id = |VE1 E2

¤|V	 ¤|V = ¤|V
¤|V	 id = ¤|V
id 	 id = id

2.2 Proof search for Γ;Δ ` 𝐺
To prove Γ;Δ ` 𝐺 , we perform a case-distinction on 𝐺 :

1. 𝐺 = 𝑅. Continue with the equivalent goal Γ;Δ ` id𝑅
2. 𝐺 = 𝑀1 𝐵 or 𝐺 = 𝑀1𝑀2 𝐵 and 𝑀1 is not introducable. To continue we need to

perform a view-shi�/close an invariant. Continue with the equivalent goal

Γ;Δ ` ‖ |VE1 ?E3 ‖ ∃ . 𝜒 ∗ |V?E3 E2𝑁

where 𝑁 = 𝐵 or 𝑁 = 𝑀2 𝐵 respectively. Note that all cases below this can assume

that𝑀1 is introducable.

3. 𝐺 = 𝑀1𝑀2 𝐵 and 𝑀1 is introducable. Continue with goal Γ;Δ ` 𝑀 ′ 𝐵, where 𝑀 ′ =
𝑀1 ◦𝑀2 is obtained from the following table.

◦ id ¤|V |VE2 E3

id id ¤|V |VE2 E3

¤|V ¤|V ¤|V |VE2 E3

|VE1 E1 |VE1 E1 |VE1 E1 |VE2 𝐸3

4. 𝐺 = 𝑀 𝐼 . Continue with new goal Γ;Δ ` 𝐼 (by introducing𝑀)

4

5. 𝐺 = ∀𝑥 . 𝐺 ′
. Introduce 𝑥 , continue with new goal Γ, 𝑥 ;Δ ` 𝐺 ′

.

6. 𝐺 = 𝐻𝑅 −∗ 𝐺 ′
. We perform a case-distinction on 𝐻𝑅 :

(a) 𝐻𝑅 = p𝜙q. Introduce the pure proposition 𝜙 , continue with Γ, 𝜙 ;Δ ` 𝐺 ′

(b) 𝐻𝑅 = 𝐴. Two cases:

i. �ere is some 𝐴𝑖 ∈ Δ which can be merged with 𝐴, i.e., an 𝐻 ′
𝑅
for which

𝐴 ∗𝐴𝑖 ` 𝐻𝑅 . Continue with introducing 𝐻 ′
𝑅
: i.e. Γ;Δ \𝐴𝑖 ` 𝐻 ′

𝑅
−∗ 𝐺 ′

.

ii. �ere is some𝐴𝑖 ∈ Δwhich has a compatibility with𝐴, i.e., an𝜙 for which

𝐴 ∗𝐴𝑖 ` p𝜙q. Continue with introducing 𝜙 : i.e. Γ;Δ, 𝐴 ` p𝜙q −∗ 𝐺 ′
.

iii. No such atoms are in Δ. Introduce the spatial resource 𝐴, continue with
Γ;Δ, 𝐴 ` 𝐺 ′

. Note that 𝐴 ∈ 𝐻𝐶 .

(c) 𝐻𝑅 = 𝐻 ′
𝑅
∗ 𝐻 ′′

𝑅
. Continue with equivalent goal Γ;Δ ` 𝐻 ′′

𝑅
−∗ 𝐻 ′

𝑅
−∗ 𝐺

(d) 𝐻𝑅 = ∃𝑥 . 𝐻 ′
𝑅
. Continue with equivalent goal Γ;Δ ` ∀𝑥 . (𝐻 ′

𝑅
−∗ 𝐺)

(e) 𝐻𝑅 = 𝐻𝐶 . Add the cleaned hypothesis to the spatial context, continue with

Γ;Δ, 𝐻𝐶 ` 𝐺 .
7. 𝐺 = ⊲ 𝐼 . We want to introduce the later, but �rst strip o� remaining laters in hy-

potheses:

(a) If Δ = Δ′, ⊲𝐻𝐶 for some 𝐻𝐶 , continue with goal Γ;Δ′ ` ⊲(𝐻𝐶 −∗ 𝐼). We put

the hypotheses back in the goal to force searching for possibile merges.

(b) If not, continue with goal Γ;Δ ` 𝐼
8. 𝐺 = 𝑀 𝑅. Case-distinction on 𝑅:

(a) 𝑅 = ∃®𝑥 . p𝜙q. Solve ∃®𝑥 . 𝜙 using pure context Γ to �nish the proof.

(b) 𝑅 = ∃®𝑥 . 𝐴. Find𝐻 ∈ Δ for which both𝐻 ∗ [𝑁] � [𝑀2] ; ®𝑥 ; (𝐴 ®𝑥) and𝑀 	𝑀2 =

𝑀1. Continue with Γ;Δ \ 𝐻 ` 𝑀1 𝑁 . Note that𝑀1 𝑁 ∈ 𝐺 .
(c) 𝑅 = ∃®𝑥 . 𝐿 ∗ 𝐵. Set ®𝑡 = FV(𝐿) and ®𝑠 = ®𝑥 \ ®𝑡 . Find 𝑀1 and 𝑀2 such that

split(𝑀) = [𝑀1, 𝑀2], then continue with Γ;Δ ` ‖𝑀1‖∃®𝑡 . 𝐿 ∗ (𝑀2 ∃®𝑠 . 𝐵),
Note that if ®𝑠 is non-empty, 𝐵 must have been some 𝑅′

(by the de�nition of

𝑅), so that 𝑀2 ∃®𝑠 . 𝑅′ ∈ 𝐺 . If instead we had 𝐵 = 𝐼 , then by the de�nition of 𝑅

we have that ®𝑠 is empty, so that𝑀2 ∃®𝑠 . 𝐼 = 𝑀2𝐼 ∈ 𝐺 .
9. 𝐺 = ‖𝑀 ‖ ∃®𝑥 . 𝐿 ∗𝐺 ′

. Case-distinction on 𝐿:

(a) 𝐿 = p𝜙q. Solve ∃®𝑥 . 𝜙 using pure context Γ. Continue with the found existen-

tial 𝑥 ′ in goal Γ;Δ ` 𝐺 ′
. We can introduce 𝑀 since this case was created by

8c or one of the following cases, and these keep invariant that the modality

between ‖s is introducable. �is relies on split always spli�ing introducable

modalities into introducable modalities.

(b) 𝐿 = 𝐴. Find 𝐻 ∈ Δ with 𝐻 ∗
[®𝑡𝑛 ;𝐿 ®𝑡𝑛] � [𝑀2] ; ®𝑥 ; (𝐴 ®𝑥) ∗

[
𝐻𝑅 ®𝑡𝑛 ®𝑥

]
and

𝑀 	 𝑀2 = 𝑀1. Continue with goal:

Γ;Δ \ 𝐻 ` ‖𝑀1‖ ∃®𝑡𝑛 . 𝐿 ®𝑡𝑛 ∗
(
∀®𝑡 . 𝐻𝑅 ®𝑡𝑛 ®𝑡 −∗ 𝐺 ′ ®𝑡

)
(c) 𝐿 = 𝐿1 ∗ 𝐿2. Set ®𝑡 = FV(𝐿) and ®𝑠 = ®𝑥 \ ®𝑡 . Find𝑀1 and𝑀2 such that split(𝑀) =

[𝑀1, 𝑀2], then continue with Γ;Δ ` ‖𝑀1‖ ∃®𝑡 . 𝐿1 ∗ (‖𝑀2‖ ∃®𝑠 . 𝐿2 ∗𝐺 ′).
(d) 𝐿 = ∃𝑡 . 𝐿′. Continue with Γ;Δ ` ‖𝑀 ‖ ∃(®𝑥, 𝑡). 𝐿′ ∗𝐺 ′

5

biabd-sep-l

𝑈1 ∗ [®𝑧;𝐿] � [𝑀] ; ®𝑦;𝐴 ∗ [𝐻𝑅]
(𝑈1 ∗𝑈2) ∗ [®𝑧;𝐿] � [𝑀] ; ®𝑦;𝐴 ∗ [𝑈2 ∗ 𝐻𝑅]

biabd-wand

𝑈 ∗ [®𝑧;𝐿2] � [𝑀] ; ®𝑦;𝐴 ∗ [𝐻𝑅]
(𝐿1 −∗ 𝑈) ∗ [®𝑧;𝐿2 ∗ 𝐿1] � [𝑀] ; ®𝑦;𝐴 ∗ [𝐻𝑅]

biabd-mod-intro-l

𝑈 ∗ [®𝑧;𝐿] � [𝑀2] ; ®𝑦;𝐴 ∗ [𝐻𝑅]
(𝑀1𝑈) ∗ [®𝑧;𝐿] � [𝑀1 ◦𝑀2] ; ®𝑦;𝐴 ∗ [𝐻𝑅]

biabd-exist

∀𝑥 . 𝐿 ∗ [®𝑧; p𝜙q] � [𝑀] ; ®𝑦;𝐴 ∗ [𝐻𝑅]
(∃𝑥 . 𝐿) ∗ [; p∀𝑥 . ∃®𝑧. 𝜙q] � [𝑀] ; ®𝑦;𝐴 ∗ [∃𝑥 ®𝑧. 𝐻𝑅]

biabd-forall-postpone

∀𝑡 . 𝑈 ∗ [®𝑧;𝐿] � [𝑀] ; ®𝑦;𝐴 ∗ [𝐻𝑅]
(∀𝑡 . 𝑈) ∗ [(𝑡, ®𝑧);𝐿] � [𝑀] ; ®𝑦;𝐴 ∗ [𝐻𝑅]

biabd-forall-one

𝑈 [𝑤/𝑡] ∗ [®𝑧;𝐿] � [𝑀] ; ®𝑦;𝐴 ∗ [𝐻𝑅]
(∀𝑡 . 𝑈) ∗ [®𝑧;𝐿] � [𝑀] ; ®𝑦;𝐴 ∗ [𝐻𝑅]

biabd-witness-postpone

∀𝑡 . 𝐴𝐸 ∗ [®𝑧;𝐿] � [𝑀] ; ®𝑦;𝐴 ∗ [𝐻𝑅]
𝐴𝐸 ∗ [(𝑡 ′, ®𝑧);𝐿[𝑡 ′/𝑡]] � [𝑀] ;

(
𝑡, ®𝑡2

)
;𝐴 ∗ [p𝑡 ′ = 𝑡q ∗ 𝐻𝑅]

biabd-witness

𝐴𝐸 ∗ [®𝑧;𝐿] � [𝑀] ; ®𝑦;𝐴[𝑡 ′/𝑡] ∗ [𝐻𝑅]
𝐴𝐸 ∗ [®𝑧;𝐿] � [𝑀] ; (𝑡, ®𝑦);𝐴 ∗ [p𝑡 = 𝑡 ′q ∗ 𝐻𝑅]

Figure 3: Selection of rules for recursively �nding hints.

3 Notes on hint search strategy
�e algorithm described above can only make progress if suitable hints can be found.

In this section we describe how we �nd such hints. Some of the general recursive

rules can be found in Figure 3.

Backtracking on all possible orders of these hints does give rise to a hint search

strategy, but this is not e�cient enough. Instead, we try to �rst use all rules related to

hypotheses (like biabd-wand), and only if this is no longer possible, use goal related

rules like biabd-witness.

We thus divide hint search into two two phases: le� phase, where le� rules are

applied eagerly, and right phase, where right rules are applied until a match with a

user-provided hint is found. �is algorithm does backtrack to select a hint, but the

algorithm in section 2.2 does not backtrack on the found hint – it sticks with the �rst

candidate.

6

3.1 Proof search for 𝐻 ∗
[®𝑡 ;𝐿] � [𝑀] ; ®𝑥 ;𝐴 ∗ [𝐻𝑅]

To support the search in di�erent phases, we introduce three new versions of the hint:

𝐻 ∗
[®𝑡 ;𝐿] �l [𝑀] ; ®𝑥 ;𝐴 ∗ [𝐻𝑅]

𝐴𝐸 ∗
[®𝑡 ;𝐿] �r [𝑀] ; ®𝑥 ;𝐴 ∗ [𝐻𝑅]

𝐴𝐸 ∗
[®𝑡 ;𝐿] �b [𝑀] ; ®𝑥 ;𝐴 ∗ [𝐻𝑅] ,

all of which have the same de�nition, but a di�erent marker 𝑚 a�er the �𝑚 , and
di�erent allowed grammar for the �rst argument. �e search is started by applying

the following rule:

biabd-from-left

𝐻 ∗
[®𝑡 ;𝐿] �l [𝑀] ; ®𝑥 ;𝐴 ∗ [𝐻𝑅]

𝐻 ∗
[®𝑡 ;𝐿] � [𝑀] ; ®𝑥 ;𝐴 ∗ [𝐻𝑅]

Le� rules When we are looking for a hint of the form𝐻 ∗
[®𝑡 ;𝐿] �l [𝑀] ; ®𝑥 ;𝐴∗ [𝐻𝑅],

we apply the following rules eagerly:

biabd-later-mono

𝑈 ∗
[®𝑡1;𝐿] �l [id] ; ®𝑡2;𝐴 ∗ [𝐻𝑅]

(⊲𝑛𝑈) ∗
[®𝑡1; ⊲𝑛 𝐿] �l [id] ; ®𝑡2; (⊲𝑛 𝐴) ∗ [⊲𝑛 𝐻𝑅]

biabd-sep-l

𝑈1 ∗
[®𝑡1;𝐿] �l [𝑀] ; ®𝑡2;𝐴 ∗ [𝐻𝑅]

(𝑈1 ∗𝑈2) ∗
[®𝑡1;𝐿] �l [𝑀] ; ®𝑡2; (𝐴) ∗ [𝑈2 ∗ 𝐻𝑅]

biabd-sep-r

𝑈2 ∗
[®𝑡1;𝐿] �l [𝑀] ; ®𝑡2;𝐴 ∗ [𝐻𝑅]

(𝑈1 ∗𝑈2) ∗
[®𝑡1;𝐿] �l [𝑀] ; ®𝑡2;𝐴 ∗ [𝑈1 ∗ 𝐻𝑅]

biabd-exist

∀®𝑡𝑝 . 𝐿1 ∗
[®𝑡1; p𝜙q] �l [𝑀] ; ®𝑡2;𝐴 ∗ [𝐻𝑅](

∃®𝑡𝑝 . 𝐿1
)
∗
[
; p∀®𝑡𝑝 . ∃®𝑡1. 𝜙q

]
�l [𝑀] ; ®𝑡2;𝐴 ∗

[
∃®𝑡𝑝 ®𝑡1 . 𝐻𝑅

]
biabd-forall-postpone

∀𝑡 . 𝑈 ∗
[®𝑡1;𝐿] �l [𝑀] ; ®𝑡2;𝐴 ∗ [𝐻𝑅]

(∀𝑡 . 𝑈 𝑡) ∗
[
(𝑡, ®𝑡1);𝐿

]
�l [𝑀] ; ®𝑡2;𝐴 ∗ [𝐻𝑅]

biabd-forall-one

𝑈 ∗
[®𝑡1;𝐿] �l [𝑀] ; ®𝑡2;𝐴 ∗ [𝐻𝑅]

(∀𝑡 . 𝑈 𝑡) ∗
[®𝑡1;𝐿] �l [𝑀] ; ®𝑡2;𝐴 ∗ [𝐻𝑅]

biabd-mod-intro-l

𝑈 ∗
[®𝑡1;𝐿] �l [𝑀2] ; ®𝑡2;𝐴 ∗ [𝐻𝑅]

(𝑀1𝑈) ∗
[®𝑡1;𝐿] �l [𝑀1 ◦𝑀2] ; ®𝑡2;𝐴 ∗ [𝐻𝑅]

biabd-wand

𝑈 ∗
[®𝑡1;𝐿2] �l [𝑀] ; ®𝑡2;𝐴 ∗ [𝐻𝑅]

(𝐿1 −∗ 𝑈) ∗
[®𝑡1;𝐿2 ∗ 𝐿1] �l [𝑀] ; ®𝑡2;𝐴 ∗ [𝐻𝑅]

7

In the implementation we can merge forall-postpone and forall-one into one rule, but

‘morally’ they are for di�erent cases. Forall-postpone is applicablewhen the argument

of the for all does not appear in the goal, while forall-one applies when the argument

of the forall does appear in the goal – so needs to be a speci�c value.

When none of the rules above applies, we know the �rst argument is an extended

atom 𝐴𝐸 , a ⊲𝑈 when the goal is not ⊲, or a pure proposition p𝜙q. We then use the

following rule:

biabd-left-from-right

𝐴𝐸 ∗
[®𝑡 ;𝐿] �r [𝑀] ; ®𝑥 ;𝐴 ∗ [𝐻𝑅]

𝐴𝐸 ∗
[®𝑡 ;𝐿] �l [𝑀] ; ®𝑥 ;𝐴 ∗ [𝐻𝑅]

Right rules When looking for a hint of the form 𝐴𝐸 ∗
[®𝑡 ;𝐿] �r [𝑀] ; ®𝑥 ;𝐴 ∗ [𝐻𝑅],

the following rules are tried in their given order:

biabd-from-base

𝐴𝐸 ∗
[®𝑡1;𝐿] �b [𝑀] ; ®𝑡2;𝐴 ∗ [𝐻𝑅]

𝐴𝐸 ∗
[®𝑡1;𝐿] �r [𝑀] ; ®𝑡2;𝐴 ∗ [𝐻𝑅]

biabd-later-intro-r

𝐴𝐸 ∗
[®𝑡1;𝐿] �r [𝑀] ; ®𝑡2;𝐴 ∗ [𝐻𝑅]

𝐴𝐸 ∗
[®𝑡1;𝐿] �r [𝑀] ; ®𝑡2; (⊲𝑛 𝐴) ∗ [𝐻𝑅]

biabd-witness-postpone

∀𝑡 . 𝐴𝐸 ∗
[®𝑡1;𝐿] �r [𝑀] ; ®𝑡2;𝐴 ∗ [𝐻𝑅]

𝐴𝐸 ∗
[
(𝑡 ′, ®𝑡1);𝐿

]
�r [𝑀] ;

(
𝑡, ®𝑡2

)
;𝐴 ∗ [p𝑡 ′ = 𝑡q ∗ 𝐻𝑅]

biabd-witness

𝐴𝐸 ∗
[®𝑡1;𝐿] �r [𝑀] ; ®𝑡2;𝐴 ∗ [𝐻𝑅]

𝐴𝐸 ∗
[®𝑡1;𝐿] �r [𝑀] ; (𝑡 ′, ®𝑡2);𝐴 ∗

[
p𝑡 ′ = 𝑡q ∗ 𝐻𝑅 ®𝑡1 ®𝑡2

]
3.2 Proof search for 𝐻𝐶 ∗ [𝑁] � [𝑀] ; ®𝑥 ;𝐴 ®𝑥
Since the proof search for these hints is largely similar to that of biabduction, we only

mention the di�erences.

As for bi-abduction, we de�ne three new versions of these hints:

𝐻 ∗ [𝑁] �l [𝑀] ; ®𝑥 ;𝐴
𝐴𝐸 ∗ [𝑁] �r [𝑀] ; ®𝑥 ;𝐴
𝐴𝐸 ∗ [𝑁] �b [𝑀] ; ®𝑥 ;𝐴

�e following le� rules deserve some remarks:

abd-exist

∀®𝑡𝑝 . 𝐿 ∗ [𝑁] �l [𝑀] ; ®𝑡2;𝐴(
∃®𝑡𝑝 . 𝐿

)
∗
[
∀®𝑡𝑝 . 𝑁

]
�l [𝑀] ; ®𝑡2;𝐴

abd-forall-postpone

∀𝑡 . 𝑈 ∗ [𝑅] �l [𝑀] ; ®𝑡2;𝐴
(∀𝑡 . 𝑈) ∗ [∃𝑡 . 𝑅] �l [𝑀] ; ®𝑡2;𝐴

abd-wand

𝑈 ∗ [𝑁] �l [𝑀] ; ®𝑡2;𝐴
(𝐿 −∗ 𝑈) ∗ [𝐿 ∗ 𝑁] �l [𝑀] ; ®𝑡2;𝐴

abd-sep-l

𝑈1 ∗ [𝑁] �l [𝑀] ; ®𝑡2;𝐴
(𝑈1 ∗𝑈2) ∗ [𝑈2 −∗ 𝑁] �l [𝑀] ; ®𝑡2;𝐴

8

abd-witness-postpone

∀𝑡 . 𝐴𝐸 ∗ [𝑅] �r [𝑀] ; ®𝑡2;𝐴
𝐴𝐸 ∗ [∃𝑡 . 𝑅] �r [𝑀] ;

(
𝑡, ®𝑡2

)
;𝐴

�e found new goal of rules abd-forall-postpone and abd-witness-postpone

has shape ∃𝑡 . 𝑅𝑡 . Note that if we had allowed 𝑁 , the new goal would have shape

∃𝑡 . 𝑁𝑡 which is not necessarily in 𝑁 . �is problem does not occur for bi-abduction,

since the found new goal must be in 𝐿, and ∃𝑥 . 𝐿𝑥 ∈ 𝐿.
�e found new goal of abd-exist does not require changing the grammar of the

found new goal, since ∀𝑡 . 𝑁𝑡 ∈ 𝑁 .

For the abd-wand rule, we prioritize solving the le�-hand side of the wand. �is

is because 𝑁 ∗ 𝐿 ∉ 𝑁 .

Note that for abd-sep-l we directly get access to the unused part of the separating

conjunction.

3.3 Recursing inside atoms
A�entive readers may have noticed that we did not describe a recursive rule for in-

variants. �is is because there is none. However, the recursive rules as stated in the

previous sections are not directly applicable. How do we overcome this?

�e crux is that some atoms, like for example invariants 𝐿
N
, may be interpreted

both as an atom, and as a more complicated connective in the grammar. �is is wit-

nessed by the following rules:

inv-open-fupd

𝐿
N ` pN ⊆ Eq −∗ |VE E\N

(
⊲ 𝐿 ∗

(
⊲ 𝐿 −∗ |VE\N E True

))
token-access

token 𝑃 𝛾𝑃 ` ∃𝑞. 𝑃 𝑞 ∗ (𝑃 𝑞 −∗ token 𝑃 𝛾𝑃)

inv-open-fupd states that the hypothesis 𝐿
N
should be seen by the recursive hint

search not only as an atom, but also as a wand, and thus as a way to access 𝐿.

To accomodate this, the recursive hint search procedure does not just do a direct

syntactic match on the hypothesis, but also looks for registered ways in which the fo-

cused hypothesis can be seen as a connective. �is is not just applicable for invariants:

for example, token-access also makes use of this.

3.4 Base Diaframe hints
�e following two hints are always present, and are not Iris-speci�c:

biabd-assumption

𝐴 ∗ [; True] � [id] ; ;𝐴 ∗ [True]

abd-from-biabd

𝐴1 ∗
[®𝑡1;𝐿] � [𝑀] ; ®𝑡2;𝐴2 ∗ [𝐻𝑅]

𝐴1 ∗
[
∃®𝑡1 . 𝐿

]
� [𝑀] ; ®𝑡2;𝐴2

If only biabd-assumption is present, the strategy only looks for syntactic matches.

�e abd-from-biabd rule li�s bi-abduction hints to abduction hints, but is only prov-

able in a�ne separation logics.

9

	1 Definition of token counter
	1.1 Instantiating token counters

	2 Notes on proof search strategy
	2.1 Definitions
	2.2 Proof search for ; G

	3 Notes on hint search strategy
	3.1 Proof search for HLMAHR
	3.2 Proof search for HCNMA
	3.3 Recursing inside atoms
	3.4 Base Diaframe hints

