Chelates	Colour	Ni %)		N(%)	
		Found	Calc	Found	Calc
[Ni(dipy)(sal)]	Green	12.6	12.8	6.2	6.1
[Ni(o-phen)(sal),]	Yellowish green	12.3	12.2	5.4	5.8
Ni(dipy)(5-Cl-sal)	Green	10.9	11.2	5.1	5.3
Ni(o-phen)(5-Cl-sal)	Yellowish green	10.8	10.7	5.1	5.1
Ni'dipy)(5,6-benzosal)	Light green	10.3	10 5	5.1	5.0
Ni(o-phen)(5,6-benzosal) ₂]	Brownish green	9.9	10.1	4.7	4.8
[Ni(dipy) hac),]	Green	11.9	121	5.5	5.8
Ni(o-phen)(hac)	Yellowish green	11.6	11.5	5.3	5.5

Some of the air dried hydrated compounds were analysed for carbon, hydrogen (at C.D.R.I., Lucknow) and lattice water with satisfactory results.

TABLE 2-MAGNETIC MOMENT, CONDUCTIVITY AND ELECTRONIC SPECTRA OF NICKEL II) MIXED CHELATES

				· · ·	
Chela ⁺ es	Magnetic moment (B.M.)	Conductivity in methanol (ohms ⁻¹ cm ³ mole ⁻¹)	$\boldsymbol{\nu}_1(\epsilon) = 10 Dq.$ k K	ν ₃ (ε) kK	ν ₂ /ν ₁
[Ni(dipy)(sal)]H ₉ O	3.19	2	10.20 ^a	16.7 ^a	1.64
Ni(o-phen)(sal), 1.5H,O	3.20	1	10.21(12.9, ^b	16.66(24.2) ^b	1.63
[Ni(dipy)(5-Cl-sal),]HO	3.19	1	10.21,9.3) ^b	16.66(13.9) ^b	1.63
[N1(o-phen)(5-Cl-sal),]1.5H,O	3.24	1	10.21(11.Ó) ^b	16.66(20.8) ^b	1.63
Ni(dipy)(5,6 benzosal) ₂]	3.17	2	10.60 ^a	17.20 ^à	1.23
[Ni(dipy)(hac) ₂]1.5H ₂ O	3.20	1		16.94(7.2,°	
a=nujol mull; b=chloro	oform ; c=et	hanol.			

certainty because of the high absorption of the heterocyclic donors. The spin-forbidden transition ${}^{8}A_{2g}(F) \rightarrow {}^{1}E_{g}$ could be detected in solution spectra in the region 11.3-13.2 kK (ϵ 3.0-8.5). The ν_{2} : ν_{1} ratios of the mixed chelates are around 1.62 indicating the pseudooctahedral nature of the chelates⁸. The 10 Dq (= ν_{1}) values are consistent with the 10 Dq values of other [NiN₂O₄] chromophores (e.g. [Ni(tmen)(tfa)₂]⁹: 10 Dq=9.8 kK; tmen=N, N,-N¹, N¹-tetramethyl ethylenediamine and tfa= trifluoroacetylacetonate ion).

The infrared spectrum of $[Ni(dipy)(sal)_2]$ registers band at 1613 $(v_{\mathcal{C}=0})^{10}$, 1580 cm⁻¹ $(v_{\mathcal{C}-\mathcal{C}})^{11}$ and 740 cm⁻¹ (v_{dipy}) . The $v_{\mathcal{C}=0}$ band of $[Ni(H_2O)_2-(sal)_2]$ appears at 1640 cm⁻¹ and a typical dipyridyl band of $[Ni(OH_2)Cl (dipy)_2]Cl.2H_2O$ shows up at 740 cm⁻¹. Thus we are convinced that in these mixed chelates we have both the hydroxyaldehyde and the heterocyclic donors coordinated to nickel(II).

Acknowledgement

We thank CSIR for financial assistance.

References

- 1. R. L. DUTTA and A. BHATTACHARYA, J. Indian Chem. Soc., 1975, 52, 668.
- 2. R. L. DUTTA and A. BHATTACHARYA, J. Inorg. Nuclear Chem. (in press).
- 3. Y. MUTO, Bull. Chem. Soc. Japan, 1960, 33, 604.

- 4. A. D. DAMODARAN, F. M. ICHAPORIA and G. S. RAO, J. Indian Chem. Soc., 1968, 45, 690.
- 5. F. A. COTTON and G. WILKINSON, Advanced Inorganic Chemistry, 3rd Edition, Interscience, New York (1972).
- 6. W. J. GEARY, Coord. Chem. Revs, 1971, 7, 81.
- J. R MILLER, Advances in Inorganic and Radiochemistry, (Ed.) H. J. EMELEUS and A. G. SHARPE, Academic Press, 1962, Vol. 4, p. 148.
- 8. L. SACCONI, 'Iransition Metal Chemistry', (Ed.) R. L. CARLIN, Mer el Dekker, New York, 1908, Vol. 4, p. 214.
- Y. FUKUDA and K. SONK, J. Inorg. Nuclear Chem., 1975, 37, 455.
- R. H. BALUNDGI and A. CHAKRAVORTY, Inorg. Chem., 1973, 12, 981.
- 11. A. R. KATRITZKY, A. R. HANDS and R. A. JONHS, J. Chem. Soc., 1958, 3165.

Mixed Ligand Complexes. Part IX. Methioninato *bis*(biguanide) Cobalt(III) Salts

R. L. DUTTA and ANJANA BHATTACHARYA

Department of Chemistry, The University of Burdwan, Burdwan-713 104

Manuscript received 6 November 1979, accepted 20 December 1979

METHIONINE(1) is a flexidentate ligand being capable of chelating as a tridentate (SNO) and bidentate(SN) and (NO) donors. Preparation and properties of the mixed chelate [Co(meth) (BigH)₂]²⁺ (meth H=methionine) were undertaken to ascertain the donor sites. Attempts to synthesise the mixed chelate containing cysteine and biguanide ended in failure.

$$CH_{3}-S-CH_{2}-CH_{2}-CH-COOH$$

 $|$
 NH_{2}
 (I)

Experimental

Biguanide acid sulphate¹ and *cis*-diammine *bis* (biguanide) cobalt(III) base² were prepared by published procedures. Aminoacidato *bis*(biguanide) cobalt(III) compounds³ were also obtained by procedures developed in this laboratory (α -alanH= alanine; valinH=valine; leucH=leucine).

dl-Methioninato bis(biguanide) cobalt(III) iodide :

Cis-diammine bis(biguanide) cobalt(III) base (0.003 mol) in water (20 ml) was allowed to react with dlmethionine (0.003 mol) on a steam bath for forty minutes. After ammonia evolution had ceased the solution was filtered and neutralised with HCl (1:3) followed by the addition of KI (~1 gm). The solution was then allowed to stand overnight at room temperature. The separated red-violet crystals were further purified from hot water. (Found : Co, 8.8; N, 22.8; I, 37.1; H₂O, 2.7%. Calc. for [Co(dlmeth) (BigH)₂] I₂.H₂O : Co, 8.7; N, 22.6; I, 37.3; H₂O, 2.6%).

dl-Methioninato bis(biguanide) cobalt(III) sulphate :

The above reaction mixture was neutralised with 10% H₂SO₄. The solution was concentrated to 10 ml and on cooling in a refrigerator reddish violet crystals separated. These were triturated with a little hot water, filtered and washed with alcohol. Found : Co, 11.8; N, 30.7; SO₄, 19.0%. Calc. for [Co(*dl*-meth)(BigH)₂]SO₄ : Co, 11.7; N, 30.5; SO₄, 19.0%.

l-Methioninato bis(biguanide) cobalt(III) sulphate :

l-Methionine and *cis*-diammine *bis*(biguanide) cobalt(III) base were reacted as described above and the solution was neutralised with H_2SO_4 . The sparingly soluble sulphate salt was recrystallised from a large volume of hot water. Found : Co,11.2; N, 29.3; SO₄, 18.7; H_2O , 3.5%. Calc. for [Co(*l*-meth) (BigH)₂] SO₄.H₂O. Co, 11.3; N, 29.5; SO₄, 18.4; H₂O, 3.4%.

Elemental analyses were done by following standard methods. Equivalent weight was determined with the aid of H⁺ form cationexchanger (IR-120) column³. Conductance was determined with a Philips Bridge at 0.001*M*. Spectra of aqueous solutions were run in 1 cm cell over the range 320-600 nm in a Hilger Uvispek Spectrophotometer.

Results and Discussion

Molar conductance of $[Co(dl-meth) BigH)_2] I_2$. H_2O in water was found to be 211 ohms⁻¹ cm³ mole⁻¹ being in the expected range of bi-univalent electrolytes⁴. Its equivalent weight (339) was close to the required value (340). The electronic spectrum⁵ of this complex was extremely close to those of $[Co-(dl-\alpha-alan)(BigH)_2]^{2+}$, $[Co(dl-valin)(BigH)_2]^{2+}$, [Co(dl-valin)(BigH)

The properties of $[Co(l-meth)(BigH)_2]^{2+}$ are also comparable to those of $[Co(dl-meth)(BigH)_2]^{2+}$. It is thus clear that the above mixed chelates have $[CoN_6O]$ chromophore i.e. methionine functions as a bidentate NO donor. The sulphur end of methionine remains unattached to cobalt(III). In the mixed chelate $[Co(cys)(en)_2]^+$ (cysH₂=cysteine; en=ethylenediamine) the cysteinate ligand has been shown to be attached to cobalt(III) as an SN bidentate donor⁶. The ${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$ transition appears at a lower energy (16.7 kK).

Acknowledgement

We thank CSIR for financial assistance to one of us (A.B.).

References

- 1. D. KARIPIDES and W. C. FERNELIUS, 'Inorganic Synthesis', Ed. J. KLEINBERG, McGraw Hill Book Co. Inc., New York, 1963, Vol. 7, p. 56.
- R. L. DUTTA and S. SARKAR, J. Indian Chem. Soc. 1967, 44, 853.
- 3 R. L. DUTTA and A. BHATTACHARVA, J. Indian Chem. Soc., 1975, 52, 1002.
- 4. W. J. GEARY, Coord. Chem. Revs., 1971, 7, 81.
- A. B. P. LEVER, 'Inorganic Electronic Spectroscopy', Elsevier Publishing Co., Amsterdam, 1968.
- 6. V. M. KOTHARI and D. H. BUSCH, Inorg. Chem, 1969, 8, 2276.

Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) Complexes of Acrylamide

A. SAMANTARAY, P. K. PANDA and B. K. MOHAPATRA Department of Chemistry Ravenshaw College, Cuttack-753 003, Orissa

> Manuscript received 16 November 1979, accepted 20 December 1979

A MIDES and lactams have invoked lot of interest as ligands in recent years, since in addition to the carbonyl group, these molecules possess an amine group as a potential donor site. Further, these