Synthesis and Characterization of Pseudohalides of Bis-Methylcyclopentadienyl Titanium(IV)

V. K. JAIN, N. K. BHATIA, K. C. SHARMA and B. S. GARG*

Department of Chemistry, University of Delhi, Delhi-110 007 (India)

Manuscript received 24 September 1979, accepted 30 November 1979

The pseudohalide complexes of the $(\eta$ -CH₁C₅H₄)₂TiX₂ type (where X=N₃, NCS, NCO and NCSe) have been prepared in aqueous medium (ρ H~2) as well as in non-aqueous medium. These complexes have been characterized by elemental analyses, 1R and NMR spectroscopy. These complexes are monomeric in benzene solution and non-electrolytes in nitrobenzene solution. On the basis of infrared spectroscopy, it has been shown that NCS, NCO and NCSe are N-bonded to the titanium atom. Thus these are true isothiocyanato, isocyanato and isoselenocyanato derivatives. The proton chemical shifts of these complexes have also been reported.

NUMBER of organometallic pseudohalids have been reported earlier¹⁻⁵. The two mixed halidopseudohalido complexes of *bis*-cyclopentadienyl titanium(IV) namely cp₂Ti(Cl)NCS and cp₂TiCl (CN) were prepared⁶ in 1963 by the reaction of cp₂TiCl₂ and AgX in toluene (where X=CNS, CN). Jansen⁷ prepared cp₂Ti(NCS)₂ a bis pseudohalido derivative of *bis*-cyclopentadienyl titanium(IV). The complex of the cp₂ZrX₂ type (where X = CNS, CNO) were prepared⁸⁻¹¹ by exchange reactions from cp₂ZrCl₂ in acetone, CH₂Cl₂, C₆H₆ or nitrobenzene as follows :

$$cp_2ZrCl_2 + 2M'X \rightarrow cp_2ZrX_2 + 2M'Cl$$

M' = K or Ag

This paper deals with the isolation of pseudohalide complexes of the $(\eta - CH_sC_sH_4)_2TiX_2$ type (where X=NCS, NCO, N_s and NCSe) from $(\eta - CH_sC_sH_4)_2TiCl_2$, by the reaction of sodium or potassium salts of appropriate pseudohalide in aqueous medium $(pH \sim 2)$ or in acetone or THF. These complexes have been identified by their elemental analyses, melting points, IR and NMR spectroscopy.

Experimental

Reagents and Techniques :

KCNS (A.R. grade, B. D. H.) and NaN₈ (A. R. grade, B.D.H.) were used as supplied. KSeCN and KCNO were prepared as cited in the literature¹². All solvents used in the studies were properly dried. $(\eta$ -MeC₅H₄)₂TiCl₂ was prepared by the reaction of TiCl₄ with Na(CH₃C₅H₄) as described by Reynolds and Wilkinson¹³.

Preparation of complexes in aqueous solution :

A. Preparation of $(\eta - CH_3C_5H_4)_2Ti(N_3)_2$:

An aqueous solution of $(\eta$ -CH₃C₅H₄)₂TiCl₂ was made by refluxing for 30 min a 0.5 g of $(\eta$ -CH₃C₅H₄)₂TiCl₂ in water (50 cm³) (the pH of which was adjusted to (1.2-2) with hydrochloric acid). The clear solution so obtained was cooled to room temperature. To this aqueous solution was added an aqueous solution of NaN₈ (5 cm³ of 10% solution) dropwise. The orange precipitates obtained were extracted with (5 × 10 cm³) portions of CH₂Cl₂. The combined extract was dried over anhydrous CaCl₂ and concentrated *in vacuo* to 20 cm³. Petroleum ether (60-80°) was added to the concentrate and the mixture was allowed to stand overnight. Bright orange crystals of the azido complex were obtained in 85% yield.

$$(\eta - CH_3C_5H_4)_2Ti(NCS)_2$$
:

This complex was obtained by the method A, using (0.50 g) of $(\eta$ -CH₃C₅H₄)₂TiCl₂ and 5 cm³ of 10% aqueous solution of KCNS. Maroon coloured crystals of $(\eta$ -CH₃C₅H₄)₂Ti(NCS)₂ were obtained in 70% yield.

 $(\eta - CH_{3}C_{5}H_{4})_{2}Ti(NCO)_{2}$:

This complex was obtained by the method A, using (0.50 g) of $(\eta$ -CH₈C₅H₄)₂TiCl₂ and 4 cm³ of 10% aqueous solution of KCNO. Red orange coloured compound was obtained in 60% yield.

$$(\eta - CH_3C_5H_4)_2 Ti(NCSe)_2$$
:

This complex was obtained by the method A, using (0.50 g) of $(\eta$ -CH₃C₅H₄)₂TiCl₂ and 7 cm³

^{*} Author to whom correspondence should be addressed.

of 10% aqueous solution of NaSeCN. Dark-brown coloured complex was obtained in 82% yield.

Preparation of complexes in non-aqueous medium :

B. Preparation of $(\eta - CH_3C_5H_4)_2Ti(N_3)_2$:

For preparing an azido complex (1.385 g, 0.005 mol) of $(\eta - CH_3C_5H_4)_2 \text{Ti}Cl_2$ was refluxed with (0.65 g, 0.01 mol) of NaN₃ in 200 cm³ of tetrahydrofuran for 5 hr, filtered after cooling it to room temperature. The filtrate was concentrated to $_{20}$ cm³ *in vacuo*. To the concentrated solution was added 30 cm³ of petroleum ether (60-80°) dropwise with constant stirring. The precipitates of $(\eta - CH_3C_5H_4)_2 \text{Ti}(N_3)_2$ obtained was dried *in vacuo* to give <50% yield.

 $(\eta - CH_{3}C_{5}H_{4})_{2}Ti(NCS)_{2}$:

This complex was obtained in quantitative yield by method B, using (1.385 g, 0.005 mol) of $(\eta$ -CH₃C₅H₄)₂TiCl₂ and (0.97 g, 0.01 mol) of KCNS in 200 cm³ acetone for 4 hr.

 $(\eta - CH_{3}C_{5}H_{4})_{2}Ti(NCO)_{2}$:

This complex was obtained by method B, using (1.385 g, 0.005 mol) of $(\eta$ -CH₃C₅H₄)₂TiCl₂ and (0.81 g, 0.01 mol) of KCNO in 200 cm³ THF for 5 hr. The yield was <60%.

$(\eta - CH_3C_5H_4)_2Ti(NCSe)_2$:

This complex was obtained by method B, using (1.385 g, 0.005 mol) of $(\eta$ -CH₃C₅H₄)₂TiCl₂ and (1.28 g, 0.01 mol) of NaSeCN in 200 cm³ THF for 4 hr. The yield obtained was <50%.

Physical measurements :

The IR spectra were recorded in the region 4000-250 cm⁻¹ on Perkin-Elmer Model 621 grating spectrometer calibrated with polystyrene film (Table 2).

The ¹H NMR spectra were recorded on Varian A-60 spectrometer at 30° using TMS as an internal standard at a sweep width of 500 Hz. The chemical shifts are believed to be accurate to ± 0.01 ppm (Table 3). The ¹H NMR spectrum for cyanato complex is shown in Figure 1.

Fig. 1. ¹H NMR Spectrum oF (*n*-CH₃C₆H₄)₂ Ti(NCO)₂ at 500 cps

Conductivity measurements were made in nitrobenzene at $30\pm0.5^{\circ}$ on a Beckmann RC-18A conductivity bridge. The cell constant was obtained by measuring the resistance of 0.02M KCl solution. C and H were got estimated microanalytically whereas Ti as TiO₂ gravimetrically. Elemental analyses, melting points, conductivity data, colours and molecular weights for these complexes are given in (Table 1).

Results and Discussion

The pseudohalide derivatives of the $(\eta - CH_3C_5H_4)_2TiX_2$ type described in this paper have

TABLE 1-ELEMENTAL ANA	ALYSES AND CON	NDUCTIVITY	DATA FOR I	PSEUDOHA	LIDE DERIV	ATIVES (7-1	$meC_{\delta}H_{\bullet}$, $Ti(IV)$
Complex	Conductanc	e data	С%_	H%	T1%	M.W.	m.p.°C and
	ohm ⁻¹ cm ³ mole ⁻¹	Molarity	Found (Calcd)	Found (Calcd)	Found (Calcd)	Found (Calcd)	colour
$(\eta$ -CH _s C _s H ₄) ₂ T ₁ (N _s) ₅	0.64	0.5	49.6 (49.7)	4.8 (4.8)	16.3 (16.5)	350 (289.9)	113-116°(d) orange
$(\eta - CH_{a}C_{a}H_{4})_{2}Tl(NCS)_{2}$	0.52	0.5	52.0 (52.2)	4.4 (4.35)	14.8 (14.9)	380 (321.9)	220-222° maroon
$(\eta$ -CH ₃ C ₅ H ₄) ₉ Ti(NCO) ₂	0.62	0.5	57.5 (57.9)	4.83 (4.8)	16.35 (16.5)	300 (290)	123-126°(d) red orange
$(\eta$ -CH ₃ C ₅ H ₄) ₂ Ti(NCSe) ₃	0.33	0.5	40.1 (40.4)	3.4 (3.4)	11.2 (11 5)	385 (415.9)	219-223°(d) dark-brown

1	TABLE 2-VIBRATI	ONAL FREQU	encies of Pseud	OHALIDE DE	RIVATIVES OF (7-	$meC_{s}H_{4})_{g}Ti(]$	IV)
(7-CH sCs	H4)2Ti(N3)2	(η-CH _s C _s F	H ₄) ₃ Ti(NCS) ₂	(n-CH3C5H	H ₄) ₃ Ti(NCO) ₃	(n-CH 3C 1	$H_4)_3 Ti(NCSe)_5$
Band (cm^{-1}) Assignment	Band (cm-')	Assignment	Band (cm ⁻¹)	Assignment	Band (cm ⁻¹)	Assignment
3090m	C - H stretching of ring	3085m	C - H stretching of ring	3105m	C-H stretching of ring	3095m	C-H stretching of ring
(1442m) (1450m)	C-C (asymmetric ring breathing)	1445s	C-C (asymmetric ring breathing)	1440s	C-C (asymmetric ring breathing)	1441s	C-C (asymmetric ring breathing)
1030s	C-H (deformation in plane bending)	(1046m) (1033sh)	C-H (deformation in plane bending)	1020m	C-H (deformation in plane bending)	(1042s) (1030m)	C-H(deformation in plane bending)
840vs	C – H(bending, out of plane deformation)	843s	C-H(bending, out of plane deformation)	812s	C-H(bending, out of plane deformation)	841 v s	C – H(bending, out of plane deformation)
2020vs	$\gamma_{\rm a}(\rm NNN)$	1980vs	$\gamma(CN)$	2208vs	$\gamma_{a}(NCO)$	2040vs	$\gamma(CN)$
1340vs	$\gamma_{s}(NNN)$	843s	$\gamma(CS)$	1430sh	$\gamma_{\rm s}(\rm NCO)$	700s	γ (CSe)
608sh, 600s	$\delta(NNN)$	470m	γ (NCS)	632m, 600m	δ(NCO)	(420m) (393m)	$\gamma(NCSe)$
428sh, 405s	$\gamma(M-N)$	367s	$\gamma(CH_{s}C_{s}H_{4} - Ti - CH_{s}C_{s}H_{4})$	39 0 s	$\gamma(CH_{3}C_{6}H_{4} - Ti - CH_{7}C_{6}H_{4})$	350s	$\gamma(\mathrm{CH}_{s}\mathrm{C}_{\delta}\mathrm{H}_{4}-\mathrm{Ti})$ CH_{s}C_{4}\mathrm{H}_{4})
35 0 m	$\gamma(CH_{s}C_{s}H_{4} - Ti - CH_{s}C_{5}H_{4})$		u (j =¶)				a (

No.	Comp'ex	Deuterochlcroform solution				
		Ring protons $(\eta$ -CH _s C ₅ H ₄)	Methyl protons $(\eta$ -CH ₃ C ₅ H ₄)			
1.	$(\eta - CH_{*}C_{5}H_{*})_{*}TiCl_{*}$	382.0, 380.2, 378 4 ^a	139.3			
2.	$(\eta$ -CH, C, H,), Ti(N,),	372.3, 370.3, 368.0, 365.7 ^b	130.6			
3.	$(\eta - CH_{\bullet}C_{\bullet}H_{\bullet})$, Ti(NCS),	384 0, 381.8, 377.0, 374.4 ^b	136.5			
4.	(7-CH, C, H,), Ti(NCO),	377.1, 374.7, 368.0, 365.6 ^b	132.1			
5.	(7-CH, C, H,), Ti(NCSe),	386.7, 384.2, 379.4, 377.3 ^b	138.7			

been prepared from $(\eta$ -CH₃C₅H₄)₂TiCl₂ by the following reaction :

$$(\eta$$
-CH₃C₅H₄)₂TiCl₂+2KX \rightarrow
 $(\eta$ -CH₃C₅H₄)₂TiX₂+2KCl
 $(\eta$ -CH₃C₅H₄)₂TiX₂+2KCl
or
2NaCl

(where X = CNS, CNO, N₃, SeCN)

These complexes are soluble in organic solvent such as C_6H_6 , $CHCl_8$, $(CH_8)_2CO$, CS_2 and nitrobenzene. Molecular weight determination in benzene as well as conductivity measurements in nitrobenzene indicate that these complexes are nonelectrolytes and monomeric.

¹H NMR spectra :

In ¹H NMR spectra of these complexes two sharp signals in the ratio 6:8 are obtained i.e. (i) CH₃ protons of methylcyclopentadienyl (ii) a multiplet due to ring protons of methylcyclope ntadienyl. The ¹H NMR spectra for CH₃C₅H₄

8

group in general forwardly interpretable on the basis of 1st order spin splitting approximations. In general the CH₃ group of methylcyclopentadienyl shields both the protons of $C_{2,5}$ and $C_{3,4}$ of the substituted ring, but the effect is more pronounced for protons at $C_{2,5}$

$$CH_{3} - \left(\begin{array}{c} \frac{2}{9} \\ \frac{3}{9} \\ \frac{3}{5} \\ \frac{3}{4} \end{array} \right)$$

Adjacent and crossing coupling constant $(J_{2,3})$ and $J_{2,4}$ respectively) are very nearly equal and very small than the chemical shift difference between the two pairs of protons so that a unsymmetrical triplet is obtained (as shown for $(\eta$ -CH₃C₅H₄)₂TiCl₂) in Table 3, but the pseudohalide group attached to Ti is sufficiently heavy to effect further the C_{2,5} and C_{3,4} protons and as a combined effect of CH₃ and pseudohalide groups a multiplet showing four most intense peaks is obtained as shown in Figure 1 (a representative spectrum for cyanato complex). Similar peaks were obtained in case of other complexes.

IR spectra :

The methylcyclopentadienyl group in these complexes is identified by C-H stretching band (~ 3100 cm⁻¹), C-C (asymmetric ring breathing) (~1425 cm⁻¹), C-H (deformation in plane bending) (1125-1000 cm⁻¹) and C-H (bending out of plane deformation) at 825-800 cm⁻¹. This suggests centrally π -bonded CH₃C₅H₄ group in these complexes.

The azide, group in the azido complex is indicated by a characteristic asymmetric N-N-Nstretching at 2020 cm⁻¹ and a band at 600 cm⁻¹ which is attributed to the doubly degenerate azide bending motion¹⁴. Other bands observed are symmetric N-N-N stretch at 1340 cm⁻¹ and (Ti-N) stretch at 400 cm⁻¹. The similarity in the IR spectra with other metal azide¹⁴ suggests an ionic bonding between Ti atom and azide group in this complex.

In the thiocyanato complex the SCN group may coordinate to the titanium atom through N or S. Mitchell and Williams¹⁵ have shown that the C-Nstretching frequencies are generally lower in M-NCS complexes than in the M-SCN complexes. The C-S stretching frequency may be used in distinguishing these two linkage isomers. For various complexes^{14,16,17} involving N bonding the C-S stretching frequency is around 780-860 cm⁻¹ while for the complexes involving S-bonding is around 690-720 cm⁻¹. The band at 780-860 cm⁻¹ would be masked by the strong absorption at 843 cm⁻¹ due to the (C-H) out of plane bending vibrations of the ring⁸. However, the absence of any band in the region 800-650 cm⁻¹ together with the higher intensity of the 843 cm⁻¹ band relative to 1046, 1033 cm⁻¹ (C-H in plane bending) is a strong indication of the M-NCS structure in $(\eta - CH_{s})$ $C_{5}H_{4})_{2}Ti$ (NCS)₂. Further NCS bending frequency is observed at 470 cm⁻¹.

In cyanato complex the CNO group may coordinate to titanium through O or N. So far only N-bonded complexes have been reported. For the metal cyanates $(M - OC \equiv N)$, no fundamental frequency is expected around 1200-2000 cm⁻¹, while metal isocyanates (M - N = C = O) have a pseudosymmetric stretch near 1400 cm⁻¹. $(\eta - CH_{3}C_{5}H_{4})_{2}$ -Ti $(NCO)_{2}$ shows one band in this region at 1430 cm⁻¹ thus the complex is true isocyanato complex bonded through N.

In selenocyanato complex the SeCN group may coordinate to a metal through N or Se. The CN stretching frequencies of the Se bonded complexes are in general higher than those of the N-bonded complexes. The C-Se stretching frequency is more useful in distinguishing the type of bonding. The C-Se stretching frequency for N-bonded complexes appears at 690-620 cm⁻¹ while for Sebonded complexes around 540-510 cm⁻¹ ¹⁸. The integrated intensity of the CN stretch is also useful in the identification of N-bonded and Se-bonded complexes¹⁹. Burmeister and Gysling^{20,21} prepared true linkage isomers [Pd(Et₄dien)(-SeCN/-NCSe)] BPh₄ where (Et₄dien=N,N,N',N' tetra-ethyldiethylenetriamine) and observed that the CN, and CSe stretching frequencies of the Se-bonded isomers are around 2123 and 532 cm⁻¹ respectively whereas those of the N-bonded are around 2090 and 816 cm⁻¹. In case of (η -CH₈C₅H₄)₂Ti(NCSe)₂ complex the bands are observed at 2040 and 700 cm⁻¹ respectively indicating thereby N-bonded isomer.

Acknowledgement

The authors are thankful to the Chemistry Department, University of Delhi for providing necessary facilities to carry out the present work.

References

- 1. J. S. THAVER and R. WEST, Adv. Organometal Chem., 1967, 5, 169.
- 2. R. BUNSEN, Ann. Chem., 1841, 37, 23.
- 3. J. S. THAYER, Organometal Rev., 1966, 1, 157.
- 4. M. F. LAPPERT and H. PYSZORA, Adv. Inorg. and Radio Chem., 1966, 9, 133.
- 5. H. N. NORBURG, Adv. Inorg. and Radio Chem., 1975, 17, 231.
- 6. К. L. McHugh and J. O. Smith, U. S. Patent Appl., 1963, 3, 242, 081.
- 7. A. JENSEN, Proc. Int. Conf. Coord. Chem., 7th, 1972, p. 25.
- 8. R. S. P. COUTTS and P. C. WAILES, Aust. J. Chem., 1966, 19, 2069.
- 9. R. S. P. COUTTS and P. C. WAILES, Aust. J. Chem., 1971, 24, 1075.
- 10. E. SAMUEL, Bull. Soc. Chim. Fr., 1966, p. 3548.
- 11. J. I. BURMEISTER, E. A. DEARDORFF, A. JENSEN and V. H. CHRISTIANSEN, Inorg. Chem., 1970, 9, 58.
- 12. J. C. BAILER, JR (Ed), Inorg. Synth., 1950, 2, 86 and 186.
- 13. L. T. REYNOLDS and G. WILKINSON, J. Inorg. Nuclear Chem., 1959, 9, 86.
- 14. D. A. Dows, E. WHITE and G. C. PIMENTAL, J. Chem. Phys., 1958, 6, 187.
- 15. P. C. H. MITCHELL and R. J. P. WILLIAMS, J. Chem. Soc., 1960, 1912.
- 16. H. A. PAPAZIAN, J. Chem. Phys., 1961, 34, 1614.
- 17. S. AHRLAND, J. CHATT and N. R. DAVIES, *Quart. Rev.*, 1958, **12**, 265.

- 19. J. L. BURMEISTER and L. E. WILLIAMS, Inorg. Chem., 21. J. L. BURMEISTER and H. J. GYSLING, Chem. Commun., 1966, 5, 1113. 1967, 543.
- 18. C. PECILE, A. TURCO and G. PIZZOLLOTO, Ric. Sci. 20. J. L. BURMEISTER and H. J. GYSLING, Inorg. Chim. 1961, 31, 2A, 247. Acta, 1967, 1, 100.