Synthesis and Characterization of Pseudohalides of Bis-Methylcyclopentadienyl Titanium(lV)

V. K. JAIN, N. K. BHATIA, K. C. SHARMA and B. S. GARG*

Department of Chemistry, University of Delhi, Delhi-110 007 (India)

Manuscript received 24 September 1979, accepted 30 November 1979

The pseudohalide complexes of the $(\eta$ -CH₁C₆H₁)₃TiX₃ type (where X=N₃, NCS, NCO and NCSe) have been prepared in aqueous medium $(pH \sim 2)$ as well as in non-
aqueous medium. These complexes have been characterized by elemental analyses, IR and NMR spectroscopy. These complexes are monomeric in benzene solution and
non-electrolytes in nitrobenzene solution. On the basis of infrared spectroscopy, it has
been shown that NCS, NCO and NCSe are N-bonded to the these are true isothiocyanato, isocyanato and isoselenocyanato derivatives. The proton chemical shifts of these complexes have also been reported.

NUMBER of organometallic pseudohalids have been

reported earlier¹⁻⁵. The two mixed halidopseudohalido complexes of bis-cyclopentadienyl titanium(IV) namely $cp_2Ti(Cl)NCS$ and cp_2TiCl (CN) were prepared⁶ in 1963 by the reaction of $\text{cp}_2 \text{TiCl}_2$ and AgX in toluene (where X=CNS, CN). Jansen⁷ prepared cp₂Ti(NCS)₂ a bis pseudohalido derivative of bis-cyclopentadienyl titanium(IV). The complex of the $cp_2 ZrX_2$ type (where $X = CNS$, CNO) were prepared $s-1$ by exchange reactions from $cp_2Zr\tilde{Cl}_2$ in acetone, CH_2Cl_2 , C_6H_6 or nitrobenzene as follows :

$$
cp_2ZrCl_2 + 2M'X \longrightarrow cp_2ZrX_2 + 2M'Cl
$$

 $M' = K$ or Ag

This paper deals with the isolation of pseudohalide complexes of the $(\eta - CH_8C_5H_4)_2 Ti\dot{X}_2$ type (where $X=NCS$, NCO, N_s and NCSe) from $(\eta CH_3C_6H_4$)₂TiCl₂, by the reaction of sodium or potassium salts of appropriate pseudohalide in aqueous medium $(pH-2)$ or in acetone or THF. These complexes have been identified by their elemental analyses, melting points, IR and NMR spectroscopy.

Experimental

Reagents and Techniques :

KCNS (A.R. grade, B. D. H.) and NaN_8 (A. R. grade, $B.D.H.$) were used as supplied. KSeCN and KCNO were prepared as cited in the literature¹². All solvents used in the studies were properly dried. $(\eta \text{-} \text{MeC}_5 \text{H}_4)_{2}$ TiCl₂ was prepared by the reaction of TiCl₄ with Na(CH₃C₆H₄) as described by Reynolds and Wilkinson¹⁸.

Preparation of complexes in aqueous solution :

A. Preparation of $(\eta - CH_s C_b H_a) \frac{1}{2} Ti(N_s)_2$:

An aqueous solution of $(\eta$ -CH₃C₅H₄)₂TiCl₂ was made by refluxing for 30 min a 0.5 g of $(7 - CH_3 C_5 H_4)_2$ TiCl₂ in water (50 cm³) (the pH of which was adjusted to (1.2-2) with hydrochloric acid). The clear solution so obtained was cooled to room temperature. To this aqueous solution was added an aqueous solution of NaN_8 (5 cm³ of 10% solution) dropwise. The orange precipitates obtained were extracted with $(5 \times 10 \text{ cm}^3)$ portions of CH_2Cl_2 . The combined extract was dried over anhydrous CaCl_a and concentrated *in vacuo* to 20 cm³. Petroleum ether (60-80°) was added to the concentrate and the mixture was allowed to stand overnight. Bright orange crystals of the azido complex were obtained in 85% yield.

$$
(\eta \text{-} CH_{3}C_{5}H_{4})_{2}Ti(NCS)_{2}:
$$

This complex was obtained by the method A. using (0.50 g) of $(\eta\text{-CH}_3\text{C}_5\text{H}_4)_2$ TiCl₂ and 5 cm³ of 10% aqueous solution of KCNS. Maroon coloured crystals of $(\eta$ -CH₃C₅H₄)₂Ti(NCS)₂ were obtained in 70% yield.

 $(\eta$ -*CH*₃*C*₅*H*₄)₂*Ti*(*NCO*)₂ :

This complex was obtained by the method A, using (0.50 g) of $(\eta\text{-CH}_3\text{C}_5\text{H}_4)_{\text{g}}$ TiCl₂ and 4 cm³ of 10% aqueous solution of KCNO. Red orange coloured compound was obtained in 60% yield.

$$
(\eta\text{-}CH_{\mathbf{3}}C_{\mathbf{5}}H_{\mathbf{4}})_{\mathbf{2}}Ti(NCSe)_{\mathbf{2}}:
$$

This complex was obtained by the method A, using (0.50 g) of $(\eta\text{-CH}_s\text{C}_5\text{H}_4)_{2}$ TiCl₂ and 7 cm³

[•] Author to whom corre3pondence should be addressed.

of 10% aqueous solution of NaSeCN. Dark-brown coloured complex was obtained in 82% yield.

Preparation of camp/ exes in non-aqueous medium :

B. Preparation of $(\eta$ - $CH_3C_5H_4)$ $_2$ $Ti(N_3)_2$:

For preparing an azido complex (1.385 g, 0.005 mol) of $(\hat{\eta}-CH_sC_bH_4)_2$ TiCl₂ was refluxed with $(0.65 \text{ g}, 0.01 \text{ mol})$ of NaN_3 in 200 cm³ of tetrahydrofuran for 5 hr, filtered after cooling it to room temperature. The filtrate was concentrated to $\angle 0$ cm3 *in vacuo.* To the concentrated solution was added 30 cm³ of petroleum ether $(60-80^\circ)$ dropwise with constant stirring. The precipitates of $(\eta - CH_3C_5H_4)_2$ Ti(N₃)₂ obtained was dried *in vacuo* to give $\leq 50\%$ yield.

 $(\eta$ -CH₃C₅H₄)₂Ti(NCS)₂:

This complex was obtained in quantitative yield by method B, using (1.385 g, 0.0)5 mol) of *(11-* $CH_3C_6H_4$)₂ TiCl₂ and (0.97 g, 0.01 mol) of KCNS in 200 cm^3 acetone for 4 hr.

 $(\eta$ -CH₃C₅H₄)₂Ti(NCO)₂:

This complex was obtained by method B, using $(1.385 \text{ g}, 0.005 \text{ mol})$ of $(\eta\text{-CH}_3\text{C}_5\text{H}_4)_{2}\text{TiCl}_2$ and $(0.81 \text{ g}, 0.01 \text{ mol})$ of KCNO in 200 cm^s THF for 5 hr. The yield was $\leq 60\%$.

$(\eta$ - $CH_3C_5H_4)$ $_2Ti(NCSe)$ $_2$:

This complex was obtained by method B, using $(1.385 \text{ g}, 0.005 \text{ mol})$ of $(\eta\text{-CH}_3\text{C}_5\text{H}_4)_{2}\text{TiCl}_2$ and $(1.28 \text{ g}, 0.01 \text{ mol})$ of NaSeCN in 200 cm³ THF for 4 hr. The yield obtained was $\lt 50\%$.

Physical measurements :

The IR spectra were recorded in the region 4000-250 cm⁻ⁱ on Perkin-Elmer Model 621 grating spectrometer calibrated with polystyrene film (Table 2).

The ¹H NMR spectra were recorded on Varian A-60 spectrometer at 30° using TMS as an internal standard at a sweep width of 500 Hz. The chemical shifts are believed to be accurate to $+0.01$ ppm (Table 3). The ¹H NMR spectrum for cyanato complex is shown in Figure I.

Fig. 1. 'H NMR Spectrum oF $(n\text{-CH}_3\text{C}_4\text{H}_4)_2$ Ti(NCO)'s at 500 cps

Conductivity measurements were made in nitrobenzene at 30+0.5° on a Beckmann RC-I8A conductivity bridge. The cell constant was obtained by measuring the resistance of 0.02M KCl solution. C and H were got estimated microanalytically whereas Ti as $TiO₂$ gravimetrically. Elemental analyses, melting points, conductivity data, colours and molecular weights for these complexes are given in (Table 1).

Results and Discussion

The pseudohalide derivatives of the $(n CH_aC₅H_a$)₂TiX₂ type described in this paper have

been prepared from $(n-CH_aC_bH_a)_2TiCl_2$ by the following reaction:

or
\n
$$
(\eta\text{-CH}_s\text{C}_s\text{H}_*)_2\text{TiCl}_2 + 2\text{KX} \rightarrow
$$

\n $(\eta\text{-CH}_s\text{C}_s\text{H}_*)_2\text{TiX}_2 + 2\text{KCl}$
\n $(\eta\text{-CH}_s\text{C}_s\text{H}_*)_2\text{TiX}_2 + 2\text{KCl}$
\nor
\n 2NaCl

(where $X = CNS$, CNO, N₃, SeCN)

These complexes are soluble in organic solvent such as C_6H_6 , CHCl₈, (CH₃)₂CO, CS₂ and nitrobenzene. Molecular weight determination in benzene as well as conductivity measurements in nitrobenzene indicate that these complexes are nonelectrolytes and monomeric.

$1H NMR$ spectra:

In ¹H NMR spectra of these complexes two sharp signals in the ratio $6:8$ are obtained i.e. (i) CH_s protons of methylcyclopentadienyl (ii) a multiplet due to ring protons of methylcyclope ntadienyl. The ¹H NMR spectra for $\tilde{CH}_{8}C_{6}H_{1}$

8

group in general forwardly interpretable on the basis of 1st order spin splitting approximations. In general the CH_3 group of methylcyclo-
pentadienyl shields both the protons of $C_{2,5}$ and $C_{3,4}$ of the substituted ring, but the effect is more pronounced for protons at $C_{2,5}$

$$
\text{CH}_3 \begin{array}{c} 1 \overbrace{)} \begin{array}{c} 2 & 3 \\ \ominus \\ 5 & 4 \end{array} \end{array}
$$

Adjacent and crossing coupling constant $(J_{2,3})$ and $J_{2,4}$ respectively) are very nearly equal and
very small than the chemical shift difference between the two pairs of protons so that a unsymmetrical triplet is obtained (as shown for $(\eta \text{-} \tilde{C}H_a C_5 H_4)_2$ TiCl₂) in Table 3, but the pseudohalide group attached to Ti is sufficiently heavy to effect further the $C_{2,5}$ and $C_{3,4}$ protons
and as a combined effect of CH_3 and pseudohalide groups a multiplet showing four most intense peaks is obtained as shown in Figure 1 (a representative spectrum for cyanato complex). Similar peaks were obtained in case of other complexes.

IR spectra:

The methylcyclopentadienyl group in these complexes is identified by $C-H$ stretching band $({\sim 3100 \text{ cm}^{-1}})$, C-C (asymmetric ring breathing) $(-1425 \text{ cm}^{-1}), \text{ C-H}$ (deformation in plane) bending) $(1125-1000 \text{ cm}^{-1})$ and $C-H$ (bending out of plane deformation) at $825-800$ cm⁻¹. This suggests centrally π -bonded CH.C_sH₄ group in these complexes.

The azide, group in the azido complex is indicated by a characteristic asymmetric $N-N-N$ stretching at 2020 cm⁻¹ and a band at 600 cm^{-1} which is attributed to the doubly degenerate azide bending motion¹⁴. Other bands observed are symmetric $N-N-N$ stretch at 1340 cm⁻¹ and (Ti-N) stretch at 400 cm⁻¹. The similarity in the IR spectra with other metal azide^{14} suggests an ionic bonding between Ti atom and azide group in this complex.

In.the thiocyanato complex the SCN group may coordinate to the titanium atom through N or S. Mitchell and Williams¹⁵ have shown that the $C-N$ stretching frequencies are generally lower in $M- NCS$ complexes than in the $M-SCN$ complexes. The $C-S$ stretching frequency may be used in distinguishing these two linkage isomers. For various complexes^{14,16,17} involving N bonding the C-S stretching frequency is around 780-850 cm⁻¹ while for the complexes involving S-bonding is around 690-720 cm⁻¹. The band at 780-860 cm⁻¹ would be masked by the strong absorption at 843 cm^{-1} due to the (C-H) out of plane bending vibrations of the ring⁸. However, the absence of any band in the region 800-650 cm^{-1} together with the higher intensity of the 843 cm^{-1} band relative to 1046 , 1033 cm⁻¹ (C-H in plane bending) is a strong indication of the M-NCS structure in $(\eta - CH_2)$ $C₆H₄$)₂Ti (NCS)₂. Further NCS bending frequency is observed at 470 cm⁻¹.

In cyanato complex the CNO group may coordinate to titanium through 0 or N. So far only N-bonded complexes have been reported. For the metal cyanates $(M-OC \equiv N)$, no fundamental frequency is expected around 1200-2000 cm⁻¹, while metal isocyanates $(M - N = C = O)$ have a pseudosymmetric stretch near 1400 cm⁻¹. $(\eta$ -CH₃C₅H₄)₂- $Ti(NCO)₂$ shows one band in this region at 1430 $cm⁻¹$ thus the complex is true isocyanato complex bonded through N.

In selenocyanato complex the SeCN group may coordinate to a metal through N or Se. The CN stretching frequencies of the Se bonded complexes are in general higher than those of the N-bonded complexes. The $C-Se$ stretching frequency is more useful *in* distinguishing the type of bonding.

The C- Se stretching frequency for N-bonded complexes appears at $690-620$ cm⁻¹ while for Sebonded complexes around $540-510$ cm^{-1 18}. The integrated intensity of the CN stretch is also useful in the identification of N-bonded and Se-bonded complexes¹⁹. Burmeister and Gysling^{20.21} prepared true linkage isomers $[Pd(Et_4dien)(-\text{SeCN}/-\text{NCSe})]$ BPh_4 where $(Et_4$ dien = N,N,N',N' tetra-ethyldiethylenetriamine) and observed that the CN, and CSe stretching frequencies of the Se-bonded isomers are around 2123 and 532 cm⁻¹ respectively whereas those of the N-bonded are around 2090 and 816
cm⁻¹. In case of $(\eta$ -CH_aC_sH_a)_eTi(NCSe)_e $(\eta$ -CH₈C₅H₄)₂Ti(NCSe)₂ complex the bands are observed at 2040 and 700 cm^{-1} respectively indicating thereby N-bonded isomer.

Acknowledgement

The authors are thankful to the Chemistry Department, University of Delhi for providing necessary facilities to carry out the present work.

References

- 1. J. S. THAYER and R. \VEST, *Adv. Organometal Ohem.,* 1967, 5, 169.
- 2. R. BUNSEN, *Ann. Ohem.,* 1841, 37, 23.
- 3. J. S. THAYER, *Organometal Rev.,* 1966, 1, 157.
- 4. M. F. LAPPERT and H. PYSZORA, *Adv. Inorg. and Radio Ohern.,* 1966, 9, 133.
- 5. H. N. NoRBURG, *Adv. Inorg. and Radio Ohem.,* 1975, 17, 231.
- 6. К. L. McHUGH and J. O. SмITH, U. S. Patent Appl., 1963, 3, 242, 081.
- 7. A. JENSEN, *Proc. Int. Oonf. Coord. Ohem.,* 7th, 1972, p. 25.
- 8. R. S. P. CoUTTS and P. C. WAII.ES, *Aust.* J. *Ohem.,* 1966, 19,2069.
- 9. R. S. P. CoUTTS and P. C. WAILES, *Aust.* J. *Ohem.,* 1971, 24, 1075.
- 10. E. SAMUEL. Bull. *Soc. Chim. Fr.*, 1966, p. 3548.
- 11. J. I. BURMEISTER, E. A. DEARDORFF, A. JENSEN and V. H. CHRISTIANSEN, *lnorg. Ohern.,* 1970, 9, 58.
- 12. J. C. BAII,RR, JR (Ed), *Inorg. Synth.,* 1950, 2, 86 and 186.
- 13. L. T. REYNOLDS and G. WILKINSON, J. *Inorg. Nuclear Ohem.,* 1959, 9, 86.
- 14. D. A. Dows, E. WHITE and G. C. PIMENTAL, J. Chem. *Phys.,* 1958, 6, 187.
- 15. P. C. H. MITCHRLL and R. J. P. WILLIAMS, J. Chem. *Soc.,* 1960, 1912.
- 16. H. A. PAPAZIAN, *J. Chem. Phys.*, 1961, 34, 1614.
- 17. S. AHRLAND, J. CHATT and N. R. DAVIES, *Quart. Rev.*, 1958, 12, 265.
- 18. C. PECILE, A. TURCO and G. Pr ZZOLLOTO, *Ric. Sci.* 1961, 31, 2A, 247.
- 19. J. L. BURMEISTER and L. E. WILLIAMS, *Inorg. Chem.*, 1966, 5, 1113.
- 20. J. L. BURMEISTER and H. J. GYSLING, Inorg. Chim. Acta, 1967, 1, 100.
- 21. J. L. BURMEISTER and H. J. GYSLING, Chem. Commun., 1967, 543.