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Abstract

The data set available for pre-release training of a machine learning based system is often not
representative of all possible execution contexts that the system will encounter in the field. Rein-
forcement Learning (RL) is a prominent approach among those that support continual learning,
i.e., learning continually in the field, in the post-release phase. No study has so far investigated
any method to test the plasticity of RL based systems, i.e., their capability to adapt to an execution
context that may deviate from the training one.
We propose an approach to test the plasticity of RL based systems. The output of our approach is
a quantification of the adaptation and anti-regression capabilities of the system, obtained by com-
puting the adaptation frontier of the system in a changed environment. We visualize such frontier
as an adaptation/anti-regression heatmap in two dimensions, or as a clustered projection when
more than two dimensions are involved. In this way, we provide developers with information
on the amount of changes that can be accommodated by the continual learning component of the
system, which is key to decide if online, in-the-field learning can be safely enabled or not.
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1 Introduction

Reinforcement Learning [75] (RL) is a learning paradigm in which an agent interacts with an envi-
ronment and chooses its actions in order to maximize a learning objective framed in a reward func-
tion. The combination of deep learning and RL, referred to as Deep Reinforcement Learning (DRL),
has achieved numerous successes in recent years. Notably, the first DRL algorithm called Deep
Q Network (DQN) [47] published in 2013 was trained to play Atari games [7] from pixels. Only
three years later, the same team developed AlphaGo that defeated the best human player on the
Go game [71]. More recent breakthroughs are the OpenAI Five [9] and the AlphaStar agents, which
learn to master difficult strategy games such as Dota 2 and StarCraft 2 and beat the respective best
human players. OpenAI Five and AlphaStar showed that DRL can effectively tackle challenges
such as long term planning, partial observability, and complex, continuous state-action spaces,
that are key challenges that are present in real world scenarios.
One of the critics that is directed towards DRL is that it needs a huge amount of experience in
order to learn reasonable behaviors (sample inefficiency), i.e. something that can be accomplished
only in simulation [30]. Moreover, in order to establish what is the best action in a particular sit-
uation, a DRL agent needs to explore the environment and try different actions to see which ones
yield the highest rewards, although exploring the environment can be dangerous or expensive
in many real world scenarios. On the other hand, DRL offers major advantages over alternative
supervised approaches to machine learning (e.g., deep neural networks). First of all, it does not
require any labeled training dataset. Indeed, manual creation of a representative and large train-
ing dataset is a bottleneck in many domains, where it may be very difficult to collect data for
all possible environment configurations and conditions (e.g., all weather and lighting conditions
possibly encountered by a self-driving car) and their manual labeling can be very expensive. On
the contrary, DRL algorithms are guided just by the reward function and do not require any fur-
ther ground truth labeling that accompany the data. This means that training is achieved by just
letting the DL algorithm run unattended and unsupervised for a long period of time in the en-
vironment. Another benefit associated with its unsupervised nature is that DRL algorithms can
adapt to changes in the environment quite naturally. By enabling some residual learning capabil-
ity when the DRL algorithm is executed in the field, the learned strategy can be adapted to the
shifts of the environment configurations and conditions. Such continual learning capability (i.e.
plasticity), together with its peculiar unsupervised training mode, make RL extremely appealing
to the industry as an alternative to supervised approaches in many complex and rapidly evolving
domains.
DRL has being applied in more practical contexts than board games and video games. One such
context is personalization, in which the DRL agent interacts with humans to let a digital system
make relevant recommendations to individual users. In this domain, Netflix uses a simplified
version of the RL problem, called contextual bandits, to choose which artworks to show in a movie
that is recommended to a user [31]; the objective is to tailor the choice of the artwork to the partic-
ular user in order to maximize engagement. Microsoft’s Personalizer [38] also uses this technology
both for Microsoft products, e.g. to select the right offers and content across Windows, Edge
browser and Xbox, and externally as a service, e.g. to deliver tailored recommendations in an
online marketplace. Moreover, Facebook developed and open-sourced Horizon, described as the
first open source RL platform for production [33] (now called ReAgent [34]). So far Horizon was
used to deliver more relevant notifications in Facebook products, optimizing streaming video bit
rates, and improving the virtual assistant suggestions in Messenger.
Beyond personalization, DRL has been applied also to continuous control tasks. One such example
is a robot used to sort out objects in a warehouse [65]. Covariant.AI, the company that developed
the software for the robot, used DRL to address the challenge of picking objects with a robotic arm
from a bin of random items. The problem is difficult because the shapes and the surfaces of the
objects are not uniform and a more traditional robotic arm controller cannot be programmed to
perform the task always with the same predefined motion. On the contrary, a DRL agent can learn
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a strategy to pick up objects rather than being tailored to a specific one and it can continue to learn
as it sees objects of unknown shapes. Another example of DRL applied in the real world is the
intelligent parking system being developed by Audi [25]. The auto-maker demonstrated at NIPS
2016 (an important machine learning conference) that their 1:8 scale model car could learn how
to properly find a suitable parking space, i.e. a metal frame, on an area measuring 3 x 3 meters,
and park autonomously there. The parking problem is modeled as an RL problem and while
the demonstration is only a proof of concept the next step announced by Audi is transferring the
parking-space search process to a real car.
Despite the evidence that DRL is used in the real world, few works focus on testing DRL based
systems [88, 58]. Some works study how DRL based systems behave in the presence of adver-
sarial attacks [29, 41], i.e. techniques that automatically craft inputs in which the trained agent
performs very poorly. Uesato et al. [83] focus, instead, on finding initial configurations of a DRL
based system in order to find catastrophic failures. Ruderman et al. [62, 17], on the other hand,
use procedurally generated environments and a search process to find specific configurations of the
environment in which the trained agent fails. However, none of those works focus on testing the
plasticity of DRL based systems, i.e. the extent to which a DRL agent under test is able to adapt
to a changing environment that is different from the environment it was initially trained on. In
fact, Uesato et al. and Ruderman et al. only evaluate a trained agent on a changed environment
rather than letting the agent continually learn on a changing environment to assess its adaptation
capabilities. In fact, one of the characteristics of RL that differentiates it from supervised learning
is that an RL agent can potentially learn continuously and autonomously even when the initial en-
vironment it was trained on evolves, since it does not require the presence of a supervisor during
the training process. Therefore, testing the plasticity of an RL agent before deployment is impor-
tant to understand its strengths and weaknesses in specific environment configurations that can
arise in the real world.
In this paper we propose an approach to characterize the adaptation capabilities of the DRL agent
under test in its environment. In particular, our approach takes as input a DRL agent trained in
a parameterized environment. Then, it samples the parameter space defined by the environment
parameters and it trains, in a continual learning mode, the agent on the resulting environment
configurations, with the objective of characterizing the adaptation frontier of the agent. The adap-
tation frontier consists of two environment configurations that are close to each other in the pa-
rameter space and that trigger opposite adaptation behaviors of the agent (i.e., successful vs failed
adaptation). After such search process, the parameter space is approximated to interpolate the
missing values in order to compute the adaptation volume that quantifies the adaptation capabil-
ities of the agent in the environment configurations defined by the environment parameters. In
addition to the adaptation volume metric, our approach provides the users with a visualization
of the adaptation capabilities of the agent. Specifically, when the environment has two parame-
ters, or alternatively two parameters of interests are chosen at a time, we provide the users with
two heatmaps: the adaptation heatmap, which visualizes the adaptation frontier of the agent, and
the anti-regression heatmap, which shows whether the agent has any regression in the regions of
the parameter space where the agent was able to behave correctly after adaptation. The adap-
tation (respectively anti-regression) heatmap shows in green the regions of the parameter space
where the agent adapts (respectively does not regress), in red the regions where the agent does not
adapt (respectively regresses) and different shades of colors between green and red to indicate the
adaptation (respectively anti-regression) probability. If the user chooses to analyze the behavior
of the given DRL agent considering more that two environment parameters, the visualization of
the adaptation frontier is made possible through a combination of dimensionality reduction and
clustering techniques. Afterwards, our approach employs decision trees such that the user can
understand what are the crucial parameters of the environment that characterize the clusters of
frontier points.
Our paper makes the following contributions:
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• The first approach that tests the adaptation and regression capabilities of a DRL based sys-
tem. Our approach characterizes the adaptation frontier of the agent in the parameter space
defined by the environment and provides a visualization of such frontier;

• An implementation of our approach in a tool named ALPHATEST, which is publicly available
as open source software [44];

• An empirical evaluation of ALPHATEST considering three DRL algorithms, four continuous
control environments and up to three different combinations of environment parameters for
each environment.

2 Background

This section contains a brief introduction to reinforcement learning as well as to the main deep
reinforcement learning algorithms in the state of the art (namely, DQN, PPO, SAC). The reader
already familiar with these concepts can safely skip this section entirely or partially. The interested
reader can refer to Sutton and Barto [75] and Joshua et al. [3] for a more detailed discussion of the
topic.

2.1 Introduction to Reinforcement Learning

Reinforcement Learning (RL) consists of learning a policy, i.e. how to act in each state the envi-
ronment, in order to maximize a numerical reward signal [75]. The learner (or agent) is not told
by any supervisor what actions are good (i.e., lead to the highest reward) but it has to learn it on
its own, through trial-and-error interaction with the environment. The fundamental assumption
of this learning paradigm is the so called reward hypothesis which states that training goals can be
expressed as the maximization of the total (or cumulative) reward that the agent will get in its
lifetime (also called return).
One of the challenges that arise in RL is the trade-off between exploration and exploitation. The
agent needs to exploit those actions it already knows they are rewarding but it also needs to explore
because there could be actions that are even more rewarding. The dilemma is that exploration
and exploitation are not mutually exclusive and that the right trade-off needs to be found by the
agent in order to succeed at the given task. Moreover, another issue relevant to trial-and-error
learning is the so called credit-assignment problem [46]. In particular the question to answer is how
to select and give credit to the actions that are more relevant for the success of the agent. In fact,
in the most interesting and challenging cases, the reward signal is often sparse, noisy (in general
due to the non-determinism of the environment and the policy) and delayed. For example if the
agent is learning how to play a game it might get a positive reward only when it wins the game.
Afterwards, it has to figure out what are the good actions that led to the victory, making them
more likely.
More formally the RL agent takes as input a state s at each time-step t of its interaction with the
environment and it has to decide which action a to take. Such action is determined by its policy π
which is a mapping from states to actions. The agent receives a reward from the environment at
each time-step and, for simplicity, let us assume that the task the agent needs to solve is episodic,
i.e. the interaction of the agent with the environment ends when certain conditions hold. Ul-
timately the goal of a RL agent is to find a policy π which maximizes the expected return (the
expectation operator is needed because in the general case both the environment and the policy
are stochastic). In this case the policy π is the optimal policy and it is indicated as π∗.
The optimal policy can also be indirectly extracted from value functions, namely the state-value
function vπ(s) and the action-value function qπ(s, a). The state-value function is defined as the
expected return the agent will get if it starts from state s and then follows the policy π (i.e. it
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takes actions according to π) forever since then. Similarly, the action-value function is defined as
the expected return the agent will get if it starts from state s, takes action a and then follows the
policy π forever. Such functions must satisfy the recursive consistency relationships expressed by
the Bellman equations [75], which relate the values of a state (or state-action pair) to the values of
all the possible successor states (or state-action pairs). The optimal action-value function q∗ can be
computed by solving the Bellman equation for the action-value function. Consequently, from q∗ it
is possible to extract π∗, by choosing in each state s the action a that maximizes q∗.

2.2 Reinforcement Learning Algorithms

There are several design choices that regard RL algorithms. In the following we describe the trade-
off between these choices and position the RL algorithms considered in our experiments within
such trade-off.
Even though the RL problem was addressed without deep learning (through dynamic program-
ming techniques, monte carlo methods and temporal difference learning [75]), it was the fusion
with deep learning that made RL applicable to complex practical problems [47]. In particular
deep learning made it possible to scale RL algorithms to complex high dimensional state and ac-
tion spaces (e.g. continuous spaces or high dimensional discrete spaces like images). In deep RL
(DRL) non-linear function approximators (namely, neural networks) are used to estimate quan-
tities that depend on state and/or actions. Actually, neural networks can be used to estimate a
policy π (either stochastic or deterministic), a value function V (or an action-value function Q)
and/or a model of the environment 1.
One of the fundamental design choices for RL algorithms is the usage of a model of the environ-
ment, i.e. a quantity that predicts how the environment evolves when an action is taken and the
reward it gives. If the algorithm uses a model of the environment, either available or by learning
it, then it is said to be model-based; otherwise it is said to be model-free. A model of the environ-
ment could be beneficial for the agent since it can be used to look ahead by predicting the possible
outcomes of its decisions. On the other hand model-based algorithms rely on a model of the en-
vironment that could be biased. For example a model may represent very well a specific part of
the environment but it might fail in capturing other parts of it (e.g. because those other parts are
difficult to explore). When the model is biased it does not accurately represent the real conditions
of the environment and, as a consequence, the resulting agent might behave poorly on it.
Often the choice between using model-free or model-based algorithms depends on the task we
want to solve by using RL methods. If, for example, the environment has very complex dynamics
but the pattern for optimal behavior (i.e. the policy) is simple, then model-free algorithms may
be the best choice. On the other hand, if the environment is simple to represent but the strategy
to solve the task is complex, then model-based algorithms are more appropriate. Moreover, de-
spite model-free methods might be inferior w.r.t. model-based algorithms regarding their sampling
efficiency (i.e., the amount of data the algorithm needs in order to get a new policy), they are ap-
plicable in more situations (e.g. also in those cases in which the environment is difficult to model)
and, as a consequence, they are more popular. For this reason we decided to focus our study on
model-free algorithms, leaving the study of model-based algorithms for future work.
Model-free algorithms can be divided in three categories, namely policy gradients, value-based and
hybrid methods. We discuss them in the context of Deep Reinforcement Learning (DRL) since in
this paper we use DRL algorithms belonging to such categories.

1When a state dependent function (value function v or action-value function q) is approximated we indicate it with
a capital letter (respectively V and Q)
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2.2.1 Policy Gradients

In policy gradient methods the policy π is represented by a neural network whose weights are up-
dated by maximizing the expected return. This optimization is performed on-policy, which means
that each update is carried out with data (i.e. states, actions and rewards resulting from the interac-
tion of the agent with the environment) coming only from the policy that produced that data. The
state-of-the-art policy gradient algorithm is Proximal Policy Optimization (PPO) [67] whose focus
is, at each step, to improve the policy as much as possible without causing performance collapse.
In fact a large policy update may lead to a bad policy; such policy will be used for learning, which
in turn may lead to even worse subsequent policies. On the other hand, if the improvement steps
are too small then learning will be slow. In order to achieve this goal PPO has a mechanism called
clipping that prevents the policy from changing too much and the hyperparameter ε controls how
much the new policy can change w.r.t. the previous version of it. Moreover, previous policy gra-
dient methods learn from current experience and discard past experiences after gradient updates,
which makes them sample inefficient. PPO, instead, is designed to reuse even experiences coming
from old versions of the policy being updated.
Regarding the exploration-exploitation trade-off, PPO trains a stochastic policy that lets the agent
explore the environment in the initial phases of training. As training progresses, the policy be-
comes more and more deterministic and the agent is more encouraged to exploit than to explore.

2.2.2 Value-Based

In value-based methods it is the the action-value function that is represented with a neural net-
work (i.e. Q). The weights are not updated by maximizing the expected return but rather the op-
timization is based on the Bellman equation. Moreover, the optimization is performed off-policy,
which means that it can be done with data coming from any policy, not only from the policy that
produced it. Once the action-value function Q is trained, the policy is obtained by choosing the
action that maximizes it for each state. The most popular example of value-based method is Deep
Q Network (or DQN) [47], which actually started the field of DRL and was improved over the
years with various optimizations [26, 66, 85]. The basic idea behind the DQN algorithm is to es-
timate the action-value function by solving the Bellman equation iteratively. When a non-linear
function approximator is used to represent the action-value function (e.g. a neural network), the
iterative algorithm is not guaranteed to converge [81, 47]. The sources of instabilities leading to
divergence are addressed by using experience replay, i.e. a buffer of agent’s experiences (sequence
of states, actions and rewards) that are replayed randomly during the optimization process, and
the use of a separate neural network to represent the action-value function Q. Adding a separate
neural network makes the optimization process much more similar to supervised learning and
more stable.
Since DQN does not represent the policy explicitly, it needs a way to interact with the environ-
ment (often called behavior policy). Specifically, DQN uses an ε-greedy policy specifying that the
agent selects a greedy action with probability 1 − ε (i.e. it selects the optimal action in a certain
state according to the current Q function) and selects a random action with probability ε (with ε
annealed linearly from 1.0 to 0.1 over the first K time-steps, and fixed at 0.1 thereafter). This strat-
egy implies that the agent mostly explores in the early training phase and mostly exploits at the
end of training (a minimum amount of exploration is beneficial also in the final stages of training).

2.2.3 Hybrid between Policy Gradients and Value-Based

Algorithms belonging to this category use both policy gradients and value-based methods. One
notable example of algorithm from this category is Soft Actor Critic (or SAC) [24]. SAC is based
on the maximum entropy RL framework in which the objective is to both maximize the expected
return and to maximize the policy entropy (i.e., the degree of “randomness” of the policy). This
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Figure 1: Overview of the approach implemented in ALPHATEST

is desirable because policies optimized for maximum entropy will be more robust to unexpected
environmental changes that are common in the real-world (i.e., at test time). Moreover, maximum
entropy policies promote exploration, hence acquiring diverse behaviors of the agent.
SAC has a mechanism to control the entropy of the policy through a coefficient α. Depending
on the implementation α is either set manually or automatically adjusted during training (the
implementation of SAC we used [28] supports both). Moreover, similarly to DQN, SAC also
performs its update steps off-policy.

3 Approach

Let E be an environment, which can be defined as the set of n parameters {p1, . . . , pn}, and AE
be a reinforcement learning (RL) agent trained on E until the environment is solved, or alterna-
tively until the desired performance level is reached. Moreover, let E′ be a new environment with
parameters {p′1, . . . , p′n} and AE′ be a RL agent that is obtained by training AE continually on E′

for a certain period of time T . More precisely the task the agent needs to solve remains fixed
(e.g. stabilizing the pole in a cartpole environment) but the environment parameters change (e.g.
the mass of the pole increases) and the agent is asked to sequentially learn how to adapt to the
changes. Such adaptation process can be successful if the agent AE′ solves the environment E′ (or
it reaches a desired level of performance on E′, when there is no binary notion of success); unsuc-
cessful otherwise. Differently, techniques for Transfer Reinforcement Learning are not focused on the
issues related to sequential (or continual) learning but rather on finding ways to transfer knowl-
edge acquired by an agent in one domain to another domain, in order to accelerate the learning
process [77, 53, 39, 91]. In the context of continual learning the problem we want to address is
to understand the frontier between the environments E′ in which the agent AE can successfully
adapt and the closest environments E′′ in which the agent AE cannot adapt. Intuitively, the adap-
tation frontier is defined as the set of all environment pairs (E′T , E′F ) such that on E′T adaptation
is successful and on E′F adaptation is not successful, and E′T and E′F are ε-close (i.e., have a dis-
tance lower than a user defined threshold ε) in the parameter space. When adaptation on a new
environment E′ is successful we are also interested in studying whether adaptation affects the
capabilities of the agent on the original environment E it was trained on (i.e. whether there are
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regressions). The goal of our approach is to find the adaptation frontier of the agent AE efficiently
(as a consequence, regressions will be also found efficiently), as exhaustive exploration of the en-
vironment parameter space is infeasible due to its size and to the need to conduct a complete
continual training session in each parameter configuration. The adaptation and anti-regression
frontiers help developers understand the strengths and weaknesses of the agent in variable envi-
ronment configurations before deployment.
Figure 1 shows an overview of our approach, composed of two phases. The first phase is the
search phase (see ¶ in Figure 1) where we iteratively modify the environment parameters and let
the agent continually learn on the modified environments to evaluate whether it can successfully
adapt to the changes or not. Since the assessment of a single environment configuration involves
full continual learning of the agent in the changed environment, we adopt efficient search strate-
gies that minimize the number of steps needed to find the “frontier” of the agent’s adaptation
capabilities. Then, in the second phase (see · in Figure 1) we interpolate the missing points in
the adaptation heatmap (see the parameter space approximation box in Figure 1), so as to make the
computation of the adaptation volume possible.
The search phase (¶ in Figure 1) is divided into two sub-phases, namely exponential search and
binary search. For the search phase we chose exponential and binary search for the following rea-
sons. First of all, each search iteration requires a continual learning run of the agent in the changed
environment. The high computational cost associated with a full continual learning session does
not make it compatible with the use of population based, evolutionary algorithms already pro-
posed in the literature for frontier exploration [59]. Moreover, exponential and binary search have
a logarithmic computational complexity and, hence, they are very efficient in terms of number of
steps required to achieve their respective objectives. Specifically, exponential search and binary
search share some common operations. In particular both of them generate search points where a
search point is defined as a 3-tuple Ej,i = 〈Ej,i, PA, PR〉. The first component of a search point is
the environment configuration Ej,i at a particular iteration of the search. Specifically, the first sub-
script j indicates either the exponential search or the binary search iteration, whereas the second
subscript i indicates the global search iteration. The second component is the adaptation probabil-
ity PA which tells us what is the probability that the agent trained on the original environment
E0 is able to adapt to the environment Ej,i. The choice of representing adaptation as a probabil-
ity instead of a boolean predicate is due to the inherent non-determinism of deep reinforcement
learning (DRL) algorithms [27]. For each environment configuration, we train the agent multi-
ple times with different random seeds and we deem the adaptation successful if the agent adapts
the majority of the times (i.e. PA > 0.5, but the threshold is conventional and can be modified).
Finally, the last component is the regression probability PR|PA>0.5, which tells us what is the proba-
bility that an agent which adapted successfully to the environment Ej,i forgets how to behave in
the original environment E0 (i.e. it regresses). To simplify the notation, we write EkT |F to indicate
that, at a generic iteration k, either the adaptation is successful (i.e. PA > 0.5, hence the adap-
tation predicate adapted(Ek) = T ) or unsuccessful (i.e. PA ≤ 0.5, hence the adaptation predicate
adapted(Ek) = F ).
The objective of the exponential search is to find an environment configuration in which the agent
is not able to adapt. In other words the output of the exponential search is a search point where
PA ≤ 0.5, namely EiF . Then, the binary search component takes as input EiF and looks for a frontier
pair, defined as follows:

Definition 1 (Frontier Pair) A frontier pair is a pair of search points, namely EkF and EhT , such that:

dist(EkF .E, EhT .E) ≤ ε

Hence, the objective of binary search is finding two environment configurations that are close to
each other (according to distance dist) and that trigger different behaviors of the agent, i.e. the
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agent is able to adapt to one environment configuration and it is not able to adapt to the other
environment configuration. In practice, for a pair of frontier points EkF .E = {p1, . . . , pn} and
EhT .E = {q1, . . . , qn} we can define a distance function dist that computes the average relative
parameter change:

dist(EkF .E, EhT .E) = 1
n

∑n
i=1

|pi.v−qi.v|
(|pi.v|+|qi.v|)/2 (1)

The underlying assumption we make in Definition 1 is that the values that the parameters defining
the environment E can assume are real numbers, i.e. pi.v ∈ R, qi.v ∈ R, ∀i ∈ [1, n]. When dist
measures a relative change, as in the formula above, we can choose a value of ε which ensures a
small percentage change, such as ε = 0.05.
During the search phase, search points are stored in a dataset DS whereas the frontier pairs pro-
duced by the binary search are stored in the dataset Df . Such datasets are the input to the second
phase of our approach (· in Figure 1), namely the volume computation phase. In fact, in order to
quantify the adaptation capabilities of a DRL algorithm and how it regresses when the adaptation
is successful, we want to compute the volume underlying the adaptation (respectively the regres-
sion) frontier. To this aim we first map each environment configuration in the search points onto
an n-dimensional grid (n = |E0|), where the i-th dimension represents the range of values of each
parameter pi and the value of each cell in the grid represents the adaptation probability (respec-
tively the regression probability) of the agent in that environment configuration. Then, for each
grid cell that does not have a probability value, since it was not covered during exponential/bi-
nary search, we iteratively approximate its value based on the probability values of its neighbors
(e.g., by majority voting), in order to get a completely filled grid (we call this sub-phase parameter
space approximation). Then, the grid counting sub-phase consists of just counting the number of cells
with PA > 0.5 for what regards the adaptation capabilities and counting the number of cells with
PR|PA>0.5 ≤ 0.5 for what regards the anti-regression capabilities of the agent.
If the environment E given as input is described by two parameters (i.e. p1 and p2, with n = 2),
which might be two parameters of interest selected among all possible parameters, the grid with
the mapped search points can be represented in a two-dimensional plot (see the bottom left corner
in the middle of Figure 1). The points in the plot represent environment configurations (Eij =
(p1.vi, p2.vj)) and their shapes and colors indicate the adaptation probability (the same applies to
the regression probability plot as well). In the example, red stars are environment configuration in
which the adaptation probability is zero, whereas green squares are environment configurations
in which the adaptation probability is 1.0 (e.g. the original environment the agent was trained
on). Frontier pairs are represented by yellow diamonds and greenish circles where the adaptation
probability is respectively a bit below 0.5 and a bit above it.
The output of our approach is, in general, (1) the adaptation volume that tells the users of our
approach how much the given DRL algorithm (or agent) is able to adapt when the initial envi-
ronment changes, together with (2) a visualization the frontier pairs sampled by the search (when
n > 2 the visualization of the frontier pairs is built using a dimensionality reduction technique
that maps n-dimensional vectors to two-dimensional ones). Our approach also outputs (3) the
anti-regression volume which quantifies how much the DRL algorithm is able to remember how
to behave in the original environment (i.e. does not have regressions), when adaptation is suc-
cessful. When n = 2, or alternatively two parameters of the environment are chosen at a time, the
approach outputs two two-dimensional heatmaps that visually show the behaviors of the DRL
algorithm across the parameter space, regarding both adaptation and regression, as shown on the
right hand side of Figure 1. While the adaptation heatmap (see the top right corner of Figure 1)
has usually a continuous frontier, indicated with a black solid line, the anti-regression heatmap,
defined only within the adaptation frontier (the gray region indicates the part of the parameter
space where the anti-regression heatmap is not defined), is often discontinuous. On the bottom
right corner of Figure 1 such anti-regression frontier is indicated as a continuous dashed line only
for illustration purposes.
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Figure 2: Representation of the Cartpole environment [6, 54], described by Barto et al. [5]

3.1 Motivating Example

Figure 2 shows the CartPole environment [6], which is one of the environments we used in our
evaluation (see Section 4). CartPole, first described by Barto et al. [5], is an inverted pendulum
which is attached through an un-actuated joint to a cart. The cart moves on a track which is fric-
tionless in the default configuration and the whole system is controlled by a force either pushing
it to the right direction (+1) or to the left (−1) with the same magnitude. The pole starts upright
and the objective is to move the cart in a way that prevents the pole from falling over. At every
time-step when the pole stays upright the agent gets a +1 reward. The task of controlling the cart
is episodic and there are three conditions that determine the end of an episode: (1) the pole falls
over more than 15◦ from the vertical, (2) the cart moves more than 2.4 units from the center or
(3) 500 time-steps pass.
In this environment the observation space of the agent is composed of four variables, namely the
cart position (in the interval [−4.8, 4.8]) the cart velocity (in the interval [−∞,∞]), the pole angle
(in the interval [−24◦, 24◦]) and the pole velocity at tip (in the interval [−∞,∞]). The action space
of the agent is discrete and the agent can only decide to either move the cart left or right. Moreover,
this task (or environment) is solvable, meaning that the developers of the environment specified a
condition for which the task is considered solved. In particular, for the CartPole environment, if
an agent gets an average reward over 100 testing episodes that is greater or equal to 475, then the
task is deemed solved.
One possible way of parameterizing the CartPole environment is by defining it in terms of 4 pa-
rameters, namely masspole, lengthpole, masscart and cartfriction. We define a parameter p as a 4-tuple
〈v0, v, L,m〉 where v0 is the default or initial value for that parameter, v is the current value, L is
a tuple 〈l, h〉 representing the valid range for the values of the parameter (i.e. l stands for the low
limit and h stands for the high limit), and m > 0 is a constant value that stands for multiplier. The
multiplier is computed before the exponential search and guides it on how to modify the initial
value v0 in order to make the environment more challenging for the agent.
The default or initial value v0 for each parameter is already defined by the developers of the
environment whereas the current value v is computed by the search phase at each iteration of
the approach. The only variable of each parameter that needs to be specified by the users of our
approach is L. The limits of a parameter L can be constrained by the environment itself (e.g.
physical limits of the simulator) or alternatively they can be specified based on the desired values
the user wants to analyze its agent on. Moreover, the limits determine the direction, and hence
the value of the multiplier m, following which the environment becomes more challenging for
the agent. Assuming that there is only one direction that makes the environment challenging,
either towards increasing |v0| or decreasing it towards 0 (if both directions make the environment
challenging, we just instantiate our approach twice, once per direction), one of the values in L is
equal to v0. If L.l = v0 then m > 1, otherwise L.h = v0 and m ∈ (0, 1). For example, the parameter
masscart has v0 = 1.0 in the CartPole environment and, by increasing it, the cart becomes more
difficult to control since the magnitude of the force that is applied to the cart remains the same.
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Algorithm 1: Pseudocode of ALPHATEST

Input : E0: initial environment {p1, . . . , pn}, pi = 〈v0,i, vi = v0,i, Li = 〈li, hi〉,mi = −1〉
A: agent trained on E0 until desired performance is reached
AC (Tr)→ T |F : adaptation condition function for the environment, Tr = training or evaluation trace
RC (Tr)→ T |F : regression condition function for the environment, Tr = training or evaluation trace
ε: constant that determines the stopping condition for binary search
ntr : number of training runs

Output: Av : adaptation volume
Rv : anti-regression volume
F : frontier visualization if n > 2
Amap: adaptation heatmap if n = 2
Rmap: anti-regression heatmap if n = 2

1 /* Search Phase */
2 DETERMINEMULTIPLIERS(E0, A, AC)
3 DS ← ∅
4 Df ← ∅
5 envs← COMPUTEENVCONFIGURATIONS(E0)
6 do
7 EF , DSe ← EXPSEARCH(envs, E0, A, AC, RC, DS , ntr)
8 DS ←DS ∪DSe

9 f , DSb ← BINARYSEARCH(EF , E0, A, AC, RC, DS , ε, ntr)
10 DS ←DS ∪DSb

11 Df ←Df ∪ f
12 while ∃ env ∈ envs : env.exec = F

13 /* Volume Computation Phase */
14 Agr , Rgr ← NEARESTNEIGHBOR(DS) . Parameter Space Approximation
15 Av , Rv ← COMPUTEVOLUME(Agr , Rgr) . Grid Counting
16 if |E0| == 2 then
17 Amap, Rmap← BUILDMAPS(Agr , Rgr)
18 return Av , Rv , Amap, Rmap
19 end
20 F ← BUILDFRONTVIZ(Df )
21 return Av , Rv , F

In this case, as for the other parameters of the CartPole environment, the multiplier m > 1 and
l = v0.
The users of our approach need to specify both the adaptation and the regression conditions
(respectively AC and RC) for the environment, which determine when adaptation (respectively
regression testing) is deemed successful (respectively failed). In practice, one can introduce a
percentage performance degradation (e.g., 20% for AC and 5% for RC) that is considered accept-
able respectively during adaptation and regression. For instance, for the CartPole environment
AC returns true if the agent gets at least an average reward of 380, corresponding to 475 (solved
environment) minus 20%. Regarding the regression condition RC, it returns false (i.e., there are
no regressions) if the agent gets at least an average reward of 450, corresponding to 475 (solved
environment) minus 5%. More generally, the users of our approach are allowed to define such
conditions based on specific knowledge of the environment of interest, for example, based on
safety conditions that must not be violated.

3.2 Algorithm

Algorithm 1 shows the pseudocode of our approach, as implemented in ALPHATEST. The al-
gorithm takes as input the initial environment E0 where all the limits Li for each parameter pi
have already been set, the current values vi are initialized to the respective original values v0,i
and all the multipliers are set to −1. The agent A needs to be trained on E0 until the desired per-
formance is reached (when we refer to an agent trained on E0 we simply use A instead of AE0 ,
whereas when the agent is trained on another environment E 6= E0 we explicitly indicate that by
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Algorithm 2: Procedure DETERMINEMULTIPLIERS

Input : E0: initial environment {p1, . . . , pn}, pi = 〈v0,i, vi = v0,i, Li = 〈li, hi〉,mi = −1〉
A: agent trained on E0

AC (Tr)→ T |F : adaptation condition function for the environment, Tr = training or evaluation trace
Output: E0: updated multipliers ∀p ∈ E0

1 foreach i ∈ |E0| do
2 p← E0[i]
3 p.v← p.v0 . Set initial value at each iteration
4 c← 2
5 if p.L.h == p.v0 then
6 c← 0.5
7 end
8 do
9 p.v← p.v × c

10 Tr ← EVAL(A,E0)
11 while AC(Tr) and p.v ∈ [p.L.l, p.L.h]
12 p.m← p.v

p.v0

13 p.v← p.v0 . Reset current value for next iteration
14 end

using AE) and the user needs to specify both the constant ε, that determines how close two search
points in the frontier pair should be (see Definition 1), and the number of training runs ntr used to
compute PA and PR. Moreover, the user needs to specify two functions, AC and RC, to check the
adaptation and regression conditions. Such functions take as input a trace and output a boolean
value indicating whether the respective condition is satisfied. The trace Tr refers to the output
of the training or the evaluation of an agent (in Algorithm 2 and Algorithm 3 indicated as TRAIN

and EVAL functions respectively). In our empirical evaluation, the training and evaluation traces
contain the rewards the agent gets over a certain number of episodes.

3.3 Search Phase

The search phase (see Algorithm 1) starts by calling the procedure DETERMINEMULTIPLIERS,
shown in Algorithm 2, which sets the multipliers for all the parameters in E0. The objective of
such procedure is, for each parameter p, to find a value p.m such that p.m × p.v gives a new en-
vironment (6= E0) in which the agent trained on E0 fails to adapt (Lines 8–11). In order to make
this phase efficient, we skip continual learning and apply (i.e. evaluate) the pre-trained agent on
the new environment. In fact, for the computation of the multipliers it is enough to approximate
the behavior of the agent after continual learning with the evaluation of the initially trained agent.
Correspondingly, at Line 11 we improperly use the adaptation condition, as at Line 10 we evaluate
the agentAwithout training it on the new environment. Although evaluation alone is not enough
to deem the adaptation of the agent on a new environment successful or unsuccessful (since adap-
tation would involve also training and learning how to behave in the changed environment), it is
much cheaper computationally and it proved to be sufficient to find good multipliers, which is the
overall goal of this procedure. In other words, we are using evaluation as a proxy for training to
quickly find environment configurations that potentially challenge the capabilities of adaptation
of the agent.
Let us now consider all the steps of Algorithm 2 in detail. At Line 3 we set the initial value of the i-
th parameter to its default value v0. Then, at Lines 4–7, we infer the challenging direction by looking
at the limits of the parameter p, i.e. 〈l, h〉, and we double p.v at every step (Line 9) if such direction
is towards h (c = 2 at Line 4) while we halve it otherwise (c = 0.5 at Line 5). The loop at Lines 8–11
stops when either p.v is beyond the given limits or the adaptation condition AC is false. Finally, the
multiplier for the i-th parameter is set at Line 12. For example, let us suppose that for our running
example CartPole we have two parameters p1 = masscart = 〈v0 = 1.0, v = 1.0, L = 〈l = 1.0, h =
10.0〉,m = −1〉 and p2 = masspole = 〈v0 = 0.1, v = 0.1, L = 〈l = 0.1, h = 4.0〉,m = −1〉. In both
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cases v0 = p.L.l, hence c = 2. To simplify the notation we indicate an environment configuration
as (p1.v, p2.v). Let us suppose that the configuration E = (2.0, 0.1) is such that a given DRL agent
A does not satisfy AC during evaluation (i.e. by evaluating the agent A on E 6= E0 over a certain
number of episodes nea the average reward is less than 380). Then, p1.m = 2.0

1.0 = 2.0. Instead,
for what regards p2, let us suppose that the first environment configuration for which AC is not
satisfied is (1.0, 0.4), hence p2.m = 0.4

0.1 = 4.0.
For brevity we omitted two edge cases in Algorithm 2. The first one regards the situation in which
p.v0 < 0; in such case we still work with positive numbers (|p.v|) and change the sign for the
specific parameter when creating the environment with the specific environment configuration.
Second, if the limits are such that it is not possible to falsify the adaptation condition, we automat-
ically decrease/increase the limits 〈l, h〉 until AC is falsifiable.
The multipliers computed by DETERMINEMULTIPLIERS are used to calculate the environment con-
figurations at Line 5 of Algorithm 1. Specifically, for each parameter p, we multiply the current
value p.v by the corresponding multiplier p.m until one of the limits (either p.L.l or p.L.h) is
reached. By combining those values across all parameters we construct the environment config-
urations to be explored during exponential search and save them into envs. Each element envi is
equal to 〈Ei, exec = T |F 〉 and exec tells us whether the environment configuration Ei was executed
or not during exponential search. Considering our running example, we have the following val-
ues for p1: {1.0, 2.0, 4.0, 8.0, 10.0} and the following values for p2: {0.1, 0.4, 1.6, 4.0} including the
low limits p1.L.l = 1.0, p2.L.h = 0.1 and the high limits p1.L.h = 10.0 and p2.L.h = 4.0. We have 5
values for p1 and 4 values for p2, therefore all the possible environment configurations are 19, i.e.
5 × 4 − 1 because one environment configuration is the original environment E0 = (1.0, 0.1) that
is already executed.

3.3.1 Exponential Search

Algorithm 3 shows the exponential search function called by the main program (Algorithm 1,
Line 7). The main loop at Lines 2–22 executes at least once, since the function assumes that there
is at least one environment to execute, until a search point with PA ≤ 0.5 is found. At Line 3
by calling the function CHOOSENOTEXEC we choose (e.g., randomly) one environment config-
uration that was not executed. Then, at Line 4 DOMINANCEANALYSIS is performed to look for
an already executed environment (i.e. one whose corresponding search point belongs to the set
DS , computed by Algorithm 1) that dominates or is dominated by the candidate environment to
be executed, env.E. More specifically, DOMINANCEANALYSIS looks for any failing environment
EF ∈ DS that is dominated by the current environment env.E, or alternatively for any succeeding
environment ET ∈ DS that dominates the current environment env.E. In fact, in both cases the
current environment does not need to be executed.
Formally, we can define dominance as follows. Let us introduce the inequality symbol >c that
points to the more challenging direction of a parameter (i.e., x1 >c x2 reads as x1 > x2 if the
parameter makes the environment more challenging when its value increases; it reads as x1 < x2
otherwise). An environment Ea dominates another environment Eb iff ∃i : (Ea[i].v >c Eb[i].v) ∧
(Ea[k].v ≥c Eb[k].v ∀k 6= i).
Figure 3 shows the dominance relationship between two environments. On the x axis we have the
values of the parameter p1 whereas in the y axis we have the values of the parameter p2. For both
parameters the direction that makes the environment more challenging for the agent is the positive
direction. In Figure 3.A the environment E = (x2, y2) dominates the already executed environment
EF .E = (x1, y1), where the agent does not adapt (i.e. PA ≤ 0.5). Given the dominance relation
between the two environments we can say that the agent will not be able to adapt on E without
carrying out the training process. The reason is that E will be more challenging for the agent than
EF .E since x2 > x1 and y2 > y1. As a consequence, if the agent is not able to adapt to EF .E it will
not be able to adapt to the more challenging environment E. On the other hand, Figure 3.B shows
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Algorithm 3: Exponential search function
Input : envs: environments to execute s.t. ∀ env ∈ envs, env = 〈E, exec〉, E 6= E0, exec = T |F

E0: initial environment {p1, . . . , pn}, pi = 〈v0,i, vi = v0,i, Li = 〈li, hi〉,mi = −1〉
A: agent trained on E0

AC (Tr)→ T |F : adaptation condition function for the environment, Tr = training or evaluation trace
RC (Tr)→ T |F : regression condition function for the environment, Tr = training or evaluation trace
DS : dataset of search points previously executed by the main algorithm
ntr : number of training runs

Output : EF : search point 〈E,PA > 0.5, PR〉
DSe : dataset of search points for exponential search

Require: ∃ env s.t. env.exec = F
1 DSe ← ∅
2 do
3 env← CHOOSENOTEXEC(envs)
4 Ed← DOMINANCEANALYSIS(env.E, DS)
5 PR← null
6 if Ed 6= null then
7 PA← Ed.PA
8 PR← Ed.PR
9 else

10 Asenv.E ← TRAIN(A,env.E,AC,ntr)
11 PA← |Asenv.E |

ntr

12 if PA > 0.5 then
13 Rps ← ∅
14 foreach Aenv.E ∈ Asenv.E do
15 Tr ← EVAL(Aenv.E ,E0)
16 Rps ← Rps ∪ RC(Tr)
17 end

18 PR←
|Rps |Rp=T

|Asenv.E |
19 end
20 end
21 DSe ←DSe ∪ 〈env.E, PA, PR〉
22 while PA > 0.5
23 return Ed, DSe

the case in which the environment E = (x1, y1) is dominated by an already executed environment
ET .E = (x2, y2) where the agent adapts (i.e. PA > 0.5). For a similar reason, we can conclude that
the agent will be able to adapt to E without actually training it on E, since E is less challenging
than ET .E. Such dominance analysis is performed both in exponential search and binary search
and it reduces the computation time of the search process by skipping unnecessary executions.
The DOMINANCEANALYSIS function returns the first search point Ed that satisfies the dominance
relation described above; otherwise it returns null. If Ed exists then the adaptation/regression
probabilities of env.E are approximated as the probabilities of the already executed search point
(Lines 7–8). Otherwise, at Line 10 the TRAIN function is called. It performs ntr training runs
of the agent A on the environment env.E. Upon each training run, the function AC is called on
the training trace produced by the run and if AC returns true then the agent is saved in the list
Asenv.E , the list of successfully trained agents. The adaptation probability is computed at Line 11 as
the ratio between the number of times the agent is able to adapt and the number of training runs
ntr. If the adaptation probability is > 0.5, to measure the regression probability PR we perform
an evaluation run in the original environment of each successful agent (Aenv.E ∈ Asenv.E ; see for
loop at Lines 14–17). The regression probability is computed at Line 18 as the number of times the
regression predicate is true (namely |Rps |Rp=T ) and the number of evaluation runs (i.e. |Asenv.E |).
Considering our CartPole environment and assuming ntr = 3, let us suppose that the first envi-
ronment chosen by the exponential search is E1 = (4.0, 1.6) and that PA of the agent on E1 is 1.0,
i.e. the agent always adapts in the 3 training runs, which means that after training the agent on
E1, the agent is evaluated on E1 and it gets at least 380 points of reward in all the 3 training runs.
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Figure 3: Environment dominance in two dimensions; E is the environment under analysis

Since the adaptation probability is > 0.5, the regression probability is also computed at Lines 12–
19. The for loop at Line 14 is executed ntr = |Asenv.E| = 3 times in which we may get PR = 0.0: in
all such runs the RC function returns false, which means all successful agents, when evaluated on
E0 over a certain number of episodes ner, gets an average reward of at least 450.
Then, the do-while loop continues and the next environment chosen at Line 3 could be E2 =
(2.0, 0.3). E2 is dominated by E1 in which the agent adapts. Therefore, the adaptation probability
of the agent on E2 is inferred to be 1.0 and the regression probability to be 0.0, without having
actually executed the training process on E2 (Lines 7–8). Finally, let us suppose that the next
environment being sampled is E3 = (10.0, 4.0) and that in this environment the agent is not able
to adapt. Specifically, its adaptation probability on E3 is PA = 0.0. For this environment the
regression probability is not computed since the condition at Line 12 is false. We do not compute
the regression probabilities of agents whose adaptation is not successful.

3.3.2 Binary Search

Algorithm 4 shows the next step of the search phase, i.e. the binary search phase, called by the
main program Algorithm 1 at Line 9. At Line 2 a new search point is constructed where the en-
vironment is the initial environment that by definition has PA = 1.0 and PR = 0.0 since the agent
A was trained on E0. Then, the main loop at Lines 3–17 executes until the condition for a frontier
pair (see Definition 1) is satisfied. For brevity we did not include in the algorithm a timeout that
is necessary for the while loop to terminate when ε is too small for the given environment and
agent. In such situation the algorithm would return the frontier pair that is the closest to ε when
the timeout expires.
At Line 4, either ET or EF is randomly chosen as starting point for the construction of a new
environment (initially the latter is the output of exponential search). Then, the loop at Lines 5–8
performs the binary search operation by randomly choosing a parameter index (Line 6) and by
assigning (Line 7) the value of the parameter corresponding to that index to be the average of the
values of the corresponding parameters of the two environments where in one of them the agent is
able to adapt (i.e. E .T ) and in the other the agent is not able to adapt (i.e. E .F ). The loop ends when
a new search point is found that does not belong to the set of already computed/evaluated search
points. For simplicity we omitted the further stopping condition that makes sure that the loop
terminates when all the possible combinations of environment configurations have been tried; in
that case we return f = null which will not be included in the dataset of frontier pairs.
At Line 9 the new search point E is evaluated in the same way as in the exponential search (see
Algorithm 3 at Lines 4-20). Then, given the PA of E (Line 10) either ET (Line 11) or EF (Line 13)
is reassigned. At Line 16 the distance between the two candidate frontier environments ET , EF is
computed and if the condition for a frontier pair is satisfied at Line 17, the main loop of the binary
search function stops and such frontier pair is returned, together with the dataset of search points
produced in the given iteration.
Considering our running example, the environment of the search point returned by the exponen-
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Algorithm 4: Binary search function
Input : EF : search point 〈E,PA ≤ 0.5, PR〉

E0: initial environment {p1, . . . , pn}, pi = 〈v0,i, vi = v0,i, Li = 〈li, hi〉,mi = −1〉
A: agent trained on E0 until desired performance is reached
AC (Tr)→ T |F : adaptation condition function for the environment, Tr = training or evaluation trace
RC (Tr)→ T |F : regression condition function for the environment, Tr = training or evaluation trace
DS : dataset of already computed search points
ε: constant that determines the stopping condition for binary search
ntr : number of training runs

Output: f : frontier pair according to Definition 1
DSb : dataset of search points for binary search

1 DSb ← ∅
2 ET ← 〈E0, PA = 1.0, PR = 0.0〉
3 do
4 E ← CHOOSE(ET , EF )
5 do
6 i← CHOOSEPARAMINDEX(E .E)
7 E .E[i].v← ET .E[i].v+ EF .E[i].v

2

8 while E ∈ DS
9 {. . . } . Same as exponential search Algorithm 3 lines 4–20

10 if E .PA > 0.5 then
11 ET ← E
12 else
13 EF ← E
14 end
15 DSb ←DSb ∪ E
16 q← dist(EF .E, ET .E)

17 while q > ε
18 f ← 〈EF , ET 〉
19 return f , DSb

tial search in the previous step is E3 = (10.0, 4.0) and the original environment is E0 = (1.0, 0.1).
Let us suppose that at Line 4 we choose EF and that at Line 6 the index is 0. Then, the new environ-
ment will be E4 =

(
1.0+10.0

2 = 5.5, 4.0
)

and let us suppose that the adaptation probability of the
agent on E4 is PA = 0.33, which means that it adapts once out of three times, since ntr = 3. Since
PA ≤ 0.5, we say that the agent is not able to adapt on E4 and that EF = E = 〈E4, PA = 0.3, PR〉.
Assuming that we chose ε = 0.5 the current search points ET and EF do not form a frontier pair
since the distance between them, computed at Line 16, is 1.64 > ε = 0.5 (for reference, the two
environments to consider are E0 = (1.0, 0.1) and E4 = (5.5, 4.0)). Therefore, the main loop con-
tinues and let us say that we still select the search point EF at Line 4, that now contains E4 as
environment. At Line 6 this time we select the second parameter, i.e. index 1, in order to obtain
the new environment E5 =

(
5.5, 4.0+0.1

2 = 2.05
)

. Let us suppose that the agent A is able to adapt
to E5, i.e. PA = 0.67 > 0.5 (the agent is able to adapt twice out of three times) and therefore
ET = E = 〈E5, PA = 0.67, PR〉. This time the two environments to consider for the calculation
of the frontier pair are E4 = (5.5, 4.0) and E5 = (5.5, 2.05), and the distance between them, com-
puted at Line 16, is 0.32 ≤ ε = 0.5. Hence, the current search points EF = 〈E4, PA = 0.3, PR〉 and
ET = 〈E5, PA = 0.67, PR〉 form a frontier pair f that the binary search function returns.

3.4 Volume Computation Phase

The next phase of our approach is the volume computation phase which starts at Line 14 in Algo-
rithm 1. It consists of the interpolation of the missing adaptation/regression probabilities from the
existing ones (parameter space approximation sub-phase) for the entire grid and then the count of
the grid points with PA > 0.5 and PR|PA>0.5 ≤ 0.5 respectively (grid counting sub-phase).
For parameter space approximation, the main algorithm calls the NEARESTNEIGHBOR function,
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which takes as input the dataset of search points DS produced by the search and returns two
fully filled grids, namely Agr, the adaptation grid, and Rgr, the regression grid. First, the NEAR-
ESTNEIGHBOR function creates an n-dimensional grid, where n is the number of parameters in
the initial environment E0. The grid will be filled with an adaptation probability value for each
combination of parameters (for brevity we only refer to Agr but the same procedure applies to
Rgr). In particular, for each parameter pi, we compute the step size of the array ai forming the i-th
dimension of the grid using the following formula:

stepi =
pi.L.h− pi.L.l

g × 100
(2)

where g is the granularity parameter that determines how granular the resolution of the values of
pi (i.e. pi.v) in the i-th dimension of the grid is (with g = 1 we get a grid containing 100 discrete
slots along each dimension). The higher the parameter g, the higher the resolution. The number
of values nv = len(ai) that pi can assume in the i-th dimension is dg × 100e, therefore the grid will
be a hyper-square matrix with dimensions nv × · · · × nv = nvn. It is initialized with null values.
Once the grid Agr is built the next step is to map the search points in DS into the grid. For each
search point Ej ∈ DS , considering its associated environment Ej .E, and for each parameter pi of
the environment (i.e. Ej .E[i]) the index in the i-th dimension of the grid of the search point Ej is
computed as follows:

indexj [i] =
⌊
(nv − 1)× Ej .E[i].v −min ai

max ai −min ai

⌉
(3)

where nv is the length of each array ai (we subtract 1 because the index starts from 0), min ai is the
minimum value of the parameter pi in the grid (correspondingly max ai is the maximum) and b·e
indicates that the product is approximated to the nearest integer. Once we have the index in the
grid corresponding to the environment Ej .E, we insert the adaptation probability value into the
associated grid cell: Agr[indexj ] = Ej .PA. However, if the granularity g is too small, there could
be collisions, i.e. multiple search points, and consequently multiple environment configurations,
have the same index in the grid. In that case for the value in Agr[indexj ] we take the mean of the
adaptation probabilities of the colliding search points.
At this point Agr has the adaptation probabilities of all the search points in DS , together with null
values where the search procedure did not sample any point. In order to compute the volume
to quantify the capability of adaptation of the agent on the possible environment configurations,
we need to approximate the missing values of the adaptation probabilities. We apply the nearest
neighbor technique: we replace each null value in Agr with the mean value of the neighboring
points when there exists at least one neighboring value different from null. At first, the grid is
scanned for indices with null values. Then, the values of these null cells are updated in batch and
the procedure is repeated until there are no more indexes with null values. By performing a batch
update of all null entries at the same time, we ensure that the nearest neighbor approximation does
not depend on the order in which the indexes are scanned, as would happen if the updates were
in-place. The neighborhood to consider for each update is composed of 3n − 1 points, where n is
the number of parameters of the environment E, i.e. the number of dimensions of the grid Agr. In
fact, along each dimension a point has two neighbors, obtained by incrementing or decrementing
its index. This means that a neighborhood consists of 3 points per dimension, or 3n points overall,
except for the initial, unchanged point (hence, 3n − 1). Once the grid Agr is fully filled, we can
compute the adaptation volume (Line 15 in Algorithm 1) by counting the number of points in the
grid that have an adaptation probability value of > 0.5, normalized by the total number of points
in the grid.
If the environment has two parameters (Line 16 in Algorithm 1) then we also build a two-dimensional
adaptation probability heatmap from Agr, for visualization by users. The color in each two-
dimensional heatmap cell represents the adaptation probability ranging from red (PA = 0.0) to
green (PA = 1.0). However, instead of plotting the grid directly, we apply a further interpolation
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Figure 4: Adaptation probability heatmaps

function that makes the transitions (in yellow) between the adaptation part (in green) and the non-
adaptation part (in red) smoother than they are on the grid, so as to make the adaptation frontier
more visible in the heatmap.
On the other hand, if the environment has more than two parameters, besides the adaptation
volume, we provide the users with a two-dimensional visualization of the frontier based on the
t-SNE (t-distributed Stochastic Neighbor Embedding) [84] dimensionality reduction technique. t-
SNE preserves the local structure, such that the frontier points that are close in the n-dimensional
space remain close to each other in the two-dimensional space. Despite the information on the
actual shape of the adaptation frontier is necessarily lost in the two-dimensional space, the clusters
resulting from the application of the dimensionality reduction technique give the users an idea of
the regions of the parameter space in which the frontier points represent similar environments.
In order to better show the separation between the different frontier pairs we apply clustering to
the output of the dimensionality reduction method. In particular, we use the K-means clustering
algorithm and we determine the optimal number of clusters k∗ by performing silhouette analysis
on a range of candidates k. The silhouette score falls within the range [−1, 1] and we choose as k∗

the k that gives the highest silhouette score, resulting in dense and well separated clusters. Then,
once each frontier pair has been assigned a cluster label we train a Decision Tree that determines the
critical environment parameters for which a certain frontier pair belongs to a cluster rather than
another. Finally, we plot the frontier pairs as given by the dimensionality reduction technique,
within colored regions indicating the respective clusters they belong to, together with the decision
tree plot.
Figure 4 shows two maps for the CartPole running example. The two parameters are p1 = masscart
and p2 = masspole. On the left hand side Figure 4.A shows the grid filled only with the search
points, whereas Figure 4.B shows the result of applying nearest neighbor approximation and
smoothing to the initial grid.
Specifically Figure 4.A contains the search points explored during exponential and binary search
sections (including the ones discussed above: E1T = 〈E1 = (4.0, 1.6), PA = 1.0〉, E2T = 〈E2 =
(2.0, 0.3), PA = 1.0〉, E3F = 〈E3 = (10.0, 4.0), PA = 0.0〉, E4F = 〈E4 = (5.5, 4.0), PA = 0.3〉, E5T =
〈E5 = (5.5, 2.05), PA = 0.67〉) together with the initial search point E0T = 〈E0 = (1.0, 0.1), PA =
1.0〉 and other search points that might have been sampled during the search. First, let us construct
the grid by computing the step size for the two dimensions. By setting g = 0.192 we get a step size
step1 = 0.47 for p1 (p1.L = [1.0, 10.0]) and a step size step2 = 0.20 for p2 (p2.L = [0.1, 4.0]). The two
arrays a1 and a2, containing the remapped values for p1 and p2, have 20 elements. Therefore the
grid Agr is a two dimensional matrix with a shape of 20 × 20. In Figure 4 the x axis of each grid
shows the values of p1 and the y axis the values of p2. Let us now map the search point E3F into
the grid. The environment E3 has coordinates (10.0, 4.0) and according to Equation 3 its indexes
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on the grid are:

index3[0] =
⌊
19× 10.0− 1.0

9.9− 1.0

⌉
= b19.2e = 19 (4)

index3[1] =
⌊
19× 4.0− 0.1

4.0− 0.1

⌉
= b19e = 19 (5)

hence we can set the value at index3 = (19, 19) in Agr to be E3F .PA = 0.0, i.e. Agr[index3] = 0.0.
After repeating the same mapping procedure for all the other search points, we get the heatmap in
Figure 4.A. The next step is to approximate the missing adaptation probability values (blank cells
in the figure) using the nearest neighbor algorithm. For example, let us take the missing value
with coordinate (6.0, 2.2), i.e. the central point of the black square in the middle of the heatmaps.
The neighborhood of that point is composed of 32−1 = 8 points, since n = 2. These are the points
delimited by the black square, excluding the central point, i.e., the point under analysis. There are
two other values in the neighborhood of (6.0, 2.2), therefore the adaptation probability value for
such point is inferred to be 0.6+0.3

2 = 0.5. In Figure 4.B we can see that the point is on the frontier
delimited by the yellow curved region.

3.5 Implementation

We implemented our approach in an open-source tool called ALPHATEST written in Python [44].
The environments we considered in our empirical evaluation are available from the Gym library [10]
(v. 0.16.0) and the DRL algorithms we trained on those environments are implemented in a library
called stable-baselines [28] (v. 2.10.1) a fork of the popular baselines [14] library from OpenAI. For
plotting the heatmaps we used seaborn and matplotlib whereas for dimensionality reduction we
used the t-SNE method [84] implemented in the scikit-learn Python library [55]. We used the scikit-
learn also for the k-means and the decision trees implementations. For what regards the smoothing
technique, we used the radial basis function method of the scipy Python library [13].

4 Empirical Evaluation

We consider the following research questions:
RQ1 (effectiveness): How effective is ALPHATEST in finding frontier pairs that characterize the
adaptation behavior of a deep reinforcement learning algorithm in a given environment w.r.t. a
random exploration of the parameter space?
RQ1 aims at empirically comparing ALPHATEST with the random approach on the characteriza-
tion of the adaptation frontier. We deem a given approach as effective when it is able to character-
ize the adaptation frontier accurately (i.e., with high resolution across the entire parameter space),
which is important to understand the regions of the parameter space where the agent is able to
adapt and the regions where it is not able to adapt.
RQ2 (discrimination): How does ALPHATEST discriminate between different deep reinforcement
learning algorithms, that exhibit different degrees of plasticity?
The goal of RQ2 is to determine whether ALPHATEST is able to discriminate a deep reinforcement
algorithm that has high adaptation capabilities from another deep reinforcement learning with
low adaptation capabilities. The discrimination capability is crucial in practical scenarios to guide
the decision of the most appropriate algorithm that adapts better overall or in a desired region of
the parameter space.
RQ3 (hyperparameters): What are the critical hyperparameters of ALPHATEST and what is the
best way to fine tune them?
In RQ3 we want to study what is the impact of the hyperparameters of ALPHATEST on its per-
formance and on the discrimination metrics. Such empirical assessment will guide the users of
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ALPHATEST to choose a proper trade-off, depending on the computational resources available
and the algorithm under test.

4.1 Subject systems

Table 1 shows the environments we considered in our evaluation together with the associated
parameters. We kept the same parameter names that can be found in the source code of the re-
spective environments except in the case of CartPole, where we added a cartfriction parameter,
taken from the implementation of Patanjali et al. [54], that was not present in the original im-
plementation. Moreover, we modified the constructors of the environment classes to receive the
values of such parameters, which were previously hardcoded. Table 1 can be read in the follow-
ing way: considering a specific RL algorithm we tested its behaviors in the parameter space of
an environment determined by either two, three or four parameters. The parameters indicated
in the 3 parameters and in the 4 parameters Columns are added to the parameters of the previous
columns. For example, when we write CartPole 2, we are considering the environment CartPole
where during the search phase we vary only two parameters, namely length and cartfriction, while
the other two parameters, namely masspole and masscart, are fixed at their respective original val-
ues. When we write CartPole 3 we are considering the environment CartPole where we vary three
parameters during the search phase, namely length, cartfriction and masspole, while the fourth pa-
rameter masscart remains fixed. The dash sign in a table entry means that for that environment
there are no further parameters to consider. For example, for the Pendulum and the MountainCar
environments, we can consider at most three parameters.
We already described the CartPole environment in the previous section (see Section 3.1) as our
motivating example, together with the parameters that we vary during the search process. The
Pendulum environment [51] can be described an inverted pendulum, like the CartPole environ-
ment, but the problem is framed in a different way. In the Pendulum environment the pendulum
starts in a random position, and the goal is to swing it up so that it stays upright. The reward
function depends on the angle of the pendulum and it gives the agent maximum reward if the
pendulum is upright. The action space is continuous and it consists of a single action correspond-
ing to the torque applied on the joint of the pendulum. The observation space is also continuous
and it is a vector of two components, namely the pendulum angle w.r.t. the rest position θ and
the angular velocity θ̇. The Pendulum environment is episodic and the condition for the end of
an episode is based on a fixed maximum number of time-steps (i.e. 200). Pendulum is an unsolved
environment, as opposed to the CartPole environment, meaning that it does not have a specified
reward threshold at which it is considered solved. The parameters that can be changed in such
environment are dt, length and mass. The latter two parameters are relative to the length and the
mass of the pendulum pole respectively, while the former determines the rate at which the angle
θ of the pendulum can change.
In the MountainCar environment [49], described for the first time by Moore et al. [48], a car starts
positioned between two mountains in a one-dimensional track. The objective is to reach the goal
position up the right mountain. The car engine is not powerful enough to reach the goal in a
single pass, therefore it needs to drive back and forth between the two mountains to build up

Table 1: Environments and their parameters

2 parameters 3 parameters 4 parameters

Cartpole [6, 5] length, cartfriction masspole masscart
Pendulum [51] dt, length mass -
MountainCar [49, 48] force, gravity goalvelocity -
Acrobot [73, 74, 21] linklength1, linkcompos1 linkmass2 linkmass1
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momentum. The agent receives a negative reward at every time-step so that it is encouraged to
reach the goal as soon as possible. The action space is discrete and the agent can either choose to
apply a force to push the car in the right direction, to apply the same force to push the car in the
left direction or, alternatively, not to apply any force. The observation space, instead, is continuous
and it is a one dimensional vector containing the position of the car and its linear velocity. Also
the MountainCar environment is episodic and an episode ends when 200 time-steps have passed
or the agent reaches the goal position. Like the CartPole environment, also the MountainCar
environment is solvable and it is considered solved when the agent gets an average reward of at
least −110.0 over 100 consecutive evaluation episodes. The parameters that can be changed in
such environment are force, gravity and goalvelocity. The force parameter represents the magnitude
of the action applied to the car to move it either to the left or to the right. The gravity parameter
also affects the difficulty of the task and it can be considered equivalent to changing the mass of
the car. Lastly, the goalvelocity parameter imposes a constraint on the velocity that the car needs to
have when reaching the goal position.
The Acrobot environment [73], first described by Sutton et al. [74] and later refined by Geramifard
et al. [21], is a system composed of two joints and two links where the joint between the two links
is actuated. The initial position of the system is with the two links hanging downwards and the
goal of the agent is to bring the end of the lower link to a given height. The agent gets a reward
of −1 for each time-step and a reward of 0 when it manages to reach the goal. The action space
of the agent is discrete so that it can either apply a positive torque on the actuated joint between
the two links, a negative torque of the same magnitude or, alternatively, it can choose to apply
no torque. The observation space, instead, is continuous and it consists of sin · and cos · of the
two rotational joint angles θ1, θ2 and the joint angular velocities θ̇1, θ̇2. The Acrobot environment
is an episodic environment and an episode ends when either the goal is reached or 500 time-
steps have passed. The Acrobot environment has a reward threshold for which it is considered
solved, which is −100 over 100 evaluation episodes. The parameters that can be changed in such
environment are linklength1 (length of the first link, changing the length of the second link has no
effect), linkcompos1 (position of the center of mass of the first link), linkmass2 (mass of the second
link) and linkmass1 (mass of the first link).

4.2 Subject algorithms

The deep reinforcement learning (DRL) algorithms we selected for our empirical evaluation are
Proximal Policy Optimization (PPO) [67], Soft Actor Critic (SAC) [24] and Deep Q Network (DQN) [47].
They belong to the categories presented in Section 2, respectively policy gradients (PPO), hybrid
(SAC) and value-based (DQN) methods. Moreover these DRL algorithms are mature and widely
used and as such many model-free reinforcement learning libraries provide a stable implementa-
tion of them.
The implementation of SAC we used [28] only supports continuous action spaces, while DQN
only supports discrete action spaces. The PPO implementation supports both continuous and
discrete action spaces, but we always chose to use PPO in its discrete version. Therefore, we
modified the Pendulum environment to also support a discrete action space for the two possible
actions. This way a DQN agent, as well as a PPO agent with discrete actions, can either swing
the pendulum left with maximum torque or right with the same torque magnitude (we did not
include a do nothing action). Moreover, we also modified the CartPole, MountainCar and Acrobot
environments to support continuous action spaces, so that a SAC agent would be able to control
them. In particular, we defined such continuous action spaces as a linear interpolation between
the minimum and the maximum force that can be applied to the system. In all environments with
discrete action spaces the left and right actions correspond to the extremes of the respective con-
tinuous action spaces and the do nothing action (in the MountainCar and Acrobot environments)
is the middle point in the continuous space.
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4.3 Procedure and Metrics

4.3.1 Procedure

We trained all DRL algorithms under test on the environments with the default parameters. The
hyperparameters of the DRL algorithms were, in part, taken from the open-source repository rl-
baselines-zoo2, which contains both hyperparameters and trained agents for the DRL algorithms
implemented in stable-baselines [28]. We changed the given hyperparameters only when it was
possible to achieve a better cumulative reward and/or to decrease the training time. The final
set of hyperparameters for each DRL algorithm was chosen as the one that gave the highest av-
erage reward over 10 distinct training runs (each one with a different random seed). Such set of
hyperparameters was then used to train the model that we used in our evaluation, i.e. the model
under test. In particular, when training the model under test, we evaluated it for 100 episodes
every N time-steps, where N is a fraction (i.e., 10%) of the total training time measured in num-
ber of time-steps, which changes for every algorithm and every environment. The best model
was chosen as the one with highest average reward considering all the evaluation runs. Table 2
shows the performance, both in terms of average reward and in terms of training time, of the best
models produced by each DRL algorithm on the respective environments. In particular, Column
Avg reward shows the average reward a trained agent gets over 100 evaluation episodes. Column
Time to train indicates the time taken, in minutes, to train a certain DRL algorithm on the given
environment. The table also shows that for all the environments that have a reward threshold (i.e.
they are solvable, see column Reward threshold) the average reward over 100 episodes for all the
DRL algorithms is above the threshold. For the Pendulum environment, which does not have a
reward threshold, we took the average reward obtained when training the SAC algorithm with
the hyperparameters we found in the rl-baselines-zoo repository and trained both PPO and DQN
algorithms to achieve the same average performance.
In order to enable continual learning for the selected DRL algorithms we had to change some of
their specific hyperparameters. Since no guidelines exist on how to best set the hyperparame-
ters of DRL algorithms for continual learning, we acted mainly on those hyperparameters that
control the amount of exploration of the agent during training. Indeed, when continual learning
is enabled, the objective is to preserve the performance achieved in the previous training phase
while also learning the new behaviors that might be necessary in the new, changed environments.
In order to preserve the previous performance, we saved the replay memory resulting form the
training phase on the original environment for DQN and SAC since, being off-policy algorithms

2https://github.com/araffin/rl-baselines-zoo

Table 2: RL algorithms performance after training on the original environments.
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Cartpole 475 500.0 1.81 500.0 2.33 500.0 2.08
Pendulum - -145.87 2.12 -140.79 1.92 -153.32 2.55
MountainCar -110 -108.93 2.38 -108.47 2.80 -104.86 3.55
Acrobot -100 -83.20 0.95 -89.62 3.32 -86.93 3.88
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(see Section 2), they learn from transitions stored in such memories. Then, when continual learn-
ing is enabled for such algorithms, the memory is restored and, as the subsequent training phase
proceeds, the older knowledge is replaced by the newer one, coming from the interactions of the
agent with the new environment. Regarding the specific hyperparameters of the DQN algorithm
(described in Section 2.2.2) when continual learning is enabled, we set the initial ε of the ε-greedy
policy to be equal to the final value of ε resulting from the previous training phase (usually a small
value, such as 0.01). For the SAC algorithm (described in Section 2.2.3) the entropy regularization
coefficient α that controls the exploration-exploitation trade-off is automatically adjusted in the
implementation we used. Therefore, we did not act on this parameter when enabling continual
learning. Finally, for the PPO algorithm (described in Section 2.2.1), before enabling continual
learning, we modified the parameter ε that controls how much the new policy can be different
from the old policy. This parameter is usually in the interval [0.1, 0.3] but we noticed that in con-
tinual learning the policy changes in a way that the previous performance cannot be restored if
the value of such parameter is set within this interval. Therefore, we set ε = 0.08 before starting
the training phase on the new environment. Moreover, we checked that the hyperparameters for
all the DRL algorithms were reasonably set by running 10 continual learning runs for half of the
training time on the same environment where a certain DRL algorithm was originally trained.
Then, we made sure that in all the runs the performance of the agent (average reward over 100
evaluation episodes) after each continual learning phase matched the initial performance (i.e., the
one reached at the end of the initial training phase). In other words, we made sure that we could
restore the performance of an agent on the same environment it was trained on and maintain it
for a certain number of time-steps.
In order to choose the environment parameters to consider for evaluation we instantiated each
environment with all the possible parameters (i.e. CartPole 4, Pendulum 3, MountainCar 3 and Ac-
robot 4), we computed the multipliers for each parameter according to Algorithm 2 and stopped
ALPHATEST (see line 2 in Algorithm 1). The adaptation condition is the same for all environ-
ments, i.e. we deem the adaptation successful if the average reward of the agent trained and
evaluated in an environment does not fall below 20% of the average reward the agent gets in the
original environment. Likewise, the regression condition is also the same for all environments,
with a regression threshold of 5%. Since each discovered multiplier is such that the adaptation
condition returns false, we could compute the precise drop in performance of the agent w.r.t. the
average reward the agent had achieved after the initial training phase. Then, for each environ-
ment, we ranked the parameters that are potentially more critical in terms of adaptation based on
such performance drops. The results of such analysis are shown in Table 1 where the parameters
for each environment are ranked by their performance drops. For example, the parameters length
and cartfriction are the most critical in the CartPole environment. The parameter masspole is the
next most critical among the four and masscart is the less critical. We have chosen to prioritize the
parameters based on criticality because evaluating all the possible combinations of parameters for
all DRL algorithms would have been too computationally expensive.
Once we have set the multipliers for each parameter, we determined the respective limits, i.e.
L = 〈l, h〉. In particular, we set the limits of each parameter to be L = 〈l = p.v0, h = l × p.m × 4〉
if p.m > 1.0 otherwise, if 0.0 < p.m < 1.0, L = 〈l = h×p.m

4 , h = p.v0〉. We multiplied and
divided the discovered limits by 4 in order to have a reasonably large range of values for each
parameter. Given a certain parameter, the multipliers can be different for each DRL algorithm
and, therefore, also the respective limits are different. Hence, to be able to compare the output
of different DRL algorithms, when we construct the adaptation grids and compute the volumes,
we consider the limits associated with the smallest range of values across all DRL algorithms.
For example, if for the CartPole environment, considering the parameter length, the limits for
SAC are LSAC = 〈l = 0.5, h = 10.0〉 and the limits for PPO are LPPO = 〈l = 0.5, h = 5.0〉, we
construct the adaptation grids considering LPPO. In this way, we are sure that the comparison
is fair and the adaptation volumes are comparable. Regarding the anti-regression volume, we
computed it as the number of points in the grid within the adaptation frontier of each algorithm
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(i.e. with PA > 0.5) that have PR ≤ 0.5. The anti-regression volume is normalized over the total
number of grid points within the adaptation frontier. For this reason the normalization factor can
be different for every algorithm, even considering the same environment configuration. Therefore,
anti-regression volumes of different algorithms within the same environment configuration are
not comparable in an absolute way, but only relatively to the respective adaptation volumes.
To form a baseline for comparison, we devised a random exploration procedure of the parameter
space. In particular, at each iteration, we randomly choose a possible value in the defined range
for each parameter and then train the agent on the resulting environment. The resulting search
point E may have an adaptation probability either below or above threshold (we do not compute
the regression probability in this case). Then, to understand if the randomly selected search point
E belongs to the adaptation frontier, we determine the neighborhood of E by modifying the envi-
ronment parameters in a way that the resulting search points are at a distance ε from the already
executed search point E , according to the distance function in Equation 1. In particular, for each
parameter, we considered two values, respectively greater and smaller than the current param-
eter value, that respect the distance function, therefore the neighborhood of an executed search
point is composed of n × 2 search points, where n is the dimension of the search space (number
of parameters being searched). The resulting neighboring search points Ei are executed and their
adaptation probabilities are computed. If a pair (E , Ei) satisfies Definition 1, i.e. their adaptation
probabilities are one below and one above threshold, a frontier pair is found.
In order to establish a fair comparison between the random baseline and ALPHATEST we deter-
mined the number of iterations of the random baseline in the following way. For each environment
and for each DRL algorithm we first executed ALPHATEST for five repetitions and computed the
maximum number of search points M resulting from the experiments. We then set the number of
iterations for the random method to be b Mn×2e, where b·e means the approximation to the nearest
integer. In fact, for each iteration, the random method executes n × 2 + 1 search points, i.e. one
search point determined at random plus the n× 2 search points in the neighborhood.
For both the random method and ALPHATEST we set the number of repetitions to be equal to five
for each experiment (in order to compare the two methods statistically), where each experiment
is a pair (environment configuration, DRL algorithm), the number of training runs for probability
estimation (rpe) to be equal to three (in order to account for the randomness of DRL algorithms
the adaptation probability is estimated with multiple continual learning runs on each environment
configuration) and the continual learning time (clt) to be equal to half of the initial training time
(measured in number of time-steps). For each training run the model is evaluated every N time-
steps, where N is a fraction (i.e. 20%) of the total continual learning time, for 20 episodes in order
to evaluate the adaptation condition. If the adaptation condition returns true at some point during
training, then training is stopped. Otherwise, training goes on until the continual learning time
expires and the adaptation condition is also evaluated at the end.

4.3.2 Metrics

In order to characterize accurately the adaptation frontier it is important to obtain the highest
number of frontier pairs and maximize their sparseness across the parameter space. The more
frontier pairs are found in the parameter space and the more scattered they are, the better the
adaptation frontier will be characterized. Therefore, to assess effectiveness (RQ1) we ran both AL-
PHATEST and the random exploration on all the environments by varying only two parameters
(see first column of Table 1) for all DRL algorithms. We measured the number of frontier pairs
found by ALPHATEST and by random exploration, and compute both the p-value with the non-
parametric Wilcoxon test and the Vargha-Delaney Â12 effect size to compare the two methods statis-
tically [4]. We also measured the sparseness of the frontier pairs. In particular, for each frontier pair
we considered a search point with parameter values corresponding to the average of the param-
eter values of the two search points in the frontier and measured the pairwise distances between
each resulting point and all the others. Each pairwise distance is normalized by dividing it by
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Table 3: RQ1: effectiveness results

# search points # frontier pairs sparseness

alphatest random alphatest random alphatest random

CartPole 2
PPO 46 55 5.6 0.8 0.58 0.12
SAC 54 68 6.0 0.6 0.42 0.00
DQN 49 56 5.8 6.6 0.50 0.68
Pendulum 2
PPO 112 136 14.0 3.4 0.06 0.06
SAC 83 103 8.0 0.4 0.01 0.00
DQN 157 197 17.0 4.0 0.03 0.08
MountainCar 2
PPO 108 126 15.0 4.0 0.06 0.03
SAC 312 350 43.6 7.2 0.04 0.03
DQN 361 396 50.4 8.0 0.05 0.05
Acrobot 2
PPO 148 179 19.0 1.2 0.11 0.05
SAC 85 110 11.0 0.8 0.09 0.01
DQN 119 154 15.0 0.8 0.09 0.01

the maximum distance between two points in the parameter space. We then considered the max-
imum pairwise distance for each search point in the frontier, averaged them and compared them
statistically.
We evaluated discrimination (RQ2) by computing both the adaptation volume and the anti-regression
volume for all the DRL algorithms and all the combinations of environment parameters (see Ta-
ble 1) that we considered in our evaluation (the granularity hyperparameter for volume compu-
tation was set to 1, i.e. g = 1). We also computed the adaptation and anti-regression heatmaps
for all the environment configurations with two parameters, and built frontier visualization plots
by applying the t-SNE dimensionality reduction technique together with clustering and decision
trees, for all the environment configurations with more than two parameters.
Concerning the hyperparameters (RQ3), we measured the impact on the number of runs skipped
and, hence on the time saved during search, of the dominance option of ALPHATEST. Moreover,
we measured the impact on the volume of increasing the number of runs for probability estima-
tion from three to five. In particular, we measured the standard error of the mean (SEM) of the
adaptation volume, i.e. the standard deviation of the adaptation volume divided by the square
root of the runs used for probability estimation. We also varied the granularity of the adaptation
grid. Specifically we doubled the original value considered in RQ2 and we halved it, to measure
the impact both on the adaptation volume metric and on the percentage of search points that have
a collision in the grid. Finally, for each environment, we took the worst performing algorithm in
terms of adaptation volume and carried out other five repetitions of ALPHATEST by increasing the
continual learning time to be equal to the initial training time in order to measure the impact on
adaptation and anti-regression volumes of the continual learning time hyperparameter.

4.4 Results

Effectiveness (RQ1) Table 3 shows the comparison between ALPHATEST and random for all
DRL algorithms in the four environments in terms of number of search points (Columns 1–2),
number of frontier pairs (Columns 3–4) and sparseness of the pairs in the frontier (Columns 5–6).
We can notice that ALPHATEST and random both have roughly the same number of search points
executed, on average, although there is a slight advantage for random which explores more search
points in all environments. This data confirms that the comparison between ALPHATEST and
random is fair.
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In terms of number of frontier pairs Table 3 shows that ALPHATEST finds more frontier pairs than
random. Bold values indicate that the difference between the two means is statistically significant
(i.e. p-value is below 0.05) and the underline indicates when the magnitude of the effect size Â12 is
large. In all but one case (DQN in CartPole 2), the number of frontier pairs found by ALPHATEST

is larger than random and the difference between the two means is both statistically significant
and the magnitude of the effect size is large.
Regarding sparseness there is a significant difference only in two out of four environments, namely
CartPole 2 (considering PPO and SAC) and Acrobot 2. In the remaining environments, i.e. Pen-
dulum 2 and MountainCar 2, the effect size is large in favor of ALPHATEST when considering the
algorithm SAC. The small values of sparseness in Pendulum 2, MountainCar 2 and Acrobot 2 are due
to the frontier pairs being concentrated near the origin of the two-dimensional parameter space.

RQ1: Considering the same number of search points, ALPHATEST finds significantly more
frontier points than random. Moreover, in two out of four environments and for most of
the DRL algorithms, the frontier pairs found by ALPHATEST are significantly more sparse
than those found by random.

Discrimination (RQ2) The first part of Table 4 (i.e. Columns 1–4) shows how ALPHATEST dis-
criminates between different DRL algorithms in different environments. In particular Column 1
shows the average adaptation volume considering five repetitions of ALPHATEST and Column 2
shows the standard deviation of the adaptation volume in percentage. Similarly, Columns 3–4
show the average anti-regression volume and its standard deviation in percentage respectively.
The adaptation and anti-regression volumes were computed by considering the granularity g =
1.0 except for the environments CartPole 4 and Acrobot 4 where the volumes were computed with
g = 0.5, in order to save computation time. The adaptation volumes of different DRL algorithms
can be compared within the same environment configuration, since the adaptation grids are con-
structed with the same parameter ranges. Regarding the anti-regression volumes, each normal-
ization factor depends on the number of points within the adaptation frontier of the specific DRL
algorithm. Therefore, each anti-regression volume indicates how much a certain DRL algorithm
is able to remember how to behave in the original environment (i.e. it does not regress) relative to
its adaptation volume. For example in CartPole 2 the PPO algorithm, on average, has regressions
only within 5% of the adaptation frontier (i.e., the anti-regression volume is 95%).
Considering the average adaptation volumes, we marked in green (with suffix (1)) the best adap-
tation volume in each environment configuration, in yellow (with suffix (2)) the second best adap-
tation volume and in red (with suffix (3)) the worst adaptation volume among the three DRL
algorithms. We can see that PPO achieves the best adaptation volume in three environments out
of four (i.e. except for Pendulum) and it is never the worst among the three. SAC is the best in
Pendulum but it is the worst in two environments, namely CartPole and MountainCar. DQN, on the
other hand, is never the best and it is the worst in Pendulum. Interestingly the ranking is main-
tained in Pendulum and MountainCar when passing from two parameters, i.e. Pendulum 2 and
MountainCar 2, to three parameters, i.e. Pendulum 3 and MountainCar 3. Moreover, also in Cart-
Pole and Acrobot the algorithm that obtains the best adaptation volume, i.e. PPO, remains the best
when considering more than two parameters. On the other hand, in Acrobot the algorithm SAC is
moved from the second to the third position when considering three and four parameters, i.e. Ac-
robot 3 and Acrobot 4, being surpassed in the ranking by DQN (in Acrobot 2 the average adaptation
volume of DQN is smaller than that of SAC only by a negligible amount). In CartPole, instead, the
switch in the ranking between second and third position takes place when moving from three to
four parameters, i.e. from CartPole 3 to CartPole 4, and it involves SAC and DQN with the latter
moving from the second to the third position in CartPole 4. In summary, although PPO is the DRL
algorithm that adapts better in three out of four considered environments, our experiments are not
sufficient to deem PPO superior than others in absolute terms, since the number of environments
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Table 4: RQ2 discrimination results and RQ3 results for ALPHATEST’s dominance hy-
perparameter
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CartPole 2
PPO 2.9e−1 (1) 30.06 0.95 6.00 46 28 60.87 0.32 76.02
SAC 1.2e−1 (3) 16.94 0.86 10.28 54 33 61.85 0.99 145.41
DQN 2.7e−1 (2) 11.37 0.76 17.27 49 21 43.21 1.83 70.90
CartPole 3
PPO 5.0e−2 (1) 43.06 0.99 0.62 198 119 59.88 1.43 82.20
SAC 3.2e−2 (3) 26.05 0.95 3.12 224 148 66.07 4.31 159.19
DQN 3.5e−2 (2) 12.23 0.95 3.20 236 130 54.95 7.00 108.49
CartPole 4∗
PPO 1.4e−2 (1) 31.91 1.00 0.16 655 443 67.65 4.32 110.78
SAC 5.0e−3 (2) 18.90 0.99 0.48 785 595 75.83 11.52 229.70
DQN 4.0e−4 (3) 11.57 0.95 2.33 856 548 64.04 21.08 155.80

Pendulum 2
PPO 3.0e−2 (2) 8.92 0.80 9.57 112 85 75.62 1.08 229.87
SAC 5.0e−2 (1) 52.18 0.85 4.84 83 65 78.99 0.71 186.98
DQN 1.4e−2 (3) 9.64 0.88 8.26 157 132 83.82 1.10 230.97
Pendulum 3
PPO 5.0e−3 (2) 9.42 0.91 3.63 1062 958 90.24 3.70 353.55
SAC 1.4e−2 (1) 41.48 0.90 4.23 778 718 92.36 2.35 380.76
DQN 2.0e−3 (3) 14.61 0.82 8.55 1916 1822 95.09 3.50 455.60

MountainCar 2
PPO 1.0e−2 (1) 4.76 0.55 19.56 108 78 72.27 3.09 207.91
SAC 2.0e−3 (3) 34.84 0.82 17.42 312 275 88.16 2.69 360.04
DQN 4.0e−3 (2) 6.29 0.80 14.59 361 321 88.87 3.30 386.62
MountainCar 3
PPO 2.0e−3 (1) 5.91 0.86 7.97 371 281 75.78 7.74 226.79
SAC 4.0e−4 (3) 4.57 0.95 4.20 1016 897 88.25 7.21 365.50
DQN 7.0e−4 (2) 8.11 0.95 1.03 1199 1060 88.36 10.59 371.03

Acrobot 2
PPO 1.0e−2(1) 8.18 1.00 0.00 148 110 74.22 1.43 188.99
SAC 9.0e−3 (2) 6.17 0.93 9.55 85 53 62.59 1.88 155.01
DQN 9.0e−3 (3) 4.80 1.00 0.00 119 86 71.81 3.57 207.91
Acrobot 3
PPO 6.0e−4 (1) 2.85 1.00 0.00 664 538 81.04 4.21 272.13
SAC 3.0e−4 (3) 3.66 1.00 0.27 391 296 75.81 5.18 271.89
DQN 4.0e−4 (2) 6.08 1.00 0.20 544 442 81.23 10.30 351.29
Acrobot 4∗
PPO 4.0e−5 (1) 5.46 1.00 0.00 1970 1640 83.23 11.21 325.94
SAC 2.0e−5 (3) 7.70 1.00 0.56 1276 1054 82.59 11.67 372.27
DQN 2.0e−5 (2) 3.46 0.99 0.34 1726 1455 84.26 27.13 383.58

∗ g = 0.5 to save time; g = 1.0 in all other cases † hyperparameter dominance analysis

we trained PPO on is relatively small and we did not carry out any hyperparameter tuning, which
DRL algorithms have been shown to be sensitive to [27].
The other interesting dimension along which we compare the selected DRL algorithms is the anti-
regression volume. Figure 5 shows the trade-off between adaptation and anti-regression volumes.
In particular, Figure 5.A shows such trade-off in CartPole 2 whereas Figure 5.B shows it in Moun-
tainCar 2. We can see that in CartPole 2 there is clearly a DRL algorithm, namely PPO, that dom-
inates the others, i.e. it has the highest adaptation volume and, at the same time, it also has the
least amount of regression (i.e. the highest anti-regression volume). On the other hand, Figure 5.B
shows that there is no clear winner among the three algorithms applied to MountainCar 2. In fact,
the Pareto front, indicated with a dashed black line, suggests that as the adaptation volume in-
creases, there is also an increase in the amount of regressions that a certain algorithm has (i.e., the
anti-regression volume decreases). In other words, in MountainCar 2 and for all DRL algorithms,
adapting to new environments means forgetting how to behave in the original environment. For
DQN, whose average adaptation volume increases by≈ 39% w.r.t. the average adaptation volume
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Figure 5: Trade-off between adaptation and anti-regression volumes

of SAC, its average anti-regression volume decreases only by ≈ 2%. Instead, PPO has an average
adaptation volume that is ≈ 80% higher than the one of DQN but its average anti-regression
volume is ≈ 38% smaller. This could be due to the fact that DQN and SAC are both off-policy
algorithms (see Section 2). The replay memory helps these algorithms to replay the previous
experience while learning new behaviors, hence forgetting less how to behave in the original en-
vironment than PPO which, being an on-policy algorithm, does not use a replay memory to learn.
However, this trade-off seems to be significant only when considering two parameters in an envi-
ronment. When the number of parameters increases, correspondingly the adaptation volume of
a certain algorithm decreases and its anti-regression volume tends to increase (except for DQN in
Pendulum and DQN from Acrobot 3 to Acrobot 4). One possible explanation of this phenomenon
might be that, since the adaptation volume is smaller in higher dimensions, the new environments
are more similar to the original environment (i.e. the origin) and, as a consequence, the algorithm
has less regressions w.r.t. new environments that are not so far away from the origin.
Besides the quantification of the adaptation capabilities of a certain algorithm with the compu-
tation of the adaptation volume, our approach also produces the adaptation heatmap for a certain
algorithm when the considered environment has two parameters. Figure 6 shows the adaptation
heatmaps for PPO, SAC and DQN (respectively Figure 6.A, Figure 6.B, and Figure 6.C) in the Cart-
Pole 2 environment. The x axis shows the values of the parameter length that spans from 0.50 to 4.0,
whereas the y axis shows the values of the parameter cartfriction that has the interval [0.0, 51.20].
The ranges of these two parameters are the same for each DRL algorithm and the colors in each
heatmap indicate the adaptation probability, as shown by the color bar on the bottom right corner
of the figure. The adaptation frontier is the yellow continuous line between the green (adaptation
successful) and the red (adaptation failed) regions of the heatmap, while the black dots indicate
the search points sampled by the search procedure of ALPHATEST. From the maps we can see that
the parameter length is more critical in terms of adaptation capabilities than the cartfriction param-
eter, for all the algorithms. In particular, no DRL algorithm adapted when length = 4.0, although
DQN seems to be the best at tolerating the increase of such parameter, but all DRL algorithms
adapted when cartfriction = 51.20. The adaptation heatmaps are easily interpretable by develop-
ers, as they show the regions of the parameter space where the adaptation frontier lies and where
we can expect a certain algorithm to successfully adapt or not when the initial conditions of the
environment change.
Figure 7 shows the adaptation and anti-regression heatmaps of the DQN algorithm in the CartPole
2 environment (respectively Figure 7.A and Figure 7.B, with Figure 7.A the same as Figure 6.C). In
the anti-regression heatmap (Figure 7.B) the color code is reversed w.r.t. the adaptation heatmap:
the heatmap is red where the regression probability is 1.0 and it is green when the regression prob-
ability is 0.0. The gray color indicates the region of the parameter space where the anti-regression
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Figure 6: Adaptation probability heatmaps for PPO, SAC and DQN in the CartPole 2 environment

heatmap is not defined, i.e. outside the boundary delimited by the adaptation frontier indicated
by the yellow continuous line in Figure 7.A. We can notice that the anti-regression frontier is not
continuous and there can be islands of regressions inside regions of the parameter space where the
algorithm does not regress (see the red region in Figure 7.B, where the length parameter is within
[1.20, 1.76] and the cartfriction parameter is within [0.00, 2.05]).
When the environment has more than two parameters, ALPHATEST provides a visualization of
the adaptation frontier by means of the t-SNE dimensionality reduction technique and k-means
clustering applied to the t-SNE lower dimensional vectors. Figure 8.A shows the frontier pairs
found by ALPHATEST in the CartPole 3 environment for PPO, i.e. by considering the three pa-
rameters length, cartfriction and masspole. After reducing the search space dimensionality from 3
to 2 by means of t-SNE, we perform silhouette analysis to find the optimal number k of clusters
produced by k-means. In Figure 8.A, the six resulting clusters are represented as regions with the
same background color. A magenta star with a label indicating the cluster ID (class-i) is positioned
at each cluster centroid. In the figure the original environment is indicated with a blue circle and
each frontier pair is displayed as two points, one green (where the algorithm adapted) and one red
(where the adaptation was not successful), connected by a dashed gray line (for visual clarity we
omitted the labels indicating the values of the three parameters of each component of a frontier
pair).
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Figure 7: Adaptation and anti-regression probability heatmaps for DQN algorithm in the CartPole
2 environment
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class = 5
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value = [0, 8, 0, 0, 0, 0]
class = 1

Figure 8: Visualization of frontier pairs found by ALPHATEST in the Cartpole 3 environment for
PPO and their classification by means of a decision tree

Then, we trained a decision tree to classify each point of a frontier pair by the cluster they belong
to, based on its features, i.e. the values of the parameters for that particular environment. Figure 8.B
shows the decision tree trained on the frontier pairs, using the cluster IDs as class labels, for the
clusters shown in Figure 8.A. The leaf nodes are highlighted in yellow and each leaf node is pure
(i.e. its Gini impurity metric is 0.0). The decision tree tells us that the length parameter is not crucial
for the classification of the frontier pairs, since it is not present in any of the decision nodes nor
in the root node. Moreover, the decision tree tells us in which regions of the parameter space the
frontier pairs are clustered. For example, from the decision tree in Figure 8.B, we can see that the
six frontier pairs that have masspole≤ 5.689 and cartfriction≤ 4.8 are clustered together (with label
class-0 on the bottom left corner of Figure 8.A). When cartfriction ∈ (4.8, 24.0], instead, we get the
four frontier pairs that belong to the cluster with ID class-2 (bottom center of Figure 8.A).3.

3The visualizations of the frontier pairs in more than two dimensions and of the heatmaps for all the environment
configurations we considered are available for download at [44]
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RQ2: The adaptation volume allows the users of ALPHATEST to discriminate a DRL algo-
rithm with high adaptation capabilities from another DRL algorithm with low adaptation
capabilities. Sometimes such adaptation comes at the cost of more regressions on the orig-
inal environment (i.e. higher anti-regression volume), therefore the user needs to decide
which of the two properties is more important for the specific situation. ALPHATEST also
provides the users with a visualization of the adaptation frontier to better evaluate the be-
haviors of the DRL agent in the parameter space of the environment of interest, both when
two (heatmap) and when more than two (clusters and decision tree) parameters are consid-
ered.

Hyperparameters (RQ3) Table 4 shows, on the right hand side of the table, the results for the
hyperparameter dominance. Column 5 shows the average number of search points, across five rep-
etitions, sampled by ALPHATEST during the search phase. Such number increases when moving
from an environment with two parameters to an environment with three parameters, and from
three parameters to four parameters, since the combinations of possible environment configura-
tions increases. Column 6 shows the average number of search points skipped, i.e. not executed,
by enabling dominance analysis both in the exponential and in the binary search sub-phases. Col-
umn 7 shows the percentage of search points skipped out of the total number of search points,
whereas Column 8, shows the search time, measured in hours, of the search phase of ALPHAT-
EST for a single repetition. Column 9 shows the average percentage of time saved by enabling
dominance analysis, measured as the ratio between the estimated execution time for the skipped
points and the actual execution time of the search, with dominance analysis enabled. It gives the
percentage of the actual execution time that would be added if search point skipping were dis-
abled. In practice, we compute it by multiplying the number of skipped search points by the time
to execute a single search point (estimated as the average across all the executed search points in
all repetitions for a certain algorithm) and dividing the product by the actual search time.
Interestingly, for all environments except MountainCar and for all algorithms, the average number
of skipped search points in percentage increases by ≈ 13% when moving from the environment
configuration with the lowest number of parameters (e.g. CartPole 2) to the environment config-
uration with the highest number of parameters (e.g. CartPole 4). In MountainCar such increase is
only 1%. Moreover, dominance analysis seems to be quite dependent on the specific environment.
In particular, considering the environment configurations with two parameters, in MountainCar
2 dominance analysis is able to skip the execution of the highest number of search points (i.e.
≈ 83%), while in CartPole 2 it skips the lowest number of search points (i.e. ≈ 55%). The impact
of the specific DRL algorithm on dominance is less significant but not negligible in some envi-
ronments. For example, in CartPole, dominance analysis skips 54% of the total number of search
points for DQN and 68% of the total number of search points for SAC. Similarly, in MountainCar,
dominance analysis skips 74% of the total number of search points for PPO and 88% for DQN.
The differences in the remaining environments are less pronounced. The corresponding percent-
age of time saved depends on the time to execute a single search point that can greatly vary across
different algorithms. For example, in Acrobot 2, the percentage of skipped search points is higher
for PPO than for DQN (respectively 74% vs 71%) but the time saving percentage is lower for PPO
than for DQN (respectively 189% vs 207%). In fact, the time to execute a single search point for
PPO is 1.5 minutes, whereas for DQN it is 5.2 minutes.
Table 5 shows the results for the remaining hyperparameters of ALPHATEST. The first five columns
report the metric values obtained when running ALPHATEST with the default parameters, i.e.
granularity g = 1.0, runs for adaptation probability estimation rpe = 3 and continual learning
time clt = half the initial training time. In particular, Column 1 shows the average percentage of
search points colliding when constructing the adaptation grids with granularity g = 1.0. Such
adaptation grids are constructed considering the original limits for each algorithm (not the lowest
across algorithms, as in Table 4 where different algorithms are being compared). Column 2 shows
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Table 5: RQ3: hyperparameters results
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CartPole 2
PPO 5.7 1.4e−1 2.1e−2 0.3 0.97 15.3 2.2 2.9 0.7 9.9e−3 54.1 0.6 104.3 - -
SAC 12.9 6.7e−2 6.6e−3 1.0 0.94 24.9 6.4 3.8 1.4 3.5e−3 47.1 2.0 106.8 47.4 2.6
DQN 2.5 2.8e−1 1.8e−2 1.8 0.76 7.1 1.0 1.7 0.5 9.4e−3 48.4 2.9 56.8 - -
Pendulum 2
PPO 17.4 2.5e−2 1.1e−3 1.1 0.78 29.8 3.7 6.9 3.8 1.0e−3 12.1 1.6 50.4 - -
SAC 20.5 5.8e−2 1.1e−2 0.7 0.88 33.9 10.8 10.7 3.6 5.4e−3 56.1 1.1 54.8 - -
DQN 22.2 1.3e−2 3.0e−4 1.1 0.89 39.5 13.7 9.1 11.5 1.0e−4 67.8 1.7 56.0 43.7 13.0
MountainCar 2
PPO 10.6 7.6e−3 2.0e−4 3.1 0.57 25.5 12.4 4.6 8.0 1.0e−4 51.4 4.1 31.9 - -
SAC 31.5 3.0e−3 1.0e−4 2.7 0.83 50.2 24.1 17.5 9.3 4.0e−5 34.9 4.4 62.4 23.4 20.5
DQN 32.6 4.9e−3 2.0e−4 3.3 0.81 50.1 17.5 18.0 5.7 1.0e−4 49.6 6.3 90.4 - -
Acrobot 2
PPO 17.9 1.1e−2 5.0e−4 1.4 1.00 35.7 6.0 9.0 5.2 4.0e−4 22.5 2.2 56.6 - -
SAC 16.1 6.6e−3 2.0e−4 1.9 0.92 32.6 9.4 6.0 4.2 1.0e−4 70.8 3.6 89.9 - -
DQN 16.5 7.3e−3 2.0e−4 3.6 1.00 33.1 12.5 6.2 3.2 1.0e−4 67.7 6.7 88.9 24.4 3.8
† g = 1.0, rpe = 3, clt = half

the average adaptation volumes when clt = half and Column 4 is the average search time, in hours,
for a single repetition of ALPHATEST. Column 3 reports the average standard error of the mean
(i.e. SEM) of the adaptation volume when considering three runs for estimating the adaptation
probability. Column 5 shows the average anti-regression volumes.
Columns 6–9 are related to the granularity hyperparameter. In particular, we analyze the percent-
age of collisions and the adaptation volume percentage variation when the granularity is half the
original (i.e. g = 0.5) and when the granularity is twice as much (i.e. g = 2.0). As expected,
the percentage of collisions approximately doubles on average when halving the granularity, i.e.
g = 0.5, and it becomes half of the original value on average when g = 2.0. More interesting
is what happens to the adaptation volume that, on average, varies by ≈ 10% when g = 0.5 (the
maximum variation of the adaptation volume, i.e. 24%, happens in MountainCar 2 for SAC and
the minimum variation, i.e. 1%, happens in CartPole 2 for DQN), whereas when g = 2.0 the av-
erage variation is ≈ 5% (the maximum variation, 11.49%, happens in Pendulum 2 for DQN and
the minimum variation, 0.55%, in CartPole 2 also for DQN). We can also notice that the adaptation
volume percentage difference is high when the percentage of collisions is also high. In particular,
when considering g = 2.0, i.e. a grid where the adaptation volume is estimated better, with less
collisions, than at g = 1.0, the adaptation volume percentage difference is non negligible (> 1%)
only when the initial percentage of collisions is high (> 10%). As Figure 9 shows, the adaptation
volume percentage difference, when the granularity is doubled, increases linearly (with angu-
lar coefficient between zero and one) with the collisions percentage. In terms of execution time,
halving the granularity decreases the time to approximate the adaptation grid with the nearest
neighbor algorithm by 60% (the number of points in the grid decreases from 10k to 2.5k), while
doubling the granularity increases such time by 200% (the number of points in the grid increases
from 10k to 40k).
Columns 10–13 are about the runs of continual learning needed to estimate the adaptation prob-
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Figure 9: Relation between collisions percentage and adaptation volume percentage difference

ability of a certain algorithm given an environment configuration. Specifically, Column 10 shows
the standard error of the mean (SEM) of the adaptation volume when rpe = 5, i.e. when we use
five runs of continual learning to estimate the adaptation probability. Column 11 shows the per-
centage decrease of SEM when moving from rpe = 3 to rpe = 5. We can see that SEM always
decreases (on average it decreases by 48%), suggesting that the adaptation volume across 5 repeti-
tions is more stable, since the adaptation probability is better estimated. The maximum decrease,
i.e. 71%, happens in the environment Acrobot 2 for SAC, whereas the minimum decrease, i.e. 12%,
happens in Pendulum 2 for PPO. The search time percentage increase is reported in Column 13
and, on average, the time to carry out the search phase in ALPHATEST increases by 71%. The max-
imum increase happens in CartPole 2 for SAC, where the search time more than doubles (i.e. it
increases by 107%), whereas the minimum increase, i.e. 32%, happens in MountainCar 2 for PPO.
Finally, Columns 14–15 are related to the time hyperparameter, specifically the continual learning
time that was originally set to half of the initial training time. We want to study the impact of
increasing the continual learning time, making it equal to the full training time, on the adaptation
volume and the anti-regression volume. We considered one algorithm in each environment for
this study, in particular the algorithm that had the worst adaptation volume in the comparison
done in Table 4. We can see in Column 14 that, on average the adaptation volume increases by 35%,
with the maximum being 47% in CartPole 2 for PPO and the minimum being 23% in MountainCar
for SAC. Column 15 shows that the anti-regression volume always decreases, on average by 10%,
with the maximum being 20.5% in MountainCar for SAC and the minimum being 2.6% in CartPole
also for SAC.

RQ3 (dominance): The most critical hyperparameter of ALPHATEST is the dominance op-
tion which should always be enabled, since it is beneficial to save computation time (on
average, in our experiments, we measured a percentage saving of ≈ 250%, i.e. 2.5× more
computation time would be needed without dominance).

RQ3 (granularity): The granularity hyperparameter g needs to be chosen as a trade-off
between the number of collisions and the time to carry out the parameter space approxima-
tion phase. We recommend decreasing the granularity hyperparameter when the number
of parameters in an environment increases. Indeed, the time to compute the volume in-
creases by an order of magnitude when adding a new parameter and considering the same
granularity.
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RQ3 (number of runs): The number of runs for adaptation probability estimation (hyper-
parameter rpe) is important for those algorithms that are more unstable, i.e. those that tend
to produce different results when trained on the same environment multiple times. Our re-
sults show that, when increasing rpe from three to five, on average, the standard error of the
adaptation volume mean decreases by 35% for PPO, by 52% for SAC and by 58% for DQN.
As a consequence increasing rpe seems more beneficial for SAC and DQN. Correspondingly,
the search time increases, on average, by 71% (considering all algorithms).

RQ3 (continual learning time): As expected, by increasing the continual learning time hy-
perparameter we can increase the adaptation capabilities of the agent but, at the same time,
we also decrease its capabilities to perform well in the original environment when adapta-
tion is successful. In some environments such trade-off is negligible (e.g. in CartPole 2 the
ratio between the anti-regression volume decrease and the adaptation volume increase is
only 0.05), whereas others it can be significant (e.g. in MountainCar 2 such ratio is 0.88).

4.5 Threats to Validity and Limitations

In this section we discuss the threads to validity that could affect our results [86]. Threats to
internal validity might come from how the empirical study was carried out. To be fair, when con-
sidering effectiveness, we compared ALPHATEST and random under identical parameter settings
(e.g., same number of search points), on the same environments and DRL algorithms.
Threats to conclusion validity are related to random variations and inappropriate use of statistical
tests. To mitigate these threats, we ran each experiment (both with ALPHATEST and random) five
times and used the non-parametric Wilcoxon test and the Vargha-Delaney effect size for statistical
testing. Moreover, to account for the random initialization of DRL algorithms, we ran them three
times on the same environment configuration with different random seeds, so as to better estimate
adaptation and anti-regression probabilities.
Using a limited number of environments poses an external validity threat. Although more subjects
would be needed to fully assess the generalizability of our results, we have chosen all the four
classic control environments that are highly used in the DRL community, as they are part of the
popular gym library.
With respect to reproducibility of our results, the source code of ALPHATEST, the experimental
results and all the environments are available online [44], making the evaluation repeatable and
our results reproducible.
One limitation of our approach is that the time to approximate the frontier in the parameter space,
needed to compute the adaptation and anti-regression volumes, increases exponentially with the
number of parameters of the environment if the granularity hyperparameter stays fixed. To ad-
dress this limitation, developers can consider two parameters at a time and indeed in most of
our experiments we also considered two parameters at a time, although we also conducted ex-
periments involving three or four parameters. The latter experiments confirmed the results ob-
tained on the reduced dimensionality space, showing that it is often possible to extrapolate the
experimental outcomes. In our future work we plan to investigate techniques to scale parameter
approximation to larger dimensionality.
Our approach makes the assumption that a total order relation exists between the parameter val-
ues, such that the complexity of the environment increases/decreases in the direction (or in the
opposite direction) of the parameter change. If a parameter satisfies this requirement then it is pos-
sible to apply the search phase of ALPHATEST, i.e. exponential search and binary search. Another
assumption, made by the binary search, is that two environment configurations can be moved
ε-close to each other in the parameter space. If a parameter assumes discrete values then this
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might not be possible. In our future work we plan to address these limitations by supporting
environments with discrete parameters, including those that do not admit a total order relation.

5 Discussion

Let us consider a context in which a software engineer needs to evaluate and test a system that has
adaptation capabilities (e.g. a reinforcement learning based system). In the following we consider
three questions that the software engineer may want to address in such context, and describe the
analyses and visualizations that ALPHATEST offers to answer those questions.

Will the system adapt to new unseen environments? The ability to adapt to new unseen envi-
ronments is the primary objective of a continual learning system. Assuming that the environment
can be parameterized ALPHATEST can efficiently manipulate the parameters to find the adapta-
tion frontier of the system. This is useful for the software engineer not only because it provides
information on whether the system is able to adapt but also in which regions of the parameter
space the adaptation is successful or not. For example in the CartPole 2 environment the DQN
algorithm (see the adaptation heatmap in Figure 6.C) is able to adapt for values of the length pa-
rameter (which determines the length of the pole) less than 2.32 when the friction on the cart (i.e.
parameter cartfriction) is 0, i.e. its default value. The range of values for the cartfriction parameter
in which the system can adapt is, instead, much bigger. The adaptation heatmap produced by
ALPHATEST tells the software engineer which parameters are more critical for adaptation and in
which range of values the system is expected to work once deployed.

Does the system have regressions when adaptation is successful? Depending on the task at
hand, it might be desirable to preserve an acceptable performance on the environment the system
was initially trained on while adapting successfully to new environment conditions. To this aim,
the anti-regression heatmap produced by ALPHATEST helps the software engineer understand in
which regions of the parameter space regressions arise. For example, the anti-regression heatmap
in Figure 7.B shows that the DQN algorithm in the CartPole 2 environment was able to adapt in the
region where length ∈ [1.2, 1.7] and cartfriction ∈ [0.0, 3.0] but once adapted to those environment
configurations it was not able to perform well on the environment it was initially trained on (i.e.
length = 0.5 and cartfriction = 0.0, the axes origin of the heatmap). The regression regions in the
anti-regression heatmap provide an indication for the software engineer to start investigating the
issues causing the regressions, in case they matter for the task at hand.

How to compare the performance of different algorithms? Ultimately, the software engineer
needs to choose the system to deploy. The choice might be between different available algorithms,
or even different versions of the same algorithm. ALPHATEST offers the adaptation volume metric
to allow the software engineer to discriminate a system with high adaptation capabilities from
another with low adaptation capabilities. The anti-regression volume is also computed, such that
the software engineer can decide to trade off one property for another depending on the context.
Adaptation volumes provide an overall measure of performance of the adaptation capabilities of
the system regardless of the number of parameters the environment has. However, a more in
depth analysis of the adaptation capabilities on specific regions of the parameter space might be
needed. For example, Figure 6 shows the adaptation heatmaps of three different DRL algorithms
in the CartPole 2 environment. Visually the figure shows that the DQN algorithm (Figure 6.C)
has a bigger adaptation area (i.e. the green area) w.r.t. the other algorithms, i.e. PPO and SAC
(respectively Figure 6.A and Figure 6.B). However, the DQN algorithm has its adaptation frontier
for values of length above 1.20 and cartfriction ∈ [12.3, 24.5] whereas the PPO algorithm is well
inside the adaptation boundary for the same ranges of values. Hence, despite the DQN adaptation
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area being overall bigger than the one of PPO, the latter might be preferable in terms of adaptation
in specific regions of the parameter space. When different algorithms are available, ALPHATEST

helps supporting the decision of the software engineer with both qualitative and quantitative
adaptation measures.

6 Related Work

In this section we first summarize the current approaches to test reinforcement learning (RL) based
systems. Then, we discuss the techniques proposed to test deep learning (DL) based systems
in general and, finally, we present how the major issue of catastrophic forgetting is addressed
in the context of continual learning. The literature on transfer learning is not discussed since
the objective of transfer learning techniques is to study how to transfer knowledge acquired in a
source domain to a target domain so as to speed up learning in the latter [77, 53, 39, 91]. This goes
beyond the scope of the present paper, which is studying the adaptation boundary of a learned
policy when the environment changes and the policy needs to be adapted incrementally.

6.1 Testing of Reinforcement Learning Systems

The problem of testing RL based systems is not much explored w.r.t. testing supervised learning
(SL) based systems [88, 58]. The first body of work in RL testing draws from the SL literature
that studies adversarial attacks, i.e. techniques to craft inputs on which trained neural networks
perform very poorly despite having very good average performance on the test set. For example,
classifiers trained to classify images are vulnerable to perturbations to the input image added by
an adversary, possibly causing misclassification [76]. In the same way also DRL algorithms can
be vulnerable to adversarial attacks, since DRL algorithms can learn end-to-end behaviors as well
(i.e. from raw inputs, e.g. images, to actions). Huang et al. [29] explored this hypothesis, find-
ing that the policies trained to play Atari games [7] from raw pixels are also prone to adversarial
attacks that can degrade their performance at test time. The authors analyzed the robustness to
adversarial attacks of different DRL algorithms considering both white-box and black-box adver-
sarial techniques (i.e whether the adversary has access to the policy network or not). The results
show that even in black-box scenarios, i.e., when the adversary has only access to the training
environment (i.e., the simulator), it is possible to confuse DRL policies in a computationally ef-
ficient way. More recently Lin et al. [41] proposed adversarial attacks that exploit the sequential
nature of RL systems. In fact, they designed a technique to perturb the observations received by
the agent only when the perturbations are likely to be effective instead of performing attacks at
every time-step (i.e., uniform attacks). Such strategically-timed attacks, applied at selective time-
steps, can lower the reward of DRL agents while being less likely to be detected w.r.t. uniform
attacks. Moreover, the authors propose another attack, called enchanting attack, which uses a gen-
erative model in combination with a planning algorithm to lure the agent to a certain, possibly
dangerous, state. The definition of frontier pair (see Definition 1) presents some similarities with
the concept of adversarial example. Indeed, a frontier pair is made by two environment configu-
rations that are close to each other and that trigger a different adaptation behavior of the agent.
Similarly, an adversarial search technique seeks to find the minimal perturbation of the input (e.g.
a pixel, if the input space of the model is an image) that triggers a misbehavior of the model (e.g. a
misclassification). However, there are some important differences that distinguish an adversarial
example from a frontier pair. First of all, the frontier pair is defined on environment configura-
tions determining the whole environment the agent will be trained on, whereas an adversarial
example is defined on a single input the agent receives (e.g. through a camera) and processes for
each prediction. Hence, gradient-based techniques to generate adversarial input examples are not
applicable in the context of this paper.
Adversarial evaluation is proposed by Uesato et al. [83] to find failures in trained DRL agents
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without generating out-of-distribution inputs, unlike previous work on adversarial examples in
DRL [29, 76]. The objective of the authors is to efficiently find inputs, i.e. initial conditions (e.g.
the shape of the track in a driving scenario, as it is generated by the environment), that cause a
catastrophic failure (e.g. the car hits a wall in the driving scenario). Towards such objective a
failure probability predictor (AVF for short) is learnt which takes as input an initial condition and
outputs a binary signal, indicating a catastrophic failure. To do that efficiently the authors propose
to use data from intermediate agents taken at different stages during the training process, since
such agents are less robust and therefore more prone to failure. The underlying assumption of the
approach is that agents fail early on in the training phase in similar ways as the final agent does.
Their results confirm the hypothesis in two tasks, namely the Humanoid task on the MuJoCo [79]
simulator and a self-driving scenario on the TORCS [87] simulator, where their approach was able
to find failures in the final agents significantly faster than a Monte Carlo method (e.g. repeated
random trials).
Another active area of research somehow related to RL testing is the study of generalization and
overfitting. Procedurally generated environments (PGEs) have been proposed to help alleviate both
concerns [12, 17]. In fact, PGEs can provide significant variation during training so that the agents
are encouraged to learn general strategies to solve the problem rather than overfitting a specific
instantiation of the environment. Of particular interest is the work by Ruderman et al. [62, 17],
which explores the question of whether specific failures can emerge when training DRL agents
in such environments. Specifically, when navigating in procedurally generated mazes, agents can
suffer from catastrophic failures despite having a high average-case performance at evaluation
time. The search for environment settings which cause catastrophic failures is a local search pro-
cess. Initially, a set of mazes is sampled from the training distribution and the trained agent is
evaluated on each environment. Afterwards, the maze where the agent has the lowest score is
selected, new candidate mazes are generated by randomly changing the wall positions and the
process repeats. The authors found that this search procedure can effectively discover mazes that
the trained agent fails to solve in a two minute episode (i.e. a catastrophic failure, according to
their definition). Moreover, the failure-causing mazes transfer among different DRL agents and
different architectures.
Drawing from the DL testing literature, which we discuss in the next section, Trujillo et al. [80]
applies the concept of neuron coverage [56] to DRL systems. Given a test set of inputs, neuron
coverage is defined as the proportion of activated neurons over all neurons when all available test
inputs are supplied to a neural network. According to such metric, a test set is adequate if it is
able to activate a high proportion of the neural network neurons, hence, thoroughly exercising its
“logic”. Trujillo et al. measured neuron coverage during training and testing of a DQN [47] agent
on the Mountain Car problem [75] and investigated the correlation between neuron coverage and
cumulative reward. The preliminary results show that neuron coverage tends to be higher when
the agent explores, i.e. in the early stages of training, and does not correlate, or it correlates
negatively, with the cumulative reward. Therefore, neuron coverage is not sufficient to reach
substantial conclusions about the quality of neural networks for DRL agents, even though more
extensive studies would be needed to confirm such result.
Rupprecht et al. [63] instead, focused on the visual aspect of DRL agents that learn from images,
in order to understand the relationship between the actions made by an agent and its visual in-
put, with the objective of identifying potential problems in the learnt behavior. In particular, the
authors learn a generative model of the environment aiming at evaluating the agent’s behavior in
particular classes of states created by the optimization. The rationale is that, often, a trained DRL
agent is evaluated on a set of scenarios which rarely include potential failure cases. Instead, by
training a generative model, the authors were able to sample out-of-distribution states where a
certain target condition is satisfied. For example, when training a DQN agent, it may be of interest
to see what happens in states where the action-values are high or low. Alternatively, states where
one action yields a high expected return and another one is not beneficial at all are also potentially
very interesting.
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Such works relate to ours because they evaluate and test RL algorithms. In particular, our work
is built on the idea of changing the environment in which the agent is originally trained, similar to
what Ruderman et al. [62, 17] accomplishes with PGEs. One difference w.r.t. such works is that the
environments we consider are not procedurally generated. We instead modify critical parameters
of the environment at runtime. The other fundamental difference is that we test the plasticity of
the learning algorithm when exposed to the new environment: we do not just evaluate a trained
agent in a new environment to find its sensitivity to the changed conditions; we rather let the
agent learn in the changed environment to study its behaviors in the new conditions. None of the
existing work tested the continual learning capabilities of RL agents.

6.2 Testing of Deep Learning Systems

Testing DL systems is a very active area of research. Research work in such context comprises all
aspects of software testing, from test input generation [56, 23, 78, 90, 42, 8, 20, 59] to test oracles [16,
72, 32, 56, 43, 68], including test adequacy criteria [36, 56, 42]. Although none of those works
specifically address RL based systems such approaches could still be applied to DRL, i.e., to RL
when a neural network is used as function approximator. The works most related to ours are those
on test input generation. For a more in-depth and thorough discussion of the topic, the interested
reader can refer to the systematic mapping by Riccio et al. [58] and the survey by Zhang et al. [89].
According to Riccio et al [58] the most widely applied test input generation technique is input mu-
tation where existing inputs to a DL based system are mutated with the constraint of preserving
their semantics. Most of the works are focused on changing the input in a way that is impercepti-
ble for humans [16, 15], but others focus also on mutating the inputs, especially images, with the
objective of simulating real environmental changes [61, 78], e.g., changes in weather conditions,
occlusions, lens distortions and object movements. Besides input mutation another popular way
to generate test inputs is the search based approach [1, 2, 8, 20, 59]. The objective of such works is
to generate challenging scenarios, i.e., environment configurations, for the system under test to
detect as many system failures as possible. Moreover, search based approaches are also used to
carry out boundary input analysis [57]. In fact, instead of finding single failures, these approaches
aim at finding similar inputs that trigger different behaviors of a DL based system, being at the
boundary (or frontier) of the behaviors of such system. This analysis is, for example, performed by
Mullins et al. [50], Tuncali et al. [82] and Riccio et al. [59] for autonomous systems using different
search techniques. Indeed, Mullins et al. [50] use adaptive search to discover inputs at the frontier
of behaviors of a system using a minimal number of samples. On the contrary, Tuncali et al. [82]
utilize rapidly-exploring random trees to find pairs of environment configurations at the collision
boundary of an autonomous car, i.e., one environment configuration in which the collision is un-
avoidable and the other, close to it, in which the collision is avoidable. Likewise, Riccio et al. [59]
use a model-based multi-objective search technique to characterize the frontier of behaviors of
both an autonomous car and a handwritten digit classifier. The results show that the points found
by this technique are spread across the frontier and that the scenarios produced by the approach
are realistic.
Our work builds on the idea of characterizing the frontier of behaviors of a DL based system [50,
82, 59]. We differ from such existing techniques in two ways. First, we search for the frontier of
behaviors of a DRL system not just by evaluating the trained agent on different environments,
but also by letting the agent learn in the new environments, in continual training mode. In this
way, we characterize both how the agent learns new behaviors (i.e., the adaptivity heatmap, see
Section 3), as well as how the agent behaves in the environment it was initially trained on, once it
has adapted to the new environments (i.e., the anti-regression heatmap, see Section 3). Second, we
use a combination of systematic search algorithms to sample the parameter space, while enabling
continual learning, and we use the nearest neighbor algorithm to approximate the behaviors of
the agent in the remaining parts of the parameter space. In fact, the high cost associated with
a single, complete (continual) training run is not compatible with the use of population based,
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evolutionary algorithms, such as those used in previous works for frontier exploration [59].

6.3 Continual Learning

The continual learning problem was first studied by McCloskey et al. [45], who investigated
whether neural networks can acquire new knowledge incrementally (or sequentially). Such ques-
tion was explored in a supervised learning setting by the authors, who trained a neural network
to perform single-digit additions. They showed that when a new task is learnt incrementally, the
new knowledge interferes with the existing one, replacing it completely. McCloskey et al. referred
to this failure mode of neural networks in the continual learning setting as catastrophic forgetting or
catastrophic interference. When learning a new task, the neural network’s inability to learn sequen-
tially is a major problem in several scenarios. For instance, if training from scratch takes a long
time, it might be impossible to reorder and replay all training data, to ensure high performance
on all the tasks, including the old ones.
Catastrophic interference is a manifestation of a more general problem of neural networks, the so-
called stability-plasticity problem [11, 22, 19]. The fundamental question is how to design a system
that is plastic (or sensitive) with respect to new inputs in order to incorporate new knowledge, but
that, at the same time, does not forget the already acquired knowledge (i.e. the system is stable
w.r.t. old inputs). Catastrophic forgetting is a failure of stability, in which new experience over-
writes previous experience. The algorithms that address the continual learning problem, which
we present next, are designed to find a trade-off between stability and plasticity.
Approaches that address and mitigate catastrophic forgetting are divided into three main cate-
gories [52], namely regularization approaches, dynamic networks and complementary learning systems.
Regularization approaches retrain the whole network while regularizing to prevent forgetting of
the previously learnt tasks. One such approach is represented by the work of Zhizhong et al. [40],
who proposed the learning without forgetting (LwF) algorithm. The LwF algorithm considers a net-
work with shared parameters across tasks and some task specific parameters. When a new task
needs to be learnt, the approach optimizes the parameters of the new task together with the shared
parameters with the constraint that the predictions of the network on the old tasks do not change
significantly. Another regularization approach is the elastic weight consolidation (EWC) algorithm
proposed by Kirkpatrick et al. [37] in supervised and reinforcement learning scenarios. In EWC,
the objective is to identify the weights that are important for past tasks and, while learning a new
task, penalize their updates w.r.t. the updates on weights that have less significance for past tasks.
Differently from the previous two approaches, Kaplanis et al. [35] propose a policy consolidation
model for continual RL that does not require the knowledge of task boundaries. Such approach
can also be viewed as an extension of the PPO algorithm [67] (see Section 2), which constrains
the new policy to be close to the old one, thus preventing catastrophic forgetting at a very short
timescale. In the policy consolidation model [35], instead, the constraint for the policy is applied
to multiple gradient steps in order to maintain the knowledge acquired at several stages in the
training history.
Dynamic networks approaches selectively train the network and expand it if necessary to learn new
tasks. For instance, Rusu et al. [64] propose to freeze changes to the networks trained on previous
tasks and, when a new task is presented, add novel sub-networks with fixed capacity to be trained
for such next task.
Finally, complementary learning systems use mechanisms to replay old experience while learning
new tasks in order to consolidate the acquired knowledge. Shin et al. [69] train a generative
model to output synthetic data that follows the same distribution as the original training data.
In such a way, when learning a new task, the training data for previous tasks can easily be sam-
pled and interleaved with those for a new task even if the training data the network was trained
on is no longer available. In the same way, Rolnick et al. [60] uses experience replay as a way to
reduce catastrophic forgetting in multi-task RL. Such approach, called CLEAR, mixes on-policy

TECHNICAL REPORT 38



TR-Precrime-2022-01 — Testing the Plasticity of RL Based Systems

learning from novel experiences (for plasticity) and off-policy learning from replay experiences
(for stability).
Continual learning in RL is mostly studied in multi-task settings [37, 60, 70], e.g. an agent trained
to play a certain game is then challenged to sequentially learn to play another game without
forgetting how to play the first one. In contrast, Fedus et al. [18] explores the question of whether
catastrophic forgetting may arise within a single game environment. They show that in Atari
games [7] catastrophic interference causes the agent performance to plateau, i.e. learning one
segment of the game degrades the performance of the policy on previously learnt segments of the
game.
In our work, we devise a novel methodology that helps developers understand the frontier of
the adaptive behaviors of a given RL algorithm, when continual learning is enabled, i.e., when a
trained agent learns incrementally to adapt to an environment which is different from the one it
was originally trained on. Since continual learning is a key property of RL based systems, which
can continue to learn as new, unlabeled data are acquired, finding the limits where such property
holds is fundamental for any practical application that involves runtime adaptation via continual
learning.

7 Conclusion and Future Work

In this paper we proposed the first approach to test the adaptation and anti-regression capabilities
of a DRL based system. We characterize the adaptation frontier of a DRL algorithm along the
parameters that define the environment in which the agent operates. We provide a visualization
of such frontier and we propose a volume metric to quantify both the adaptation capabilities of an
agent and its ability to remember how to perform in the original environment when the adaptation
is successful. We implemented the approach in a tool called ALPHATEST [44] and we carried
out an extensive evaluation on three DRL algorithms and four continuous control environments,
considering several parameter combinations.
ALPHATEST has been successfully applied to four subjects taken from the popular gym library.
Experimental results indicate that ALPHATEST is effective at finding the adaptation frontier points
and that it can be very useful in characterizing and discriminating the adaptation and anti-regression
capabilities of alternative DRL algorithms. ALPHATEST provides developers with an interpretable
visual output, which consists of the adaptation/anti-regression heatmaps (when two parameters
are considered) or a clustered two-dimensional projection, accompanied by a decision tree (when
dealing with more than two parameters).
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