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 Introduction into IceCube and IceAct
 Description of the used data set
 Introduction into Graph Neural Networks
 Event reconstruction graph neural network
 Summary and outlook
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 Cherenkov telescope with 61 pixel SiPM camera, small 
and robust

 2 IceAct telescopes taking data since 2019
 combine with particle footprint on ground  level and in-

ice muon reconstruction:
 cross-checks of geometry and energy reconstruction for 

the different detector components
 hybrid composition studies

The IceAct telescopes:

field telescope
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At each position 7 telescope are simulated in a station 
configuration: 1 pointing straight up, the 6 surrounding 
telescopes are tilted 13 degree. 
Standard simulation data set:
• E**-1, 3TeV-1PeV, 0-20 zenith, 
• round array with increasing radius:

● 3.5 ≤ log10(E) ≤ 4    => r = 250m; 
● log10(E) > 4 => dlog10(E)=0.25 => dr = 50m

• 110k events for proton and iron
• 100k events for photon, helium, aluminum, oxygen
• 20k events for neon
Smaller lower energy simulation data set:
• E**-1, 3-100TeV, 0-20 zenith, 
• round array increasing radius (see above)
• 50k events for proton, iron, photon, helium, aluminum, 

oxygen
=> For the further analysis both data sets have been 
merged and each telescope event is treated as single event.

MC simulation data set:

Top 
view   

    

  

IceAct Station

IceAct simulated array
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 Simulated proton event seen in multiple telescopes

 Energy : 656TeV; Zenith: 4°; Azimuth: 79°; 

 X: -181.747m; Y: -1.2746m 

Example of a simulated event:

5
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 GHMAX cuts events with nonphysical shower 
maximum values in the CORSIKA file

 Image cleaning keeps pulse if they are:
– Above 22mV 
– Between 14mV-22mV if they are next to 

two pixel with pulses above 22mV
 Containment keeps events if the sum of the 

inner pixels heights is 4 times larger than the 
sum of the outer pixel heights 

=> Input and Output parameters are normalized 
before they are used in the gnn

6

MC simulation data set:

Up pointing telescopes: (used in this talk) Tilted telescopes (used for the RFT talk):
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Introduction into graph neural network (gnn)

 Simple Graph Neural Network using 
Spektral package

 A Graph consists of nodes, each node has 
features and connections to other nodes

 For each event the number of nodes can 
be different

 The connection between nodes is defined 
in an adjacency matrix 

 Hidden layers are matrix convolutions of 
the graphs and the adjacency matrix 

 The normalization of the matrix differs 
depending on the chosen convolutional 
layer

https://tkipf.github.io/graph-convolutional-networks/
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Output variables: 
8 parameters

 E = energy primary
 D = distance between shower core 

and the telescope
 Sine and cosine angle on the x-y plane 

between 
x-axis and vector to shower core

 Zenith
 Sine and cosine of the azimuth angle
  shower maximum

Graphs features:
- 61 nodes = 61 pixel
- each node has 4 layers:

- pixel x position
- pixel y position
- peak height
- peak time

Adjacency matrix : 
each pixels knows itself and its 
neighbors

Edges between nodes:
same connection between all 
pixels

event reconstruction: graph neural network (gnn)

Model:
2 GatedGraphConv. Layer
1 GlobalSumPool Layer
3 Dense Layer

Shower
core position

Shower
direction

Shower
core position
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event reconstruction: graph neural network (gnn)

Loss function and validation loss of the used 
graph neural network

 Loss functions are used to evaluate the 
performance of the network 

 Used for optimizing this network is the 
mean square error (mse) function

 In addition to that the mean square 
logarithmic error (msle) is also used as 
metric to evaluate the network 

 In contrast to the loss function the metric is 
not used during the training of the loss 
function
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Reconstruction results:

Shower core resolution

Energy reconstruction:

 For Cherenkov telescopes there is an 
ambiguity between nearby low energetic 
air showers and more distant higher 
energetic air showers  

 Therefore this first results look very 
promising for a single telescope 
reconstruction

 Adding further information of the other 
detector components and simultaneous 
detection of several telescope should 
improve these results
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Reconstruction results: angle between true and reconstructed shower direction

Reconstruction of the shower maximum:

 For Cherenkov telescopes there is an 
ambiguity between nearby low energetic 
air showers and more distant higher 
energetic air showers  

 Therefore this first results look very 
promising for a single telescope 
reconstruction

 Adding further information of the other 
detector components and simultaneous 
detection of several telescope should 
improve these results
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 IceAct telescope measure the el.mag. air shower component 
independently

 With just a few simple cuts a gnn was successfully implemented

 Station trigger needs to be implemented to make use of the full 
station and to reconstruct events seen in more than one telescope.

 Further improvement in reconstructions anticipated by implementing:
– Test different normalizations of the input or/and output parameters 

– Simultaneous reconstruction of events seen in more than one station 

– Including additional parameter like reconstruction results from IceTop and 
IceCube 

 Increase the MC statistic and the energy range of the MC 

Summary and outlook
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