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Abstract

This paper examines load profiles of three commercial parking garages and,
in this context, created individual load profiles for them. A considerable pro-
portion of the operating costs of parking garages is accounted for by energy
and maintenance costs. The lighting systems and the ventilation system are
the main cost drivers. The aim is to use these load profiles to estimate en-
ergy consumption and its structure over the course of the day, week and year,
as well as to identify efficiency measures and potential savings with regard
to operational energy costs. The necessity of such individual load profiles
results on the one hand from the lack of current representative commercial
profiles for this industry, and on the other hand from the heterogeneity of the
individual buildings. Here it becomes clear that the construction and energy
concept of the parking garages have a great influence on the consumption
patterns. Therefore, parking garages were equipped with a detailed meter-
ing infrastructure in the project ”SmartPark”1 funded by the BMWK.2
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1. Introduction

1.1. Motivation

Companies need transparency about their energy consumption to sustain-
ably reduce costs and emissions. In the past, standard load profiles were fre-
quently used to analyze consumption behavior. Load profiles are a temporal
representation of the power used by a consumer over a certain period of time.
They are used to determine individual power requirements and thus enable
simulation and optimization of consumption patterns. The ”Bundesverband
der Energie- und Wasserwirtschaft e.V.” (German Association of Energy and
Water Industries; in short: BDEW, formerly: VDEW) created standard load
profiles (in short: SLP), with which the energy demand of individual typified
customers can be represented. The days of a year are divided into so-called
type days and additionally distinguished between seasons. Even though the
SLP of the BDEW are a good tool for the general estimation of energy con-
sumption, they cannot take into account customer-specific particularities.
These special features can include the type of construction and efficiency
measures of the buildings supplied, but for commercial customers also the
capacity utilization, working hours and business models. Thus, for busi-
ness costumers in particular, it is therefore advantageous to record their own
energy requirements in concrete terms in order to identify individual con-
sumption patterns and, if necessary, to derive energy-saving measures from
them. The data on consumer load profiles required for this can be processed
and evaluated by an energy management system, while these are recorded via
so-called smart meters. From this, individual load profiles of the companies
can be created, which can be standardized if required.

Parking garages could play a critical role in the future of the electrifi-
cation of the mobility sector by providing the charging infrastructure. In
the past the primary focus has been on the installation of sufficient parking
space to enhance the life quality of inner cities and other places where a lot
of individual traffic is concentrated. On the other hand, the electricity con-
sumption profile and the energy efficiency of parking garages has not been
a central focus of the parking garage operators. as charging of electric cars
redefines the role of parking garages. The needed upgrade in the electricity
grid infrastructure to install a significant number of charging points mean
significant investments for each parking garage. The optimization of the in-
stalled grid load in regards to a set number of charging points requires the
full use of flexibility and efficiency potentials. In the wake of rising electricity
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prices, the efficient use of electricity will also play a more central role in the
future of parking garage operations.

1.2. Scope

Within the scope of this work, load profiles of three selected parking
garages from three cities in Germany will be evaluated and associated indi-
vidual load profiles will be created. A brief assessment of the measurement
quality is made by putting the shares of electricity consumption measured
by sub-metering in relation to the total consumption. Afterwards, the data
are to be examined for outliers by mapping the load profiles as a weekly
progression. This work is not intended to create representative load profiles
for the parking sector, but rather individual load profiles for each facility,
which should enable the operator to identify consumption patterns and, as
a result, efficiency measures. The above-mentioned influences on consump-
tion patterns are only intended to demonstrate the necessity of a separate
consideration.

Thus, we can define the following research questions
Research Question 1: To what extent do individual load profiles of se-

lected parking garages differ from their standard load profiles?
Research Question 2: Are there external parameters such as temperature

and humidity influencing the electricity consumption?
Research Question 3: How did the electricity consumption develop during

the COVID lockdown and what does that mean regarding the dependency
of electricity consumption and occupancy?

In this paper we first introduce the data and methods in section 2 used
to create the results in section 3. We then conclude this paper with and
extended discussion of the stated Research Questions and beyond in section 4.

1.3. Literature review

In the past decades most of advances in metering technology lead to in-
stallation of registered load meters (RLM) allowing real-time measuring of
electricity consumption throughout almost all sectors making it possible to
overcome standard load profiles (SLP, [1]). According to Peters [2], load
profiles are ”a temporal representation of the power used over a period of
time, such as a week or year”. Load profiles are generally subject to strong
diurnal fluctuations, which in turn depend on the day of the week and vary
seasonally. They are used for demand forecasts as well as for design and
planning calculations and thus represent an important operating parameter
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in the load management of energy grids [3]. Meier et al. [4] used data se-
ries, which were already collected from 1980 onwards by various utilities in
Germany, to create representative load profiles. Households as well as com-
mercial and agricultural enterprises, which were distributed over the entire
federal territory, were already examined. As a result, three standard load
profiles for farms (L1 - farms with dairy farming/sideline livestock breeding,
L2 - other farms, L0 - farms), one profile for Household customers (H0) and
seven standard load profiles for commercial enterprises (G1 - commercial on
weekdays 8-18, G2 - with heavy to predominant consumption in the evening
hours, G3 - commercial continuous, G4 - shop/barber store, G5 - bakery
with bakery, G6 - weekend business, G0 - general trade). For a comparison
of the parking garages investigated in this work, the SLP G3 would be the
most suitable, which is characterized by ”consumption points that show a
relatively even course throughout the year and also in the course of the week
with a noticeable continuous base” [4].

According to Hellwig, the application of load profiles is subject to some
limitations [5]. Since they are created from a large number of different con-
sumers, individual consumption characteristics are sometimes lost through
averaging or averaging. In addition, these profiles sometimes only inade-
quately cover the trade sector, which includes other service and retail busi-
nesses.

Böckmann et al. [6] developed a framework for modeling industry- and
technology-specific load profiles for the commercial, trade, and services sector
and applied it to five of the six most energy-intensive industries in this sector
in Germany for 2018 (office-like businesses, trade, accommodation, hospitals,
and schools). One thus expanded the pool of load profiles for commercial en-
terprises. However, if these profiles are used for comparison, it must be noted
that they include not only electrical energy, but also heat and operational
cooling in the energy demand. However, due to the mostly constant patterns
of these consumption categories, a characteristic of electricity consumption
can be derived.

Lübke, Holst and Tolzmann [7] developed synthetic standard load profiles
for households using the city of Greifswald as an example and recognized a
vertically and a horizontally acting component, which cause the actual elec-
tricity consumptions to deviate from those of the VDEW load profiles. The
vertical component explains upward/downward deviations in consumption
levels due to the geographical location of cities and consequently different me-
teorological conditions. The horizontal component, which describes temporal

4



shifts of local maxima and minima, can be attributed to different sunrise and
sunset times within a larger geographical area as well as socioeconomic dif-
ferences, e.g. working hours.

In [8], Litzlbauer modeled load profiles for charging electrically powered
vehicles and analyzed different charging scenarios by comparing them with
BDEW household profiles. He elaborated that unregulated charging would
greatly increase the residential peak load during the evening hours. Regu-
lated overnight charging would minimize this peak load and draw constant
power during the night hours. However, this would require a communication
system between the charging stations and the central utility. This finding is
also relevant to this work. Due to the higher proportion of electric vehicles
on the road, parking garage operators will also have to adapt their business
model to this by installing charging stations. In this respect, the consider-
ation of individual load profiles of parking garages provides an outlook on
the possibility as well as the energy and economic sense of installing such
charging stations.

In [9], Mincu and Boboc used load profiles of seven types of consumers
to model a so-called smart city, using real collected data. They divided the
consumers into gas stations, restaurants, bank buildings, schools, accommo-
dation, public lighting and business offices.

While research is moving forward bigger advances are often hindered as
the source code often remains unpublished [10]. Thus, projects building upon
already published findings often have to start from scratch and replicability
of some projects, as it is gold standard in other data-driven fields of research,
is not guaranteed.

2. Data and Methods

In order to investigate the research questions stated previously we first
introduce the different kinds of data. Afterwards we present the methods
used and refer to the source code on GitHub (https://github.com/IIRM/
EnergyMetering).

As part of the project, smart meters were installed and their electricity
consumption was recorded via registered load metering (RLM) over periods of
19, 32 and 35 months in each of the years 2018 to 2021. These parking garages
differ not only in size and capacity, but also in their location in Germany and
within their city, as well as in construction type and equipment. The data
for the individual parking garages are briefly summarized in Table 1.

5

https://github.com/IIRM/EnergyMetering
https://github.com/IIRM/EnergyMetering


Table 1: Meta data of the parking garages.

Parameter Site A Site B Site C
Opening hours full day full day full day

Parking lots 670 912 512
Metering units 6 5 13
Metering start 2019-01-01 2020-01-10 2018-09-12
Metering end 2021-08-30 2021-08-30 2021-08-30

2.1. Energy consumption data

The energy consumption data for this study is obtained using RLM me-
tering. Hence the data was obtained for every quarter of an hour from every
metering point. Often outliers can be observed in cases of load peaks where
machines are started up or, vice versa, fail to work. Therefore, we remove
both, 5% and 95% quantile, from the data for each time slice before further
analysis. Also, we used SLP data from [1] in order to compare the load profile
for G3 under which parking garages were listed originally.

2.2. Weather data of the sites

All parking garages considered in this study are located in Germany.
Hence, we applied historical data from closely located weather stations. The
data series are provided by the German Weather Service. By using the
stations ID the correct historical data can be downloaded [11].

2.3. Modeling the hourly utilization of parking garages

As there is no public data set for the utilization of parking garages within
the opening hours, we estimate that parameter by using numbers of entries
and exits per day, which are provided by the operator of site C.

Based on [12], we find that parking garage utilization behaves like a bi-
modal curve that can be modeled using two normal distributions N1(µ1, σ1)
and N2(µ2, σ2) with expectation µ and standard deviation σ. From the
graphs we can see that the expectation values, i.e. µ1 and µ2, are around
11:30 am and 5:00 pm. As our data were recorded in 15 minute intervals we
set µ1 = 46 and µ2 = 68. Further, we set σ1 = 6 and σ2 = 12. To adjust for
the fact that both peak are of the same height we need to reweight N2, s.t.
f(µ1) = N1 + 5 ∗ N2 = f(µ2). Figure 1 shows N1 in blue, N2 in orange, and
the combined graph f(x) = N1 + 5 ∗ N2 in black.
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This crude approximation of the overall utilization during one day is then
scaled up depending on the number of entries and exits observed throughout
one day. In a perfect scenario the link between utilization and number of
entering and leaving cars is the numerical differentiation of the utilization
curve. Yet we model it in the same 15 minute intervals as the consumption
data. Thus we need to account for the possibility of a certain number of cars
leaving the parking garage while the same amount of cars enters. The overall
utilization remains the same for this period of time. Hence we only consider
85% of the observed entries and exits.

Figure 1: Underlying model for estimating the hourly utilization which was later scaled up
such that the Euclidean distance between every two time steps amounts to the observed
entries and exits per parking garage.

3. Results

3.1. Descriptive Analysis of RLM Data

In a first step we looked at the meter data. Since the incentive was to
measure electricity consumption for different technical groups we can classify
in main meters and sub-meters. Sub-metering should ensure that all groups
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Table 2: Share of energy consumption recorded by sub-metering.

Site Sub-Metering quota
A 28.6%
B 26.7%
C 60.4%

of consumers are measured individually and therefore explain the overall con-
sumption. Categories for technical groups of sub-meters are various lighting
lines, ventilation, pumps, exhaust air, elevators, heaters, and the gate. Yet
we still see a discrepancy between the energy consumption covered by sub-
meters compared to the main meter (Table 2).

The highest number of sub-meters installed within the pilot project ”Ein-
sparzähler” was in parking garage C. Consequently, the degree of coverage
by the sub-meters is also the highest. For this site, by far the largest share of
consumption is accounted for by the exhaust air system with around 24.1 %
of total consumption, while the supply air system is the second largest with
8.4 %. Compared to that, the lighting systems on the lower basement floors
and the elevators have low consumption shares. Due to their small share in
the total consumption of the parking garages, a more detailed consideration
of the load curves of most points of consumption is omitted in the following.

For a visual comparison of the measured values, typical weekly profiles are
considered, showing also the 5% and 95% quantiles (Figs. 2-4, gray data). We
remove outliers that can be attributed to special events such as a breakdown
of the measuring infrastructure or short burst in consumption. This would
also enable to verify similarities between each of the parking garages.

Figure 2 shows one of the two main meters of parking garage A over
the course of a typical week. It indicates a base consumption of about 5
kWh/quarter-hour with a higher consumption level over the day of about 15
kWh/quarter-hour.

The load curves of parking garage B differ from those of A in that a sig-
nificantly higher base consumption of 28 kWh/quarter hour can be observed
here, which is never fallen short of. During the course of the day, the energy
consumption increases and reaches two peaks during the morning and early
evening on weekdays. On Saturdays, another peak can be observed, while
on Sundays only a weaker increase is visible on average. The observed peak
load was about 75 kWh/quarter hour.
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Figure 2: Aggregated energy consumption [kW] of site A. As first cleaning step, 5%
and 95% quantiles (gray) were removed. The remaining data (orange) was used in the
remainder of the study. The black line marks the mean.

A similar pattern can be found in the load curves of parking garage C, but
the range and consumption level are different compared to parking garage
B. 90% of all data are in the interval between 25 and 50 kWh/quarter hour,
with the lowest consumption measured around midnight. Swings downwards
mostly do not fall below the consumption of 18 kWh/quarter hour, but no
consumption is measured on a Friday. For this day, it can be assumed that
there was a power outage or other event that prevented a measurement. On
the other hand, upward outliers occur over the course of the entire week and
sometimes show a peak load that is twice as high. Lower overall fluctuations
occur over the course of the week than in the other two parking garages, and
the flattening of load curves toward the weekend is similar to that of Parking
Garage C. The position of the median in comparison to the quantiles suggests
that the data show a left-skewed distribution.

3.2. Deriving individual load profiles

Following the descriptive analyses performed so far, the individual load
profiles of the parking garages will now be discussed.

Figure 5 shows the load profiles of parking garage A, differentiated by
day type and season. The periods of higher consumption worked out in sec-
tion 3.1 are also well recognizable here. They reach values between 25 and
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Figure 3: Aggregated energy consumption [kW] of site B. As first cleaning step, 5%
and 95% quantiles (gray) were removed. The remaining data (orange) was used in the
remainder of the study. The black line marks the mean.

Figure 4: Aggregated energy consumption [kW] of site C. As first cleaning step, 5%
and 95% quantiles (gray) were removed. The remaining data (orange) was used in the
remainder of the study. The black line marks the mean.
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30 kWh/quarter hour in the morning and about 45 kWh/quarter hour in the
evening and are thus in the range of the median consumption. There are
hardly any differences between the days of the week and the seasons. Winter
consumption hardly exceeds that of the other seasons, and if it does, it is only
insignificant and limited in time.Overall, these load profiles provide a good
estimate of the energy demand of parking garage A. The lack of significant
deviations in the course of the week as well as the year indicates on the one
hand a strict clocking of the electricity consumption and on the other hand
a resistance to external factors. In combination with the small range of the
measured values between the 5% and 95% quantile, it can therefore be con-
cluded that the energy demand in this parking garage is usually represented
well to very well by the load profiles.

A different picture emerges in the load profiles of parking garage B (Fig. 6.
The already mentioned base of 28 kW is also found in the load profiles, as well
as the characteristic peaks during the week. Consistent with the observations
of the weekly curves, there are two pronounced peaks on weekdays around 9
a.m. and between 6 p.m. and 7:00 p.m., on Saturdays a long-lasting peak in
the afternoon hours as well as a smaller increase in consumption on Sunday
afternoon. The highest consumption is measured on Saturdays around 6 p.m.
In addition to the differences between the days of the week, some can also
be found between the seasons. Contrary to expectations, the higher energy
consumption do not occur in winter but mainly in summer, especially on
weekdays around 6 p.m. The local maxima also shift over the course of the
year. They occur earliest in winter and latest in summer. It can be assumed
that due to the later sunset time either the visiting times in the parking
garage reach a later maximum or the exhaust air system shifts its running
times due to the high temperatures in summer, especially in the afternoon
and evening hours.

Parking Garage C shows the smallest relative changes in electricity con-
sumption over the course of the day (Fig. 7). The base load of the parking
garage of 38 kW forms a range of only 7 kW with the peak load of just over
45 kW, within which the average consumption moves. In contrast to parking
garage B, significantly higher consumption occurs in winter than in summer,
regardless of the time of day or season. In addition, there are deviations
in consumption patterns between seasons and day types. Summer and the
transitional period are the most similar in this respect, with a pattern that
reaches its daily maximum between 7 and 8 a.m. on weekdays, slowly de-
creasing and reaching its minimum over midnight. In winter, on the other
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Figure 5: Individual load profile for site A.

hand, consumption rises again in the late afternoon hours before reaching its
maximum around 6:00 p.m. and then dropping off. The load profiles of Sun-
days are similar to those of Saturdays, but at a slightly lower consumption
level.

3.3. Correlation with External Parameters

In order to check whether external parameters are responsible for possible
differences within series variation we used a linear regression model. To
account for seasonal changes we separated the data in seasons as done in [1].
As already mentioned in Sec. 2.3, an investigation of the influence of the
utilization of the parking garages on their electricity demand can only be
carried out for Site C, since data for entries and exits are only available for
this parking garage. One example for a correlation in a transition period can
be seen in figure 8. It shows that there is little to none correlation between
energy consumption and the respective sum of entries and exits. Moreover,
there seems to be a divide in the data set which we were able to link to
spring and fall. While this is not significant for the regression, it implies that
there are significant differences in the level of energy consumption between
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Figure 6: Individual load profile for site B.
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Figure 7: Individual load profile for site C.
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Figure 8: Correlation between energy consumption [kW] and occupation (as sum of entries
and exits).

spring and fall that could not be identified by the general approach to load
profiling. As a result of this finding, it may be useful to create separate load
profiles for spring and fall for this parking garage.

For all (sub-)meters we calculated each coefficient of determination (R2)
indicating whether the measured variation in the model can be explained
through variables. We find that there are none of the external parameters,
i.e. humidity, temperature, and occupation, can explain the variation in the
energy consumption (see Tab. A.3).

4. Discussion and Outlook

The results from the various evaluations of the load profiles and regres-
sions underscore the importance of registered load metering (RLM) in the
commercial sector. Not only did the parking garages studied exhibit funda-
mentally different consumption patterns, which were reflected in the individ-
ual load profiles, the heterogeneity of these implies the need for a building-
specific and thus also facility-specific energy concept for companies. Looking
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at the data material, it can be seen that despite great efforts, at best only
slightly more than half of the electricity consumed could be recorded by smart
metering. The consumption of the sub-meters thus recorded cannot be used
to explain the total energy demand of the buildings.

By looking at the load profiles over the course of a week, it was possible
to identify initial consumption patterns and estimate the range, location and
distribution of the data. These findings were used in the analysis of the
individual load profiles in order to be able to explain particularities in their
course.

The first striking feature was the stringent timing of electricity consump-
tion in parking garage A. Here, hardly any differences were found between
weekdays and seasons. Parking garage B stood out due to its power peaks
linked to store opening times, which showed similar distributions over the
course of the day and week compared to their load profiles. Parking garage
C showed a different pattern of electricity consumption. While the other
underground parking garages had base consumption rates in the range of
20 or 28 kW, this value for parking garage C was between 38 and 42 kW,
depending on the season. In contrast, the local maxima of all three parking
garages reached similar values on average. In the course of this observation,
the question arises as to whether the operator of parking garage C should cre-
ate an energy concept which, as in parking garage A, clocks certain technical
systems in order to be able to reduce the total consumption of electricity.

Regression of energy consumption with a modeled load factor did not yield
significant results. The correlation between utilization and energy consump-
tion is slightly positive, but not sufficient to explain changes in electricity
consumption. This aspect can be partially explained by the inaccuracy of
the data material, since it was thus necessary to model consumption.

Also we did not find any obvious link between COVID and energy con-
sumption when comparing load curves for months of lockdown versus normal
occupation over all years of metering. Even though this project has been go-
ing on over several years already we pledge for a longer data gathering period
since we have to analyze data of each parking garage individually.

In section 2.3 we described one way of modeling utilization of parking
garages. This model is rather simplified and yet it can be readily extended
in order predict utilization throughout a year. At the same time we see an
increase in electric car registrations leading to obvious future problems of
car park operators: How can we predict energy consumption when offering
charging stations for electric cars? When combining the presented utilization
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model with know electricity consumption during a charging cycle we can
extend the current predictions.

It might be even possible to move a step further: knowing cars often
spend several hours in a car park a coupling of charging station with spot
market prices could lead to a decrease in electricity costs. At the same time
the costs are lowered the carbon footprint at the production sites is usually
low as solar and wind power plants provide a larger proportion of electricity
in the grid.
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Table A.3: This table captures all R2 values for all correlations for summer (S), transition
(T), and winter (W). The largest value is 0.447 for heating and signs 2 in winter for
utilization at site C and therefore none of the values is significant.

Meter
Humidity Temperature Utilization

S T W S T W S T W

S
it

e
C

main 0.013 0.007 0.004 0.0 0.013 0.017 0.095 0.0 0.081
light 1 0.318 0.25 0.098 0.274 0.167 0.085 0.249 0.164 0.109
light 2 0.182 0.063 0.023 0.142 0.138 0.029 0.207 0.298 0.127
light 3 0.011 0.028 0.01 0.003 0.0 0.021 0.005 0.003 0.005
light 4 0.147 0.063 0.048 0.132 0.06 0.016 0.343 0.343 0.402
light 5 0.065 0.012 0.032 0.059 0.056 0.017 0.201 0.286 0.408
air
supply

0.031 0.004 0.02 0.016 0.028 0.246 0.031 0.003 0.005

exhaust 0.005 0.0 0.018 0.022 0.011 0.037 0.013 0.012 0.008
lift 1 0.17 0.04 0.03 0.139 0.052 0.052 0.244 0.023 0.39
lift 2 0.0 0.005 0.016 0.093 0.022 0.001 0.056 0.021 0.136
sockets 0.203 0.186 0.082 0.115 0.069 0.004 0.052 0.06 0.046
heating/
signs 1

0.0 0.006 0.15 0.059 0.006 0.001 0.001 0.015 0.075

heating/
signs 2

0.114 0.0 0.057 0.093 0.037 0.032 0.326 0.32 0.447

S
it

e
A

main 1 0.108 0.0 0.002 0.083 0.063 0.007
main 2 0.026 0.0 0.0 0.009 0.003 0.0
vent 1 0.074 0.007 0.004 0.036 0.017 0.001
vent 2 0.09 0.001 0.0 0.057 0.03 0.011
vent 3 0.0 0.0 0.001 0.001 0.002 0.002
pump 0.001 0.001 0.0 0.007 0.0 0.0

S
it

e
B

main 0.193 0.104 0.026 0.196 0.078 0.003
exhaust 1 0.065 0.004 0.005 0.087 0.047 0.007
exhaust 2 0.073 0.002 0.015 0.1 0.057 0.003
exhaust 3 0.001 0.128 0.041 0.0 0.001 0.007
gate 0.156 0.166 0.008 0.265 0.035 0.005
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